1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import jdk.internal.HotSpotIntrinsicCandidate;
  29 import jdk.internal.vm.annotation.ForceInline;
  30 
  31 import java.lang.reflect.Field;
  32 import java.security.ProtectionDomain;
  33 
  34 
  35 /**
  36  * A collection of methods for performing low-level, unsafe operations.
  37  * Although the class and all methods are public, use of this class is
  38  * limited because only trusted code can obtain instances of it.
  39  *
  40  * <em>Note:</em> It is the resposibility of the caller to make sure
  41  * arguments are checked before methods of this class are
  42  * called. While some rudimentary checks are performed on the input,
  43  * the checks are best effort and when performance is an overriding
  44  * priority, as when methods of this class are optimized by the
  45  * runtime compiler, some or all checks (if any) may be elided. Hence,
  46  * the caller must not rely on the checks and corresponding
  47  * exceptions!
  48  *
  49  * @author John R. Rose
  50  * @see #getUnsafe
  51  */
  52 
  53 public final class Unsafe {
  54 
  55     private static native void registerNatives();
  56     static {
  57         registerNatives();
  58     }
  59 
  60     private Unsafe() {}
  61 
  62     private static final Unsafe theUnsafe = new Unsafe();
  63 
  64     /**
  65      * Provides the caller with the capability of performing unsafe
  66      * operations.
  67      *
  68      * <p>The returned {@code Unsafe} object should be carefully guarded
  69      * by the caller, since it can be used to read and write data at arbitrary
  70      * memory addresses.  It must never be passed to untrusted code.
  71      *
  72      * <p>Most methods in this class are very low-level, and correspond to a
  73      * small number of hardware instructions (on typical machines).  Compilers
  74      * are encouraged to optimize these methods accordingly.
  75      *
  76      * <p>Here is a suggested idiom for using unsafe operations:
  77      *
  78      * <pre> {@code
  79      * class MyTrustedClass {
  80      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  81      *   ...
  82      *   private long myCountAddress = ...;
  83      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  84      * }}</pre>
  85      *
  86      * (It may assist compilers to make the local variable {@code final}.)
  87      */
  88     public static Unsafe getUnsafe() {
  89         return theUnsafe;
  90     }
  91 
  92     /// peek and poke operations
  93     /// (compilers should optimize these to memory ops)
  94 
  95     // These work on object fields in the Java heap.
  96     // They will not work on elements of packed arrays.
  97 
  98     /**
  99      * Fetches a value from a given Java variable.
 100      * More specifically, fetches a field or array element within the given
 101      * object {@code o} at the given offset, or (if {@code o} is null)
 102      * from the memory address whose numerical value is the given offset.
 103      * <p>
 104      * The results are undefined unless one of the following cases is true:
 105      * <ul>
 106      * <li>The offset was obtained from {@link #objectFieldOffset} on
 107      * the {@link java.lang.reflect.Field} of some Java field and the object
 108      * referred to by {@code o} is of a class compatible with that
 109      * field's class.
 110      *
 111      * <li>The offset and object reference {@code o} (either null or
 112      * non-null) were both obtained via {@link #staticFieldOffset}
 113      * and {@link #staticFieldBase} (respectively) from the
 114      * reflective {@link Field} representation of some Java field.
 115      *
 116      * <li>The object referred to by {@code o} is an array, and the offset
 117      * is an integer of the form {@code B+N*S}, where {@code N} is
 118      * a valid index into the array, and {@code B} and {@code S} are
 119      * the values obtained by {@link #arrayBaseOffset} and {@link
 120      * #arrayIndexScale} (respectively) from the array's class.  The value
 121      * referred to is the {@code N}<em>th</em> element of the array.
 122      *
 123      * </ul>
 124      * <p>
 125      * If one of the above cases is true, the call references a specific Java
 126      * variable (field or array element).  However, the results are undefined
 127      * if that variable is not in fact of the type returned by this method.
 128      * <p>
 129      * This method refers to a variable by means of two parameters, and so
 130      * it provides (in effect) a <em>double-register</em> addressing mode
 131      * for Java variables.  When the object reference is null, this method
 132      * uses its offset as an absolute address.  This is similar in operation
 133      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 134      * <em>single-register</em> addressing mode for non-Java variables.
 135      * However, because Java variables may have a different layout in memory
 136      * from non-Java variables, programmers should not assume that these
 137      * two addressing modes are ever equivalent.  Also, programmers should
 138      * remember that offsets from the double-register addressing mode cannot
 139      * be portably confused with longs used in the single-register addressing
 140      * mode.
 141      *
 142      * @param o Java heap object in which the variable resides, if any, else
 143      *        null
 144      * @param offset indication of where the variable resides in a Java heap
 145      *        object, if any, else a memory address locating the variable
 146      *        statically
 147      * @return the value fetched from the indicated Java variable
 148      * @throws RuntimeException No defined exceptions are thrown, not even
 149      *         {@link NullPointerException}
 150      */
 151     @HotSpotIntrinsicCandidate
 152     public native int getInt(Object o, long offset);
 153 
 154     /**
 155      * Stores a value into a given Java variable.
 156      * <p>
 157      * The first two parameters are interpreted exactly as with
 158      * {@link #getInt(Object, long)} to refer to a specific
 159      * Java variable (field or array element).  The given value
 160      * is stored into that variable.
 161      * <p>
 162      * The variable must be of the same type as the method
 163      * parameter {@code x}.
 164      *
 165      * @param o Java heap object in which the variable resides, if any, else
 166      *        null
 167      * @param offset indication of where the variable resides in a Java heap
 168      *        object, if any, else a memory address locating the variable
 169      *        statically
 170      * @param x the value to store into the indicated Java variable
 171      * @throws RuntimeException No defined exceptions are thrown, not even
 172      *         {@link NullPointerException}
 173      */
 174     @HotSpotIntrinsicCandidate
 175     public native void putInt(Object o, long offset, int x);
 176 
 177     /**
 178      * Fetches a reference value from a given Java variable.
 179      * @see #getInt(Object, long)
 180      */
 181     @HotSpotIntrinsicCandidate
 182     public native Object getObject(Object o, long offset);
 183 
 184     /**
 185      * Stores a reference value into a given Java variable.
 186      * <p>
 187      * Unless the reference {@code x} being stored is either null
 188      * or matches the field type, the results are undefined.
 189      * If the reference {@code o} is non-null, card marks or
 190      * other store barriers for that object (if the VM requires them)
 191      * are updated.
 192      * @see #putInt(Object, long, int)
 193      */
 194     @HotSpotIntrinsicCandidate
 195     public native void putObject(Object o, long offset, Object x);
 196 
 197     /** @see #getInt(Object, long) */
 198     @HotSpotIntrinsicCandidate
 199     public native boolean getBoolean(Object o, long offset);
 200 
 201     /** @see #putInt(Object, long, int) */
 202     @HotSpotIntrinsicCandidate
 203     public native void    putBoolean(Object o, long offset, boolean x);
 204 
 205     /** @see #getInt(Object, long) */
 206     @HotSpotIntrinsicCandidate
 207     public native byte    getByte(Object o, long offset);
 208 
 209     /** @see #putInt(Object, long, int) */
 210     @HotSpotIntrinsicCandidate
 211     public native void    putByte(Object o, long offset, byte x);
 212 
 213     /** @see #getInt(Object, long) */
 214     @HotSpotIntrinsicCandidate
 215     public native short   getShort(Object o, long offset);
 216 
 217     /** @see #putInt(Object, long, int) */
 218     @HotSpotIntrinsicCandidate
 219     public native void    putShort(Object o, long offset, short x);
 220 
 221     /** @see #getInt(Object, long) */
 222     @HotSpotIntrinsicCandidate
 223     public native char    getChar(Object o, long offset);
 224 
 225     /** @see #putInt(Object, long, int) */
 226     @HotSpotIntrinsicCandidate
 227     public native void    putChar(Object o, long offset, char x);
 228 
 229     /** @see #getInt(Object, long) */
 230     @HotSpotIntrinsicCandidate
 231     public native long    getLong(Object o, long offset);
 232 
 233     /** @see #putInt(Object, long, int) */
 234     @HotSpotIntrinsicCandidate
 235     public native void    putLong(Object o, long offset, long x);
 236 
 237     /** @see #getInt(Object, long) */
 238     @HotSpotIntrinsicCandidate
 239     public native float   getFloat(Object o, long offset);
 240 
 241     /** @see #putInt(Object, long, int) */
 242     @HotSpotIntrinsicCandidate
 243     public native void    putFloat(Object o, long offset, float x);
 244 
 245     /** @see #getInt(Object, long) */
 246     @HotSpotIntrinsicCandidate
 247     public native double  getDouble(Object o, long offset);
 248 
 249     /** @see #putInt(Object, long, int) */
 250     @HotSpotIntrinsicCandidate
 251     public native void    putDouble(Object o, long offset, double x);
 252 
 253     /**
 254      * Fetches a native pointer from a given memory address.  If the address is
 255      * zero, or does not point into a block obtained from {@link
 256      * #allocateMemory}, the results are undefined.
 257      *
 258      * <p>If the native pointer is less than 64 bits wide, it is extended as
 259      * an unsigned number to a Java long.  The pointer may be indexed by any
 260      * given byte offset, simply by adding that offset (as a simple integer) to
 261      * the long representing the pointer.  The number of bytes actually read
 262      * from the target address may be determined by consulting {@link
 263      * #addressSize}.
 264      *
 265      * @see #allocateMemory
 266      * @see #getInt(Object, long)
 267      */
 268     @ForceInline
 269     public long getAddress(Object o, long offset) {
 270         if (ADDRESS_SIZE == 4) {
 271             return Integer.toUnsignedLong(getInt(o, offset));
 272         } else {
 273             return getLong(o, offset);
 274         }
 275     }
 276 
 277     /**
 278      * Stores a native pointer into a given memory address.  If the address is
 279      * zero, or does not point into a block obtained from {@link
 280      * #allocateMemory}, the results are undefined.
 281      *
 282      * <p>The number of bytes actually written at the target address may be
 283      * determined by consulting {@link #addressSize}.
 284      *
 285      * @see #allocateMemory
 286      * @see #putInt(Object, long, int)
 287      */
 288     @ForceInline
 289     public void putAddress(Object o, long offset, long x) {
 290         if (ADDRESS_SIZE == 4) {
 291             putInt(o, offset, (int)x);
 292         } else {
 293             putLong(o, offset, x);
 294         }
 295     }
 296 
 297     // These read VM internal data.
 298 
 299     /**
 300      * Fetches an uncompressed reference value from a given native variable
 301      * ignoring the VM's compressed references mode.
 302      *
 303      * @param address a memory address locating the variable
 304      * @return the value fetched from the indicated native variable
 305      */
 306     public native Object getUncompressedObject(long address);
 307 
 308     // These work on values in the C heap.
 309 
 310     /**
 311      * Fetches a value from a given memory address.  If the address is zero, or
 312      * does not point into a block obtained from {@link #allocateMemory}, the
 313      * results are undefined.
 314      *
 315      * @see #allocateMemory
 316      */
 317     @ForceInline
 318     public byte getByte(long address) {
 319         return getByte(null, address);
 320     }
 321 
 322     /**
 323      * Stores a value into a given memory address.  If the address is zero, or
 324      * does not point into a block obtained from {@link #allocateMemory}, the
 325      * results are undefined.
 326      *
 327      * @see #getByte(long)
 328      */
 329     @ForceInline
 330     public void putByte(long address, byte x) {
 331         putByte(null, address, x);
 332     }
 333 
 334     /** @see #getByte(long) */
 335     @ForceInline
 336     public short getShort(long address) {
 337         return getShort(null, address);
 338     }
 339 
 340     /** @see #putByte(long, byte) */
 341     @ForceInline
 342     public void putShort(long address, short x) {
 343         putShort(null, address, x);
 344     }
 345 
 346     /** @see #getByte(long) */
 347     @ForceInline
 348     public char getChar(long address) {
 349         return getChar(null, address);
 350     }
 351 
 352     /** @see #putByte(long, byte) */
 353     @ForceInline
 354     public void putChar(long address, char x) {
 355         putChar(null, address, x);
 356     }
 357 
 358     /** @see #getByte(long) */
 359     @ForceInline
 360     public int getInt(long address) {
 361         return getInt(null, address);
 362     }
 363 
 364     /** @see #putByte(long, byte) */
 365     @ForceInline
 366     public void putInt(long address, int x) {
 367         putInt(null, address, x);
 368     }
 369 
 370     /** @see #getByte(long) */
 371     @ForceInline
 372     public long getLong(long address) {
 373         return getLong(null, address);
 374     }
 375 
 376     /** @see #putByte(long, byte) */
 377     @ForceInline
 378     public void putLong(long address, long x) {
 379         putLong(null, address, x);
 380     }
 381 
 382     /** @see #getByte(long) */
 383     @ForceInline
 384     public float getFloat(long address) {
 385         return getFloat(null, address);
 386     }
 387 
 388     /** @see #putByte(long, byte) */
 389     @ForceInline
 390     public void putFloat(long address, float x) {
 391         putFloat(null, address, x);
 392     }
 393 
 394     /** @see #getByte(long) */
 395     @ForceInline
 396     public double getDouble(long address) {
 397         return getDouble(null, address);
 398     }
 399 
 400     /** @see #putByte(long, byte) */
 401     @ForceInline
 402     public void putDouble(long address, double x) {
 403         putDouble(null, address, x);
 404     }
 405 
 406     /** @see #getAddress(Object, long) */
 407     @ForceInline
 408     public long getAddress(long address) {
 409         return getAddress(null, address);
 410     }
 411 
 412     /** @see #putAddress(Object, long, long) */
 413     @ForceInline
 414     public void putAddress(long address, long x) {
 415         putAddress(null, address, x);
 416     }
 417 
 418 
 419 
 420     /// helper methods for validating various types of objects/values
 421 
 422     /**
 423      * Create an exception reflecting that some of the input was invalid
 424      *
 425      * <em>Note:</em> It is the resposibility of the caller to make
 426      * sure arguments are checked before the methods are called. While
 427      * some rudimentary checks are performed on the input, the checks
 428      * are best effort and when performance is an overriding priority,
 429      * as when methods of this class are optimized by the runtime
 430      * compiler, some or all checks (if any) may be elided. Hence, the
 431      * caller must not rely on the checks and corresponding
 432      * exceptions!
 433      *
 434      * @return an exception object
 435      */
 436     private RuntimeException invalidInput() {
 437         return new IllegalArgumentException();
 438     }
 439 
 440     /**
 441      * Check if a value is 32-bit clean (32 MSB are all zero)
 442      *
 443      * @param value the 64-bit value to check
 444      *
 445      * @return true if the value is 32-bit clean
 446      */
 447     private boolean is32BitClean(long value) {
 448         return value >>> 32 == 0;
 449     }
 450 
 451     /**
 452      * Check the validity of a size (the equivalent of a size_t)
 453      *
 454      * @throws RuntimeException if the size is invalid
 455      *         (<em>Note:</em> after optimization, invalid inputs may
 456      *         go undetected, which will lead to unpredictable
 457      *         behavior)
 458      */
 459     private void checkSize(long size) {
 460         if (ADDRESS_SIZE == 4) {
 461             // Note: this will also check for negative sizes
 462             if (!is32BitClean(size)) {
 463                 throw invalidInput();
 464             }
 465         } else if (size < 0) {
 466             throw invalidInput();
 467         }
 468     }
 469 
 470     /**
 471      * Check the validity of a native address (the equivalent of void*)
 472      *
 473      * @throws RuntimeException if the address is invalid
 474      *         (<em>Note:</em> after optimization, invalid inputs may
 475      *         go undetected, which will lead to unpredictable
 476      *         behavior)
 477      */
 478     private void checkNativeAddress(long address) {
 479         if (ADDRESS_SIZE == 4) {
 480             // Accept both zero and sign extended pointers. A valid
 481             // pointer will, after the +1 below, either have produced
 482             // the value 0x0 or 0x1. Masking off the low bit allows
 483             // for testing against 0.
 484             if ((((address >> 32) + 1) & ~1) != 0) {
 485                 throw invalidInput();
 486             }
 487         }
 488     }
 489 
 490     /**
 491      * Check the validity of an offset, relative to a base object
 492      *
 493      * @param o the base object
 494      * @param offset the offset to check
 495      *
 496      * @throws RuntimeException if the size is invalid
 497      *         (<em>Note:</em> after optimization, invalid inputs may
 498      *         go undetected, which will lead to unpredictable
 499      *         behavior)
 500      */
 501     private void checkOffset(Object o, long offset) {
 502         if (ADDRESS_SIZE == 4) {
 503             // Note: this will also check for negative offsets
 504             if (!is32BitClean(offset)) {
 505                 throw invalidInput();
 506             }
 507         } else if (offset < 0) {
 508             throw invalidInput();
 509         }
 510     }
 511 
 512     /**
 513      * Check the validity of a double-register pointer
 514      *
 515      * Note: This code deliberately does *not* check for NPE for (at
 516      * least) three reasons:
 517      *
 518      * 1) NPE is not just NULL/0 - there is a range of values all
 519      * resulting in an NPE, which is not trivial to check for
 520      *
 521      * 2) It is the responsibility of the callers of Unsafe methods
 522      * to verify the input, so throwing an exception here is not really
 523      * useful - passing in a NULL pointer is a critical error and the
 524      * must not expect an exception to be thrown anyway.
 525      *
 526      * 3) the actual operations will detect NULL pointers anyway by
 527      * means of traps and signals (like SIGSEGV).
 528      *
 529      * @param o Java heap object, or null
 530      * @param offset indication of where the variable resides in a Java heap
 531      *        object, if any, else a memory address locating the variable
 532      *        statically
 533      *
 534      * @throws RuntimeException if the pointer is invalid
 535      *         (<em>Note:</em> after optimization, invalid inputs may
 536      *         go undetected, which will lead to unpredictable
 537      *         behavior)
 538      */
 539     private void checkPointer(Object o, long offset) {
 540         if (o == null) {
 541             checkNativeAddress(offset);
 542         } else {
 543             checkOffset(o, offset);
 544         }
 545     }
 546 
 547     /**
 548      * Check if a type is a primitive array type
 549      *
 550      * @param c the type to check
 551      *
 552      * @return true if the type is a primitive array type
 553      */
 554     private void checkPrimitiveArray(Class<?> c) {
 555         Class<?> componentType = c.getComponentType();
 556         if (componentType == null || !componentType.isPrimitive()) {
 557             throw invalidInput();
 558         }
 559     }
 560 
 561     /**
 562      * Check that a pointer is a valid primitive array type pointer
 563      *
 564      * Note: pointers off-heap are considered to be primitive arrays
 565      *
 566      * @throws RuntimeException if the pointer is invalid
 567      *         (<em>Note:</em> after optimization, invalid inputs may
 568      *         go undetected, which will lead to unpredictable
 569      *         behavior)
 570      */
 571     private void checkPrimitivePointer(Object o, long offset) {
 572         checkPointer(o, offset);
 573 
 574         if (o != null) {
 575             // If on heap, it it must be a primitive array
 576             checkPrimitiveArray(o.getClass());
 577         }
 578     }
 579 
 580 
 581     /// wrappers for malloc, realloc, free:
 582 
 583     /**
 584      * Allocates a new block of native memory, of the given size in bytes.  The
 585      * contents of the memory are uninitialized; they will generally be
 586      * garbage.  The resulting native pointer will never be zero, and will be
 587      * aligned for all value types.  Dispose of this memory by calling {@link
 588      * #freeMemory}, or resize it with {@link #reallocateMemory}.
 589      *
 590      * <em>Note:</em> It is the resposibility of the caller to make
 591      * sure arguments are checked before the methods are called. While
 592      * some rudimentary checks are performed on the input, the checks
 593      * are best effort and when performance is an overriding priority,
 594      * as when methods of this class are optimized by the runtime
 595      * compiler, some or all checks (if any) may be elided. Hence, the
 596      * caller must not rely on the checks and corresponding
 597      * exceptions!
 598      *
 599      * @throws RuntimeException if the size is negative or too large
 600      *         for the native size_t type
 601      *
 602      * @throws OutOfMemoryError if the allocation is refused by the system
 603      *
 604      * @see #getByte(long)
 605      * @see #putByte(long, byte)
 606      */
 607     public long allocateMemory(long bytes) {
 608         allocateMemoryChecks(bytes);
 609 
 610         if (bytes == 0) {
 611             return 0;
 612         }
 613 
 614         long p = allocateMemory0(bytes);
 615         if (p == 0) {
 616             throw new OutOfMemoryError();
 617         }
 618 
 619         return p;
 620     }
 621 
 622     /**
 623      * Validate the arguments to allocateMemory
 624      *
 625      * @throws RuntimeException if the arguments are invalid
 626      *         (<em>Note:</em> after optimization, invalid inputs may
 627      *         go undetected, which will lead to unpredictable
 628      *         behavior)
 629      */
 630     private void allocateMemoryChecks(long bytes) {
 631         checkSize(bytes);
 632     }
 633 
 634     /**
 635      * Resizes a new block of native memory, to the given size in bytes.  The
 636      * contents of the new block past the size of the old block are
 637      * uninitialized; they will generally be garbage.  The resulting native
 638      * pointer will be zero if and only if the requested size is zero.  The
 639      * resulting native pointer will be aligned for all value types.  Dispose
 640      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 641      * #reallocateMemory}.  The address passed to this method may be null, in
 642      * which case an allocation will be performed.
 643      *
 644      * <em>Note:</em> It is the resposibility of the caller to make
 645      * sure arguments are checked before the methods are called. While
 646      * some rudimentary checks are performed on the input, the checks
 647      * are best effort and when performance is an overriding priority,
 648      * as when methods of this class are optimized by the runtime
 649      * compiler, some or all checks (if any) may be elided. Hence, the
 650      * caller must not rely on the checks and corresponding
 651      * exceptions!
 652      *
 653      * @throws RuntimeException if the size is negative or too large
 654      *         for the native size_t type
 655      *
 656      * @throws OutOfMemoryError if the allocation is refused by the system
 657      *
 658      * @see #allocateMemory
 659      */
 660     public long reallocateMemory(long address, long bytes) {
 661         reallocateMemoryChecks(address, bytes);
 662 
 663         if (bytes == 0) {
 664             freeMemory(address);
 665             return 0;
 666         }
 667 
 668         long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
 669         if (p == 0) {
 670             throw new OutOfMemoryError();
 671         }
 672 
 673         return p;
 674     }
 675 
 676     /**
 677      * Validate the arguments to reallocateMemory
 678      *
 679      * @throws RuntimeException if the arguments are invalid
 680      *         (<em>Note:</em> after optimization, invalid inputs may
 681      *         go undetected, which will lead to unpredictable
 682      *         behavior)
 683      */
 684     private void reallocateMemoryChecks(long address, long bytes) {
 685         checkPointer(null, address);
 686         checkSize(bytes);
 687     }
 688 
 689     /**
 690      * Sets all bytes in a given block of memory to a fixed value
 691      * (usually zero).
 692      *
 693      * <p>This method determines a block's base address by means of two parameters,
 694      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 695      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 696      * the offset supplies an absolute base address.
 697      *
 698      * <p>The stores are in coherent (atomic) units of a size determined
 699      * by the address and length parameters.  If the effective address and
 700      * length are all even modulo 8, the stores take place in 'long' units.
 701      * If the effective address and length are (resp.) even modulo 4 or 2,
 702      * the stores take place in units of 'int' or 'short'.
 703      *
 704      * <em>Note:</em> It is the resposibility of the caller to make
 705      * sure arguments are checked before the methods are called. While
 706      * some rudimentary checks are performed on the input, the checks
 707      * are best effort and when performance is an overriding priority,
 708      * as when methods of this class are optimized by the runtime
 709      * compiler, some or all checks (if any) may be elided. Hence, the
 710      * caller must not rely on the checks and corresponding
 711      * exceptions!
 712      *
 713      * @throws RuntimeException if any of the arguments is invalid
 714      *
 715      * @since 1.7
 716      */
 717     public void setMemory(Object o, long offset, long bytes, byte value) {
 718         setMemoryChecks(o, offset, bytes, value);
 719 
 720         if (bytes == 0) {
 721             return;
 722         }
 723 
 724         setMemory0(o, offset, bytes, value);
 725     }
 726 
 727     /**
 728      * Sets all bytes in a given block of memory to a fixed value
 729      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 730      * as discussed in {@link #getInt(Object,long)}.
 731      *
 732      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 733      */
 734     public void setMemory(long address, long bytes, byte value) {
 735         setMemory(null, address, bytes, value);
 736     }
 737 
 738     /**
 739      * Validate the arguments to setMemory
 740      *
 741      * @throws RuntimeException if the arguments are invalid
 742      *         (<em>Note:</em> after optimization, invalid inputs may
 743      *         go undetected, which will lead to unpredictable
 744      *         behavior)
 745      */
 746     private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
 747         checkPrimitivePointer(o, offset);
 748         checkSize(bytes);
 749     }
 750 
 751     /**
 752      * Sets all bytes in a given block of memory to a copy of another
 753      * block.
 754      *
 755      * <p>This method determines each block's base address by means of two parameters,
 756      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 757      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 758      * the offset supplies an absolute base address.
 759      *
 760      * <p>The transfers are in coherent (atomic) units of a size determined
 761      * by the address and length parameters.  If the effective addresses and
 762      * length are all even modulo 8, the transfer takes place in 'long' units.
 763      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 764      * the transfer takes place in units of 'int' or 'short'.
 765      *
 766      * <em>Note:</em> It is the resposibility of the caller to make
 767      * sure arguments are checked before the methods are called. While
 768      * some rudimentary checks are performed on the input, the checks
 769      * are best effort and when performance is an overriding priority,
 770      * as when methods of this class are optimized by the runtime
 771      * compiler, some or all checks (if any) may be elided. Hence, the
 772      * caller must not rely on the checks and corresponding
 773      * exceptions!
 774      *
 775      * @throws RuntimeException if any of the arguments is invalid
 776      *
 777      * @since 1.7
 778      */
 779     public void copyMemory(Object srcBase, long srcOffset,
 780                            Object destBase, long destOffset,
 781                            long bytes) {
 782         copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);
 783 
 784         if (bytes == 0) {
 785             return;
 786         }
 787 
 788         copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
 789     }
 790 
 791     /**
 792      * Sets all bytes in a given block of memory to a copy of another
 793      * block.  This provides a <em>single-register</em> addressing mode,
 794      * as discussed in {@link #getInt(Object,long)}.
 795      *
 796      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 797      */
 798     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 799         copyMemory(null, srcAddress, null, destAddress, bytes);
 800     }
 801 
 802     /**
 803      * Validate the arguments to copyMemory
 804      *
 805      * @throws RuntimeException if any of the arguments is invalid
 806      *         (<em>Note:</em> after optimization, invalid inputs may
 807      *         go undetected, which will lead to unpredictable
 808      *         behavior)
 809      */
 810     private void copyMemoryChecks(Object srcBase, long srcOffset,
 811                                   Object destBase, long destOffset,
 812                                   long bytes) {
 813         checkSize(bytes);
 814         checkPrimitivePointer(srcBase, srcOffset);
 815         checkPrimitivePointer(destBase, destOffset);
 816     }
 817 
 818     /**
 819      * Copies all elements from one block of memory to another block,
 820      * *unconditionally* byte swapping the elements on the fly.
 821      *
 822      * <p>This method determines each block's base address by means of two parameters,
 823      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 824      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 825      * the offset supplies an absolute base address.
 826      *
 827      * <em>Note:</em> It is the resposibility of the caller to make
 828      * sure arguments are checked before the methods are called. While
 829      * some rudimentary checks are performed on the input, the checks
 830      * are best effort and when performance is an overriding priority,
 831      * as when methods of this class are optimized by the runtime
 832      * compiler, some or all checks (if any) may be elided. Hence, the
 833      * caller must not rely on the checks and corresponding
 834      * exceptions!
 835      *
 836      * @throws RuntimeException if any of the arguments is invalid
 837      *
 838      * @since 9
 839      */
 840     public void copySwapMemory(Object srcBase, long srcOffset,
 841                                Object destBase, long destOffset,
 842                                long bytes, long elemSize) {
 843         copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 844 
 845         if (bytes == 0) {
 846             return;
 847         }
 848 
 849         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 850     }
 851 
 852     private void copySwapMemoryChecks(Object srcBase, long srcOffset,
 853                                       Object destBase, long destOffset,
 854                                       long bytes, long elemSize) {
 855         checkSize(bytes);
 856 
 857         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
 858             throw invalidInput();
 859         }
 860         if (bytes % elemSize != 0) {
 861             throw invalidInput();
 862         }
 863 
 864         checkPrimitivePointer(srcBase, srcOffset);
 865         checkPrimitivePointer(destBase, destOffset);
 866     }
 867 
 868    /**
 869      * Copies all elements from one block of memory to another block, byte swapping the
 870      * elements on the fly.
 871      *
 872      * This provides a <em>single-register</em> addressing mode, as
 873      * discussed in {@link #getInt(Object,long)}.
 874      *
 875      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
 876      */
 877     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
 878         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
 879     }
 880 
 881     /**
 882      * Disposes of a block of native memory, as obtained from {@link
 883      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 884      * this method may be null, in which case no action is taken.
 885      *
 886      * <em>Note:</em> It is the resposibility of the caller to make
 887      * sure arguments are checked before the methods are called. While
 888      * some rudimentary checks are performed on the input, the checks
 889      * are best effort and when performance is an overriding priority,
 890      * as when methods of this class are optimized by the runtime
 891      * compiler, some or all checks (if any) may be elided. Hence, the
 892      * caller must not rely on the checks and corresponding
 893      * exceptions!
 894      *
 895      * @throws RuntimeException if any of the arguments is invalid
 896      *
 897      * @see #allocateMemory
 898      */
 899     public void freeMemory(long address) {
 900         freeMemoryChecks(address);
 901 
 902         if (address == 0) {
 903             return;
 904         }
 905 
 906         freeMemory0(address);
 907     }
 908 
 909     /**
 910      * Validate the arguments to freeMemory
 911      *
 912      * @throws RuntimeException if the arguments are invalid
 913      *         (<em>Note:</em> after optimization, invalid inputs may
 914      *         go undetected, which will lead to unpredictable
 915      *         behavior)
 916      */
 917     private void freeMemoryChecks(long address) {
 918         checkPointer(null, address);
 919     }
 920 
 921     /// random queries
 922 
 923     /**
 924      * This constant differs from all results that will ever be returned from
 925      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
 926      * or {@link #arrayBaseOffset}.
 927      */
 928     public static final int INVALID_FIELD_OFFSET = -1;
 929 
 930     /**
 931      * Reports the location of a given field in the storage allocation of its
 932      * class.  Do not expect to perform any sort of arithmetic on this offset;
 933      * it is just a cookie which is passed to the unsafe heap memory accessors.
 934      *
 935      * <p>Any given field will always have the same offset and base, and no
 936      * two distinct fields of the same class will ever have the same offset
 937      * and base.
 938      *
 939      * <p>As of 1.4.1, offsets for fields are represented as long values,
 940      * although the Sun JVM does not use the most significant 32 bits.
 941      * However, JVM implementations which store static fields at absolute
 942      * addresses can use long offsets and null base pointers to express
 943      * the field locations in a form usable by {@link #getInt(Object,long)}.
 944      * Therefore, code which will be ported to such JVMs on 64-bit platforms
 945      * must preserve all bits of static field offsets.
 946      * @see #getInt(Object, long)
 947      */
 948     public long objectFieldOffset(Field f) {
 949         if (f == null) {
 950             throw new NullPointerException();
 951         }
 952 
 953         return objectFieldOffset0(f);
 954     }
 955 
 956     /**
 957      * Reports the location of a given static field, in conjunction with {@link
 958      * #staticFieldBase}.
 959      * <p>Do not expect to perform any sort of arithmetic on this offset;
 960      * it is just a cookie which is passed to the unsafe heap memory accessors.
 961      *
 962      * <p>Any given field will always have the same offset, and no two distinct
 963      * fields of the same class will ever have the same offset.
 964      *
 965      * <p>As of 1.4.1, offsets for fields are represented as long values,
 966      * although the Sun JVM does not use the most significant 32 bits.
 967      * It is hard to imagine a JVM technology which needs more than
 968      * a few bits to encode an offset within a non-array object,
 969      * However, for consistency with other methods in this class,
 970      * this method reports its result as a long value.
 971      * @see #getInt(Object, long)
 972      */
 973     public long staticFieldOffset(Field f) {
 974         if (f == null) {
 975             throw new NullPointerException();
 976         }
 977 
 978         return staticFieldOffset0(f);
 979     }
 980 
 981     /**
 982      * Reports the location of a given static field, in conjunction with {@link
 983      * #staticFieldOffset}.
 984      * <p>Fetch the base "Object", if any, with which static fields of the
 985      * given class can be accessed via methods like {@link #getInt(Object,
 986      * long)}.  This value may be null.  This value may refer to an object
 987      * which is a "cookie", not guaranteed to be a real Object, and it should
 988      * not be used in any way except as argument to the get and put routines in
 989      * this class.
 990      */
 991     public Object staticFieldBase(Field f) {
 992         if (f == null) {
 993             throw new NullPointerException();
 994         }
 995 
 996         return staticFieldBase0(f);
 997     }
 998 
 999     /**
1000      * Detects if the given class may need to be initialized. This is often
1001      * needed in conjunction with obtaining the static field base of a
1002      * class.
1003      * @return false only if a call to {@code ensureClassInitialized} would have no effect
1004      */
1005     public boolean shouldBeInitialized(Class<?> c) {
1006         if (c == null) {
1007             throw new NullPointerException();
1008         }
1009 
1010         return shouldBeInitialized0(c);
1011     }
1012 
1013     /**
1014      * Ensures the given class has been initialized. This is often
1015      * needed in conjunction with obtaining the static field base of a
1016      * class.
1017      */
1018     public void ensureClassInitialized(Class<?> c) {
1019         if (c == null) {
1020             throw new NullPointerException();
1021         }
1022 
1023         ensureClassInitialized0(c);
1024     }
1025 
1026     /**
1027      * Reports the offset of the first element in the storage allocation of a
1028      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
1029      * for the same class, you may use that scale factor, together with this
1030      * base offset, to form new offsets to access elements of arrays of the
1031      * given class.
1032      *
1033      * @see #getInt(Object, long)
1034      * @see #putInt(Object, long, int)
1035      */
1036     public int arrayBaseOffset(Class<?> arrayClass) {
1037         if (arrayClass == null) {
1038             throw new NullPointerException();
1039         }
1040 
1041         return arrayBaseOffset0(arrayClass);
1042     }
1043 
1044 
1045     /** The value of {@code arrayBaseOffset(boolean[].class)} */
1046     public static final int ARRAY_BOOLEAN_BASE_OFFSET
1047             = theUnsafe.arrayBaseOffset(boolean[].class);
1048 
1049     /** The value of {@code arrayBaseOffset(byte[].class)} */
1050     public static final int ARRAY_BYTE_BASE_OFFSET
1051             = theUnsafe.arrayBaseOffset(byte[].class);
1052 
1053     /** The value of {@code arrayBaseOffset(short[].class)} */
1054     public static final int ARRAY_SHORT_BASE_OFFSET
1055             = theUnsafe.arrayBaseOffset(short[].class);
1056 
1057     /** The value of {@code arrayBaseOffset(char[].class)} */
1058     public static final int ARRAY_CHAR_BASE_OFFSET
1059             = theUnsafe.arrayBaseOffset(char[].class);
1060 
1061     /** The value of {@code arrayBaseOffset(int[].class)} */
1062     public static final int ARRAY_INT_BASE_OFFSET
1063             = theUnsafe.arrayBaseOffset(int[].class);
1064 
1065     /** The value of {@code arrayBaseOffset(long[].class)} */
1066     public static final int ARRAY_LONG_BASE_OFFSET
1067             = theUnsafe.arrayBaseOffset(long[].class);
1068 
1069     /** The value of {@code arrayBaseOffset(float[].class)} */
1070     public static final int ARRAY_FLOAT_BASE_OFFSET
1071             = theUnsafe.arrayBaseOffset(float[].class);
1072 
1073     /** The value of {@code arrayBaseOffset(double[].class)} */
1074     public static final int ARRAY_DOUBLE_BASE_OFFSET
1075             = theUnsafe.arrayBaseOffset(double[].class);
1076 
1077     /** The value of {@code arrayBaseOffset(Object[].class)} */
1078     public static final int ARRAY_OBJECT_BASE_OFFSET
1079             = theUnsafe.arrayBaseOffset(Object[].class);
1080 
1081     /**
1082      * Reports the scale factor for addressing elements in the storage
1083      * allocation of a given array class.  However, arrays of "narrow" types
1084      * will generally not work properly with accessors like {@link
1085      * #getByte(Object, long)}, so the scale factor for such classes is reported
1086      * as zero.
1087      *
1088      * @see #arrayBaseOffset
1089      * @see #getInt(Object, long)
1090      * @see #putInt(Object, long, int)
1091      */
1092     public int arrayIndexScale(Class<?> arrayClass) {
1093         if (arrayClass == null) {
1094             throw new NullPointerException();
1095         }
1096 
1097         return arrayIndexScale0(arrayClass);
1098     }
1099 
1100 
1101     /** The value of {@code arrayIndexScale(boolean[].class)} */
1102     public static final int ARRAY_BOOLEAN_INDEX_SCALE
1103             = theUnsafe.arrayIndexScale(boolean[].class);
1104 
1105     /** The value of {@code arrayIndexScale(byte[].class)} */
1106     public static final int ARRAY_BYTE_INDEX_SCALE
1107             = theUnsafe.arrayIndexScale(byte[].class);
1108 
1109     /** The value of {@code arrayIndexScale(short[].class)} */
1110     public static final int ARRAY_SHORT_INDEX_SCALE
1111             = theUnsafe.arrayIndexScale(short[].class);
1112 
1113     /** The value of {@code arrayIndexScale(char[].class)} */
1114     public static final int ARRAY_CHAR_INDEX_SCALE
1115             = theUnsafe.arrayIndexScale(char[].class);
1116 
1117     /** The value of {@code arrayIndexScale(int[].class)} */
1118     public static final int ARRAY_INT_INDEX_SCALE
1119             = theUnsafe.arrayIndexScale(int[].class);
1120 
1121     /** The value of {@code arrayIndexScale(long[].class)} */
1122     public static final int ARRAY_LONG_INDEX_SCALE
1123             = theUnsafe.arrayIndexScale(long[].class);
1124 
1125     /** The value of {@code arrayIndexScale(float[].class)} */
1126     public static final int ARRAY_FLOAT_INDEX_SCALE
1127             = theUnsafe.arrayIndexScale(float[].class);
1128 
1129     /** The value of {@code arrayIndexScale(double[].class)} */
1130     public static final int ARRAY_DOUBLE_INDEX_SCALE
1131             = theUnsafe.arrayIndexScale(double[].class);
1132 
1133     /** The value of {@code arrayIndexScale(Object[].class)} */
1134     public static final int ARRAY_OBJECT_INDEX_SCALE
1135             = theUnsafe.arrayIndexScale(Object[].class);
1136 
1137     /**
1138      * Reports the size in bytes of a native pointer, as stored via {@link
1139      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
1140      * other primitive types (as stored in native memory blocks) is determined
1141      * fully by their information content.
1142      */
1143     public int addressSize() {
1144         return ADDRESS_SIZE;
1145     }
1146 
1147     /** The value of {@code addressSize()} */
1148     public static final int ADDRESS_SIZE = theUnsafe.addressSize0();
1149 
1150     /**
1151      * Reports the size in bytes of a native memory page (whatever that is).
1152      * This value will always be a power of two.
1153      */
1154     public native int pageSize();
1155 
1156 
1157     /// random trusted operations from JNI:
1158 
1159     /**
1160      * Tells the VM to define a class, without security checks.  By default, the
1161      * class loader and protection domain come from the caller's class.
1162      */
1163     public Class<?> defineClass(String name, byte[] b, int off, int len,
1164                                 ClassLoader loader,
1165                                 ProtectionDomain protectionDomain) {
1166         if (b == null) {
1167             throw new NullPointerException();
1168         }
1169         if (len < 0) {
1170             throw new ArrayIndexOutOfBoundsException();
1171         }
1172 
1173         return defineClass0(name, b, off, len, loader, protectionDomain);
1174     }
1175 
1176     public native Class<?> defineClass0(String name, byte[] b, int off, int len,
1177                                         ClassLoader loader,
1178                                         ProtectionDomain protectionDomain);
1179 
1180     /**
1181      * Defines a class but does not make it known to the class loader or system dictionary.
1182      * <p>
1183      * For each CP entry, the corresponding CP patch must either be null or have
1184      * the a format that matches its tag:
1185      * <ul>
1186      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
1187      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
1188      * <li>Class: any java.lang.Class object
1189      * <li>String: any object (not just a java.lang.String)
1190      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
1191      * </ul>
1192      * @param hostClass context for linkage, access control, protection domain, and class loader
1193      * @param data      bytes of a class file
1194      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
1195      */
1196     public Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches) {
1197         if (hostClass == null || data == null) {
1198             throw new NullPointerException();
1199         }
1200         if (hostClass.isArray() || hostClass.isPrimitive()) {
1201             throw new IllegalArgumentException();
1202         }
1203 
1204         return defineAnonymousClass0(hostClass, data, cpPatches);
1205     }
1206 
1207     /**
1208      * Allocates an instance but does not run any constructor.
1209      * Initializes the class if it has not yet been.
1210      */
1211     @HotSpotIntrinsicCandidate
1212     public native Object allocateInstance(Class<?> cls)
1213         throws InstantiationException;
1214 
1215     /**
1216      * Allocates an array of a given type, but does not do zeroing.
1217      * <p>
1218      * This method should only be used in the very rare cases where a high-performance code
1219      * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
1220      * In an overwhelming majority of cases, a normal Java allocation should be used instead.
1221      * <p>
1222      * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
1223      * before allowing untrusted code, or code in other threads, to observe the reference
1224      * to the newly allocated array. In addition, the publication of the array reference must be
1225      * safe according to the Java Memory Model requirements.
1226      * <p>
1227      * The safest approach to deal with an uninitialized array is to keep the reference to it in local
1228      * variable at least until the initialization is complete, and then publish it <b>once</b>, either
1229      * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
1230      * or issuing a {@link #storeFence} before publishing the reference.
1231      * <p>
1232      * @implnote This method can only allocate primitive arrays, to avoid garbage reference
1233      * elements that could break heap integrity.
1234      *
1235      * @param componentType array component type to allocate
1236      * @param length array size to allocate
1237      * @throws IllegalArgumentException if component type is null, or not a primitive class;
1238      *                                  or the length is negative
1239      */
1240     public Object allocateUninitializedArray(Class<?> componentType, int length) {
1241        if (componentType == null) {
1242            throw new IllegalArgumentException("Component type is null");
1243        }
1244        if (!componentType.isPrimitive()) {
1245            throw new IllegalArgumentException("Component type is not primitive");
1246        }
1247        if (length < 0) {
1248            throw new IllegalArgumentException("Negative length");
1249        }
1250        return allocateUninitializedArray0(componentType, length);
1251     }
1252 
1253     @HotSpotIntrinsicCandidate
1254     private Object allocateUninitializedArray0(Class<?> componentType, int length) {
1255        // These fallbacks provide zeroed arrays, but intrinsic is not required to
1256        // return the zeroed arrays.
1257        if (componentType == byte.class)    return new byte[length];
1258        if (componentType == boolean.class) return new boolean[length];
1259        if (componentType == short.class)   return new short[length];
1260        if (componentType == char.class)    return new char[length];
1261        if (componentType == int.class)     return new int[length];
1262        if (componentType == float.class)   return new float[length];
1263        if (componentType == long.class)    return new long[length];
1264        if (componentType == double.class)  return new double[length];
1265        return null;
1266     }
1267 
1268     /** Throws the exception without telling the verifier. */
1269     public native void throwException(Throwable ee);
1270 
1271     /**
1272      * Atomically updates Java variable to {@code x} if it is currently
1273      * holding {@code expected}.
1274      *
1275      * <p>This operation has memory semantics of a {@code volatile} read
1276      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1277      *
1278      * @return {@code true} if successful
1279      */
1280     @HotSpotIntrinsicCandidate
1281     public final native boolean compareAndSetObject(Object o, long offset,
1282                                                     Object expected,
1283                                                     Object x);
1284 
1285     @HotSpotIntrinsicCandidate
1286     public final native Object compareAndExchangeObject(Object o, long offset,
1287                                                         Object expected,
1288                                                         Object x);
1289 
1290     @HotSpotIntrinsicCandidate
1291     public final Object compareAndExchangeObjectAcquire(Object o, long offset,
1292                                                                Object expected,
1293                                                                Object x) {
1294         return compareAndExchangeObject(o, offset, expected, x);
1295     }
1296 
1297     @HotSpotIntrinsicCandidate
1298     public final Object compareAndExchangeObjectRelease(Object o, long offset,
1299                                                                Object expected,
1300                                                                Object x) {
1301         return compareAndExchangeObject(o, offset, expected, x);
1302     }
1303 
1304     @HotSpotIntrinsicCandidate
1305     public final boolean weakCompareAndSetObjectPlain(Object o, long offset,
1306                                                       Object expected,
1307                                                       Object x) {
1308         return compareAndSetObject(o, offset, expected, x);
1309     }
1310 
1311     @HotSpotIntrinsicCandidate
1312     public final boolean weakCompareAndSetObjectAcquire(Object o, long offset,
1313                                                         Object expected,
1314                                                         Object x) {
1315         return compareAndSetObject(o, offset, expected, x);
1316     }
1317 
1318     @HotSpotIntrinsicCandidate
1319     public final boolean weakCompareAndSetObjectRelease(Object o, long offset,
1320                                                         Object expected,
1321                                                         Object x) {
1322         return compareAndSetObject(o, offset, expected, x);
1323     }
1324 
1325     @HotSpotIntrinsicCandidate
1326     public final boolean weakCompareAndSetObject(Object o, long offset,
1327                                                  Object expected,
1328                                                  Object x) {
1329         return compareAndSetObject(o, offset, expected, x);
1330     }
1331 
1332     /**
1333      * Atomically updates Java variable to {@code x} if it is currently
1334      * holding {@code expected}.
1335      *
1336      * <p>This operation has memory semantics of a {@code volatile} read
1337      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1338      *
1339      * @return {@code true} if successful
1340      */
1341     @HotSpotIntrinsicCandidate
1342     public final native boolean compareAndSetInt(Object o, long offset,
1343                                                  int expected,
1344                                                  int x);
1345 
1346     @HotSpotIntrinsicCandidate
1347     public final native int compareAndExchangeInt(Object o, long offset,
1348                                                   int expected,
1349                                                   int x);
1350 
1351     @HotSpotIntrinsicCandidate
1352     public final int compareAndExchangeIntAcquire(Object o, long offset,
1353                                                          int expected,
1354                                                          int x) {
1355         return compareAndExchangeInt(o, offset, expected, x);
1356     }
1357 
1358     @HotSpotIntrinsicCandidate
1359     public final int compareAndExchangeIntRelease(Object o, long offset,
1360                                                          int expected,
1361                                                          int x) {
1362         return compareAndExchangeInt(o, offset, expected, x);
1363     }
1364 
1365     @HotSpotIntrinsicCandidate
1366     public final boolean weakCompareAndSetIntPlain(Object o, long offset,
1367                                                    int expected,
1368                                                    int x) {
1369         return compareAndSetInt(o, offset, expected, x);
1370     }
1371 
1372     @HotSpotIntrinsicCandidate
1373     public final boolean weakCompareAndSetIntAcquire(Object o, long offset,
1374                                                      int expected,
1375                                                      int x) {
1376         return compareAndSetInt(o, offset, expected, x);
1377     }
1378 
1379     @HotSpotIntrinsicCandidate
1380     public final boolean weakCompareAndSetIntRelease(Object o, long offset,
1381                                                      int expected,
1382                                                      int x) {
1383         return compareAndSetInt(o, offset, expected, x);
1384     }
1385 
1386     @HotSpotIntrinsicCandidate
1387     public final boolean weakCompareAndSetInt(Object o, long offset,
1388                                               int expected,
1389                                               int x) {
1390         return compareAndSetInt(o, offset, expected, x);
1391     }
1392 
1393     @HotSpotIntrinsicCandidate
1394     public final byte compareAndExchangeByte(Object o, long offset,
1395                                              byte expected,
1396                                              byte x) {
1397         long wordOffset = offset & ~3;
1398         int shift = (int) (offset & 3) << 3;
1399         if (BE) {
1400             shift = 24 - shift;
1401         }
1402         int mask           = 0xFF << shift;
1403         int maskedExpected = (expected & 0xFF) << shift;
1404         int maskedX        = (x & 0xFF) << shift;
1405         int fullWord;
1406         do {
1407             fullWord = getIntVolatile(o, wordOffset);
1408             if ((fullWord & mask) != maskedExpected)
1409                 return (byte) ((fullWord & mask) >> shift);
1410         } while (!weakCompareAndSetInt(o, wordOffset,
1411                                                 fullWord, (fullWord & ~mask) | maskedX));
1412         return expected;
1413     }
1414 
1415     @HotSpotIntrinsicCandidate
1416     public final boolean compareAndSetByte(Object o, long offset,
1417                                            byte expected,
1418                                            byte x) {
1419         return compareAndExchangeByte(o, offset, expected, x) == expected;
1420     }
1421 
1422     @HotSpotIntrinsicCandidate
1423     public final boolean weakCompareAndSetByte(Object o, long offset,
1424                                                byte expected,
1425                                                byte x) {
1426         return compareAndSetByte(o, offset, expected, x);
1427     }
1428 
1429     @HotSpotIntrinsicCandidate
1430     public final boolean weakCompareAndSetByteAcquire(Object o, long offset,
1431                                                       byte expected,
1432                                                       byte x) {
1433         return weakCompareAndSetByte(o, offset, expected, x);
1434     }
1435 
1436     @HotSpotIntrinsicCandidate
1437     public final boolean weakCompareAndSetByteRelease(Object o, long offset,
1438                                                       byte expected,
1439                                                       byte x) {
1440         return weakCompareAndSetByte(o, offset, expected, x);
1441     }
1442 
1443     @HotSpotIntrinsicCandidate
1444     public final boolean weakCompareAndSetBytePlain(Object o, long offset,
1445                                                     byte expected,
1446                                                     byte x) {
1447         return weakCompareAndSetByte(o, offset, expected, x);
1448     }
1449 
1450     @HotSpotIntrinsicCandidate
1451     public final byte compareAndExchangeByteAcquire(Object o, long offset,
1452                                                     byte expected,
1453                                                     byte x) {
1454         return compareAndExchangeByte(o, offset, expected, x);
1455     }
1456 
1457     @HotSpotIntrinsicCandidate
1458     public final byte compareAndExchangeByteRelease(Object o, long offset,
1459                                                     byte expected,
1460                                                     byte x) {
1461         return compareAndExchangeByte(o, offset, expected, x);
1462     }
1463 
1464     @HotSpotIntrinsicCandidate
1465     public final short compareAndExchangeShort(Object o, long offset,
1466                                                short expected,
1467                                                short x) {
1468         if ((offset & 3) == 3) {
1469             throw new IllegalArgumentException("Update spans the word, not supported");
1470         }
1471         long wordOffset = offset & ~3;
1472         int shift = (int) (offset & 3) << 3;
1473         if (BE) {
1474             shift = 16 - shift;
1475         }
1476         int mask           = 0xFFFF << shift;
1477         int maskedExpected = (expected & 0xFFFF) << shift;
1478         int maskedX        = (x & 0xFFFF) << shift;
1479         int fullWord;
1480         do {
1481             fullWord = getIntVolatile(o, wordOffset);
1482             if ((fullWord & mask) != maskedExpected) {
1483                 return (short) ((fullWord & mask) >> shift);
1484             }
1485         } while (!weakCompareAndSetInt(o, wordOffset,
1486                                                 fullWord, (fullWord & ~mask) | maskedX));
1487         return expected;
1488     }
1489 
1490     @HotSpotIntrinsicCandidate
1491     public final boolean compareAndSetShort(Object o, long offset,
1492                                             short expected,
1493                                             short x) {
1494         return compareAndExchangeShort(o, offset, expected, x) == expected;
1495     }
1496 
1497     @HotSpotIntrinsicCandidate
1498     public final boolean weakCompareAndSetShort(Object o, long offset,
1499                                                 short expected,
1500                                                 short x) {
1501         return compareAndSetShort(o, offset, expected, x);
1502     }
1503 
1504     @HotSpotIntrinsicCandidate
1505     public final boolean weakCompareAndSetShortAcquire(Object o, long offset,
1506                                                        short expected,
1507                                                        short x) {
1508         return weakCompareAndSetShort(o, offset, expected, x);
1509     }
1510 
1511     @HotSpotIntrinsicCandidate
1512     public final boolean weakCompareAndSetShortRelease(Object o, long offset,
1513                                                        short expected,
1514                                                        short x) {
1515         return weakCompareAndSetShort(o, offset, expected, x);
1516     }
1517 
1518     @HotSpotIntrinsicCandidate
1519     public final boolean weakCompareAndSetShortPlain(Object o, long offset,
1520                                                      short expected,
1521                                                      short x) {
1522         return weakCompareAndSetShort(o, offset, expected, x);
1523     }
1524 
1525 
1526     @HotSpotIntrinsicCandidate
1527     public final short compareAndExchangeShortAcquire(Object o, long offset,
1528                                                      short expected,
1529                                                      short x) {
1530         return compareAndExchangeShort(o, offset, expected, x);
1531     }
1532 
1533     @HotSpotIntrinsicCandidate
1534     public final short compareAndExchangeShortRelease(Object o, long offset,
1535                                                     short expected,
1536                                                     short x) {
1537         return compareAndExchangeShort(o, offset, expected, x);
1538     }
1539 
1540     @ForceInline
1541     private char s2c(short s) {
1542         return (char) s;
1543     }
1544 
1545     @ForceInline
1546     private short c2s(char s) {
1547         return (short) s;
1548     }
1549 
1550     @ForceInline
1551     public final boolean compareAndSetChar(Object o, long offset,
1552                                            char expected,
1553                                            char x) {
1554         return compareAndSetShort(o, offset, c2s(expected), c2s(x));
1555     }
1556 
1557     @ForceInline
1558     public final char compareAndExchangeChar(Object o, long offset,
1559                                              char expected,
1560                                              char x) {
1561         return s2c(compareAndExchangeShort(o, offset, c2s(expected), c2s(x)));
1562     }
1563 
1564     @ForceInline
1565     public final char compareAndExchangeCharAcquire(Object o, long offset,
1566                                             char expected,
1567                                             char x) {
1568         return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
1569     }
1570 
1571     @ForceInline
1572     public final char compareAndExchangeCharRelease(Object o, long offset,
1573                                             char expected,
1574                                             char x) {
1575         return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
1576     }
1577 
1578     @ForceInline
1579     public final boolean weakCompareAndSetChar(Object o, long offset,
1580                                                char expected,
1581                                                char x) {
1582         return weakCompareAndSetShort(o, offset, c2s(expected), c2s(x));
1583     }
1584 
1585     @ForceInline
1586     public final boolean weakCompareAndSetCharAcquire(Object o, long offset,
1587                                                       char expected,
1588                                                       char x) {
1589         return weakCompareAndSetShortAcquire(o, offset, c2s(expected), c2s(x));
1590     }
1591 
1592     @ForceInline
1593     public final boolean weakCompareAndSetCharRelease(Object o, long offset,
1594                                                       char expected,
1595                                                       char x) {
1596         return weakCompareAndSetShortRelease(o, offset, c2s(expected), c2s(x));
1597     }
1598 
1599     @ForceInline
1600     public final boolean weakCompareAndSetCharPlain(Object o, long offset,
1601                                                     char expected,
1602                                                     char x) {
1603         return weakCompareAndSetShortPlain(o, offset, c2s(expected), c2s(x));
1604     }
1605 
1606     /**
1607      * The JVM converts integral values to boolean values using two
1608      * different conventions, byte testing against zero and truncation
1609      * to least-significant bit.
1610      *
1611      * <p>The JNI documents specify that, at least for returning
1612      * values from native methods, a Java boolean value is converted
1613      * to the value-set 0..1 by first truncating to a byte (0..255 or
1614      * maybe -128..127) and then testing against zero. Thus, Java
1615      * booleans in non-Java data structures are by convention
1616      * represented as 8-bit containers containing either zero (for
1617      * false) or any non-zero value (for true).
1618      *
1619      * <p>Java booleans in the heap are also stored in bytes, but are
1620      * strongly normalized to the value-set 0..1 (i.e., they are
1621      * truncated to the least-significant bit).
1622      *
1623      * <p>The main reason for having different conventions for
1624      * conversion is performance: Truncation to the least-significant
1625      * bit can be usually implemented with fewer (machine)
1626      * instructions than byte testing against zero.
1627      *
1628      * <p>A number of Unsafe methods load boolean values from the heap
1629      * as bytes. Unsafe converts those values according to the JNI
1630      * rules (i.e, using the "testing against zero" convention). The
1631      * method {@code byte2bool} implements that conversion.
1632      *
1633      * @param b the byte to be converted to boolean
1634      * @return the result of the conversion
1635      */
1636     @ForceInline
1637     private boolean byte2bool(byte b) {
1638         return b != 0;
1639     }
1640 
1641     /**
1642      * Convert a boolean value to a byte. The return value is strongly
1643      * normalized to the value-set 0..1 (i.e., the value is truncated
1644      * to the least-significant bit). See {@link #byte2bool(byte)} for
1645      * more details on conversion conventions.
1646      *
1647      * @param b the boolean to be converted to byte (and then normalized)
1648      * @return the result of the conversion
1649      */
1650     @ForceInline
1651     private byte bool2byte(boolean b) {
1652         return b ? (byte)1 : (byte)0;
1653     }
1654 
1655     @ForceInline
1656     public final boolean compareAndSetBoolean(Object o, long offset,
1657                                               boolean expected,
1658                                               boolean x) {
1659         return compareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
1660     }
1661 
1662     @ForceInline
1663     public final boolean compareAndExchangeBoolean(Object o, long offset,
1664                                                    boolean expected,
1665                                                    boolean x) {
1666         return byte2bool(compareAndExchangeByte(o, offset, bool2byte(expected), bool2byte(x)));
1667     }
1668 
1669     @ForceInline
1670     public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
1671                                                     boolean expected,
1672                                                     boolean x) {
1673         return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
1674     }
1675 
1676     @ForceInline
1677     public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
1678                                                        boolean expected,
1679                                                        boolean x) {
1680         return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
1681     }
1682 
1683     @ForceInline
1684     public final boolean weakCompareAndSetBoolean(Object o, long offset,
1685                                                   boolean expected,
1686                                                   boolean x) {
1687         return weakCompareAndSetByte(o, offset, bool2byte(expected), bool2byte(x));
1688     }
1689 
1690     @ForceInline
1691     public final boolean weakCompareAndSetBooleanAcquire(Object o, long offset,
1692                                                          boolean expected,
1693                                                          boolean x) {
1694         return weakCompareAndSetByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
1695     }
1696 
1697     @ForceInline
1698     public final boolean weakCompareAndSetBooleanRelease(Object o, long offset,
1699                                                          boolean expected,
1700                                                          boolean x) {
1701         return weakCompareAndSetByteRelease(o, offset, bool2byte(expected), bool2byte(x));
1702     }
1703 
1704     @ForceInline
1705     public final boolean weakCompareAndSetBooleanPlain(Object o, long offset,
1706                                                        boolean expected,
1707                                                        boolean x) {
1708         return weakCompareAndSetBytePlain(o, offset, bool2byte(expected), bool2byte(x));
1709     }
1710 
1711     /**
1712      * Atomically updates Java variable to {@code x} if it is currently
1713      * holding {@code expected}.
1714      *
1715      * <p>This operation has memory semantics of a {@code volatile} read
1716      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1717      *
1718      * @return {@code true} if successful
1719      */
1720     @ForceInline
1721     public final boolean compareAndSetFloat(Object o, long offset,
1722                                             float expected,
1723                                             float x) {
1724         return compareAndSetInt(o, offset,
1725                                  Float.floatToRawIntBits(expected),
1726                                  Float.floatToRawIntBits(x));
1727     }
1728 
1729     @ForceInline
1730     public final float compareAndExchangeFloat(Object o, long offset,
1731                                                float expected,
1732                                                float x) {
1733         int w = compareAndExchangeInt(o, offset,
1734                                       Float.floatToRawIntBits(expected),
1735                                       Float.floatToRawIntBits(x));
1736         return Float.intBitsToFloat(w);
1737     }
1738 
1739     @ForceInline
1740     public final float compareAndExchangeFloatAcquire(Object o, long offset,
1741                                                   float expected,
1742                                                   float x) {
1743         int w = compareAndExchangeIntAcquire(o, offset,
1744                                              Float.floatToRawIntBits(expected),
1745                                              Float.floatToRawIntBits(x));
1746         return Float.intBitsToFloat(w);
1747     }
1748 
1749     @ForceInline
1750     public final float compareAndExchangeFloatRelease(Object o, long offset,
1751                                                   float expected,
1752                                                   float x) {
1753         int w = compareAndExchangeIntRelease(o, offset,
1754                                              Float.floatToRawIntBits(expected),
1755                                              Float.floatToRawIntBits(x));
1756         return Float.intBitsToFloat(w);
1757     }
1758 
1759     @ForceInline
1760     public final boolean weakCompareAndSetFloatPlain(Object o, long offset,
1761                                                      float expected,
1762                                                      float x) {
1763         return weakCompareAndSetIntPlain(o, offset,
1764                                      Float.floatToRawIntBits(expected),
1765                                      Float.floatToRawIntBits(x));
1766     }
1767 
1768     @ForceInline
1769     public final boolean weakCompareAndSetFloatAcquire(Object o, long offset,
1770                                                        float expected,
1771                                                        float x) {
1772         return weakCompareAndSetIntAcquire(o, offset,
1773                                             Float.floatToRawIntBits(expected),
1774                                             Float.floatToRawIntBits(x));
1775     }
1776 
1777     @ForceInline
1778     public final boolean weakCompareAndSetFloatRelease(Object o, long offset,
1779                                                        float expected,
1780                                                        float x) {
1781         return weakCompareAndSetIntRelease(o, offset,
1782                                             Float.floatToRawIntBits(expected),
1783                                             Float.floatToRawIntBits(x));
1784     }
1785 
1786     @ForceInline
1787     public final boolean weakCompareAndSetFloat(Object o, long offset,
1788                                                 float expected,
1789                                                 float x) {
1790         return weakCompareAndSetInt(o, offset,
1791                                              Float.floatToRawIntBits(expected),
1792                                              Float.floatToRawIntBits(x));
1793     }
1794 
1795     /**
1796      * Atomically updates Java variable to {@code x} if it is currently
1797      * holding {@code expected}.
1798      *
1799      * <p>This operation has memory semantics of a {@code volatile} read
1800      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1801      *
1802      * @return {@code true} if successful
1803      */
1804     @ForceInline
1805     public final boolean compareAndSetDouble(Object o, long offset,
1806                                              double expected,
1807                                              double x) {
1808         return compareAndSetLong(o, offset,
1809                                  Double.doubleToRawLongBits(expected),
1810                                  Double.doubleToRawLongBits(x));
1811     }
1812 
1813     @ForceInline
1814     public final double compareAndExchangeDouble(Object o, long offset,
1815                                                  double expected,
1816                                                  double x) {
1817         long w = compareAndExchangeLong(o, offset,
1818                                         Double.doubleToRawLongBits(expected),
1819                                         Double.doubleToRawLongBits(x));
1820         return Double.longBitsToDouble(w);
1821     }
1822 
1823     @ForceInline
1824     public final double compareAndExchangeDoubleAcquire(Object o, long offset,
1825                                                         double expected,
1826                                                         double x) {
1827         long w = compareAndExchangeLongAcquire(o, offset,
1828                                                Double.doubleToRawLongBits(expected),
1829                                                Double.doubleToRawLongBits(x));
1830         return Double.longBitsToDouble(w);
1831     }
1832 
1833     @ForceInline
1834     public final double compareAndExchangeDoubleRelease(Object o, long offset,
1835                                                         double expected,
1836                                                         double x) {
1837         long w = compareAndExchangeLongRelease(o, offset,
1838                                                Double.doubleToRawLongBits(expected),
1839                                                Double.doubleToRawLongBits(x));
1840         return Double.longBitsToDouble(w);
1841     }
1842 
1843     @ForceInline
1844     public final boolean weakCompareAndSetDoublePlain(Object o, long offset,
1845                                                       double expected,
1846                                                       double x) {
1847         return weakCompareAndSetLongPlain(o, offset,
1848                                      Double.doubleToRawLongBits(expected),
1849                                      Double.doubleToRawLongBits(x));
1850     }
1851 
1852     @ForceInline
1853     public final boolean weakCompareAndSetDoubleAcquire(Object o, long offset,
1854                                                         double expected,
1855                                                         double x) {
1856         return weakCompareAndSetLongAcquire(o, offset,
1857                                              Double.doubleToRawLongBits(expected),
1858                                              Double.doubleToRawLongBits(x));
1859     }
1860 
1861     @ForceInline
1862     public final boolean weakCompareAndSetDoubleRelease(Object o, long offset,
1863                                                         double expected,
1864                                                         double x) {
1865         return weakCompareAndSetLongRelease(o, offset,
1866                                              Double.doubleToRawLongBits(expected),
1867                                              Double.doubleToRawLongBits(x));
1868     }
1869 
1870     @ForceInline
1871     public final boolean weakCompareAndSetDouble(Object o, long offset,
1872                                                  double expected,
1873                                                  double x) {
1874         return weakCompareAndSetLong(o, offset,
1875                                               Double.doubleToRawLongBits(expected),
1876                                               Double.doubleToRawLongBits(x));
1877     }
1878 
1879     /**
1880      * Atomically updates Java variable to {@code x} if it is currently
1881      * holding {@code expected}.
1882      *
1883      * <p>This operation has memory semantics of a {@code volatile} read
1884      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1885      *
1886      * @return {@code true} if successful
1887      */
1888     @HotSpotIntrinsicCandidate
1889     public final native boolean compareAndSetLong(Object o, long offset,
1890                                                   long expected,
1891                                                   long x);
1892 
1893     @HotSpotIntrinsicCandidate
1894     public final native long compareAndExchangeLong(Object o, long offset,
1895                                                     long expected,
1896                                                     long x);
1897 
1898     @HotSpotIntrinsicCandidate
1899     public final long compareAndExchangeLongAcquire(Object o, long offset,
1900                                                            long expected,
1901                                                            long x) {
1902         return compareAndExchangeLong(o, offset, expected, x);
1903     }
1904 
1905     @HotSpotIntrinsicCandidate
1906     public final long compareAndExchangeLongRelease(Object o, long offset,
1907                                                            long expected,
1908                                                            long x) {
1909         return compareAndExchangeLong(o, offset, expected, x);
1910     }
1911 
1912     @HotSpotIntrinsicCandidate
1913     public final boolean weakCompareAndSetLongPlain(Object o, long offset,
1914                                                     long expected,
1915                                                     long x) {
1916         return compareAndSetLong(o, offset, expected, x);
1917     }
1918 
1919     @HotSpotIntrinsicCandidate
1920     public final boolean weakCompareAndSetLongAcquire(Object o, long offset,
1921                                                       long expected,
1922                                                       long x) {
1923         return compareAndSetLong(o, offset, expected, x);
1924     }
1925 
1926     @HotSpotIntrinsicCandidate
1927     public final boolean weakCompareAndSetLongRelease(Object o, long offset,
1928                                                       long expected,
1929                                                       long x) {
1930         return compareAndSetLong(o, offset, expected, x);
1931     }
1932 
1933     @HotSpotIntrinsicCandidate
1934     public final boolean weakCompareAndSetLong(Object o, long offset,
1935                                                long expected,
1936                                                long x) {
1937         return compareAndSetLong(o, offset, expected, x);
1938     }
1939 
1940     /**
1941      * Fetches a reference value from a given Java variable, with volatile
1942      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
1943      */
1944     @HotSpotIntrinsicCandidate
1945     public native Object getObjectVolatile(Object o, long offset);
1946 
1947     /**
1948      * Stores a reference value into a given Java variable, with
1949      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
1950      */
1951     @HotSpotIntrinsicCandidate
1952     public native void    putObjectVolatile(Object o, long offset, Object x);
1953 
1954     /** Volatile version of {@link #getInt(Object, long)}  */
1955     @HotSpotIntrinsicCandidate
1956     public native int     getIntVolatile(Object o, long offset);
1957 
1958     /** Volatile version of {@link #putInt(Object, long, int)}  */
1959     @HotSpotIntrinsicCandidate
1960     public native void    putIntVolatile(Object o, long offset, int x);
1961 
1962     /** Volatile version of {@link #getBoolean(Object, long)}  */
1963     @HotSpotIntrinsicCandidate
1964     public native boolean getBooleanVolatile(Object o, long offset);
1965 
1966     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
1967     @HotSpotIntrinsicCandidate
1968     public native void    putBooleanVolatile(Object o, long offset, boolean x);
1969 
1970     /** Volatile version of {@link #getByte(Object, long)}  */
1971     @HotSpotIntrinsicCandidate
1972     public native byte    getByteVolatile(Object o, long offset);
1973 
1974     /** Volatile version of {@link #putByte(Object, long, byte)}  */
1975     @HotSpotIntrinsicCandidate
1976     public native void    putByteVolatile(Object o, long offset, byte x);
1977 
1978     /** Volatile version of {@link #getShort(Object, long)}  */
1979     @HotSpotIntrinsicCandidate
1980     public native short   getShortVolatile(Object o, long offset);
1981 
1982     /** Volatile version of {@link #putShort(Object, long, short)}  */
1983     @HotSpotIntrinsicCandidate
1984     public native void    putShortVolatile(Object o, long offset, short x);
1985 
1986     /** Volatile version of {@link #getChar(Object, long)}  */
1987     @HotSpotIntrinsicCandidate
1988     public native char    getCharVolatile(Object o, long offset);
1989 
1990     /** Volatile version of {@link #putChar(Object, long, char)}  */
1991     @HotSpotIntrinsicCandidate
1992     public native void    putCharVolatile(Object o, long offset, char x);
1993 
1994     /** Volatile version of {@link #getLong(Object, long)}  */
1995     @HotSpotIntrinsicCandidate
1996     public native long    getLongVolatile(Object o, long offset);
1997 
1998     /** Volatile version of {@link #putLong(Object, long, long)}  */
1999     @HotSpotIntrinsicCandidate
2000     public native void    putLongVolatile(Object o, long offset, long x);
2001 
2002     /** Volatile version of {@link #getFloat(Object, long)}  */
2003     @HotSpotIntrinsicCandidate
2004     public native float   getFloatVolatile(Object o, long offset);
2005 
2006     /** Volatile version of {@link #putFloat(Object, long, float)}  */
2007     @HotSpotIntrinsicCandidate
2008     public native void    putFloatVolatile(Object o, long offset, float x);
2009 
2010     /** Volatile version of {@link #getDouble(Object, long)}  */
2011     @HotSpotIntrinsicCandidate
2012     public native double  getDoubleVolatile(Object o, long offset);
2013 
2014     /** Volatile version of {@link #putDouble(Object, long, double)}  */
2015     @HotSpotIntrinsicCandidate
2016     public native void    putDoubleVolatile(Object o, long offset, double x);
2017 
2018 
2019 
2020     /** Acquire version of {@link #getObjectVolatile(Object, long)} */
2021     @HotSpotIntrinsicCandidate
2022     public final Object getObjectAcquire(Object o, long offset) {
2023         return getObjectVolatile(o, offset);
2024     }
2025 
2026     /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
2027     @HotSpotIntrinsicCandidate
2028     public final boolean getBooleanAcquire(Object o, long offset) {
2029         return getBooleanVolatile(o, offset);
2030     }
2031 
2032     /** Acquire version of {@link #getByteVolatile(Object, long)} */
2033     @HotSpotIntrinsicCandidate
2034     public final byte getByteAcquire(Object o, long offset) {
2035         return getByteVolatile(o, offset);
2036     }
2037 
2038     /** Acquire version of {@link #getShortVolatile(Object, long)} */
2039     @HotSpotIntrinsicCandidate
2040     public final short getShortAcquire(Object o, long offset) {
2041         return getShortVolatile(o, offset);
2042     }
2043 
2044     /** Acquire version of {@link #getCharVolatile(Object, long)} */
2045     @HotSpotIntrinsicCandidate
2046     public final char getCharAcquire(Object o, long offset) {
2047         return getCharVolatile(o, offset);
2048     }
2049 
2050     /** Acquire version of {@link #getIntVolatile(Object, long)} */
2051     @HotSpotIntrinsicCandidate
2052     public final int getIntAcquire(Object o, long offset) {
2053         return getIntVolatile(o, offset);
2054     }
2055 
2056     /** Acquire version of {@link #getFloatVolatile(Object, long)} */
2057     @HotSpotIntrinsicCandidate
2058     public final float getFloatAcquire(Object o, long offset) {
2059         return getFloatVolatile(o, offset);
2060     }
2061 
2062     /** Acquire version of {@link #getLongVolatile(Object, long)} */
2063     @HotSpotIntrinsicCandidate
2064     public final long getLongAcquire(Object o, long offset) {
2065         return getLongVolatile(o, offset);
2066     }
2067 
2068     /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
2069     @HotSpotIntrinsicCandidate
2070     public final double getDoubleAcquire(Object o, long offset) {
2071         return getDoubleVolatile(o, offset);
2072     }
2073 
2074     /*
2075       * Versions of {@link #putObjectVolatile(Object, long, Object)}
2076       * that do not guarantee immediate visibility of the store to
2077       * other threads. This method is generally only useful if the
2078       * underlying field is a Java volatile (or if an array cell, one
2079       * that is otherwise only accessed using volatile accesses).
2080       *
2081       * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
2082       */
2083 
2084     /** Release version of {@link #putObjectVolatile(Object, long, Object)} */
2085     @HotSpotIntrinsicCandidate
2086     public final void putObjectRelease(Object o, long offset, Object x) {
2087         putObjectVolatile(o, offset, x);
2088     }
2089 
2090     /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
2091     @HotSpotIntrinsicCandidate
2092     public final void putBooleanRelease(Object o, long offset, boolean x) {
2093         putBooleanVolatile(o, offset, x);
2094     }
2095 
2096     /** Release version of {@link #putByteVolatile(Object, long, byte)} */
2097     @HotSpotIntrinsicCandidate
2098     public final void putByteRelease(Object o, long offset, byte x) {
2099         putByteVolatile(o, offset, x);
2100     }
2101 
2102     /** Release version of {@link #putShortVolatile(Object, long, short)} */
2103     @HotSpotIntrinsicCandidate
2104     public final void putShortRelease(Object o, long offset, short x) {
2105         putShortVolatile(o, offset, x);
2106     }
2107 
2108     /** Release version of {@link #putCharVolatile(Object, long, char)} */
2109     @HotSpotIntrinsicCandidate
2110     public final void putCharRelease(Object o, long offset, char x) {
2111         putCharVolatile(o, offset, x);
2112     }
2113 
2114     /** Release version of {@link #putIntVolatile(Object, long, int)} */
2115     @HotSpotIntrinsicCandidate
2116     public final void putIntRelease(Object o, long offset, int x) {
2117         putIntVolatile(o, offset, x);
2118     }
2119 
2120     /** Release version of {@link #putFloatVolatile(Object, long, float)} */
2121     @HotSpotIntrinsicCandidate
2122     public final void putFloatRelease(Object o, long offset, float x) {
2123         putFloatVolatile(o, offset, x);
2124     }
2125 
2126     /** Release version of {@link #putLongVolatile(Object, long, long)} */
2127     @HotSpotIntrinsicCandidate
2128     public final void putLongRelease(Object o, long offset, long x) {
2129         putLongVolatile(o, offset, x);
2130     }
2131 
2132     /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
2133     @HotSpotIntrinsicCandidate
2134     public final void putDoubleRelease(Object o, long offset, double x) {
2135         putDoubleVolatile(o, offset, x);
2136     }
2137 
2138     // ------------------------------ Opaque --------------------------------------
2139 
2140     /** Opaque version of {@link #getObjectVolatile(Object, long)} */
2141     @HotSpotIntrinsicCandidate
2142     public final Object getObjectOpaque(Object o, long offset) {
2143         return getObjectVolatile(o, offset);
2144     }
2145 
2146     /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
2147     @HotSpotIntrinsicCandidate
2148     public final boolean getBooleanOpaque(Object o, long offset) {
2149         return getBooleanVolatile(o, offset);
2150     }
2151 
2152     /** Opaque version of {@link #getByteVolatile(Object, long)} */
2153     @HotSpotIntrinsicCandidate
2154     public final byte getByteOpaque(Object o, long offset) {
2155         return getByteVolatile(o, offset);
2156     }
2157 
2158     /** Opaque version of {@link #getShortVolatile(Object, long)} */
2159     @HotSpotIntrinsicCandidate
2160     public final short getShortOpaque(Object o, long offset) {
2161         return getShortVolatile(o, offset);
2162     }
2163 
2164     /** Opaque version of {@link #getCharVolatile(Object, long)} */
2165     @HotSpotIntrinsicCandidate
2166     public final char getCharOpaque(Object o, long offset) {
2167         return getCharVolatile(o, offset);
2168     }
2169 
2170     /** Opaque version of {@link #getIntVolatile(Object, long)} */
2171     @HotSpotIntrinsicCandidate
2172     public final int getIntOpaque(Object o, long offset) {
2173         return getIntVolatile(o, offset);
2174     }
2175 
2176     /** Opaque version of {@link #getFloatVolatile(Object, long)} */
2177     @HotSpotIntrinsicCandidate
2178     public final float getFloatOpaque(Object o, long offset) {
2179         return getFloatVolatile(o, offset);
2180     }
2181 
2182     /** Opaque version of {@link #getLongVolatile(Object, long)} */
2183     @HotSpotIntrinsicCandidate
2184     public final long getLongOpaque(Object o, long offset) {
2185         return getLongVolatile(o, offset);
2186     }
2187 
2188     /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
2189     @HotSpotIntrinsicCandidate
2190     public final double getDoubleOpaque(Object o, long offset) {
2191         return getDoubleVolatile(o, offset);
2192     }
2193 
2194     /** Opaque version of {@link #putObjectVolatile(Object, long, Object)} */
2195     @HotSpotIntrinsicCandidate
2196     public final void putObjectOpaque(Object o, long offset, Object x) {
2197         putObjectVolatile(o, offset, x);
2198     }
2199 
2200     /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
2201     @HotSpotIntrinsicCandidate
2202     public final void putBooleanOpaque(Object o, long offset, boolean x) {
2203         putBooleanVolatile(o, offset, x);
2204     }
2205 
2206     /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
2207     @HotSpotIntrinsicCandidate
2208     public final void putByteOpaque(Object o, long offset, byte x) {
2209         putByteVolatile(o, offset, x);
2210     }
2211 
2212     /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
2213     @HotSpotIntrinsicCandidate
2214     public final void putShortOpaque(Object o, long offset, short x) {
2215         putShortVolatile(o, offset, x);
2216     }
2217 
2218     /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
2219     @HotSpotIntrinsicCandidate
2220     public final void putCharOpaque(Object o, long offset, char x) {
2221         putCharVolatile(o, offset, x);
2222     }
2223 
2224     /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
2225     @HotSpotIntrinsicCandidate
2226     public final void putIntOpaque(Object o, long offset, int x) {
2227         putIntVolatile(o, offset, x);
2228     }
2229 
2230     /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
2231     @HotSpotIntrinsicCandidate
2232     public final void putFloatOpaque(Object o, long offset, float x) {
2233         putFloatVolatile(o, offset, x);
2234     }
2235 
2236     /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
2237     @HotSpotIntrinsicCandidate
2238     public final void putLongOpaque(Object o, long offset, long x) {
2239         putLongVolatile(o, offset, x);
2240     }
2241 
2242     /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
2243     @HotSpotIntrinsicCandidate
2244     public final void putDoubleOpaque(Object o, long offset, double x) {
2245         putDoubleVolatile(o, offset, x);
2246     }
2247 
2248     /**
2249      * Unblocks the given thread blocked on {@code park}, or, if it is
2250      * not blocked, causes the subsequent call to {@code park} not to
2251      * block.  Note: this operation is "unsafe" solely because the
2252      * caller must somehow ensure that the thread has not been
2253      * destroyed. Nothing special is usually required to ensure this
2254      * when called from Java (in which there will ordinarily be a live
2255      * reference to the thread) but this is not nearly-automatically
2256      * so when calling from native code.
2257      *
2258      * @param thread the thread to unpark.
2259      */
2260     @HotSpotIntrinsicCandidate
2261     public native void unpark(Object thread);
2262 
2263     /**
2264      * Blocks current thread, returning when a balancing
2265      * {@code unpark} occurs, or a balancing {@code unpark} has
2266      * already occurred, or the thread is interrupted, or, if not
2267      * absolute and time is not zero, the given time nanoseconds have
2268      * elapsed, or if absolute, the given deadline in milliseconds
2269      * since Epoch has passed, or spuriously (i.e., returning for no
2270      * "reason"). Note: This operation is in the Unsafe class only
2271      * because {@code unpark} is, so it would be strange to place it
2272      * elsewhere.
2273      */
2274     @HotSpotIntrinsicCandidate
2275     public native void park(boolean isAbsolute, long time);
2276 
2277     /**
2278      * Gets the load average in the system run queue assigned
2279      * to the available processors averaged over various periods of time.
2280      * This method retrieves the given {@code nelem} samples and
2281      * assigns to the elements of the given {@code loadavg} array.
2282      * The system imposes a maximum of 3 samples, representing
2283      * averages over the last 1,  5,  and  15 minutes, respectively.
2284      *
2285      * @param loadavg an array of double of size nelems
2286      * @param nelems the number of samples to be retrieved and
2287      *        must be 1 to 3.
2288      *
2289      * @return the number of samples actually retrieved; or -1
2290      *         if the load average is unobtainable.
2291      */
2292     public int getLoadAverage(double[] loadavg, int nelems) {
2293         if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
2294             throw new ArrayIndexOutOfBoundsException();
2295         }
2296 
2297         return getLoadAverage0(loadavg, nelems);
2298     }
2299 
2300     // The following contain CAS-based Java implementations used on
2301     // platforms not supporting native instructions
2302 
2303     /**
2304      * Atomically adds the given value to the current value of a field
2305      * or array element within the given object {@code o}
2306      * at the given {@code offset}.
2307      *
2308      * @param o object/array to update the field/element in
2309      * @param offset field/element offset
2310      * @param delta the value to add
2311      * @return the previous value
2312      * @since 1.8
2313      */
2314     @HotSpotIntrinsicCandidate
2315     public final int getAndAddInt(Object o, long offset, int delta) {
2316         int v;
2317         do {
2318             v = getIntVolatile(o, offset);
2319         } while (!weakCompareAndSetInt(o, offset, v, v + delta));
2320         return v;
2321     }
2322 
2323     @ForceInline
2324     public final int getAndAddIntRelease(Object o, long offset, int delta) {
2325         int v;
2326         do {
2327             v = getInt(o, offset);
2328         } while (!weakCompareAndSetIntRelease(o, offset, v, v + delta));
2329         return v;
2330     }
2331 
2332     @ForceInline
2333     public final int getAndAddIntAcquire(Object o, long offset, int delta) {
2334         int v;
2335         do {
2336             v = getIntAcquire(o, offset);
2337         } while (!weakCompareAndSetIntAcquire(o, offset, v, v + delta));
2338         return v;
2339     }
2340 
2341     /**
2342      * Atomically adds the given value to the current value of a field
2343      * or array element within the given object {@code o}
2344      * at the given {@code offset}.
2345      *
2346      * @param o object/array to update the field/element in
2347      * @param offset field/element offset
2348      * @param delta the value to add
2349      * @return the previous value
2350      * @since 1.8
2351      */
2352     @HotSpotIntrinsicCandidate
2353     public final long getAndAddLong(Object o, long offset, long delta) {
2354         long v;
2355         do {
2356             v = getLongVolatile(o, offset);
2357         } while (!weakCompareAndSetLong(o, offset, v, v + delta));
2358         return v;
2359     }
2360 
2361     @ForceInline
2362     public final long getAndAddLongRelease(Object o, long offset, long delta) {
2363         long v;
2364         do {
2365             v = getLong(o, offset);
2366         } while (!weakCompareAndSetLongRelease(o, offset, v, v + delta));
2367         return v;
2368     }
2369 
2370     @ForceInline
2371     public final long getAndAddLongAcquire(Object o, long offset, long delta) {
2372         long v;
2373         do {
2374             v = getLongAcquire(o, offset);
2375         } while (!weakCompareAndSetLongAcquire(o, offset, v, v + delta));
2376         return v;
2377     }
2378 
2379     @HotSpotIntrinsicCandidate
2380     public final byte getAndAddByte(Object o, long offset, byte delta) {
2381         byte v;
2382         do {
2383             v = getByteVolatile(o, offset);
2384         } while (!weakCompareAndSetByte(o, offset, v, (byte) (v + delta)));
2385         return v;
2386     }
2387 
2388     @ForceInline
2389     public final byte getAndAddByteRelease(Object o, long offset, byte delta) {
2390         byte v;
2391         do {
2392             v = getByte(o, offset);
2393         } while (!weakCompareAndSetByteRelease(o, offset, v, (byte) (v + delta)));
2394         return v;
2395     }
2396 
2397     @ForceInline
2398     public final byte getAndAddByteAcquire(Object o, long offset, byte delta) {
2399         byte v;
2400         do {
2401             v = getByteAcquire(o, offset);
2402         } while (!weakCompareAndSetByteAcquire(o, offset, v, (byte) (v + delta)));
2403         return v;
2404     }
2405 
2406     @HotSpotIntrinsicCandidate
2407     public final short getAndAddShort(Object o, long offset, short delta) {
2408         short v;
2409         do {
2410             v = getShortVolatile(o, offset);
2411         } while (!weakCompareAndSetShort(o, offset, v, (short) (v + delta)));
2412         return v;
2413     }
2414 
2415     @ForceInline
2416     public final short getAndAddShortRelease(Object o, long offset, short delta) {
2417         short v;
2418         do {
2419             v = getShort(o, offset);
2420         } while (!weakCompareAndSetShortRelease(o, offset, v, (short) (v + delta)));
2421         return v;
2422     }
2423 
2424     @ForceInline
2425     public final short getAndAddShortAcquire(Object o, long offset, short delta) {
2426         short v;
2427         do {
2428             v = getShortAcquire(o, offset);
2429         } while (!weakCompareAndSetShortAcquire(o, offset, v, (short) (v + delta)));
2430         return v;
2431     }
2432 
2433     @ForceInline
2434     public final char getAndAddChar(Object o, long offset, char delta) {
2435         return (char) getAndAddShort(o, offset, (short) delta);
2436     }
2437 
2438     @ForceInline
2439     public final char getAndAddCharRelease(Object o, long offset, char delta) {
2440         return (char) getAndAddShortRelease(o, offset, (short) delta);
2441     }
2442 
2443     @ForceInline
2444     public final char getAndAddCharAcquire(Object o, long offset, char delta) {
2445         return (char) getAndAddShortAcquire(o, offset, (short) delta);
2446     }
2447 
2448     @ForceInline
2449     public final float getAndAddFloat(Object o, long offset, float delta) {
2450         int expectedBits;
2451         float v;
2452         do {
2453             // Load and CAS with the raw bits to avoid issues with NaNs and
2454             // possible bit conversion from signaling NaNs to quiet NaNs that
2455             // may result in the loop not terminating.
2456             expectedBits = getIntVolatile(o, offset);
2457             v = Float.intBitsToFloat(expectedBits);
2458         } while (!weakCompareAndSetInt(o, offset,
2459                                                 expectedBits, Float.floatToRawIntBits(v + delta)));
2460         return v;
2461     }
2462 
2463     @ForceInline
2464     public final float getAndAddFloatRelease(Object o, long offset, float delta) {
2465         int expectedBits;
2466         float v;
2467         do {
2468             // Load and CAS with the raw bits to avoid issues with NaNs and
2469             // possible bit conversion from signaling NaNs to quiet NaNs that
2470             // may result in the loop not terminating.
2471             expectedBits = getInt(o, offset);
2472             v = Float.intBitsToFloat(expectedBits);
2473         } while (!weakCompareAndSetIntRelease(o, offset,
2474                                                expectedBits, Float.floatToRawIntBits(v + delta)));
2475         return v;
2476     }
2477 
2478     @ForceInline
2479     public final float getAndAddFloatAcquire(Object o, long offset, float delta) {
2480         int expectedBits;
2481         float v;
2482         do {
2483             // Load and CAS with the raw bits to avoid issues with NaNs and
2484             // possible bit conversion from signaling NaNs to quiet NaNs that
2485             // may result in the loop not terminating.
2486             expectedBits = getIntAcquire(o, offset);
2487             v = Float.intBitsToFloat(expectedBits);
2488         } while (!weakCompareAndSetIntAcquire(o, offset,
2489                                                expectedBits, Float.floatToRawIntBits(v + delta)));
2490         return v;
2491     }
2492 
2493     @ForceInline
2494     public final double getAndAddDouble(Object o, long offset, double delta) {
2495         long expectedBits;
2496         double v;
2497         do {
2498             // Load and CAS with the raw bits to avoid issues with NaNs and
2499             // possible bit conversion from signaling NaNs to quiet NaNs that
2500             // may result in the loop not terminating.
2501             expectedBits = getLongVolatile(o, offset);
2502             v = Double.longBitsToDouble(expectedBits);
2503         } while (!weakCompareAndSetLong(o, offset,
2504                                                  expectedBits, Double.doubleToRawLongBits(v + delta)));
2505         return v;
2506     }
2507 
2508     @ForceInline
2509     public final double getAndAddDoubleRelease(Object o, long offset, double delta) {
2510         long expectedBits;
2511         double v;
2512         do {
2513             // Load and CAS with the raw bits to avoid issues with NaNs and
2514             // possible bit conversion from signaling NaNs to quiet NaNs that
2515             // may result in the loop not terminating.
2516             expectedBits = getLong(o, offset);
2517             v = Double.longBitsToDouble(expectedBits);
2518         } while (!weakCompareAndSetLongRelease(o, offset,
2519                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
2520         return v;
2521     }
2522 
2523     @ForceInline
2524     public final double getAndAddDoubleAcquire(Object o, long offset, double delta) {
2525         long expectedBits;
2526         double v;
2527         do {
2528             // Load and CAS with the raw bits to avoid issues with NaNs and
2529             // possible bit conversion from signaling NaNs to quiet NaNs that
2530             // may result in the loop not terminating.
2531             expectedBits = getLongAcquire(o, offset);
2532             v = Double.longBitsToDouble(expectedBits);
2533         } while (!weakCompareAndSetLongAcquire(o, offset,
2534                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
2535         return v;
2536     }
2537 
2538     /**
2539      * Atomically exchanges the given value with the current value of
2540      * a field or array element within the given object {@code o}
2541      * at the given {@code offset}.
2542      *
2543      * @param o object/array to update the field/element in
2544      * @param offset field/element offset
2545      * @param newValue new value
2546      * @return the previous value
2547      * @since 1.8
2548      */
2549     @HotSpotIntrinsicCandidate
2550     public final int getAndSetInt(Object o, long offset, int newValue) {
2551         int v;
2552         do {
2553             v = getIntVolatile(o, offset);
2554         } while (!weakCompareAndSetInt(o, offset, v, newValue));
2555         return v;
2556     }
2557 
2558     @ForceInline
2559     public final int getAndSetIntRelease(Object o, long offset, int newValue) {
2560         int v;
2561         do {
2562             v = getInt(o, offset);
2563         } while (!weakCompareAndSetIntRelease(o, offset, v, newValue));
2564         return v;
2565     }
2566 
2567     @ForceInline
2568     public final int getAndSetIntAcquire(Object o, long offset, int newValue) {
2569         int v;
2570         do {
2571             v = getIntAcquire(o, offset);
2572         } while (!weakCompareAndSetIntAcquire(o, offset, v, newValue));
2573         return v;
2574     }
2575 
2576     /**
2577      * Atomically exchanges the given value with the current value of
2578      * a field or array element within the given object {@code o}
2579      * at the given {@code offset}.
2580      *
2581      * @param o object/array to update the field/element in
2582      * @param offset field/element offset
2583      * @param newValue new value
2584      * @return the previous value
2585      * @since 1.8
2586      */
2587     @HotSpotIntrinsicCandidate
2588     public final long getAndSetLong(Object o, long offset, long newValue) {
2589         long v;
2590         do {
2591             v = getLongVolatile(o, offset);
2592         } while (!weakCompareAndSetLong(o, offset, v, newValue));
2593         return v;
2594     }
2595 
2596     @ForceInline
2597     public final long getAndSetLongRelease(Object o, long offset, long newValue) {
2598         long v;
2599         do {
2600             v = getLong(o, offset);
2601         } while (!weakCompareAndSetLongRelease(o, offset, v, newValue));
2602         return v;
2603     }
2604 
2605     @ForceInline
2606     public final long getAndSetLongAcquire(Object o, long offset, long newValue) {
2607         long v;
2608         do {
2609             v = getLongAcquire(o, offset);
2610         } while (!weakCompareAndSetLongAcquire(o, offset, v, newValue));
2611         return v;
2612     }
2613 
2614     /**
2615      * Atomically exchanges the given reference value with the current
2616      * reference value of a field or array element within the given
2617      * object {@code o} at the given {@code offset}.
2618      *
2619      * @param o object/array to update the field/element in
2620      * @param offset field/element offset
2621      * @param newValue new value
2622      * @return the previous value
2623      * @since 1.8
2624      */
2625     @HotSpotIntrinsicCandidate
2626     public final Object getAndSetObject(Object o, long offset, Object newValue) {
2627         Object v;
2628         do {
2629             v = getObjectVolatile(o, offset);
2630         } while (!weakCompareAndSetObject(o, offset, v, newValue));
2631         return v;
2632     }
2633 
2634     @ForceInline
2635     public final Object getAndSetObjectRelease(Object o, long offset, Object newValue) {
2636         Object v;
2637         do {
2638             v = getObject(o, offset);
2639         } while (!weakCompareAndSetObjectRelease(o, offset, v, newValue));
2640         return v;
2641     }
2642 
2643     @ForceInline
2644     public final Object getAndSetObjectAcquire(Object o, long offset, Object newValue) {
2645         Object v;
2646         do {
2647             v = getObjectAcquire(o, offset);
2648         } while (!weakCompareAndSetObjectAcquire(o, offset, v, newValue));
2649         return v;
2650     }
2651 
2652     @HotSpotIntrinsicCandidate
2653     public final byte getAndSetByte(Object o, long offset, byte newValue) {
2654         byte v;
2655         do {
2656             v = getByteVolatile(o, offset);
2657         } while (!weakCompareAndSetByte(o, offset, v, newValue));
2658         return v;
2659     }
2660 
2661     @ForceInline
2662     public final byte getAndSetByteRelease(Object o, long offset, byte newValue) {
2663         byte v;
2664         do {
2665             v = getByte(o, offset);
2666         } while (!weakCompareAndSetByteRelease(o, offset, v, newValue));
2667         return v;
2668     }
2669 
2670     @ForceInline
2671     public final byte getAndSetByteAcquire(Object o, long offset, byte newValue) {
2672         byte v;
2673         do {
2674             v = getByteAcquire(o, offset);
2675         } while (!weakCompareAndSetByteAcquire(o, offset, v, newValue));
2676         return v;
2677     }
2678 
2679     @ForceInline
2680     public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
2681         return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
2682     }
2683 
2684     @ForceInline
2685     public final boolean getAndSetBooleanRelease(Object o, long offset, boolean newValue) {
2686         return byte2bool(getAndSetByteRelease(o, offset, bool2byte(newValue)));
2687     }
2688 
2689     @ForceInline
2690     public final boolean getAndSetBooleanAcquire(Object o, long offset, boolean newValue) {
2691         return byte2bool(getAndSetByteAcquire(o, offset, bool2byte(newValue)));
2692     }
2693 
2694     @HotSpotIntrinsicCandidate
2695     public final short getAndSetShort(Object o, long offset, short newValue) {
2696         short v;
2697         do {
2698             v = getShortVolatile(o, offset);
2699         } while (!weakCompareAndSetShort(o, offset, v, newValue));
2700         return v;
2701     }
2702 
2703     @ForceInline
2704     public final short getAndSetShortRelease(Object o, long offset, short newValue) {
2705         short v;
2706         do {
2707             v = getShort(o, offset);
2708         } while (!weakCompareAndSetShortRelease(o, offset, v, newValue));
2709         return v;
2710     }
2711 
2712     @ForceInline
2713     public final short getAndSetShortAcquire(Object o, long offset, short newValue) {
2714         short v;
2715         do {
2716             v = getShortAcquire(o, offset);
2717         } while (!weakCompareAndSetShortAcquire(o, offset, v, newValue));
2718         return v;
2719     }
2720 
2721     @ForceInline
2722     public final char getAndSetChar(Object o, long offset, char newValue) {
2723         return s2c(getAndSetShort(o, offset, c2s(newValue)));
2724     }
2725 
2726     @ForceInline
2727     public final char getAndSetCharRelease(Object o, long offset, char newValue) {
2728         return s2c(getAndSetShortRelease(o, offset, c2s(newValue)));
2729     }
2730 
2731     @ForceInline
2732     public final char getAndSetCharAcquire(Object o, long offset, char newValue) {
2733         return s2c(getAndSetShortAcquire(o, offset, c2s(newValue)));
2734     }
2735 
2736     @ForceInline
2737     public final float getAndSetFloat(Object o, long offset, float newValue) {
2738         int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
2739         return Float.intBitsToFloat(v);
2740     }
2741 
2742     @ForceInline
2743     public final float getAndSetFloatRelease(Object o, long offset, float newValue) {
2744         int v = getAndSetIntRelease(o, offset, Float.floatToRawIntBits(newValue));
2745         return Float.intBitsToFloat(v);
2746     }
2747 
2748     @ForceInline
2749     public final float getAndSetFloatAcquire(Object o, long offset, float newValue) {
2750         int v = getAndSetIntAcquire(o, offset, Float.floatToRawIntBits(newValue));
2751         return Float.intBitsToFloat(v);
2752     }
2753 
2754     @ForceInline
2755     public final double getAndSetDouble(Object o, long offset, double newValue) {
2756         long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
2757         return Double.longBitsToDouble(v);
2758     }
2759 
2760     @ForceInline
2761     public final double getAndSetDoubleRelease(Object o, long offset, double newValue) {
2762         long v = getAndSetLongRelease(o, offset, Double.doubleToRawLongBits(newValue));
2763         return Double.longBitsToDouble(v);
2764     }
2765 
2766     @ForceInline
2767     public final double getAndSetDoubleAcquire(Object o, long offset, double newValue) {
2768         long v = getAndSetLongAcquire(o, offset, Double.doubleToRawLongBits(newValue));
2769         return Double.longBitsToDouble(v);
2770     }
2771 
2772 
2773     // The following contain CAS-based Java implementations used on
2774     // platforms not supporting native instructions
2775 
2776     @ForceInline
2777     public final boolean getAndBitwiseOrBoolean(Object o, long offset, boolean mask) {
2778         return byte2bool(getAndBitwiseOrByte(o, offset, bool2byte(mask)));
2779     }
2780 
2781     @ForceInline
2782     public final boolean getAndBitwiseOrBooleanRelease(Object o, long offset, boolean mask) {
2783         return byte2bool(getAndBitwiseOrByteRelease(o, offset, bool2byte(mask)));
2784     }
2785 
2786     @ForceInline
2787     public final boolean getAndBitwiseOrBooleanAcquire(Object o, long offset, boolean mask) {
2788         return byte2bool(getAndBitwiseOrByteAcquire(o, offset, bool2byte(mask)));
2789     }
2790 
2791     @ForceInline
2792     public final boolean getAndBitwiseAndBoolean(Object o, long offset, boolean mask) {
2793         return byte2bool(getAndBitwiseAndByte(o, offset, bool2byte(mask)));
2794     }
2795 
2796     @ForceInline
2797     public final boolean getAndBitwiseAndBooleanRelease(Object o, long offset, boolean mask) {
2798         return byte2bool(getAndBitwiseAndByteRelease(o, offset, bool2byte(mask)));
2799     }
2800 
2801     @ForceInline
2802     public final boolean getAndBitwiseAndBooleanAcquire(Object o, long offset, boolean mask) {
2803         return byte2bool(getAndBitwiseAndByteAcquire(o, offset, bool2byte(mask)));
2804     }
2805 
2806     @ForceInline
2807     public final boolean getAndBitwiseXorBoolean(Object o, long offset, boolean mask) {
2808         return byte2bool(getAndBitwiseXorByte(o, offset, bool2byte(mask)));
2809     }
2810 
2811     @ForceInline
2812     public final boolean getAndBitwiseXorBooleanRelease(Object o, long offset, boolean mask) {
2813         return byte2bool(getAndBitwiseXorByteRelease(o, offset, bool2byte(mask)));
2814     }
2815 
2816     @ForceInline
2817     public final boolean getAndBitwiseXorBooleanAcquire(Object o, long offset, boolean mask) {
2818         return byte2bool(getAndBitwiseXorByteAcquire(o, offset, bool2byte(mask)));
2819     }
2820 
2821 
2822     @ForceInline
2823     public final byte getAndBitwiseOrByte(Object o, long offset, byte mask) {
2824         byte current;
2825         do {
2826             current = getByteVolatile(o, offset);
2827         } while (!weakCompareAndSetByte(o, offset,
2828                                                   current, (byte) (current | mask)));
2829         return current;
2830     }
2831 
2832     @ForceInline
2833     public final byte getAndBitwiseOrByteRelease(Object o, long offset, byte mask) {
2834         byte current;
2835         do {
2836             current = getByte(o, offset);
2837         } while (!weakCompareAndSetByteRelease(o, offset,
2838                                                  current, (byte) (current | mask)));
2839         return current;
2840     }
2841 
2842     @ForceInline
2843     public final byte getAndBitwiseOrByteAcquire(Object o, long offset, byte mask) {
2844         byte current;
2845         do {
2846             // Plain read, the value is a hint, the acquire CAS does the work
2847             current = getByte(o, offset);
2848         } while (!weakCompareAndSetByteAcquire(o, offset,
2849                                                  current, (byte) (current | mask)));
2850         return current;
2851     }
2852 
2853     @ForceInline
2854     public final byte getAndBitwiseAndByte(Object o, long offset, byte mask) {
2855         byte current;
2856         do {
2857             current = getByteVolatile(o, offset);
2858         } while (!weakCompareAndSetByte(o, offset,
2859                                                   current, (byte) (current & mask)));
2860         return current;
2861     }
2862 
2863     @ForceInline
2864     public final byte getAndBitwiseAndByteRelease(Object o, long offset, byte mask) {
2865         byte current;
2866         do {
2867             current = getByte(o, offset);
2868         } while (!weakCompareAndSetByteRelease(o, offset,
2869                                                  current, (byte) (current & mask)));
2870         return current;
2871     }
2872 
2873     @ForceInline
2874     public final byte getAndBitwiseAndByteAcquire(Object o, long offset, byte mask) {
2875         byte current;
2876         do {
2877             // Plain read, the value is a hint, the acquire CAS does the work
2878             current = getByte(o, offset);
2879         } while (!weakCompareAndSetByteAcquire(o, offset,
2880                                                  current, (byte) (current & mask)));
2881         return current;
2882     }
2883 
2884     @ForceInline
2885     public final byte getAndBitwiseXorByte(Object o, long offset, byte mask) {
2886         byte current;
2887         do {
2888             current = getByteVolatile(o, offset);
2889         } while (!weakCompareAndSetByte(o, offset,
2890                                                   current, (byte) (current ^ mask)));
2891         return current;
2892     }
2893 
2894     @ForceInline
2895     public final byte getAndBitwiseXorByteRelease(Object o, long offset, byte mask) {
2896         byte current;
2897         do {
2898             current = getByte(o, offset);
2899         } while (!weakCompareAndSetByteRelease(o, offset,
2900                                                  current, (byte) (current ^ mask)));
2901         return current;
2902     }
2903 
2904     @ForceInline
2905     public final byte getAndBitwiseXorByteAcquire(Object o, long offset, byte mask) {
2906         byte current;
2907         do {
2908             // Plain read, the value is a hint, the acquire CAS does the work
2909             current = getByte(o, offset);
2910         } while (!weakCompareAndSetByteAcquire(o, offset,
2911                                                  current, (byte) (current ^ mask)));
2912         return current;
2913     }
2914 
2915 
2916     @ForceInline
2917     public final char getAndBitwiseOrChar(Object o, long offset, char mask) {
2918         return s2c(getAndBitwiseOrShort(o, offset, c2s(mask)));
2919     }
2920 
2921     @ForceInline
2922     public final char getAndBitwiseOrCharRelease(Object o, long offset, char mask) {
2923         return s2c(getAndBitwiseOrShortRelease(o, offset, c2s(mask)));
2924     }
2925 
2926     @ForceInline
2927     public final char getAndBitwiseOrCharAcquire(Object o, long offset, char mask) {
2928         return s2c(getAndBitwiseOrShortAcquire(o, offset, c2s(mask)));
2929     }
2930 
2931     @ForceInline
2932     public final char getAndBitwiseAndChar(Object o, long offset, char mask) {
2933         return s2c(getAndBitwiseAndShort(o, offset, c2s(mask)));
2934     }
2935 
2936     @ForceInline
2937     public final char getAndBitwiseAndCharRelease(Object o, long offset, char mask) {
2938         return s2c(getAndBitwiseAndShortRelease(o, offset, c2s(mask)));
2939     }
2940 
2941     @ForceInline
2942     public final char getAndBitwiseAndCharAcquire(Object o, long offset, char mask) {
2943         return s2c(getAndBitwiseAndShortAcquire(o, offset, c2s(mask)));
2944     }
2945 
2946     @ForceInline
2947     public final char getAndBitwiseXorChar(Object o, long offset, char mask) {
2948         return s2c(getAndBitwiseXorShort(o, offset, c2s(mask)));
2949     }
2950 
2951     @ForceInline
2952     public final char getAndBitwiseXorCharRelease(Object o, long offset, char mask) {
2953         return s2c(getAndBitwiseXorShortRelease(o, offset, c2s(mask)));
2954     }
2955 
2956     @ForceInline
2957     public final char getAndBitwiseXorCharAcquire(Object o, long offset, char mask) {
2958         return s2c(getAndBitwiseXorShortAcquire(o, offset, c2s(mask)));
2959     }
2960 
2961 
2962     @ForceInline
2963     public final short getAndBitwiseOrShort(Object o, long offset, short mask) {
2964         short current;
2965         do {
2966             current = getShortVolatile(o, offset);
2967         } while (!weakCompareAndSetShort(o, offset,
2968                                                 current, (short) (current | mask)));
2969         return current;
2970     }
2971 
2972     @ForceInline
2973     public final short getAndBitwiseOrShortRelease(Object o, long offset, short mask) {
2974         short current;
2975         do {
2976             current = getShort(o, offset);
2977         } while (!weakCompareAndSetShortRelease(o, offset,
2978                                                current, (short) (current | mask)));
2979         return current;
2980     }
2981 
2982     @ForceInline
2983     public final short getAndBitwiseOrShortAcquire(Object o, long offset, short mask) {
2984         short current;
2985         do {
2986             // Plain read, the value is a hint, the acquire CAS does the work
2987             current = getShort(o, offset);
2988         } while (!weakCompareAndSetShortAcquire(o, offset,
2989                                                current, (short) (current | mask)));
2990         return current;
2991     }
2992 
2993     @ForceInline
2994     public final short getAndBitwiseAndShort(Object o, long offset, short mask) {
2995         short current;
2996         do {
2997             current = getShortVolatile(o, offset);
2998         } while (!weakCompareAndSetShort(o, offset,
2999                                                 current, (short) (current & mask)));
3000         return current;
3001     }
3002 
3003     @ForceInline
3004     public final short getAndBitwiseAndShortRelease(Object o, long offset, short mask) {
3005         short current;
3006         do {
3007             current = getShort(o, offset);
3008         } while (!weakCompareAndSetShortRelease(o, offset,
3009                                                current, (short) (current & mask)));
3010         return current;
3011     }
3012 
3013     @ForceInline
3014     public final short getAndBitwiseAndShortAcquire(Object o, long offset, short mask) {
3015         short current;
3016         do {
3017             // Plain read, the value is a hint, the acquire CAS does the work
3018             current = getShort(o, offset);
3019         } while (!weakCompareAndSetShortAcquire(o, offset,
3020                                                current, (short) (current & mask)));
3021         return current;
3022     }
3023 
3024     @ForceInline
3025     public final short getAndBitwiseXorShort(Object o, long offset, short mask) {
3026         short current;
3027         do {
3028             current = getShortVolatile(o, offset);
3029         } while (!weakCompareAndSetShort(o, offset,
3030                                                 current, (short) (current ^ mask)));
3031         return current;
3032     }
3033 
3034     @ForceInline
3035     public final short getAndBitwiseXorShortRelease(Object o, long offset, short mask) {
3036         short current;
3037         do {
3038             current = getShort(o, offset);
3039         } while (!weakCompareAndSetShortRelease(o, offset,
3040                                                current, (short) (current ^ mask)));
3041         return current;
3042     }
3043 
3044     @ForceInline
3045     public final short getAndBitwiseXorShortAcquire(Object o, long offset, short mask) {
3046         short current;
3047         do {
3048             // Plain read, the value is a hint, the acquire CAS does the work
3049             current = getShort(o, offset);
3050         } while (!weakCompareAndSetShortAcquire(o, offset,
3051                                                current, (short) (current ^ mask)));
3052         return current;
3053     }
3054 
3055 
3056     @ForceInline
3057     public final int getAndBitwiseOrInt(Object o, long offset, int mask) {
3058         int current;
3059         do {
3060             current = getIntVolatile(o, offset);
3061         } while (!weakCompareAndSetInt(o, offset,
3062                                                 current, current | mask));
3063         return current;
3064     }
3065 
3066     @ForceInline
3067     public final int getAndBitwiseOrIntRelease(Object o, long offset, int mask) {
3068         int current;
3069         do {
3070             current = getInt(o, offset);
3071         } while (!weakCompareAndSetIntRelease(o, offset,
3072                                                current, current | mask));
3073         return current;
3074     }
3075 
3076     @ForceInline
3077     public final int getAndBitwiseOrIntAcquire(Object o, long offset, int mask) {
3078         int current;
3079         do {
3080             // Plain read, the value is a hint, the acquire CAS does the work
3081             current = getInt(o, offset);
3082         } while (!weakCompareAndSetIntAcquire(o, offset,
3083                                                current, current | mask));
3084         return current;
3085     }
3086 
3087     /**
3088      * Atomically replaces the current value of a field or array element within
3089      * the given object with the result of bitwise AND between the current value
3090      * and mask.
3091      *
3092      * @param o object/array to update the field/element in
3093      * @param offset field/element offset
3094      * @param mask the mask value
3095      * @return the previous value
3096      * @since 1.9
3097      */
3098     @ForceInline
3099     public final int getAndBitwiseAndInt(Object o, long offset, int mask) {
3100         int current;
3101         do {
3102             current = getIntVolatile(o, offset);
3103         } while (!weakCompareAndSetInt(o, offset,
3104                                                 current, current & mask));
3105         return current;
3106     }
3107 
3108     @ForceInline
3109     public final int getAndBitwiseAndIntRelease(Object o, long offset, int mask) {
3110         int current;
3111         do {
3112             current = getInt(o, offset);
3113         } while (!weakCompareAndSetIntRelease(o, offset,
3114                                                current, current & mask));
3115         return current;
3116     }
3117 
3118     @ForceInline
3119     public final int getAndBitwiseAndIntAcquire(Object o, long offset, int mask) {
3120         int current;
3121         do {
3122             // Plain read, the value is a hint, the acquire CAS does the work
3123             current = getInt(o, offset);
3124         } while (!weakCompareAndSetIntAcquire(o, offset,
3125                                                current, current & mask));
3126         return current;
3127     }
3128 
3129     @ForceInline
3130     public final int getAndBitwiseXorInt(Object o, long offset, int mask) {
3131         int current;
3132         do {
3133             current = getIntVolatile(o, offset);
3134         } while (!weakCompareAndSetInt(o, offset,
3135                                                 current, current ^ mask));
3136         return current;
3137     }
3138 
3139     @ForceInline
3140     public final int getAndBitwiseXorIntRelease(Object o, long offset, int mask) {
3141         int current;
3142         do {
3143             current = getInt(o, offset);
3144         } while (!weakCompareAndSetIntRelease(o, offset,
3145                                                current, current ^ mask));
3146         return current;
3147     }
3148 
3149     @ForceInline
3150     public final int getAndBitwiseXorIntAcquire(Object o, long offset, int mask) {
3151         int current;
3152         do {
3153             // Plain read, the value is a hint, the acquire CAS does the work
3154             current = getInt(o, offset);
3155         } while (!weakCompareAndSetIntAcquire(o, offset,
3156                                                current, current ^ mask));
3157         return current;
3158     }
3159 
3160 
3161     @ForceInline
3162     public final long getAndBitwiseOrLong(Object o, long offset, long mask) {
3163         long current;
3164         do {
3165             current = getLongVolatile(o, offset);
3166         } while (!weakCompareAndSetLong(o, offset,
3167                                                 current, current | mask));
3168         return current;
3169     }
3170 
3171     @ForceInline
3172     public final long getAndBitwiseOrLongRelease(Object o, long offset, long mask) {
3173         long current;
3174         do {
3175             current = getLong(o, offset);
3176         } while (!weakCompareAndSetLongRelease(o, offset,
3177                                                current, current | mask));
3178         return current;
3179     }
3180 
3181     @ForceInline
3182     public final long getAndBitwiseOrLongAcquire(Object o, long offset, long mask) {
3183         long current;
3184         do {
3185             // Plain read, the value is a hint, the acquire CAS does the work
3186             current = getLong(o, offset);
3187         } while (!weakCompareAndSetLongAcquire(o, offset,
3188                                                current, current | mask));
3189         return current;
3190     }
3191 
3192     @ForceInline
3193     public final long getAndBitwiseAndLong(Object o, long offset, long mask) {
3194         long current;
3195         do {
3196             current = getLongVolatile(o, offset);
3197         } while (!weakCompareAndSetLong(o, offset,
3198                                                 current, current & mask));
3199         return current;
3200     }
3201 
3202     @ForceInline
3203     public final long getAndBitwiseAndLongRelease(Object o, long offset, long mask) {
3204         long current;
3205         do {
3206             current = getLong(o, offset);
3207         } while (!weakCompareAndSetLongRelease(o, offset,
3208                                                current, current & mask));
3209         return current;
3210     }
3211 
3212     @ForceInline
3213     public final long getAndBitwiseAndLongAcquire(Object o, long offset, long mask) {
3214         long current;
3215         do {
3216             // Plain read, the value is a hint, the acquire CAS does the work
3217             current = getLong(o, offset);
3218         } while (!weakCompareAndSetLongAcquire(o, offset,
3219                                                current, current & mask));
3220         return current;
3221     }
3222 
3223     @ForceInline
3224     public final long getAndBitwiseXorLong(Object o, long offset, long mask) {
3225         long current;
3226         do {
3227             current = getLongVolatile(o, offset);
3228         } while (!weakCompareAndSetLong(o, offset,
3229                                                 current, current ^ mask));
3230         return current;
3231     }
3232 
3233     @ForceInline
3234     public final long getAndBitwiseXorLongRelease(Object o, long offset, long mask) {
3235         long current;
3236         do {
3237             current = getLong(o, offset);
3238         } while (!weakCompareAndSetLongRelease(o, offset,
3239                                                current, current ^ mask));
3240         return current;
3241     }
3242 
3243     @ForceInline
3244     public final long getAndBitwiseXorLongAcquire(Object o, long offset, long mask) {
3245         long current;
3246         do {
3247             // Plain read, the value is a hint, the acquire CAS does the work
3248             current = getLong(o, offset);
3249         } while (!weakCompareAndSetLongAcquire(o, offset,
3250                                                current, current ^ mask));
3251         return current;
3252     }
3253 
3254 
3255 
3256     /**
3257      * Ensures that loads before the fence will not be reordered with loads and
3258      * stores after the fence; a "LoadLoad plus LoadStore barrier".
3259      *
3260      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
3261      * (an "acquire fence").
3262      *
3263      * A pure LoadLoad fence is not provided, since the addition of LoadStore
3264      * is almost always desired, and most current hardware instructions that
3265      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
3266      * @since 1.8
3267      */
3268     @HotSpotIntrinsicCandidate
3269     public native void loadFence();
3270 
3271     /**
3272      * Ensures that loads and stores before the fence will not be reordered with
3273      * stores after the fence; a "StoreStore plus LoadStore barrier".
3274      *
3275      * Corresponds to C11 atomic_thread_fence(memory_order_release)
3276      * (a "release fence").
3277      *
3278      * A pure StoreStore fence is not provided, since the addition of LoadStore
3279      * is almost always desired, and most current hardware instructions that
3280      * provide a StoreStore barrier also provide a LoadStore barrier for free.
3281      * @since 1.8
3282      */
3283     @HotSpotIntrinsicCandidate
3284     public native void storeFence();
3285 
3286     /**
3287      * Ensures that loads and stores before the fence will not be reordered
3288      * with loads and stores after the fence.  Implies the effects of both
3289      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
3290      * barrier.
3291      *
3292      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
3293      * @since 1.8
3294      */
3295     @HotSpotIntrinsicCandidate
3296     public native void fullFence();
3297 
3298     /**
3299      * Ensures that loads before the fence will not be reordered with
3300      * loads after the fence.
3301      */
3302     public final void loadLoadFence() {
3303         loadFence();
3304     }
3305 
3306     /**
3307      * Ensures that stores before the fence will not be reordered with
3308      * stores after the fence.
3309      */
3310     public final void storeStoreFence() {
3311         storeFence();
3312     }
3313 
3314 
3315     /**
3316      * Throws IllegalAccessError; for use by the VM for access control
3317      * error support.
3318      * @since 1.8
3319      */
3320     private static void throwIllegalAccessError() {
3321         throw new IllegalAccessError();
3322     }
3323 
3324     /**
3325      * @return Returns true if the native byte ordering of this
3326      * platform is big-endian, false if it is little-endian.
3327      */
3328     public final boolean isBigEndian() { return BE; }
3329 
3330     /**
3331      * @return Returns true if this platform is capable of performing
3332      * accesses at addresses which are not aligned for the type of the
3333      * primitive type being accessed, false otherwise.
3334      */
3335     public final boolean unalignedAccess() { return unalignedAccess; }
3336 
3337     /**
3338      * Fetches a value at some byte offset into a given Java object.
3339      * More specifically, fetches a value within the given object
3340      * <code>o</code> at the given offset, or (if <code>o</code> is
3341      * null) from the memory address whose numerical value is the
3342      * given offset.  <p>
3343      *
3344      * The specification of this method is the same as {@link
3345      * #getLong(Object, long)} except that the offset does not need to
3346      * have been obtained from {@link #objectFieldOffset} on the
3347      * {@link java.lang.reflect.Field} of some Java field.  The value
3348      * in memory is raw data, and need not correspond to any Java
3349      * variable.  Unless <code>o</code> is null, the value accessed
3350      * must be entirely within the allocated object.  The endianness
3351      * of the value in memory is the endianness of the native platform.
3352      *
3353      * <p> The read will be atomic with respect to the largest power
3354      * of two that divides the GCD of the offset and the storage size.
3355      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
3356      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
3357      * respectively.  There are no other guarantees of atomicity.
3358      * <p>
3359      * 8-byte atomicity is only guaranteed on platforms on which
3360      * support atomic accesses to longs.
3361      *
3362      * @param o Java heap object in which the value resides, if any, else
3363      *        null
3364      * @param offset The offset in bytes from the start of the object
3365      * @return the value fetched from the indicated object
3366      * @throws RuntimeException No defined exceptions are thrown, not even
3367      *         {@link NullPointerException}
3368      * @since 9
3369      */
3370     @HotSpotIntrinsicCandidate
3371     public final long getLongUnaligned(Object o, long offset) {
3372         if ((offset & 7) == 0) {
3373             return getLong(o, offset);
3374         } else if ((offset & 3) == 0) {
3375             return makeLong(getInt(o, offset),
3376                             getInt(o, offset + 4));
3377         } else if ((offset & 1) == 0) {
3378             return makeLong(getShort(o, offset),
3379                             getShort(o, offset + 2),
3380                             getShort(o, offset + 4),
3381                             getShort(o, offset + 6));
3382         } else {
3383             return makeLong(getByte(o, offset),
3384                             getByte(o, offset + 1),
3385                             getByte(o, offset + 2),
3386                             getByte(o, offset + 3),
3387                             getByte(o, offset + 4),
3388                             getByte(o, offset + 5),
3389                             getByte(o, offset + 6),
3390                             getByte(o, offset + 7));
3391         }
3392     }
3393     /**
3394      * As {@link #getLongUnaligned(Object, long)} but with an
3395      * additional argument which specifies the endianness of the value
3396      * as stored in memory.
3397      *
3398      * @param o Java heap object in which the variable resides
3399      * @param offset The offset in bytes from the start of the object
3400      * @param bigEndian The endianness of the value
3401      * @return the value fetched from the indicated object
3402      * @since 9
3403      */
3404     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
3405         return convEndian(bigEndian, getLongUnaligned(o, offset));
3406     }
3407 
3408     /** @see #getLongUnaligned(Object, long) */
3409     @HotSpotIntrinsicCandidate
3410     public final int getIntUnaligned(Object o, long offset) {
3411         if ((offset & 3) == 0) {
3412             return getInt(o, offset);
3413         } else if ((offset & 1) == 0) {
3414             return makeInt(getShort(o, offset),
3415                            getShort(o, offset + 2));
3416         } else {
3417             return makeInt(getByte(o, offset),
3418                            getByte(o, offset + 1),
3419                            getByte(o, offset + 2),
3420                            getByte(o, offset + 3));
3421         }
3422     }
3423     /** @see #getLongUnaligned(Object, long, boolean) */
3424     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
3425         return convEndian(bigEndian, getIntUnaligned(o, offset));
3426     }
3427 
3428     /** @see #getLongUnaligned(Object, long) */
3429     @HotSpotIntrinsicCandidate
3430     public final short getShortUnaligned(Object o, long offset) {
3431         if ((offset & 1) == 0) {
3432             return getShort(o, offset);
3433         } else {
3434             return makeShort(getByte(o, offset),
3435                              getByte(o, offset + 1));
3436         }
3437     }
3438     /** @see #getLongUnaligned(Object, long, boolean) */
3439     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
3440         return convEndian(bigEndian, getShortUnaligned(o, offset));
3441     }
3442 
3443     /** @see #getLongUnaligned(Object, long) */
3444     @HotSpotIntrinsicCandidate
3445     public final char getCharUnaligned(Object o, long offset) {
3446         if ((offset & 1) == 0) {
3447             return getChar(o, offset);
3448         } else {
3449             return (char)makeShort(getByte(o, offset),
3450                                    getByte(o, offset + 1));
3451         }
3452     }
3453 
3454     /** @see #getLongUnaligned(Object, long, boolean) */
3455     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
3456         return convEndian(bigEndian, getCharUnaligned(o, offset));
3457     }
3458 
3459     /**
3460      * Stores a value at some byte offset into a given Java object.
3461      * <p>
3462      * The specification of this method is the same as {@link
3463      * #getLong(Object, long)} except that the offset does not need to
3464      * have been obtained from {@link #objectFieldOffset} on the
3465      * {@link java.lang.reflect.Field} of some Java field.  The value
3466      * in memory is raw data, and need not correspond to any Java
3467      * variable.  The endianness of the value in memory is the
3468      * endianness of the native platform.
3469      * <p>
3470      * The write will be atomic with respect to the largest power of
3471      * two that divides the GCD of the offset and the storage size.
3472      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
3473      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
3474      * respectively.  There are no other guarantees of atomicity.
3475      * <p>
3476      * 8-byte atomicity is only guaranteed on platforms on which
3477      * support atomic accesses to longs.
3478      *
3479      * @param o Java heap object in which the value resides, if any, else
3480      *        null
3481      * @param offset The offset in bytes from the start of the object
3482      * @param x the value to store
3483      * @throws RuntimeException No defined exceptions are thrown, not even
3484      *         {@link NullPointerException}
3485      * @since 9
3486      */
3487     @HotSpotIntrinsicCandidate
3488     public final void putLongUnaligned(Object o, long offset, long x) {
3489         if ((offset & 7) == 0) {
3490             putLong(o, offset, x);
3491         } else if ((offset & 3) == 0) {
3492             putLongParts(o, offset,
3493                          (int)(x >> 0),
3494                          (int)(x >>> 32));
3495         } else if ((offset & 1) == 0) {
3496             putLongParts(o, offset,
3497                          (short)(x >>> 0),
3498                          (short)(x >>> 16),
3499                          (short)(x >>> 32),
3500                          (short)(x >>> 48));
3501         } else {
3502             putLongParts(o, offset,
3503                          (byte)(x >>> 0),
3504                          (byte)(x >>> 8),
3505                          (byte)(x >>> 16),
3506                          (byte)(x >>> 24),
3507                          (byte)(x >>> 32),
3508                          (byte)(x >>> 40),
3509                          (byte)(x >>> 48),
3510                          (byte)(x >>> 56));
3511         }
3512     }
3513 
3514     /**
3515      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
3516      * argument which specifies the endianness of the value as stored in memory.
3517      * @param o Java heap object in which the value resides
3518      * @param offset The offset in bytes from the start of the object
3519      * @param x the value to store
3520      * @param bigEndian The endianness of the value
3521      * @throws RuntimeException No defined exceptions are thrown, not even
3522      *         {@link NullPointerException}
3523      * @since 9
3524      */
3525     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
3526         putLongUnaligned(o, offset, convEndian(bigEndian, x));
3527     }
3528 
3529     /** @see #putLongUnaligned(Object, long, long) */
3530     @HotSpotIntrinsicCandidate
3531     public final void putIntUnaligned(Object o, long offset, int x) {
3532         if ((offset & 3) == 0) {
3533             putInt(o, offset, x);
3534         } else if ((offset & 1) == 0) {
3535             putIntParts(o, offset,
3536                         (short)(x >> 0),
3537                         (short)(x >>> 16));
3538         } else {
3539             putIntParts(o, offset,
3540                         (byte)(x >>> 0),
3541                         (byte)(x >>> 8),
3542                         (byte)(x >>> 16),
3543                         (byte)(x >>> 24));
3544         }
3545     }
3546     /** @see #putLongUnaligned(Object, long, long, boolean) */
3547     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
3548         putIntUnaligned(o, offset, convEndian(bigEndian, x));
3549     }
3550 
3551     /** @see #putLongUnaligned(Object, long, long) */
3552     @HotSpotIntrinsicCandidate
3553     public final void putShortUnaligned(Object o, long offset, short x) {
3554         if ((offset & 1) == 0) {
3555             putShort(o, offset, x);
3556         } else {
3557             putShortParts(o, offset,
3558                           (byte)(x >>> 0),
3559                           (byte)(x >>> 8));
3560         }
3561     }
3562     /** @see #putLongUnaligned(Object, long, long, boolean) */
3563     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
3564         putShortUnaligned(o, offset, convEndian(bigEndian, x));
3565     }
3566 
3567     /** @see #putLongUnaligned(Object, long, long) */
3568     @HotSpotIntrinsicCandidate
3569     public final void putCharUnaligned(Object o, long offset, char x) {
3570         putShortUnaligned(o, offset, (short)x);
3571     }
3572     /** @see #putLongUnaligned(Object, long, long, boolean) */
3573     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
3574         putCharUnaligned(o, offset, convEndian(bigEndian, x));
3575     }
3576 
3577     // JVM interface methods
3578     // BE is true iff the native endianness of this platform is big.
3579     private static final boolean BE = theUnsafe.isBigEndian0();
3580 
3581     // unalignedAccess is true iff this platform can perform unaligned accesses.
3582     private static final boolean unalignedAccess = theUnsafe.unalignedAccess0();
3583 
3584     private static int pickPos(int top, int pos) { return BE ? top - pos : pos; }
3585 
3586     // These methods construct integers from bytes.  The byte ordering
3587     // is the native endianness of this platform.
3588     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
3589         return ((toUnsignedLong(i0) << pickPos(56, 0))
3590               | (toUnsignedLong(i1) << pickPos(56, 8))
3591               | (toUnsignedLong(i2) << pickPos(56, 16))
3592               | (toUnsignedLong(i3) << pickPos(56, 24))
3593               | (toUnsignedLong(i4) << pickPos(56, 32))
3594               | (toUnsignedLong(i5) << pickPos(56, 40))
3595               | (toUnsignedLong(i6) << pickPos(56, 48))
3596               | (toUnsignedLong(i7) << pickPos(56, 56)));
3597     }
3598     private static long makeLong(short i0, short i1, short i2, short i3) {
3599         return ((toUnsignedLong(i0) << pickPos(48, 0))
3600               | (toUnsignedLong(i1) << pickPos(48, 16))
3601               | (toUnsignedLong(i2) << pickPos(48, 32))
3602               | (toUnsignedLong(i3) << pickPos(48, 48)));
3603     }
3604     private static long makeLong(int i0, int i1) {
3605         return (toUnsignedLong(i0) << pickPos(32, 0))
3606              | (toUnsignedLong(i1) << pickPos(32, 32));
3607     }
3608     private static int makeInt(short i0, short i1) {
3609         return (toUnsignedInt(i0) << pickPos(16, 0))
3610              | (toUnsignedInt(i1) << pickPos(16, 16));
3611     }
3612     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
3613         return ((toUnsignedInt(i0) << pickPos(24, 0))
3614               | (toUnsignedInt(i1) << pickPos(24, 8))
3615               | (toUnsignedInt(i2) << pickPos(24, 16))
3616               | (toUnsignedInt(i3) << pickPos(24, 24)));
3617     }
3618     private static short makeShort(byte i0, byte i1) {
3619         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
3620                      | (toUnsignedInt(i1) << pickPos(8, 8)));
3621     }
3622 
3623     private static byte  pick(byte  le, byte  be) { return BE ? be : le; }
3624     private static short pick(short le, short be) { return BE ? be : le; }
3625     private static int   pick(int   le, int   be) { return BE ? be : le; }
3626 
3627     // These methods write integers to memory from smaller parts
3628     // provided by their caller.  The ordering in which these parts
3629     // are written is the native endianness of this platform.
3630     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
3631         putByte(o, offset + 0, pick(i0, i7));
3632         putByte(o, offset + 1, pick(i1, i6));
3633         putByte(o, offset + 2, pick(i2, i5));
3634         putByte(o, offset + 3, pick(i3, i4));
3635         putByte(o, offset + 4, pick(i4, i3));
3636         putByte(o, offset + 5, pick(i5, i2));
3637         putByte(o, offset + 6, pick(i6, i1));
3638         putByte(o, offset + 7, pick(i7, i0));
3639     }
3640     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
3641         putShort(o, offset + 0, pick(i0, i3));
3642         putShort(o, offset + 2, pick(i1, i2));
3643         putShort(o, offset + 4, pick(i2, i1));
3644         putShort(o, offset + 6, pick(i3, i0));
3645     }
3646     private void putLongParts(Object o, long offset, int i0, int i1) {
3647         putInt(o, offset + 0, pick(i0, i1));
3648         putInt(o, offset + 4, pick(i1, i0));
3649     }
3650     private void putIntParts(Object o, long offset, short i0, short i1) {
3651         putShort(o, offset + 0, pick(i0, i1));
3652         putShort(o, offset + 2, pick(i1, i0));
3653     }
3654     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
3655         putByte(o, offset + 0, pick(i0, i3));
3656         putByte(o, offset + 1, pick(i1, i2));
3657         putByte(o, offset + 2, pick(i2, i1));
3658         putByte(o, offset + 3, pick(i3, i0));
3659     }
3660     private void putShortParts(Object o, long offset, byte i0, byte i1) {
3661         putByte(o, offset + 0, pick(i0, i1));
3662         putByte(o, offset + 1, pick(i1, i0));
3663     }
3664 
3665     // Zero-extend an integer
3666     private static int toUnsignedInt(byte n)    { return n & 0xff; }
3667     private static int toUnsignedInt(short n)   { return n & 0xffff; }
3668     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
3669     private static long toUnsignedLong(short n) { return n & 0xffffl; }
3670     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
3671 
3672     // Maybe byte-reverse an integer
3673     private static char convEndian(boolean big, char n)   { return big == BE ? n : Character.reverseBytes(n); }
3674     private static short convEndian(boolean big, short n) { return big == BE ? n : Short.reverseBytes(n)    ; }
3675     private static int convEndian(boolean big, int n)     { return big == BE ? n : Integer.reverseBytes(n)  ; }
3676     private static long convEndian(boolean big, long n)   { return big == BE ? n : Long.reverseBytes(n)     ; }
3677 
3678 
3679 
3680     private native long allocateMemory0(long bytes);
3681     private native long reallocateMemory0(long address, long bytes);
3682     private native void freeMemory0(long address);
3683     private native void setMemory0(Object o, long offset, long bytes, byte value);
3684     @HotSpotIntrinsicCandidate
3685     private native void copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
3686     private native void copySwapMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes, long elemSize);
3687     private native long objectFieldOffset0(Field f);
3688     private native long staticFieldOffset0(Field f);
3689     private native Object staticFieldBase0(Field f);
3690     private native boolean shouldBeInitialized0(Class<?> c);
3691     private native void ensureClassInitialized0(Class<?> c);
3692     private native int arrayBaseOffset0(Class<?> arrayClass);
3693     private native int arrayIndexScale0(Class<?> arrayClass);
3694     private native int addressSize0();
3695     private native Class<?> defineAnonymousClass0(Class<?> hostClass, byte[] data, Object[] cpPatches);
3696     private native int getLoadAverage0(double[] loadavg, int nelems);
3697     private native boolean unalignedAccess0();
3698     private native boolean isBigEndian0();
3699 }