1 /*
   2  * Copyright (c) 2011, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.perf.PerfCounter;
  29 import jdk.internal.vm.annotation.DontInline;
  30 import jdk.internal.vm.annotation.Stable;
  31 import sun.invoke.util.Wrapper;
  32 
  33 import java.lang.annotation.ElementType;
  34 import java.lang.annotation.Retention;
  35 import java.lang.annotation.RetentionPolicy;
  36 import java.lang.annotation.Target;
  37 import java.lang.reflect.Method;
  38 import java.util.Arrays;
  39 import java.util.HashMap;
  40 
  41 import static java.lang.invoke.LambdaForm.BasicType.*;
  42 import static java.lang.invoke.MethodHandleNatives.Constants.REF_invokeStatic;
  43 import static java.lang.invoke.MethodHandleStatics.*;
  44 
  45 /**
  46  * The symbolic, non-executable form of a method handle's invocation semantics.
  47  * It consists of a series of names.
  48  * The first N (N=arity) names are parameters,
  49  * while any remaining names are temporary values.
  50  * Each temporary specifies the application of a function to some arguments.
  51  * The functions are method handles, while the arguments are mixes of
  52  * constant values and local names.
  53  * The result of the lambda is defined as one of the names, often the last one.
  54  * <p>
  55  * Here is an approximate grammar:
  56  * <blockquote><pre>{@code
  57  * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
  58  * ArgName = "a" N ":" T
  59  * TempName = "t" N ":" T "=" Function "(" Argument* ");"
  60  * Function = ConstantValue
  61  * Argument = NameRef | ConstantValue
  62  * Result = NameRef | "void"
  63  * NameRef = "a" N | "t" N
  64  * N = (any whole number)
  65  * T = "L" | "I" | "J" | "F" | "D" | "V"
  66  * }</pre></blockquote>
  67  * Names are numbered consecutively from left to right starting at zero.
  68  * (The letters are merely a taste of syntax sugar.)
  69  * Thus, the first temporary (if any) is always numbered N (where N=arity).
  70  * Every occurrence of a name reference in an argument list must refer to
  71  * a name previously defined within the same lambda.
  72  * A lambda has a void result if and only if its result index is -1.
  73  * If a temporary has the type "V", it cannot be the subject of a NameRef,
  74  * even though possesses a number.
  75  * Note that all reference types are erased to "L", which stands for {@code Object}.
  76  * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}.
  77  * The other types stand for the usual primitive types.
  78  * <p>
  79  * Function invocation closely follows the static rules of the Java verifier.
  80  * Arguments and return values must exactly match when their "Name" types are
  81  * considered.
  82  * Conversions are allowed only if they do not change the erased type.
  83  * <ul>
  84  * <li>L = Object: casts are used freely to convert into and out of reference types
  85  * <li>I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments})
  86  * <li>J = long: no implicit conversions
  87  * <li>F = float: no implicit conversions
  88  * <li>D = double: no implicit conversions
  89  * <li>V = void: a function result may be void if and only if its Name is of type "V"
  90  * </ul>
  91  * Although implicit conversions are not allowed, explicit ones can easily be
  92  * encoded by using temporary expressions which call type-transformed identity functions.
  93  * <p>
  94  * Examples:
  95  * <blockquote><pre>{@code
  96  * (a0:J)=>{ a0 }
  97  *     == identity(long)
  98  * (a0:I)=>{ t1:V = System.out#println(a0); void }
  99  *     == System.out#println(int)
 100  * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 101  *     == identity, with printing side-effect
 102  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 103  *                 t3:L = BoundMethodHandle#target(a0);
 104  *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 105  *     == general invoker for unary insertArgument combination
 106  * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 107  *                 t3:L = MethodHandle#invoke(t2, a1);
 108  *                 t4:L = FilterMethodHandle#target(a0);
 109  *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 110  *     == general invoker for unary filterArgument combination
 111  * (a0:L, a1:L)=>{ ...(same as previous example)...
 112  *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 113  *     == general invoker for unary/unary foldArgument combination
 114  * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 115  *     == invoker for identity method handle which performs i2l
 116  * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 117  *                 t3:L = Class#cast(t2,a1); t3 }
 118  *     == invoker for identity method handle which performs cast
 119  * }</pre></blockquote>
 120  * <p>
 121  * @author John Rose, JSR 292 EG
 122  */
 123 class LambdaForm {
 124     final int arity;
 125     final int result;
 126     final boolean forceInline;
 127     final MethodHandle customized;
 128     @Stable final Name[] names;
 129     final Kind kind;
 130     MemberName vmentry;   // low-level behavior, or null if not yet prepared
 131     private boolean isCompiled;
 132 
 133     // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF)
 134     volatile Object transformCache;
 135 
 136     public static final int VOID_RESULT = -1, LAST_RESULT = -2;
 137 
 138     enum BasicType {
 139         L_TYPE('L', Object.class, Wrapper.OBJECT),  // all reference types
 140         I_TYPE('I', int.class,    Wrapper.INT),
 141         J_TYPE('J', long.class,   Wrapper.LONG),
 142         F_TYPE('F', float.class,  Wrapper.FLOAT),
 143         D_TYPE('D', double.class, Wrapper.DOUBLE),  // all primitive types
 144         V_TYPE('V', void.class,   Wrapper.VOID);    // not valid in all contexts
 145 
 146         static final @Stable BasicType[] ALL_TYPES = BasicType.values();
 147         static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1);
 148 
 149         static final int ARG_TYPE_LIMIT = ARG_TYPES.length;
 150         static final int TYPE_LIMIT = ALL_TYPES.length;
 151 
 152         // Derived int constants, which (unlike the enums) can be constant folded.
 153         // We can remove them when JDK-8161245 is fixed.
 154         static final byte
 155                 L_TYPE_NUM = (byte) L_TYPE.ordinal(),
 156                 I_TYPE_NUM = (byte) I_TYPE.ordinal(),
 157                 J_TYPE_NUM = (byte) J_TYPE.ordinal(),
 158                 F_TYPE_NUM = (byte) F_TYPE.ordinal(),
 159                 D_TYPE_NUM = (byte) D_TYPE.ordinal(),
 160                 V_TYPE_NUM = (byte) V_TYPE.ordinal();
 161 
 162         final char btChar;
 163         final Class<?> btClass;
 164         final Wrapper btWrapper;
 165 
 166         private BasicType(char btChar, Class<?> btClass, Wrapper wrapper) {
 167             this.btChar = btChar;
 168             this.btClass = btClass;
 169             this.btWrapper = wrapper;
 170         }
 171 
 172         char basicTypeChar() {
 173             return btChar;
 174         }
 175         Class<?> basicTypeClass() {
 176             return btClass;
 177         }
 178         Wrapper basicTypeWrapper() {
 179             return btWrapper;
 180         }
 181         int basicTypeSlots() {
 182             return btWrapper.stackSlots();
 183         }
 184 
 185         static BasicType basicType(byte type) {
 186             return ALL_TYPES[type];
 187         }
 188         static BasicType basicType(char type) {
 189             switch (type) {
 190                 case 'L': return L_TYPE;
 191                 case 'I': return I_TYPE;
 192                 case 'J': return J_TYPE;
 193                 case 'F': return F_TYPE;
 194                 case 'D': return D_TYPE;
 195                 case 'V': return V_TYPE;
 196                 // all subword types are represented as ints
 197                 case 'Z':
 198                 case 'B':
 199                 case 'S':
 200                 case 'C':
 201                     return I_TYPE;
 202                 default:
 203                     throw newInternalError("Unknown type char: '"+type+"'");
 204             }
 205         }
 206         static BasicType basicType(Wrapper type) {
 207             char c = type.basicTypeChar();
 208             return basicType(c);
 209         }
 210         static BasicType basicType(Class<?> type) {
 211             if (!type.isPrimitive())  return L_TYPE;
 212             return basicType(Wrapper.forPrimitiveType(type));
 213         }
 214         static BasicType[] basicTypes(String types) {
 215             BasicType[] btypes = new BasicType[types.length()];
 216             for (int i = 0; i < btypes.length; i++) {
 217                 btypes[i] = basicType(types.charAt(i));
 218             }
 219             return btypes;
 220         }
 221         static String basicTypeDesc(BasicType[] types) {
 222             if (types == null) {
 223                 return null;
 224             }
 225             if (types.length == 0) {
 226                 return "";
 227             }
 228             StringBuilder sb = new StringBuilder();
 229             for (BasicType bt : types) {
 230                 sb.append(bt.basicTypeChar());
 231             }
 232             return sb.toString();
 233         }
 234         static int[] basicTypeOrds(BasicType[] types) {
 235             if (types == null) {
 236                 return null;
 237             }
 238             int[] a = new int[types.length];
 239             for(int i = 0; i < types.length; ++i) {
 240                 a[i] = types[i].ordinal();
 241             }
 242             return a;
 243         }
 244 
 245         static char basicTypeChar(Class<?> type) {
 246             return basicType(type).btChar;
 247         }
 248 
 249         static byte[] basicTypesOrd(Class<?>[] types) {
 250             byte[] ords = new byte[types.length];
 251             for (int i = 0; i < ords.length; i++) {
 252                 ords[i] = (byte)basicType(types[i]).ordinal();
 253             }
 254             return ords;
 255         }
 256 
 257         static boolean isBasicTypeChar(char c) {
 258             return "LIJFDV".indexOf(c) >= 0;
 259         }
 260         static boolean isArgBasicTypeChar(char c) {
 261             return "LIJFD".indexOf(c) >= 0;
 262         }
 263 
 264         static { assert(checkBasicType()); }
 265         private static boolean checkBasicType() {
 266             for (int i = 0; i < ARG_TYPE_LIMIT; i++) {
 267                 assert ARG_TYPES[i].ordinal() == i;
 268                 assert ARG_TYPES[i] == ALL_TYPES[i];
 269             }
 270             for (int i = 0; i < TYPE_LIMIT; i++) {
 271                 assert ALL_TYPES[i].ordinal() == i;
 272             }
 273             assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE;
 274             assert !Arrays.asList(ARG_TYPES).contains(V_TYPE);
 275             return true;
 276         }
 277     }
 278 
 279     enum Kind {
 280         GENERIC("invoke"),
 281         ZERO("zero"),
 282         IDENTITY("identity"),
 283         BOUND_REINVOKER("BMH.reinvoke", "reinvoke"),
 284         REINVOKER("MH.reinvoke", "reinvoke"),
 285         DELEGATE("MH.delegate", "delegate"),
 286         EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"),
 287         EXACT_INVOKER("MH.exactInvoker", "exactInvoker"),
 288         GENERIC_LINKER("MH.invoke_MT", "invoke_MT"),
 289         GENERIC_INVOKER("MH.invoker", "invoker"),
 290         LINK_TO_TARGET_METHOD("linkToTargetMethod"),
 291         LINK_TO_CALL_SITE("linkToCallSite"),
 292         DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"),
 293         DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"),
 294         DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"),
 295         DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"),
 296         DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"),
 297         DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"),
 298         GET_OBJECT("getObject"),
 299         PUT_OBJECT("putObject"),
 300         GET_OBJECT_VOLATILE("getObjectVolatile"),
 301         PUT_OBJECT_VOLATILE("putObjectVolatile"),
 302         GET_INT("getInt"),
 303         PUT_INT("putInt"),
 304         GET_INT_VOLATILE("getIntVolatile"),
 305         PUT_INT_VOLATILE("putIntVolatile"),
 306         GET_BOOLEAN("getBoolean"),
 307         PUT_BOOLEAN("putBoolean"),
 308         GET_BOOLEAN_VOLATILE("getBooleanVolatile"),
 309         PUT_BOOLEAN_VOLATILE("putBooleanVolatile"),
 310         GET_BYTE("getByte"),
 311         PUT_BYTE("putByte"),
 312         GET_BYTE_VOLATILE("getByteVolatile"),
 313         PUT_BYTE_VOLATILE("putByteVolatile"),
 314         GET_CHAR("getChar"),
 315         PUT_CHAR("putChar"),
 316         GET_CHAR_VOLATILE("getCharVolatile"),
 317         PUT_CHAR_VOLATILE("putCharVolatile"),
 318         GET_SHORT("getShort"),
 319         PUT_SHORT("putShort"),
 320         GET_SHORT_VOLATILE("getShortVolatile"),
 321         PUT_SHORT_VOLATILE("putShortVolatile"),
 322         GET_LONG("getLong"),
 323         PUT_LONG("putLong"),
 324         GET_LONG_VOLATILE("getLongVolatile"),
 325         PUT_LONG_VOLATILE("putLongVolatile"),
 326         GET_FLOAT("getFloat"),
 327         PUT_FLOAT("putFloat"),
 328         GET_FLOAT_VOLATILE("getFloatVolatile"),
 329         PUT_FLOAT_VOLATILE("putFloatVolatile"),
 330         GET_DOUBLE("getDouble"),
 331         PUT_DOUBLE("putDouble"),
 332         GET_DOUBLE_VOLATILE("getDoubleVolatile"),
 333         PUT_DOUBLE_VOLATILE("putDoubleVolatile"),
 334         TRY_FINALLY("tryFinally"),
 335         COLLECT("collect"),
 336         CONVERT("convert"),
 337         SPREAD("spread"),
 338         LOOP("loop"),
 339         FIELD("field"),
 340         GUARD("guard"),
 341         GUARD_WITH_CATCH("guardWithCatch"),
 342         VARHANDLE_EXACT_INVOKER("VH.exactInvoker"),
 343         VARHANDLE_INVOKER("VH.invoker", "invoker"),
 344         VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT");
 345 
 346         final String defaultLambdaName;
 347         final String methodName;
 348 
 349         private Kind(String defaultLambdaName) {
 350             this(defaultLambdaName, defaultLambdaName);
 351         }
 352 
 353         private Kind(String defaultLambdaName, String methodName) {
 354             this.defaultLambdaName = defaultLambdaName;
 355             this.methodName = methodName;
 356         }
 357     }
 358 
 359     LambdaForm(int arity, Name[] names, int result) {
 360         this(arity, names, result, /*forceInline=*/true, /*customized=*/null, Kind.GENERIC);
 361     }
 362     LambdaForm(int arity, Name[] names, int result, Kind kind) {
 363         this(arity, names, result, /*forceInline=*/true, /*customized=*/null, kind);
 364     }
 365     LambdaForm(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized) {
 366         this(arity, names, result, forceInline, customized, Kind.GENERIC);
 367     }
 368     LambdaForm(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) {
 369         assert(namesOK(arity, names));
 370         this.arity = arity;
 371         this.result = fixResult(result, names);
 372         this.names = names.clone();
 373         this.forceInline = forceInline;
 374         this.customized = customized;
 375         this.kind = kind;
 376         int maxOutArity = normalize();
 377         if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) {
 378             // Cannot use LF interpreter on very high arity expressions.
 379             assert(maxOutArity <= MethodType.MAX_JVM_ARITY);
 380             compileToBytecode();
 381         }
 382     }
 383     LambdaForm(int arity, Name[] names) {
 384         this(arity, names, LAST_RESULT, /*forceInline=*/true, /*customized=*/null, Kind.GENERIC);
 385     }
 386     LambdaForm(int arity, Name[] names, Kind kind) {
 387         this(arity, names, LAST_RESULT, /*forceInline=*/true, /*customized=*/null, kind);
 388     }
 389     LambdaForm(int arity, Name[] names, boolean forceInline) {
 390         this(arity, names, LAST_RESULT, forceInline, /*customized=*/null, Kind.GENERIC);
 391     }
 392     LambdaForm(int arity, Name[] names, boolean forceInline, Kind kind) {
 393         this(arity, names, LAST_RESULT, forceInline, /*customized=*/null, kind);
 394     }
 395     LambdaForm(Name[] formals, Name[] temps, Name result) {
 396         this(formals.length, buildNames(formals, temps, result), LAST_RESULT, /*forceInline=*/true, /*customized=*/null);
 397     }
 398     LambdaForm(Name[] formals, Name[] temps, Name result, boolean forceInline) {
 399         this(formals.length, buildNames(formals, temps, result), LAST_RESULT, forceInline, /*customized=*/null);
 400     }
 401 
 402     private static Name[] buildNames(Name[] formals, Name[] temps, Name result) {
 403         int arity = formals.length;
 404         int length = arity + temps.length + (result == null ? 0 : 1);
 405         Name[] names = Arrays.copyOf(formals, length);
 406         System.arraycopy(temps, 0, names, arity, temps.length);
 407         if (result != null)
 408             names[length - 1] = result;
 409         return names;
 410     }
 411 
 412     private LambdaForm(MethodType mt) {
 413         // Make a blank lambda form, which returns a constant zero or null.
 414         // It is used as a template for managing the invocation of similar forms that are non-empty.
 415         // Called only from getPreparedForm.
 416         this.arity = mt.parameterCount();
 417         this.result = (mt.returnType() == void.class || mt.returnType() == Void.class) ? -1 : arity;
 418         this.names = buildEmptyNames(arity, mt, result == -1);
 419         this.forceInline = true;
 420         this.customized = null;
 421         this.kind = Kind.ZERO;
 422         assert(nameRefsAreLegal());
 423         assert(isEmpty());
 424         String sig = null;
 425         assert(isValidSignature(sig = basicTypeSignature()));
 426         assert(sig.equals(basicTypeSignature())) : sig + " != " + basicTypeSignature();
 427     }
 428 
 429     private static Name[] buildEmptyNames(int arity, MethodType mt, boolean isVoid) {
 430         Name[] names = arguments(isVoid ? 0 : 1, mt);
 431         if (!isVoid) {
 432             Name zero = new Name(constantZero(basicType(mt.returnType())));
 433             names[arity] = zero.newIndex(arity);
 434         }
 435         return names;
 436     }
 437 
 438     private static int fixResult(int result, Name[] names) {
 439         if (result == LAST_RESULT)
 440             result = names.length - 1;  // might still be void
 441         if (result >= 0 && names[result].type == V_TYPE)
 442             result = VOID_RESULT;
 443         return result;
 444     }
 445 
 446     static boolean debugNames() {
 447         return DEBUG_NAME_COUNTERS != null;
 448     }
 449 
 450     static void associateWithDebugName(LambdaForm form, String name) {
 451         assert (debugNames());
 452         synchronized (DEBUG_NAMES) {
 453             DEBUG_NAMES.put(form, name);
 454         }
 455     }
 456 
 457     String lambdaName() {
 458         if (DEBUG_NAMES != null) {
 459             synchronized (DEBUG_NAMES) {
 460                 String name = DEBUG_NAMES.get(this);
 461                 if (name == null) {
 462                     name = generateDebugName();
 463                 }
 464                 return name;
 465             }
 466         }
 467         return kind.defaultLambdaName;
 468     }
 469 
 470     private String generateDebugName() {
 471         assert (debugNames());
 472         String debugNameStem = kind.defaultLambdaName;
 473         Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0);
 474         DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1);
 475         StringBuilder buf = new StringBuilder(debugNameStem);
 476         int leadingZero = buf.length();
 477         buf.append((int) ctr);
 478         for (int i = buf.length() - leadingZero; i < 3; i++) {
 479             buf.insert(leadingZero, '0');
 480         }
 481         buf.append('_');
 482         buf.append(basicTypeSignature());
 483         String name = buf.toString();
 484         associateWithDebugName(this, name);
 485         return name;
 486     }
 487 
 488     private static boolean namesOK(int arity, Name[] names) {
 489         for (int i = 0; i < names.length; i++) {
 490             Name n = names[i];
 491             assert(n != null) : "n is null";
 492             if (i < arity)
 493                 assert( n.isParam()) : n + " is not param at " + i;
 494             else
 495                 assert(!n.isParam()) : n + " is param at " + i;
 496         }
 497         return true;
 498     }
 499 
 500     /** Customize LambdaForm for a particular MethodHandle */
 501     LambdaForm customize(MethodHandle mh) {
 502         LambdaForm customForm = new LambdaForm(arity, names, result, forceInline, mh, kind);
 503         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 504             // If shared LambdaForm has been compiled, compile customized version as well.
 505             customForm.compileToBytecode();
 506         }
 507         customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form.
 508         return customForm;
 509     }
 510 
 511     /** Get uncustomized flavor of the LambdaForm */
 512     LambdaForm uncustomize() {
 513         if (customized == null) {
 514             return this;
 515         }
 516         assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version.
 517         LambdaForm uncustomizedForm = (LambdaForm)transformCache;
 518         if (COMPILE_THRESHOLD >= 0 && isCompiled) {
 519             // If customized LambdaForm has been compiled, compile uncustomized version as well.
 520             uncustomizedForm.compileToBytecode();
 521         }
 522         return uncustomizedForm;
 523     }
 524 
 525     /** Renumber and/or replace params so that they are interned and canonically numbered.
 526      *  @return maximum argument list length among the names (since we have to pass over them anyway)
 527      */
 528     private int normalize() {
 529         Name[] oldNames = null;
 530         int maxOutArity = 0;
 531         int changesStart = 0;
 532         for (int i = 0; i < names.length; i++) {
 533             Name n = names[i];
 534             if (!n.initIndex(i)) {
 535                 if (oldNames == null) {
 536                     oldNames = names.clone();
 537                     changesStart = i;
 538                 }
 539                 names[i] = n.cloneWithIndex(i);
 540             }
 541             if (n.arguments != null && maxOutArity < n.arguments.length)
 542                 maxOutArity = n.arguments.length;
 543         }
 544         if (oldNames != null) {
 545             int startFixing = arity;
 546             if (startFixing <= changesStart)
 547                 startFixing = changesStart+1;
 548             for (int i = startFixing; i < names.length; i++) {
 549                 Name fixed = names[i].replaceNames(oldNames, names, changesStart, i);
 550                 names[i] = fixed.newIndex(i);
 551             }
 552         }
 553         assert(nameRefsAreLegal());
 554         int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT);
 555         boolean needIntern = false;
 556         for (int i = 0; i < maxInterned; i++) {
 557             Name n = names[i], n2 = internArgument(n);
 558             if (n != n2) {
 559                 names[i] = n2;
 560                 needIntern = true;
 561             }
 562         }
 563         if (needIntern) {
 564             for (int i = arity; i < names.length; i++) {
 565                 names[i].internArguments();
 566             }
 567         }
 568         assert(nameRefsAreLegal());
 569         return maxOutArity;
 570     }
 571 
 572     /**
 573      * Check that all embedded Name references are localizable to this lambda,
 574      * and are properly ordered after their corresponding definitions.
 575      * <p>
 576      * Note that a Name can be local to multiple lambdas, as long as
 577      * it possesses the same index in each use site.
 578      * This allows Name references to be freely reused to construct
 579      * fresh lambdas, without confusion.
 580      */
 581     boolean nameRefsAreLegal() {
 582         assert(arity >= 0 && arity <= names.length);
 583         assert(result >= -1 && result < names.length);
 584         // Do all names possess an index consistent with their local definition order?
 585         for (int i = 0; i < arity; i++) {
 586             Name n = names[i];
 587             assert(n.index() == i) : Arrays.asList(n.index(), i);
 588             assert(n.isParam());
 589         }
 590         // Also, do all local name references
 591         for (int i = arity; i < names.length; i++) {
 592             Name n = names[i];
 593             assert(n.index() == i);
 594             for (Object arg : n.arguments) {
 595                 if (arg instanceof Name) {
 596                     Name n2 = (Name) arg;
 597                     int i2 = n2.index;
 598                     assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length;
 599                     assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this);
 600                     assert(i2 < i);  // ref must come after def!
 601                 }
 602             }
 603         }
 604         return true;
 605     }
 606 
 607     /** Invoke this form on the given arguments. */
 608     // final Object invoke(Object... args) throws Throwable {
 609     //     // NYI: fit this into the fast path?
 610     //     return interpretWithArguments(args);
 611     // }
 612 
 613     /** Report the return type. */
 614     BasicType returnType() {
 615         if (result < 0)  return V_TYPE;
 616         Name n = names[result];
 617         return n.type;
 618     }
 619 
 620     /** Report the N-th argument type. */
 621     BasicType parameterType(int n) {
 622         return parameter(n).type;
 623     }
 624 
 625     /** Report the N-th argument name. */
 626     Name parameter(int n) {
 627         assert(n < arity);
 628         Name param = names[n];
 629         assert(param.isParam());
 630         return param;
 631     }
 632 
 633     /** Report the N-th argument type constraint. */
 634     Object parameterConstraint(int n) {
 635         return parameter(n).constraint;
 636     }
 637 
 638     /** Report the arity. */
 639     int arity() {
 640         return arity;
 641     }
 642 
 643     /** Report the number of expressions (non-parameter names). */
 644     int expressionCount() {
 645         return names.length - arity;
 646     }
 647 
 648     /** Return the method type corresponding to my basic type signature. */
 649     MethodType methodType() {
 650         Class<?>[] ptypes = new Class<?>[arity];
 651         for (int i = 0; i < arity; ++i) {
 652             ptypes[i] = parameterType(i).btClass;
 653         }
 654         return MethodType.makeImpl(returnType().btClass, ptypes, true);
 655     }
 656 
 657     /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */
 658     final String basicTypeSignature() {
 659         StringBuilder buf = new StringBuilder(arity() + 3);
 660         for (int i = 0, a = arity(); i < a; i++)
 661             buf.append(parameterType(i).basicTypeChar());
 662         return buf.append('_').append(returnType().basicTypeChar()).toString();
 663     }
 664     static int signatureArity(String sig) {
 665         assert(isValidSignature(sig));
 666         return sig.indexOf('_');
 667     }
 668     static BasicType signatureReturn(String sig) {
 669         return basicType(sig.charAt(signatureArity(sig) + 1));
 670     }
 671     static boolean isValidSignature(String sig) {
 672         int arity = sig.indexOf('_');
 673         if (arity < 0)  return false;  // must be of the form *_*
 674         int siglen = sig.length();
 675         if (siglen != arity + 2)  return false;  // *_X
 676         for (int i = 0; i < siglen; i++) {
 677             if (i == arity)  continue;  // skip '_'
 678             char c = sig.charAt(i);
 679             if (c == 'V')
 680                 return (i == siglen - 1 && arity == siglen - 2);
 681             if (!isArgBasicTypeChar(c))  return false; // must be [LIJFD]
 682         }
 683         return true;  // [LIJFD]*_[LIJFDV]
 684     }
 685     static MethodType signatureType(String sig) {
 686         Class<?>[] ptypes = new Class<?>[signatureArity(sig)];
 687         for (int i = 0; i < ptypes.length; i++)
 688             ptypes[i] = basicType(sig.charAt(i)).btClass;
 689         Class<?> rtype = signatureReturn(sig).btClass;
 690         return MethodType.makeImpl(rtype, ptypes, true);
 691     }
 692     static MethodType basicMethodType(MethodType mt) {
 693         return signatureType(basicTypeSignature(mt));
 694     }
 695 
 696     /**
 697      * Check if i-th name is a call to MethodHandleImpl.selectAlternative.
 698      */
 699     boolean isSelectAlternative(int pos) {
 700         // selectAlternative idiom:
 701         //   t_{n}:L=MethodHandleImpl.selectAlternative(...)
 702         //   t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 703         if (pos+1 >= names.length)  return false;
 704         Name name0 = names[pos];
 705         Name name1 = names[pos+1];
 706         return name0.refersTo(MethodHandleImpl.class, "selectAlternative") &&
 707                 name1.isInvokeBasic() &&
 708                 name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...)
 709                 lastUseIndex(name0) == pos+1;     // t_{n} is local: used only in t_{n+1}
 710     }
 711 
 712     private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) {
 713         if (pos+2 >= names.length)  return false;
 714         Name name0 = names[pos];
 715         Name name1 = names[pos+1];
 716         Name name2 = names[pos+2];
 717         return name1.refersTo(MethodHandleImpl.class, idiomName) &&
 718                 name0.isInvokeBasic() &&
 719                 name2.isInvokeBasic() &&
 720                 name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.<invoker>(<args>, t_{n});
 721                 lastUseIndex(name0) == pos+1 &&       // t_{n} is local: used only in t_{n+1}
 722                 name2.lastUseIndex(name1) == 1 &&     // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 723                 lastUseIndex(name1) == pos+2;         // t_{n+1} is local: used only in t_{n+2}
 724     }
 725 
 726     /**
 727      * Check if i-th name is a start of GuardWithCatch idiom.
 728      */
 729     boolean isGuardWithCatch(int pos) {
 730         // GuardWithCatch idiom:
 731         //   t_{n}:L=MethodHandle.invokeBasic(...)
 732         //   t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n});
 733         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 734         return isMatchingIdiom(pos, "guardWithCatch", 3);
 735     }
 736 
 737     /**
 738      * Check if i-th name is a start of the tryFinally idiom.
 739      */
 740     boolean isTryFinally(int pos) {
 741         // tryFinally idiom:
 742         //   t_{n}:L=MethodHandle.invokeBasic(...)
 743         //   t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n})
 744         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 745         return isMatchingIdiom(pos, "tryFinally", 2);
 746     }
 747 
 748     /**
 749      * Check if i-th name is a start of the loop idiom.
 750      */
 751     boolean isLoop(int pos) {
 752         // loop idiom:
 753         //   t_{n}:L=MethodHandle.invokeBasic(...)
 754         //   t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n})
 755         //   t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1})
 756         return isMatchingIdiom(pos, "loop", 2);
 757     }
 758 
 759     /*
 760      * Code generation issues:
 761      *
 762      * Compiled LFs should be reusable in general.
 763      * The biggest issue is how to decide when to pull a name into
 764      * the bytecode, versus loading a reified form from the MH data.
 765      *
 766      * For example, an asType wrapper may require execution of a cast
 767      * after a call to a MH.  The target type of the cast can be placed
 768      * as a constant in the LF itself.  This will force the cast type
 769      * to be compiled into the bytecodes and native code for the MH.
 770      * Or, the target type of the cast can be erased in the LF, and
 771      * loaded from the MH data.  (Later on, if the MH as a whole is
 772      * inlined, the data will flow into the inlined instance of the LF,
 773      * as a constant, and the end result will be an optimal cast.)
 774      *
 775      * This erasure of cast types can be done with any use of
 776      * reference types.  It can also be done with whole method
 777      * handles.  Erasing a method handle might leave behind
 778      * LF code that executes correctly for any MH of a given
 779      * type, and load the required MH from the enclosing MH's data.
 780      * Or, the erasure might even erase the expected MT.
 781      *
 782      * Also, for direct MHs, the MemberName of the target
 783      * could be erased, and loaded from the containing direct MH.
 784      * As a simple case, a LF for all int-valued non-static
 785      * field getters would perform a cast on its input argument
 786      * (to non-constant base type derived from the MemberName)
 787      * and load an integer value from the input object
 788      * (at a non-constant offset also derived from the MemberName).
 789      * Such MN-erased LFs would be inlinable back to optimized
 790      * code, whenever a constant enclosing DMH is available
 791      * to supply a constant MN from its data.
 792      *
 793      * The main problem here is to keep LFs reasonably generic,
 794      * while ensuring that hot spots will inline good instances.
 795      * "Reasonably generic" means that we don't end up with
 796      * repeated versions of bytecode or machine code that do
 797      * not differ in their optimized form.  Repeated versions
 798      * of machine would have the undesirable overheads of
 799      * (a) redundant compilation work and (b) extra I$ pressure.
 800      * To control repeated versions, we need to be ready to
 801      * erase details from LFs and move them into MH data,
 802      * whevener those details are not relevant to significant
 803      * optimization.  "Significant" means optimization of
 804      * code that is actually hot.
 805      *
 806      * Achieving this may require dynamic splitting of MHs, by replacing
 807      * a generic LF with a more specialized one, on the same MH,
 808      * if (a) the MH is frequently executed and (b) the MH cannot
 809      * be inlined into a containing caller, such as an invokedynamic.
 810      *
 811      * Compiled LFs that are no longer used should be GC-able.
 812      * If they contain non-BCP references, they should be properly
 813      * interlinked with the class loader(s) that their embedded types
 814      * depend on.  This probably means that reusable compiled LFs
 815      * will be tabulated (indexed) on relevant class loaders,
 816      * or else that the tables that cache them will have weak links.
 817      */
 818 
 819     /**
 820      * Make this LF directly executable, as part of a MethodHandle.
 821      * Invariant:  Every MH which is invoked must prepare its LF
 822      * before invocation.
 823      * (In principle, the JVM could do this very lazily,
 824      * as a sort of pre-invocation linkage step.)
 825      */
 826     public void prepare() {
 827         if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) {
 828             compileToBytecode();
 829         }
 830         if (this.vmentry != null) {
 831             // already prepared (e.g., a primitive DMH invoker form)
 832             return;
 833         }
 834         MethodType mtype = methodType();
 835         LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET);
 836         if (prep == null) {
 837             assert (isValidSignature(basicTypeSignature()));
 838             prep = new LambdaForm(mtype);
 839             prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype);
 840             prep = mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep);
 841         }
 842         this.vmentry = prep.vmentry;
 843         // TO DO: Maybe add invokeGeneric, invokeWithArguments
 844     }
 845 
 846     private static @Stable PerfCounter LF_FAILED;
 847 
 848     private static PerfCounter failedCompilationCounter() {
 849         if (LF_FAILED == null) {
 850             LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations");
 851         }
 852         return LF_FAILED;
 853     }
 854 
 855     /** Generate optimizable bytecode for this form. */
 856     void compileToBytecode() {
 857         if (forceInterpretation()) {
 858             return; // this should not be compiled
 859         }
 860         if (vmentry != null && isCompiled) {
 861             return;  // already compiled somehow
 862         }
 863 
 864         // Obtain the invoker MethodType outside of the following try block.
 865         // This ensures that an IllegalArgumentException is directly thrown if the
 866         // type would have 256 or more parameters
 867         MethodType invokerType = methodType();
 868         assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType));
 869         try {
 870             vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType);
 871             if (TRACE_INTERPRETER)
 872                 traceInterpreter("compileToBytecode", this);
 873             isCompiled = true;
 874         } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) {
 875             // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only
 876             invocationCounter = -1;
 877             failedCompilationCounter().increment();
 878             if (LOG_LF_COMPILATION_FAILURE) {
 879                 System.out.println("LambdaForm compilation failed: " + this);
 880                 bge.printStackTrace(System.out);
 881             }
 882         } catch (Error e) {
 883             // Pass through any error
 884             throw e;
 885         } catch (Exception e) {
 886             // Wrap any exception
 887             throw newInternalError(this.toString(), e);
 888         }
 889     }
 890 
 891     // The next few routines are called only from assert expressions
 892     // They verify that the built-in invokers process the correct raw data types.
 893     private static boolean argumentTypesMatch(String sig, Object[] av) {
 894         int arity = signatureArity(sig);
 895         assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity;
 896         assert(av[0] instanceof MethodHandle) : "av[0] not instace of MethodHandle: " + av[0];
 897         MethodHandle mh = (MethodHandle) av[0];
 898         MethodType mt = mh.type();
 899         assert(mt.parameterCount() == arity-1);
 900         for (int i = 0; i < av.length; i++) {
 901             Class<?> pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1));
 902             assert(valueMatches(basicType(sig.charAt(i)), pt, av[i]));
 903         }
 904         return true;
 905     }
 906     private static boolean valueMatches(BasicType tc, Class<?> type, Object x) {
 907         // The following line is needed because (...)void method handles can use non-void invokers
 908         if (type == void.class)  tc = V_TYPE;   // can drop any kind of value
 909         assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type);
 910         switch (tc) {
 911         case I_TYPE: assert checkInt(type, x)   : "checkInt(" + type + "," + x +")";   break;
 912         case J_TYPE: assert x instanceof Long   : "instanceof Long: " + x;             break;
 913         case F_TYPE: assert x instanceof Float  : "instanceof Float: " + x;            break;
 914         case D_TYPE: assert x instanceof Double : "instanceof Double: " + x;           break;
 915         case L_TYPE: assert checkRef(type, x)   : "checkRef(" + type + "," + x + ")";  break;
 916         case V_TYPE: break;  // allow anything here; will be dropped
 917         default:  assert(false);
 918         }
 919         return true;
 920     }
 921     private static boolean checkInt(Class<?> type, Object x) {
 922         assert(x instanceof Integer);
 923         if (type == int.class)  return true;
 924         Wrapper w = Wrapper.forBasicType(type);
 925         assert(w.isSubwordOrInt());
 926         Object x1 = Wrapper.INT.wrap(w.wrap(x));
 927         return x.equals(x1);
 928     }
 929     private static boolean checkRef(Class<?> type, Object x) {
 930         assert(!type.isPrimitive());
 931         if (x == null)  return true;
 932         if (type.isInterface())  return true;
 933         return type.isInstance(x);
 934     }
 935 
 936     /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */
 937     private static final int COMPILE_THRESHOLD;
 938     static {
 939         COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD);
 940     }
 941     private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever
 942 
 943     private boolean forceInterpretation() {
 944         return invocationCounter == -1;
 945     }
 946 
 947     @Hidden
 948     @DontInline
 949     /** Interpretively invoke this form on the given arguments. */
 950     Object interpretWithArguments(Object... argumentValues) throws Throwable {
 951         if (TRACE_INTERPRETER)
 952             return interpretWithArgumentsTracing(argumentValues);
 953         checkInvocationCounter();
 954         assert(arityCheck(argumentValues));
 955         Object[] values = Arrays.copyOf(argumentValues, names.length);
 956         for (int i = argumentValues.length; i < values.length; i++) {
 957             values[i] = interpretName(names[i], values);
 958         }
 959         Object rv = (result < 0) ? null : values[result];
 960         assert(resultCheck(argumentValues, rv));
 961         return rv;
 962     }
 963 
 964     @Hidden
 965     @DontInline
 966     /** Evaluate a single Name within this form, applying its function to its arguments. */
 967     Object interpretName(Name name, Object[] values) throws Throwable {
 968         if (TRACE_INTERPRETER)
 969             traceInterpreter("| interpretName", name.debugString(), (Object[]) null);
 970         Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class);
 971         for (int i = 0; i < arguments.length; i++) {
 972             Object a = arguments[i];
 973             if (a instanceof Name) {
 974                 int i2 = ((Name)a).index();
 975                 assert(names[i2] == a);
 976                 a = values[i2];
 977                 arguments[i] = a;
 978             }
 979         }
 980         return name.function.invokeWithArguments(arguments);
 981     }
 982 
 983     private void checkInvocationCounter() {
 984         if (COMPILE_THRESHOLD != 0 &&
 985             !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 986             invocationCounter++;  // benign race
 987             if (invocationCounter >= COMPILE_THRESHOLD) {
 988                 // Replace vmentry with a bytecode version of this LF.
 989                 compileToBytecode();
 990             }
 991         }
 992     }
 993     Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable {
 994         traceInterpreter("[ interpretWithArguments", this, argumentValues);
 995         if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) {
 996             int ctr = invocationCounter++;  // benign race
 997             traceInterpreter("| invocationCounter", ctr);
 998             if (invocationCounter >= COMPILE_THRESHOLD) {
 999                 compileToBytecode();
1000             }
1001         }
1002         Object rval;
1003         try {
1004             assert(arityCheck(argumentValues));
1005             Object[] values = Arrays.copyOf(argumentValues, names.length);
1006             for (int i = argumentValues.length; i < values.length; i++) {
1007                 values[i] = interpretName(names[i], values);
1008             }
1009             rval = (result < 0) ? null : values[result];
1010         } catch (Throwable ex) {
1011             traceInterpreter("] throw =>", ex);
1012             throw ex;
1013         }
1014         traceInterpreter("] return =>", rval);
1015         return rval;
1016     }
1017 
1018     static void traceInterpreter(String event, Object obj, Object... args) {
1019         if (TRACE_INTERPRETER) {
1020             System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : ""));
1021         }
1022     }
1023     static void traceInterpreter(String event, Object obj) {
1024         traceInterpreter(event, obj, (Object[])null);
1025     }
1026     private boolean arityCheck(Object[] argumentValues) {
1027         assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length";
1028         // also check that the leading (receiver) argument is somehow bound to this LF:
1029         assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0];
1030         MethodHandle mh = (MethodHandle) argumentValues[0];
1031         assert(mh.internalForm() == this);
1032         // note:  argument #0 could also be an interface wrapper, in the future
1033         argumentTypesMatch(basicTypeSignature(), argumentValues);
1034         return true;
1035     }
1036     private boolean resultCheck(Object[] argumentValues, Object result) {
1037         MethodHandle mh = (MethodHandle) argumentValues[0];
1038         MethodType mt = mh.type();
1039         assert(valueMatches(returnType(), mt.returnType(), result));
1040         return true;
1041     }
1042 
1043     private boolean isEmpty() {
1044         if (result < 0)
1045             return (names.length == arity);
1046         else if (result == arity && names.length == arity + 1)
1047             return names[arity].isConstantZero();
1048         else
1049             return false;
1050     }
1051 
1052     public String toString() {
1053         String lambdaName = lambdaName();
1054         StringBuilder buf = new StringBuilder(lambdaName + "=Lambda(");
1055         for (int i = 0; i < names.length; i++) {
1056             if (i == arity)  buf.append(")=>{");
1057             Name n = names[i];
1058             if (i >= arity)  buf.append("\n    ");
1059             buf.append(n.paramString());
1060             if (i < arity) {
1061                 if (i+1 < arity)  buf.append(",");
1062                 continue;
1063             }
1064             buf.append("=").append(n.exprString());
1065             buf.append(";");
1066         }
1067         if (arity == names.length)  buf.append(")=>{");
1068         buf.append(result < 0 ? "void" : names[result]).append("}");
1069         if (TRACE_INTERPRETER) {
1070             // Extra verbosity:
1071             buf.append(":").append(basicTypeSignature());
1072             buf.append("/").append(vmentry);
1073         }
1074         return buf.toString();
1075     }
1076 
1077     @Override
1078     public boolean equals(Object obj) {
1079         return obj instanceof LambdaForm && equals((LambdaForm)obj);
1080     }
1081     public boolean equals(LambdaForm that) {
1082         if (this.result != that.result)  return false;
1083         return Arrays.equals(this.names, that.names);
1084     }
1085     public int hashCode() {
1086         return result + 31 * Arrays.hashCode(names);
1087     }
1088     LambdaFormEditor editor() {
1089         return LambdaFormEditor.lambdaFormEditor(this);
1090     }
1091 
1092     boolean contains(Name name) {
1093         int pos = name.index();
1094         if (pos >= 0) {
1095             return pos < names.length && name.equals(names[pos]);
1096         }
1097         for (int i = arity; i < names.length; i++) {
1098             if (name.equals(names[i]))
1099                 return true;
1100         }
1101         return false;
1102     }
1103 
1104     static class NamedFunction {
1105         final MemberName member;
1106         private @Stable MethodHandle resolvedHandle;
1107         @Stable MethodHandle invoker;
1108         private final MethodHandleImpl.Intrinsic intrinsicName;
1109 
1110         NamedFunction(MethodHandle resolvedHandle) {
1111             this(resolvedHandle.internalMemberName(), resolvedHandle, MethodHandleImpl.Intrinsic.NONE);
1112         }
1113         NamedFunction(MethodHandle resolvedHandle, MethodHandleImpl.Intrinsic intrinsic) {
1114             this(resolvedHandle.internalMemberName(), resolvedHandle, intrinsic);
1115         }
1116         NamedFunction(MemberName member, MethodHandle resolvedHandle) {
1117             this(member, resolvedHandle, MethodHandleImpl.Intrinsic.NONE);
1118         }
1119         NamedFunction(MemberName member, MethodHandle resolvedHandle, MethodHandleImpl.Intrinsic intrinsic) {
1120             this.member = member;
1121             this.resolvedHandle = resolvedHandle;
1122             this.intrinsicName = intrinsic;
1123             assert(resolvedHandle == null ||
1124                    resolvedHandle.intrinsicName() == MethodHandleImpl.Intrinsic.NONE ||
1125                    resolvedHandle.intrinsicName() == intrinsic) : resolvedHandle.intrinsicName() + " != " + intrinsic;
1126              // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest.
1127              //assert(!isInvokeBasic(member));
1128         }
1129         NamedFunction(MethodType basicInvokerType) {
1130             assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType;
1131             if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) {
1132                 this.resolvedHandle = basicInvokerType.invokers().basicInvoker();
1133                 this.member = resolvedHandle.internalMemberName();
1134             } else {
1135                 // necessary to pass BigArityTest
1136                 this.member = Invokers.invokeBasicMethod(basicInvokerType);
1137             }
1138             this.intrinsicName = MethodHandleImpl.Intrinsic.NONE;
1139             assert(isInvokeBasic(member));
1140         }
1141 
1142         private static boolean isInvokeBasic(MemberName member) {
1143             return member != null &&
1144                    member.getDeclaringClass() == MethodHandle.class &&
1145                   "invokeBasic".equals(member.getName());
1146         }
1147 
1148         // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc.
1149         // Any LambdaForm containing such a member is not interpretable.
1150         // This is OK, since all such LFs are prepared with special primitive vmentry points.
1151         // And even without the resolvedHandle, the name can still be compiled and optimized.
1152         NamedFunction(Method method) {
1153             this(new MemberName(method));
1154         }
1155         NamedFunction(MemberName member) {
1156             this(member, null);
1157         }
1158 
1159         MethodHandle resolvedHandle() {
1160             if (resolvedHandle == null)  resolve();
1161             return resolvedHandle;
1162         }
1163 
1164         synchronized void resolve() {
1165             if (resolvedHandle == null) {
1166                 resolvedHandle = DirectMethodHandle.make(member);
1167             }
1168         }
1169 
1170         @Override
1171         public boolean equals(Object other) {
1172             if (this == other) return true;
1173             if (other == null) return false;
1174             if (!(other instanceof NamedFunction)) return false;
1175             NamedFunction that = (NamedFunction) other;
1176             return this.member != null && this.member.equals(that.member);
1177         }
1178 
1179         @Override
1180         public int hashCode() {
1181             if (member != null)
1182                 return member.hashCode();
1183             return super.hashCode();
1184         }
1185 
1186         static final MethodType INVOKER_METHOD_TYPE =
1187             MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1188 
1189         private static MethodHandle computeInvoker(MethodTypeForm typeForm) {
1190             typeForm = typeForm.basicType().form();  // normalize to basic type
1191             MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1192             if (mh != null)  return mh;
1193             MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm);  // this could take a while
1194             mh = DirectMethodHandle.make(invoker);
1195             MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV);
1196             if (mh2 != null)  return mh2;  // benign race
1197             if (!mh.type().equals(INVOKER_METHOD_TYPE))
1198                 throw newInternalError(mh.debugString());
1199             return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh);
1200         }
1201 
1202         @Hidden
1203         Object invokeWithArguments(Object... arguments) throws Throwable {
1204             // If we have a cached invoker, call it right away.
1205             // NOTE: The invoker always returns a reference value.
1206             if (TRACE_INTERPRETER)  return invokeWithArgumentsTracing(arguments);
1207             return invoker().invokeBasic(resolvedHandle(), arguments);
1208         }
1209 
1210         @Hidden
1211         Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable {
1212             Object rval;
1213             try {
1214                 traceInterpreter("[ call", this, arguments);
1215                 if (invoker == null) {
1216                     traceInterpreter("| getInvoker", this);
1217                     invoker();
1218                 }
1219                 // resolvedHandle might be uninitialized, ok for tracing
1220                 if (resolvedHandle == null) {
1221                     traceInterpreter("| resolve", this);
1222                     resolvedHandle();
1223                 }
1224                 rval = invoker().invokeBasic(resolvedHandle(), arguments);
1225             } catch (Throwable ex) {
1226                 traceInterpreter("] throw =>", ex);
1227                 throw ex;
1228             }
1229             traceInterpreter("] return =>", rval);
1230             return rval;
1231         }
1232 
1233         private MethodHandle invoker() {
1234             if (invoker != null)  return invoker;
1235             // Get an invoker and cache it.
1236             return invoker = computeInvoker(methodType().form());
1237         }
1238 
1239         MethodType methodType() {
1240             if (resolvedHandle != null)
1241                 return resolvedHandle.type();
1242             else
1243                 // only for certain internal LFs during bootstrapping
1244                 return member.getInvocationType();
1245         }
1246 
1247         MemberName member() {
1248             assert(assertMemberIsConsistent());
1249             return member;
1250         }
1251 
1252         // Called only from assert.
1253         private boolean assertMemberIsConsistent() {
1254             if (resolvedHandle instanceof DirectMethodHandle) {
1255                 MemberName m = resolvedHandle.internalMemberName();
1256                 assert(m.equals(member));
1257             }
1258             return true;
1259         }
1260 
1261         Class<?> memberDeclaringClassOrNull() {
1262             return (member == null) ? null : member.getDeclaringClass();
1263         }
1264 
1265         BasicType returnType() {
1266             return basicType(methodType().returnType());
1267         }
1268 
1269         BasicType parameterType(int n) {
1270             return basicType(methodType().parameterType(n));
1271         }
1272 
1273         int arity() {
1274             return methodType().parameterCount();
1275         }
1276 
1277         public String toString() {
1278             if (member == null)  return String.valueOf(resolvedHandle);
1279             return member.getDeclaringClass().getSimpleName()+"."+member.getName();
1280         }
1281 
1282         public boolean isIdentity() {
1283             return this.equals(identity(returnType()));
1284         }
1285 
1286         public boolean isConstantZero() {
1287             return this.equals(constantZero(returnType()));
1288         }
1289 
1290         public MethodHandleImpl.Intrinsic intrinsicName() {
1291             return intrinsicName;
1292         }
1293     }
1294 
1295     public static String basicTypeSignature(MethodType type) {
1296         int params = type.parameterCount();
1297         char[] sig = new char[params + 2];
1298         int sigp = 0;
1299         while (sigp < params) {
1300             sig[sigp] = basicTypeChar(type.parameterType(sigp++));
1301         }
1302         sig[sigp++] = '_';
1303         sig[sigp++] = basicTypeChar(type.returnType());
1304         assert(sigp == sig.length);
1305         return String.valueOf(sig);
1306     }
1307 
1308     /** Hack to make signatures more readable when they show up in method names.
1309      * Signature should start with a sequence of uppercase ASCII letters.
1310      * Runs of three or more are replaced by a single letter plus a decimal repeat count.
1311      * A tail of anything other than uppercase ASCII is passed through unchanged.
1312      * @param signature sequence of uppercase ASCII letters with possible repetitions
1313      * @return same sequence, with repetitions counted by decimal numerals
1314      */
1315     public static String shortenSignature(String signature) {
1316         final int NO_CHAR = -1, MIN_RUN = 3;
1317         int c0, c1 = NO_CHAR, c1reps = 0;
1318         StringBuilder buf = null;
1319         int len = signature.length();
1320         if (len < MIN_RUN)  return signature;
1321         for (int i = 0; i <= len; i++) {
1322             if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) {
1323                 // wrong kind of char; bail out here
1324                 if (buf != null) {
1325                     buf.append(signature.substring(i - c1reps, len));
1326                 }
1327                 break;
1328             }
1329             // shift in the next char:
1330             c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i));
1331             if (c1 == c0) { ++c1reps; continue; }
1332             // shift in the next count:
1333             int c0reps = c1reps; c1reps = 1;
1334             // end of a  character run
1335             if (c0reps < MIN_RUN) {
1336                 if (buf != null) {
1337                     while (--c0reps >= 0)
1338                         buf.append((char)c0);
1339                 }
1340                 continue;
1341             }
1342             // found three or more in a row
1343             if (buf == null)
1344                 buf = new StringBuilder().append(signature, 0, i - c0reps);
1345             buf.append((char)c0).append(c0reps);
1346         }
1347         return (buf == null) ? signature : buf.toString();
1348     }
1349 
1350     static final class Name {
1351         final BasicType type;
1352         @Stable short index;
1353         final NamedFunction function;
1354         final Object constraint;  // additional type information, if not null
1355         @Stable final Object[] arguments;
1356 
1357         private Name(int index, BasicType type, NamedFunction function, Object[] arguments) {
1358             this.index = (short)index;
1359             this.type = type;
1360             this.function = function;
1361             this.arguments = arguments;
1362             this.constraint = null;
1363             assert(this.index == index);
1364         }
1365         private Name(Name that, Object constraint) {
1366             this.index = that.index;
1367             this.type = that.type;
1368             this.function = that.function;
1369             this.arguments = that.arguments;
1370             this.constraint = constraint;
1371             assert(constraint == null || isParam());  // only params have constraints
1372             assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class);
1373         }
1374         Name(MethodHandle function, Object... arguments) {
1375             this(new NamedFunction(function), arguments);
1376         }
1377         Name(MethodType functionType, Object... arguments) {
1378             this(new NamedFunction(functionType), arguments);
1379             assert(arguments[0] instanceof Name && ((Name)arguments[0]).type == L_TYPE);
1380         }
1381         Name(MemberName function, Object... arguments) {
1382             this(new NamedFunction(function), arguments);
1383         }
1384         Name(NamedFunction function, Object... arguments) {
1385             this(-1, function.returnType(), function, arguments = Arrays.copyOf(arguments, arguments.length, Object[].class));
1386             assert(typesMatch(function, arguments));
1387         }
1388         /** Create a raw parameter of the given type, with an expected index. */
1389         Name(int index, BasicType type) {
1390             this(index, type, null, null);
1391         }
1392         /** Create a raw parameter of the given type. */
1393         Name(BasicType type) { this(-1, type); }
1394 
1395         BasicType type() { return type; }
1396         int index() { return index; }
1397         boolean initIndex(int i) {
1398             if (index != i) {
1399                 if (index != -1)  return false;
1400                 index = (short)i;
1401             }
1402             return true;
1403         }
1404         char typeChar() {
1405             return type.btChar;
1406         }
1407 
1408         void resolve() {
1409             if (function != null)
1410                 function.resolve();
1411         }
1412 
1413         Name newIndex(int i) {
1414             if (initIndex(i))  return this;
1415             return cloneWithIndex(i);
1416         }
1417         Name cloneWithIndex(int i) {
1418             Object[] newArguments = (arguments == null) ? null : arguments.clone();
1419             return new Name(i, type, function, newArguments).withConstraint(constraint);
1420         }
1421         Name withConstraint(Object constraint) {
1422             if (constraint == this.constraint)  return this;
1423             return new Name(this, constraint);
1424         }
1425         Name replaceName(Name oldName, Name newName) {  // FIXME: use replaceNames uniformly
1426             if (oldName == newName)  return this;
1427             @SuppressWarnings("LocalVariableHidesMemberVariable")
1428             Object[] arguments = this.arguments;
1429             if (arguments == null)  return this;
1430             boolean replaced = false;
1431             for (int j = 0; j < arguments.length; j++) {
1432                 if (arguments[j] == oldName) {
1433                     if (!replaced) {
1434                         replaced = true;
1435                         arguments = arguments.clone();
1436                     }
1437                     arguments[j] = newName;
1438                 }
1439             }
1440             if (!replaced)  return this;
1441             return new Name(function, arguments);
1442         }
1443         /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i].
1444          *  Limit such replacements to {@code start<=i<end}.  Return possibly changed self.
1445          */
1446         Name replaceNames(Name[] oldNames, Name[] newNames, int start, int end) {
1447             if (start >= end)  return this;
1448             @SuppressWarnings("LocalVariableHidesMemberVariable")
1449             Object[] arguments = this.arguments;
1450             boolean replaced = false;
1451         eachArg:
1452             for (int j = 0; j < arguments.length; j++) {
1453                 if (arguments[j] instanceof Name) {
1454                     Name n = (Name) arguments[j];
1455                     int check = n.index;
1456                     // harmless check to see if the thing is already in newNames:
1457                     if (check >= 0 && check < newNames.length && n == newNames[check])
1458                         continue eachArg;
1459                     // n might not have the correct index: n != oldNames[n.index].
1460                     for (int i = start; i < end; i++) {
1461                         if (n == oldNames[i]) {
1462                             if (n == newNames[i])
1463                                 continue eachArg;
1464                             if (!replaced) {
1465                                 replaced = true;
1466                                 arguments = arguments.clone();
1467                             }
1468                             arguments[j] = newNames[i];
1469                             continue eachArg;
1470                         }
1471                     }
1472                 }
1473             }
1474             if (!replaced)  return this;
1475             return new Name(function, arguments);
1476         }
1477         void internArguments() {
1478             @SuppressWarnings("LocalVariableHidesMemberVariable")
1479             Object[] arguments = this.arguments;
1480             for (int j = 0; j < arguments.length; j++) {
1481                 if (arguments[j] instanceof Name) {
1482                     Name n = (Name) arguments[j];
1483                     if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT)
1484                         arguments[j] = internArgument(n);
1485                 }
1486             }
1487         }
1488         boolean isParam() {
1489             return function == null;
1490         }
1491         boolean isConstantZero() {
1492             return !isParam() && arguments.length == 0 && function.isConstantZero();
1493         }
1494 
1495         boolean refersTo(Class<?> declaringClass, String methodName) {
1496             return function != null &&
1497                     function.member() != null && function.member().refersTo(declaringClass, methodName);
1498         }
1499 
1500         /**
1501          * Check if MemberName is a call to MethodHandle.invokeBasic.
1502          */
1503         boolean isInvokeBasic() {
1504             if (function == null)
1505                 return false;
1506             if (arguments.length < 1)
1507                 return false;  // must have MH argument
1508             MemberName member = function.member();
1509             return member != null && member.refersTo(MethodHandle.class, "invokeBasic") &&
1510                     !member.isPublic() && !member.isStatic();
1511         }
1512 
1513         /**
1514          * Check if MemberName is a call to MethodHandle.linkToStatic, etc.
1515          */
1516         boolean isLinkerMethodInvoke() {
1517             if (function == null)
1518                 return false;
1519             if (arguments.length < 1)
1520                 return false;  // must have MH argument
1521             MemberName member = function.member();
1522             return member != null &&
1523                     member.getDeclaringClass() == MethodHandle.class &&
1524                     !member.isPublic() && member.isStatic() &&
1525                     member.getName().startsWith("linkTo");
1526         }
1527 
1528         public String toString() {
1529             return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar();
1530         }
1531         public String debugString() {
1532             String s = paramString();
1533             return (function == null) ? s : s + "=" + exprString();
1534         }
1535         public String paramString() {
1536             String s = toString();
1537             Object c = constraint;
1538             if (c == null)
1539                 return s;
1540             if (c instanceof Class)  c = ((Class<?>)c).getSimpleName();
1541             return s + "/" + c;
1542         }
1543         public String exprString() {
1544             if (function == null)  return toString();
1545             StringBuilder buf = new StringBuilder(function.toString());
1546             buf.append("(");
1547             String cma = "";
1548             for (Object a : arguments) {
1549                 buf.append(cma); cma = ",";
1550                 if (a instanceof Name || a instanceof Integer)
1551                     buf.append(a);
1552                 else
1553                     buf.append("(").append(a).append(")");
1554             }
1555             buf.append(")");
1556             return buf.toString();
1557         }
1558 
1559         private boolean typesMatch(NamedFunction function, Object ... arguments) {
1560             assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString();
1561             for (int i = 0; i < arguments.length; i++) {
1562                 assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString();
1563             }
1564             return true;
1565         }
1566 
1567         private static boolean typesMatch(BasicType parameterType, Object object) {
1568             if (object instanceof Name) {
1569                 return ((Name)object).type == parameterType;
1570             }
1571             switch (parameterType) {
1572                 case I_TYPE:  return object instanceof Integer;
1573                 case J_TYPE:  return object instanceof Long;
1574                 case F_TYPE:  return object instanceof Float;
1575                 case D_TYPE:  return object instanceof Double;
1576             }
1577             assert(parameterType == L_TYPE);
1578             return true;
1579         }
1580 
1581         /** Return the index of the last occurrence of n in the argument array.
1582          *  Return -1 if the name is not used.
1583          */
1584         int lastUseIndex(Name n) {
1585             if (arguments == null)  return -1;
1586             for (int i = arguments.length; --i >= 0; ) {
1587                 if (arguments[i] == n)  return i;
1588             }
1589             return -1;
1590         }
1591 
1592         /** Return the number of occurrences of n in the argument array.
1593          *  Return 0 if the name is not used.
1594          */
1595         int useCount(Name n) {
1596             if (arguments == null)  return 0;
1597             int count = 0;
1598             for (int i = arguments.length; --i >= 0; ) {
1599                 if (arguments[i] == n)  ++count;
1600             }
1601             return count;
1602         }
1603 
1604         boolean contains(Name n) {
1605             return this == n || lastUseIndex(n) >= 0;
1606         }
1607 
1608         public boolean equals(Name that) {
1609             if (this == that)  return true;
1610             if (isParam())
1611                 // each parameter is a unique atom
1612                 return false;  // this != that
1613             return
1614                 //this.index == that.index &&
1615                 this.type == that.type &&
1616                 this.function.equals(that.function) &&
1617                 Arrays.equals(this.arguments, that.arguments);
1618         }
1619         @Override
1620         public boolean equals(Object x) {
1621             return x instanceof Name && equals((Name)x);
1622         }
1623         @Override
1624         public int hashCode() {
1625             if (isParam())
1626                 return index | (type.ordinal() << 8);
1627             return function.hashCode() ^ Arrays.hashCode(arguments);
1628         }
1629     }
1630 
1631     /** Return the index of the last name which contains n as an argument.
1632      *  Return -1 if the name is not used.  Return names.length if it is the return value.
1633      */
1634     int lastUseIndex(Name n) {
1635         int ni = n.index, nmax = names.length;
1636         assert(names[ni] == n);
1637         if (result == ni)  return nmax;  // live all the way beyond the end
1638         for (int i = nmax; --i > ni; ) {
1639             if (names[i].lastUseIndex(n) >= 0)
1640                 return i;
1641         }
1642         return -1;
1643     }
1644 
1645     /** Return the number of times n is used as an argument or return value. */
1646     int useCount(Name n) {
1647         int nmax = names.length;
1648         int end = lastUseIndex(n);
1649         if (end < 0)  return 0;
1650         int count = 0;
1651         if (end == nmax) { count++; end--; }
1652         int beg = n.index() + 1;
1653         if (beg < arity)  beg = arity;
1654         for (int i = beg; i <= end; i++) {
1655             count += names[i].useCount(n);
1656         }
1657         return count;
1658     }
1659 
1660     static Name argument(int which, BasicType type) {
1661         if (which >= INTERNED_ARGUMENT_LIMIT)
1662             return new Name(which, type);
1663         return INTERNED_ARGUMENTS[type.ordinal()][which];
1664     }
1665     static Name internArgument(Name n) {
1666         assert(n.isParam()) : "not param: " + n;
1667         assert(n.index < INTERNED_ARGUMENT_LIMIT);
1668         if (n.constraint != null)  return n;
1669         return argument(n.index, n.type);
1670     }
1671     static Name[] arguments(int extra, MethodType types) {
1672         int length = types.parameterCount();
1673         Name[] names = new Name[length + extra];
1674         for (int i = 0; i < length; i++)
1675             names[i] = argument(i, basicType(types.parameterType(i)));
1676         return names;
1677     }
1678     static final int INTERNED_ARGUMENT_LIMIT = 10;
1679     private static final Name[][] INTERNED_ARGUMENTS
1680             = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT];
1681     static {
1682         for (BasicType type : BasicType.ARG_TYPES) {
1683             int ord = type.ordinal();
1684             for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) {
1685                 INTERNED_ARGUMENTS[ord][i] = new Name(i, type);
1686             }
1687         }
1688     }
1689 
1690     private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
1691 
1692     static LambdaForm identityForm(BasicType type) {
1693         int ord = type.ordinal();
1694         LambdaForm form = LF_identity[ord];
1695         if (form != null) {
1696             return form;
1697         }
1698         createFormsFor(type);
1699         return LF_identity[ord];
1700     }
1701 
1702     static LambdaForm zeroForm(BasicType type) {
1703         int ord = type.ordinal();
1704         LambdaForm form = LF_zero[ord];
1705         if (form != null) {
1706             return form;
1707         }
1708         createFormsFor(type);
1709         return LF_zero[ord];
1710     }
1711 
1712     static NamedFunction identity(BasicType type) {
1713         int ord = type.ordinal();
1714         NamedFunction function = NF_identity[ord];
1715         if (function != null) {
1716             return function;
1717         }
1718         createFormsFor(type);
1719         return NF_identity[ord];
1720     }
1721 
1722     static NamedFunction constantZero(BasicType type) {
1723         int ord = type.ordinal();
1724         NamedFunction function = NF_zero[ord];
1725         if (function != null) {
1726             return function;
1727         }
1728         createFormsFor(type);
1729         return NF_zero[ord];
1730     }
1731 
1732     private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT];
1733     private static final @Stable LambdaForm[] LF_zero = new LambdaForm[TYPE_LIMIT];
1734     private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT];
1735     private static final @Stable NamedFunction[] NF_zero = new NamedFunction[TYPE_LIMIT];
1736 
1737     private static synchronized void createFormsFor(BasicType type) {
1738         final int ord = type.ordinal();
1739         LambdaForm idForm = LF_identity[ord];
1740         if (idForm != null) {
1741             return;
1742         }
1743         char btChar = type.basicTypeChar();
1744         boolean isVoid = (type == V_TYPE);
1745         Class<?> btClass = type.btClass;
1746         MethodType zeType = MethodType.methodType(btClass);
1747         MethodType idType = (isVoid) ? zeType : MethodType.methodType(btClass, btClass);
1748 
1749         // Look up symbolic names.  It might not be necessary to have these,
1750         // but if we need to emit direct references to bytecodes, it helps.
1751         // Zero is built from a call to an identity function with a constant zero input.
1752         MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic);
1753         MemberName zeMem = null;
1754         try {
1755             idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, NoSuchMethodException.class);
1756             if (!isVoid) {
1757                 zeMem = new MemberName(LambdaForm.class, "zero_"+btChar, zeType, REF_invokeStatic);
1758                 zeMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zeMem, null, NoSuchMethodException.class);
1759             }
1760         } catch (IllegalAccessException|NoSuchMethodException ex) {
1761             throw newInternalError(ex);
1762         }
1763 
1764         NamedFunction idFun;
1765         LambdaForm zeForm;
1766         NamedFunction zeFun;
1767 
1768         // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular
1769         // bootstrap dependency on this method in case we're interpreting LFs
1770         if (isVoid) {
1771             Name[] idNames = new Name[] { argument(0, L_TYPE) };
1772             idForm = new LambdaForm(1, idNames, VOID_RESULT, Kind.IDENTITY);
1773             idForm.compileToBytecode();
1774             idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm));
1775 
1776             zeForm = idForm;
1777             zeFun = idFun;
1778         } else {
1779             Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) };
1780             idForm = new LambdaForm(2, idNames, 1, Kind.IDENTITY);
1781             idForm.compileToBytecode();
1782             idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm),
1783                         MethodHandleImpl.Intrinsic.IDENTITY);
1784 
1785             Object zeValue = Wrapper.forBasicType(btChar).zero();
1786             Name[] zeNames = new Name[] { argument(0, L_TYPE), new Name(idFun, zeValue) };
1787             zeForm = new LambdaForm(1, zeNames, 1, Kind.ZERO);
1788             zeForm.compileToBytecode();
1789             zeFun = new NamedFunction(zeMem, SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm),
1790                     MethodHandleImpl.Intrinsic.ZERO);
1791         }
1792 
1793         LF_zero[ord] = zeForm;
1794         NF_zero[ord] = zeFun;
1795         LF_identity[ord] = idForm;
1796         NF_identity[ord] = idFun;
1797 
1798         assert(idFun.isIdentity());
1799         assert(zeFun.isConstantZero());
1800         assert(new Name(zeFun).isConstantZero());
1801     }
1802 
1803     // Avoid appealing to ValueConversions at bootstrap time:
1804     private static int identity_I(int x) { return x; }
1805     private static long identity_J(long x) { return x; }
1806     private static float identity_F(float x) { return x; }
1807     private static double identity_D(double x) { return x; }
1808     private static Object identity_L(Object x) { return x; }
1809     private static void identity_V() { return; }
1810     private static int zero_I() { return 0; }
1811     private static long zero_J() { return 0; }
1812     private static float zero_F() { return 0; }
1813     private static double zero_D() { return 0; }
1814     private static Object zero_L() { return null; }
1815 
1816     /**
1817      * Internal marker for byte-compiled LambdaForms.
1818      */
1819     /*non-public*/
1820     @Target(ElementType.METHOD)
1821     @Retention(RetentionPolicy.RUNTIME)
1822     @interface Compiled {
1823     }
1824 
1825     /**
1826      * Internal marker for LambdaForm interpreter frames.
1827      */
1828     /*non-public*/
1829     @Target(ElementType.METHOD)
1830     @Retention(RetentionPolicy.RUNTIME)
1831     @interface Hidden {
1832     }
1833 
1834     private static final HashMap<String,Integer> DEBUG_NAME_COUNTERS;
1835     private static final HashMap<LambdaForm,String> DEBUG_NAMES;
1836     static {
1837         if (debugEnabled()) {
1838             DEBUG_NAME_COUNTERS = new HashMap<>();
1839             DEBUG_NAMES = new HashMap<>();
1840         } else {
1841             DEBUG_NAME_COUNTERS = null;
1842             DEBUG_NAMES = null;
1843         }
1844     }
1845 
1846     static {
1847         // The Holder class will contain pre-generated forms resolved
1848         // using MemberName.getFactory(). However, that doesn't initialize the
1849         // class, which subtly breaks inlining etc. By forcing
1850         // initialization of the Holder class we avoid these issues.
1851         UNSAFE.ensureClassInitialized(Holder.class);
1852     }
1853 
1854     /* Placeholder class for zero and identity forms generated ahead of time */
1855     final class Holder {}
1856 
1857     // The following hack is necessary in order to suppress TRACE_INTERPRETER
1858     // during execution of the static initializes of this class.
1859     // Turning on TRACE_INTERPRETER too early will cause
1860     // stack overflows and other misbehavior during attempts to trace events
1861     // that occur during LambdaForm.<clinit>.
1862     // Therefore, do not move this line higher in this file, and do not remove.
1863     private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER;
1864 }