1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/cardTableBarrierSet.hpp"
  36 #include "gc/shared/collectedHeap.hpp"
  37 #include "nativeInst_arm.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "vmreg_arm.inline.hpp"
  42 
  43 #define __ _masm->
  44 
  45 // Note: Rtemp usage is this file should not impact C2 and should be
  46 // correct as long as it is not implicitly used in lower layers (the
  47 // arm [macro]assembler) and used with care in the other C1 specific
  48 // files.
  49 
  50 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  51   ShouldNotCallThis(); // Not used on ARM
  52   return false;
  53 }
  54 
  55 
  56 LIR_Opr LIR_Assembler::receiverOpr() {
  57   // The first register in Java calling conventions
  58   return FrameMap::R0_oop_opr;
  59 }
  60 
  61 LIR_Opr LIR_Assembler::osrBufferPointer() {
  62   return FrameMap::as_pointer_opr(R0);
  63 }
  64 
  65 #ifndef PRODUCT
  66 void LIR_Assembler::verify_reserved_argument_area_size(int args_count) {
  67   assert(args_count * wordSize <= frame_map()->reserved_argument_area_size(), "not enough space for arguments");
  68 }
  69 #endif // !PRODUCT
  70 
  71 void LIR_Assembler::store_parameter(jint c, int offset_from_sp_in_words) {
  72   assert(offset_from_sp_in_words >= 0, "invalid offset from sp");
  73   int offset_from_sp_in_bytes = offset_from_sp_in_words * BytesPerWord;
  74   assert(offset_from_sp_in_bytes < frame_map()->reserved_argument_area_size(), "not enough space");
  75   __ mov_slow(Rtemp, c);
  76   __ str(Rtemp, Address(SP, offset_from_sp_in_bytes));
  77 }
  78 
  79 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_sp_in_words) {
  80   assert(offset_from_sp_in_words >= 0, "invalid offset from sp");
  81   int offset_from_sp_in_bytes = offset_from_sp_in_words * BytesPerWord;
  82   assert(offset_from_sp_in_bytes < frame_map()->reserved_argument_area_size(), "not enough space");
  83   __ mov_metadata(Rtemp, m);
  84   __ str(Rtemp, Address(SP, offset_from_sp_in_bytes));
  85 }
  86 
  87 //--------------fpu register translations-----------------------
  88 
  89 
  90 void LIR_Assembler::set_24bit_FPU() {
  91   ShouldNotReachHere();
  92 }
  93 
  94 void LIR_Assembler::reset_FPU() {
  95   ShouldNotReachHere();
  96 }
  97 
  98 void LIR_Assembler::fpop() {
  99   Unimplemented();
 100 }
 101 
 102 void LIR_Assembler::fxch(int i) {
 103   Unimplemented();
 104 }
 105 
 106 void LIR_Assembler::fld(int i) {
 107   Unimplemented();
 108 }
 109 
 110 void LIR_Assembler::ffree(int i) {
 111   Unimplemented();
 112 }
 113 
 114 void LIR_Assembler::breakpoint() {
 115   __ breakpoint();
 116 }
 117 
 118 void LIR_Assembler::push(LIR_Opr opr) {
 119   Unimplemented();
 120 }
 121 
 122 void LIR_Assembler::pop(LIR_Opr opr) {
 123   Unimplemented();
 124 }
 125 
 126 //-------------------------------------------
 127 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 128   Register base = addr->base()->as_pointer_register();
 129 
 130 
 131   if (addr->index()->is_illegal() || addr->index()->is_constant()) {
 132     int offset = addr->disp();
 133     if (addr->index()->is_constant()) {
 134       offset += addr->index()->as_constant_ptr()->as_jint() << addr->scale();
 135     }
 136 
 137     if ((offset <= -4096) || (offset >= 4096)) {
 138       BAILOUT_("offset not in range", Address(base));
 139     }
 140 
 141     return Address(base, offset);
 142 
 143   } else {
 144     assert(addr->disp() == 0, "can't have both");
 145     int scale = addr->scale();
 146 
 147     assert(addr->index()->is_single_cpu(), "should be");
 148     return scale >= 0 ? Address(base, addr->index()->as_register(), lsl, scale) :
 149                         Address(base, addr->index()->as_register(), lsr, -scale);
 150   }
 151 }
 152 
 153 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 154   Address base = as_Address(addr);
 155   assert(base.index() == noreg, "must be");
 156   if (base.disp() + BytesPerWord >= 4096) { BAILOUT_("offset not in range", Address(base.base(),0)); }
 157   return Address(base.base(), base.disp() + BytesPerWord);
 158 }
 159 
 160 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 161   return as_Address(addr);
 162 }
 163 
 164 
 165 void LIR_Assembler::osr_entry() {
 166   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 167   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 168   ValueStack* entry_state = osr_entry->end()->state();
 169   int number_of_locks = entry_state->locks_size();
 170 
 171   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 172   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 173 
 174   assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 175   int monitor_offset = (method()->max_locals() + 2 * (number_of_locks - 1)) * BytesPerWord;
 176   for (int i = 0; i < number_of_locks; i++) {
 177     int slot_offset = monitor_offset - (i * 2 * BytesPerWord);
 178     __ ldr(R1, Address(OSR_buf, slot_offset + 0*BytesPerWord));
 179     __ ldr(R2, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 180     __ str(R1, frame_map()->address_for_monitor_lock(i));
 181     __ str(R2, frame_map()->address_for_monitor_object(i));
 182   }
 183 }
 184 
 185 
 186 int LIR_Assembler::check_icache() {
 187   Register receiver = LIR_Assembler::receiverOpr()->as_register();
 188   int offset = __ offset();
 189   __ inline_cache_check(receiver, Ricklass);
 190   return offset;
 191 }
 192 
 193 
 194 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 195   jobject o = (jobject)Universe::non_oop_word();
 196   int index = __ oop_recorder()->allocate_oop_index(o);
 197 
 198   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), index);
 199 
 200   __ patchable_mov_oop(reg, o, index);
 201   patching_epilog(patch, lir_patch_normal, reg, info);
 202 }
 203 
 204 
 205 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 206   Metadata* o = (Metadata*)Universe::non_oop_word();
 207   int index = __ oop_recorder()->allocate_metadata_index(o);
 208   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 209 
 210   __ patchable_mov_metadata(reg, o, index);
 211   patching_epilog(patch, lir_patch_normal, reg, info);
 212 }
 213 
 214 
 215 int LIR_Assembler::initial_frame_size_in_bytes() const {
 216   // Subtracts two words to account for return address and link
 217   return frame_map()->framesize()*VMRegImpl::stack_slot_size - 2*wordSize;
 218 }
 219 
 220 
 221 int LIR_Assembler::emit_exception_handler() {
 222   // TODO: ARM
 223   __ nop(); // See comments in other ports
 224 
 225   address handler_base = __ start_a_stub(exception_handler_size());
 226   if (handler_base == NULL) {
 227     bailout("exception handler overflow");
 228     return -1;
 229   }
 230 
 231   int offset = code_offset();
 232 
 233   // check that there is really an exception
 234   __ verify_not_null_oop(Rexception_obj);
 235 
 236   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
 237   __ should_not_reach_here();
 238 
 239   assert(code_offset() - offset <= exception_handler_size(), "overflow");
 240   __ end_a_stub();
 241 
 242   return offset;
 243 }
 244 
 245 // Emit the code to remove the frame from the stack in the exception
 246 // unwind path.
 247 int LIR_Assembler::emit_unwind_handler() {
 248 #ifndef PRODUCT
 249   if (CommentedAssembly) {
 250     _masm->block_comment("Unwind handler");
 251   }
 252 #endif
 253 
 254   int offset = code_offset();
 255 
 256   // Fetch the exception from TLS and clear out exception related thread state
 257   Register zero = __ zero_register(Rtemp);
 258   __ ldr(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset()));
 259   __ str(zero, Address(Rthread, JavaThread::exception_oop_offset()));
 260   __ str(zero, Address(Rthread, JavaThread::exception_pc_offset()));
 261 
 262   __ bind(_unwind_handler_entry);
 263   __ verify_not_null_oop(Rexception_obj);
 264 
 265   // Preform needed unlocking
 266   MonitorExitStub* stub = NULL;
 267   if (method()->is_synchronized()) {
 268     monitor_address(0, FrameMap::R0_opr);
 269     stub = new MonitorExitStub(FrameMap::R0_opr, true, 0);
 270     __ unlock_object(R2, R1, R0, Rtemp, *stub->entry());
 271     __ bind(*stub->continuation());
 272   }
 273 
 274   // remove the activation and dispatch to the unwind handler
 275   __ remove_frame(initial_frame_size_in_bytes()); // restores FP and LR
 276   __ jump(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type, Rtemp);
 277 
 278   // Emit the slow path assembly
 279   if (stub != NULL) {
 280     stub->emit_code(this);
 281   }
 282 
 283   return offset;
 284 }
 285 
 286 
 287 int LIR_Assembler::emit_deopt_handler() {
 288   address handler_base = __ start_a_stub(deopt_handler_size());
 289   if (handler_base == NULL) {
 290     bailout("deopt handler overflow");
 291     return -1;
 292   }
 293 
 294   int offset = code_offset();
 295 
 296   __ mov_relative_address(LR, __ pc());
 297   __ push(LR); // stub expects LR to be saved
 298   __ jump(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type, noreg);
 299 
 300   assert(code_offset() - offset <= deopt_handler_size(), "overflow");
 301   __ end_a_stub();
 302 
 303   return offset;
 304 }
 305 
 306 
 307 void LIR_Assembler::return_op(LIR_Opr result) {
 308   // Pop the frame before safepoint polling
 309   __ remove_frame(initial_frame_size_in_bytes());
 310 
 311   // mov_slow here is usually one or two instruction
 312   __ mov_address(Rtemp, os::get_polling_page(), symbolic_Relocation::polling_page_reference);
 313   __ relocate(relocInfo::poll_return_type);
 314   __ ldr(Rtemp, Address(Rtemp));
 315   __ ret();
 316 }
 317 
 318 
 319 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 320   __ mov_address(Rtemp, os::get_polling_page(), symbolic_Relocation::polling_page_reference);
 321   if (info != NULL) {
 322     add_debug_info_for_branch(info);
 323   }
 324   int offset = __ offset();
 325   __ relocate(relocInfo::poll_type);
 326   __ ldr(Rtemp, Address(Rtemp));
 327   return offset;
 328 }
 329 
 330 
 331 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 332   if (from_reg != to_reg) {
 333     __ mov(to_reg, from_reg);
 334   }
 335 }
 336 
 337 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 338   assert(src->is_constant() && dest->is_register(), "must be");
 339   LIR_Const* c = src->as_constant_ptr();
 340 
 341   switch (c->type()) {
 342     case T_ADDRESS:
 343     case T_INT:
 344       assert(patch_code == lir_patch_none, "no patching handled here");
 345       __ mov_slow(dest->as_register(), c->as_jint());
 346       break;
 347 
 348     case T_LONG:
 349       assert(patch_code == lir_patch_none, "no patching handled here");
 350       __ mov_slow(dest->as_register_lo(), c->as_jint_lo());
 351       __ mov_slow(dest->as_register_hi(), c->as_jint_hi());
 352       break;
 353 
 354     case T_OBJECT:
 355       if (patch_code == lir_patch_none) {
 356         __ mov_oop(dest->as_register(), c->as_jobject());
 357       } else {
 358         jobject2reg_with_patching(dest->as_register(), info);
 359       }
 360       break;
 361 
 362     case T_METADATA:
 363       if (patch_code == lir_patch_none) {
 364         __ mov_metadata(dest->as_register(), c->as_metadata());
 365       } else {
 366         klass2reg_with_patching(dest->as_register(), info);
 367       }
 368       break;
 369 
 370     case T_FLOAT:
 371       if (dest->is_single_fpu()) {
 372         __ mov_float(dest->as_float_reg(), c->as_jfloat());
 373       } else {
 374         // Simple getters can return float constant directly into r0
 375         __ mov_slow(dest->as_register(), c->as_jint_bits());
 376       }
 377       break;
 378 
 379     case T_DOUBLE:
 380       if (dest->is_double_fpu()) {
 381         __ mov_double(dest->as_double_reg(), c->as_jdouble());
 382       } else {
 383         // Simple getters can return double constant directly into r1r0
 384         __ mov_slow(dest->as_register_lo(), c->as_jint_lo_bits());
 385         __ mov_slow(dest->as_register_hi(), c->as_jint_hi_bits());
 386       }
 387       break;
 388 
 389     default:
 390       ShouldNotReachHere();
 391   }
 392 }
 393 
 394 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 395   assert(src->is_constant(), "must be");
 396   assert(dest->is_stack(), "must be");
 397   LIR_Const* c = src->as_constant_ptr();
 398 
 399   switch (c->type()) {
 400     case T_INT:  // fall through
 401     case T_FLOAT:
 402       __ mov_slow(Rtemp, c->as_jint_bits());
 403       __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 404       break;
 405 
 406     case T_ADDRESS:
 407       __ mov_slow(Rtemp, c->as_jint());
 408       __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 409       break;
 410 
 411     case T_OBJECT:
 412       __ mov_oop(Rtemp, c->as_jobject());
 413       __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 414       break;
 415 
 416     case T_LONG:  // fall through
 417     case T_DOUBLE:
 418       __ mov_slow(Rtemp, c->as_jint_lo_bits());
 419       __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes));
 420       if (c->as_jint_hi_bits() != c->as_jint_lo_bits()) {
 421         __ mov_slow(Rtemp, c->as_jint_hi_bits());
 422       }
 423       __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
 424       break;
 425 
 426     default:
 427       ShouldNotReachHere();
 428   }
 429 }
 430 
 431 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type,
 432                               CodeEmitInfo* info, bool wide) {
 433   assert((src->as_constant_ptr()->type() == T_OBJECT && src->as_constant_ptr()->as_jobject() == NULL),"cannot handle otherwise");
 434   __ mov(Rtemp, 0);
 435 
 436   int null_check_offset = code_offset();
 437   __ str(Rtemp, as_Address(dest->as_address_ptr()));
 438 
 439   if (info != NULL) {
 440     assert(false, "arm32 didn't support this before, investigate if bug");
 441     add_debug_info_for_null_check(null_check_offset, info);
 442   }
 443 }
 444 
 445 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 446   assert(src->is_register() && dest->is_register(), "must be");
 447 
 448   if (src->is_single_cpu()) {
 449     if (dest->is_single_cpu()) {
 450       move_regs(src->as_register(), dest->as_register());
 451     } else if (dest->is_single_fpu()) {
 452       __ fmsr(dest->as_float_reg(), src->as_register());
 453     } else {
 454       ShouldNotReachHere();
 455     }
 456   } else if (src->is_double_cpu()) {
 457     if (dest->is_double_cpu()) {
 458       __ long_move(dest->as_register_lo(), dest->as_register_hi(), src->as_register_lo(), src->as_register_hi());
 459     } else {
 460       __ fmdrr(dest->as_double_reg(), src->as_register_lo(), src->as_register_hi());
 461     }
 462   } else if (src->is_single_fpu()) {
 463     if (dest->is_single_fpu()) {
 464       __ mov_float(dest->as_float_reg(), src->as_float_reg());
 465     } else if (dest->is_single_cpu()) {
 466       __ mov_fpr2gpr_float(dest->as_register(), src->as_float_reg());
 467     } else {
 468       ShouldNotReachHere();
 469     }
 470   } else if (src->is_double_fpu()) {
 471     if (dest->is_double_fpu()) {
 472       __ mov_double(dest->as_double_reg(), src->as_double_reg());
 473     } else if (dest->is_double_cpu()) {
 474       __ fmrrd(dest->as_register_lo(), dest->as_register_hi(), src->as_double_reg());
 475     } else {
 476       ShouldNotReachHere();
 477     }
 478   } else {
 479     ShouldNotReachHere();
 480   }
 481 }
 482 
 483 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 484   assert(src->is_register(), "should not call otherwise");
 485   assert(dest->is_stack(), "should not call otherwise");
 486 
 487   Address addr = dest->is_single_word() ?
 488     frame_map()->address_for_slot(dest->single_stack_ix()) :
 489     frame_map()->address_for_slot(dest->double_stack_ix());
 490 
 491   assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending");
 492   if (src->is_single_fpu() || src->is_double_fpu()) {
 493     if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); }
 494   }
 495 
 496   if (src->is_single_cpu()) {
 497     switch (type) {
 498       case T_OBJECT:
 499       case T_ARRAY:    __ verify_oop(src->as_register());   // fall through
 500       case T_ADDRESS:
 501       case T_METADATA: __ str(src->as_register(), addr);    break;
 502       case T_FLOAT:    // used in intBitsToFloat intrinsic implementation, fall through
 503       case T_INT:      __ str_32(src->as_register(), addr); break;
 504       default:
 505         ShouldNotReachHere();
 506     }
 507   } else if (src->is_double_cpu()) {
 508     __ str(src->as_register_lo(), addr);
 509     __ str(src->as_register_hi(), frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
 510   } else if (src->is_single_fpu()) {
 511     __ str_float(src->as_float_reg(), addr);
 512   } else if (src->is_double_fpu()) {
 513     __ str_double(src->as_double_reg(), addr);
 514   } else {
 515     ShouldNotReachHere();
 516   }
 517 }
 518 
 519 
 520 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type,
 521                             LIR_PatchCode patch_code, CodeEmitInfo* info,
 522                             bool pop_fpu_stack, bool wide,
 523                             bool unaligned) {
 524   LIR_Address* to_addr = dest->as_address_ptr();
 525   Register base_reg = to_addr->base()->as_pointer_register();
 526   const bool needs_patching = (patch_code != lir_patch_none);
 527 
 528   PatchingStub* patch = NULL;
 529   if (needs_patching) {
 530     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 531   }
 532 
 533   int null_check_offset = code_offset();
 534 
 535   switch (type) {
 536     case T_ARRAY:
 537     case T_OBJECT:
 538       if (UseCompressedOops && !wide) {
 539         ShouldNotReachHere();
 540       } else {
 541         __ str(src->as_register(), as_Address(to_addr));
 542       }
 543       break;
 544 
 545     case T_ADDRESS:
 546       __ str(src->as_pointer_register(), as_Address(to_addr));
 547       break;
 548 
 549     case T_BYTE:
 550     case T_BOOLEAN:
 551       __ strb(src->as_register(), as_Address(to_addr));
 552       break;
 553 
 554     case T_CHAR:
 555     case T_SHORT:
 556       __ strh(src->as_register(), as_Address(to_addr));
 557       break;
 558 
 559     case T_INT:
 560 #ifdef __SOFTFP__
 561     case T_FLOAT:
 562 #endif // __SOFTFP__
 563       __ str_32(src->as_register(), as_Address(to_addr));
 564       break;
 565 
 566 
 567 #ifdef __SOFTFP__
 568     case T_DOUBLE:
 569 #endif // __SOFTFP__
 570     case T_LONG: {
 571       Register from_lo = src->as_register_lo();
 572       Register from_hi = src->as_register_hi();
 573       if (to_addr->index()->is_register()) {
 574         assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 575         assert(to_addr->disp() == 0, "Not yet supporting both");
 576         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 577         base_reg = Rtemp;
 578         __ str(from_lo, Address(Rtemp));
 579         if (patch != NULL) {
 580           patching_epilog(patch, lir_patch_low, base_reg, info);
 581           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 582           patch_code = lir_patch_high;
 583         }
 584         __ str(from_hi, Address(Rtemp, BytesPerWord));
 585       } else if (base_reg == from_lo) {
 586         __ str(from_hi, as_Address_hi(to_addr));
 587         if (patch != NULL) {
 588           patching_epilog(patch, lir_patch_high, base_reg, info);
 589           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 590           patch_code = lir_patch_low;
 591         }
 592         __ str(from_lo, as_Address_lo(to_addr));
 593       } else {
 594         __ str(from_lo, as_Address_lo(to_addr));
 595         if (patch != NULL) {
 596           patching_epilog(patch, lir_patch_low, base_reg, info);
 597           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 598           patch_code = lir_patch_high;
 599         }
 600         __ str(from_hi, as_Address_hi(to_addr));
 601       }
 602       break;
 603     }
 604 
 605 #ifndef __SOFTFP__
 606     case T_FLOAT:
 607       if (to_addr->index()->is_register()) {
 608         assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 609         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 610         if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 611         __ fsts(src->as_float_reg(), Address(Rtemp, to_addr->disp()));
 612       } else {
 613         __ fsts(src->as_float_reg(), as_Address(to_addr));
 614       }
 615       break;
 616 
 617     case T_DOUBLE:
 618       if (to_addr->index()->is_register()) {
 619         assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 620         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 621         if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 622         __ fstd(src->as_double_reg(), Address(Rtemp, to_addr->disp()));
 623       } else {
 624         __ fstd(src->as_double_reg(), as_Address(to_addr));
 625       }
 626       break;
 627 #endif // __SOFTFP__
 628 
 629 
 630     default:
 631       ShouldNotReachHere();
 632   }
 633 
 634   if (info != NULL) {
 635     add_debug_info_for_null_check(null_check_offset, info);
 636   }
 637 
 638   if (patch != NULL) {
 639     // Offset embeedded into LDR/STR instruction may appear not enough
 640     // to address a field. So, provide a space for one more instruction
 641     // that will deal with larger offsets.
 642     __ nop();
 643     patching_epilog(patch, patch_code, base_reg, info);
 644   }
 645 }
 646 
 647 
 648 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 649   assert(src->is_stack(), "should not call otherwise");
 650   assert(dest->is_register(), "should not call otherwise");
 651 
 652   Address addr = src->is_single_word() ?
 653     frame_map()->address_for_slot(src->single_stack_ix()) :
 654     frame_map()->address_for_slot(src->double_stack_ix());
 655 
 656   assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending");
 657   if (dest->is_single_fpu() || dest->is_double_fpu()) {
 658     if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); }
 659   }
 660 
 661   if (dest->is_single_cpu()) {
 662     switch (type) {
 663       case T_OBJECT:
 664       case T_ARRAY:
 665       case T_ADDRESS:
 666       case T_METADATA: __ ldr(dest->as_register(), addr); break;
 667       case T_FLOAT:    // used in floatToRawIntBits intrinsic implemenation
 668       case T_INT:      __ ldr_u32(dest->as_register(), addr); break;
 669       default:
 670         ShouldNotReachHere();
 671     }
 672     if ((type == T_OBJECT) || (type == T_ARRAY)) {
 673       __ verify_oop(dest->as_register());
 674     }
 675   } else if (dest->is_double_cpu()) {
 676     __ ldr(dest->as_register_lo(), addr);
 677     __ ldr(dest->as_register_hi(), frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes));
 678   } else if (dest->is_single_fpu()) {
 679     __ ldr_float(dest->as_float_reg(), addr);
 680   } else if (dest->is_double_fpu()) {
 681     __ ldr_double(dest->as_double_reg(), addr);
 682   } else {
 683     ShouldNotReachHere();
 684   }
 685 }
 686 
 687 
 688 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 689   if (src->is_single_stack()) {
 690     switch (src->type()) {
 691       case T_OBJECT:
 692       case T_ARRAY:
 693       case T_ADDRESS:
 694       case T_METADATA:
 695         __ ldr(Rtemp, frame_map()->address_for_slot(src->single_stack_ix()));
 696         __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 697         break;
 698 
 699       case T_INT:
 700       case T_FLOAT:
 701         __ ldr_u32(Rtemp, frame_map()->address_for_slot(src->single_stack_ix()));
 702         __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 703         break;
 704 
 705       default:
 706         ShouldNotReachHere();
 707     }
 708   } else {
 709     assert(src->is_double_stack(), "must be");
 710     __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes));
 711     __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes));
 712     __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes));
 713     __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
 714   }
 715 }
 716 
 717 
 718 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type,
 719                             LIR_PatchCode patch_code, CodeEmitInfo* info,
 720                             bool wide, bool unaligned) {
 721   assert(src->is_address(), "should not call otherwise");
 722   assert(dest->is_register(), "should not call otherwise");
 723   LIR_Address* addr = src->as_address_ptr();
 724 
 725   Register base_reg = addr->base()->as_pointer_register();
 726 
 727   PatchingStub* patch = NULL;
 728   if (patch_code != lir_patch_none) {
 729     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 730   }
 731   if (info != NULL) {
 732     add_debug_info_for_null_check_here(info);
 733   }
 734 
 735   switch (type) {
 736     case T_OBJECT:  // fall through
 737     case T_ARRAY:
 738       if (UseCompressedOops && !wide) {
 739         __ ldr_u32(dest->as_register(), as_Address(addr));
 740       } else {
 741         __ ldr(dest->as_register(), as_Address(addr));
 742       }
 743       break;
 744 
 745     case T_ADDRESS:
 746       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
 747         __ ldr_u32(dest->as_pointer_register(), as_Address(addr));
 748       } else {
 749         __ ldr(dest->as_pointer_register(), as_Address(addr));
 750       }
 751       break;
 752 
 753     case T_INT:
 754 #ifdef __SOFTFP__
 755     case T_FLOAT:
 756 #endif // __SOFTFP__
 757       __ ldr(dest->as_pointer_register(), as_Address(addr));
 758       break;
 759 
 760     case T_BOOLEAN:
 761       __ ldrb(dest->as_register(), as_Address(addr));
 762       break;
 763 
 764     case T_BYTE:
 765       __ ldrsb(dest->as_register(), as_Address(addr));
 766       break;
 767 
 768     case T_CHAR:
 769       __ ldrh(dest->as_register(), as_Address(addr));
 770       break;
 771 
 772     case T_SHORT:
 773       __ ldrsh(dest->as_register(), as_Address(addr));
 774       break;
 775 
 776 
 777 #ifdef __SOFTFP__
 778     case T_DOUBLE:
 779 #endif // __SOFTFP__
 780     case T_LONG: {
 781       Register to_lo = dest->as_register_lo();
 782       Register to_hi = dest->as_register_hi();
 783       if (addr->index()->is_register()) {
 784         assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 785         assert(addr->disp() == 0, "Not yet supporting both");
 786         __ add(Rtemp, base_reg, addr->index()->as_register());
 787         base_reg = Rtemp;
 788         __ ldr(to_lo, Address(Rtemp));
 789         if (patch != NULL) {
 790           patching_epilog(patch, lir_patch_low, base_reg, info);
 791           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 792           patch_code = lir_patch_high;
 793         }
 794         __ ldr(to_hi, Address(Rtemp, BytesPerWord));
 795       } else if (base_reg == to_lo) {
 796         __ ldr(to_hi, as_Address_hi(addr));
 797         if (patch != NULL) {
 798           patching_epilog(patch, lir_patch_high, base_reg, info);
 799           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 800           patch_code = lir_patch_low;
 801         }
 802         __ ldr(to_lo, as_Address_lo(addr));
 803       } else {
 804         __ ldr(to_lo, as_Address_lo(addr));
 805         if (patch != NULL) {
 806           patching_epilog(patch, lir_patch_low, base_reg, info);
 807           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 808           patch_code = lir_patch_high;
 809         }
 810         __ ldr(to_hi, as_Address_hi(addr));
 811       }
 812       break;
 813     }
 814 
 815 #ifndef __SOFTFP__
 816     case T_FLOAT:
 817       if (addr->index()->is_register()) {
 818         assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 819         __ add(Rtemp, base_reg, addr->index()->as_register());
 820         if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 821         __ flds(dest->as_float_reg(), Address(Rtemp, addr->disp()));
 822       } else {
 823         __ flds(dest->as_float_reg(), as_Address(addr));
 824       }
 825       break;
 826 
 827     case T_DOUBLE:
 828       if (addr->index()->is_register()) {
 829         assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 830         __ add(Rtemp, base_reg, addr->index()->as_register());
 831         if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 832         __ fldd(dest->as_double_reg(), Address(Rtemp, addr->disp()));
 833       } else {
 834         __ fldd(dest->as_double_reg(), as_Address(addr));
 835       }
 836       break;
 837 #endif // __SOFTFP__
 838 
 839 
 840     default:
 841       ShouldNotReachHere();
 842   }
 843 
 844   if (patch != NULL) {
 845     // Offset embeedded into LDR/STR instruction may appear not enough
 846     // to address a field. So, provide a space for one more instruction
 847     // that will deal with larger offsets.
 848     __ nop();
 849     patching_epilog(patch, patch_code, base_reg, info);
 850   }
 851 
 852 }
 853 
 854 
 855 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 856   bool is_32 = op->result_opr()->is_single_cpu();
 857 
 858   if (op->code() == lir_idiv && op->in_opr2()->is_constant() && is_32) {
 859     int c = op->in_opr2()->as_constant_ptr()->as_jint();
 860     assert(is_power_of_2(c), "non power-of-2 constant should be put in a register");
 861 
 862     Register left = op->in_opr1()->as_register();
 863     Register dest = op->result_opr()->as_register();
 864     if (c == 1) {
 865       __ mov(dest, left);
 866     } else if (c == 2) {
 867       __ add_32(dest, left, AsmOperand(left, lsr, 31));
 868       __ asr_32(dest, dest, 1);
 869     } else if (c != (int) 0x80000000) {
 870       int power = log2_intptr(c);
 871       __ asr_32(Rtemp, left, 31);
 872       __ add_32(dest, left, AsmOperand(Rtemp, lsr, 32-power)); // dest = left + (left < 0 ? 2^power - 1 : 0);
 873       __ asr_32(dest, dest, power);                            // dest = dest >>> power;
 874     } else {
 875       // x/0x80000000 is a special case, since dividend is a power of two, but is negative.
 876       // The only possible result values are 0 and 1, with 1 only for dividend == divisor == 0x80000000.
 877       __ cmp_32(left, c);
 878       __ mov(dest, 0, ne);
 879       __ mov(dest, 1, eq);
 880     }
 881   } else {
 882     assert(op->code() == lir_idiv || op->code() == lir_irem, "unexpected op3");
 883     __ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::runtime_call_type);
 884     add_debug_info_for_div0_here(op->info());
 885   }
 886 }
 887 
 888 
 889 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 890 #ifdef ASSERT
 891   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 892   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 893   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 894   assert(op->info() == NULL, "CodeEmitInfo?");
 895 #endif // ASSERT
 896 
 897 #ifdef __SOFTFP__
 898   assert (op->code() != lir_cond_float_branch, "this should be impossible");
 899 #else
 900   if (op->code() == lir_cond_float_branch) {
 901     __ fmstat();
 902     __ b(*(op->ublock()->label()), vs);
 903   }
 904 #endif // __SOFTFP__
 905 
 906   AsmCondition acond = al;
 907   switch (op->cond()) {
 908     case lir_cond_equal:        acond = eq; break;
 909     case lir_cond_notEqual:     acond = ne; break;
 910     case lir_cond_less:         acond = lt; break;
 911     case lir_cond_lessEqual:    acond = le; break;
 912     case lir_cond_greaterEqual: acond = ge; break;
 913     case lir_cond_greater:      acond = gt; break;
 914     case lir_cond_aboveEqual:   acond = hs; break;
 915     case lir_cond_belowEqual:   acond = ls; break;
 916     default: assert(op->cond() == lir_cond_always, "must be");
 917   }
 918   __ b(*(op->label()), acond);
 919 }
 920 
 921 
 922 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 923   LIR_Opr src  = op->in_opr();
 924   LIR_Opr dest = op->result_opr();
 925 
 926   switch (op->bytecode()) {
 927     case Bytecodes::_i2l:
 928       move_regs(src->as_register(), dest->as_register_lo());
 929       __ mov(dest->as_register_hi(), AsmOperand(src->as_register(), asr, 31));
 930       break;
 931     case Bytecodes::_l2i:
 932       move_regs(src->as_register_lo(), dest->as_register());
 933       break;
 934     case Bytecodes::_i2b:
 935       __ sign_extend(dest->as_register(), src->as_register(), 8);
 936       break;
 937     case Bytecodes::_i2s:
 938       __ sign_extend(dest->as_register(), src->as_register(), 16);
 939       break;
 940     case Bytecodes::_i2c:
 941       __ zero_extend(dest->as_register(), src->as_register(), 16);
 942       break;
 943     case Bytecodes::_f2d:
 944       __ convert_f2d(dest->as_double_reg(), src->as_float_reg());
 945       break;
 946     case Bytecodes::_d2f:
 947       __ convert_d2f(dest->as_float_reg(), src->as_double_reg());
 948       break;
 949     case Bytecodes::_i2f:
 950       __ fmsr(Stemp, src->as_register());
 951       __ fsitos(dest->as_float_reg(), Stemp);
 952       break;
 953     case Bytecodes::_i2d:
 954       __ fmsr(Stemp, src->as_register());
 955       __ fsitod(dest->as_double_reg(), Stemp);
 956       break;
 957     case Bytecodes::_f2i:
 958       __ ftosizs(Stemp, src->as_float_reg());
 959       __ fmrs(dest->as_register(), Stemp);
 960       break;
 961     case Bytecodes::_d2i:
 962       __ ftosizd(Stemp, src->as_double_reg());
 963       __ fmrs(dest->as_register(), Stemp);
 964       break;
 965     default:
 966       ShouldNotReachHere();
 967   }
 968 }
 969 
 970 
 971 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
 972   if (op->init_check()) {
 973     Register tmp = op->tmp1()->as_register();
 974     __ ldrb(tmp, Address(op->klass()->as_register(), InstanceKlass::init_state_offset()));
 975     add_debug_info_for_null_check_here(op->stub()->info());
 976     __ cmp(tmp, InstanceKlass::fully_initialized);
 977     __ b(*op->stub()->entry(), ne);
 978   }
 979   __ allocate_object(op->obj()->as_register(),
 980                      op->tmp1()->as_register(),
 981                      op->tmp2()->as_register(),
 982                      op->tmp3()->as_register(),
 983                      op->header_size(),
 984                      op->object_size(),
 985                      op->klass()->as_register(),
 986                      *op->stub()->entry());
 987   __ bind(*op->stub()->continuation());
 988 }
 989 
 990 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
 991   if (UseSlowPath ||
 992       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
 993       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
 994     __ b(*op->stub()->entry());
 995   } else {
 996     __ allocate_array(op->obj()->as_register(),
 997                       op->len()->as_register(),
 998                       op->tmp1()->as_register(),
 999                       op->tmp2()->as_register(),
1000                       op->tmp3()->as_register(),
1001                       arrayOopDesc::header_size(op->type()),
1002                       type2aelembytes(op->type()),
1003                       op->klass()->as_register(),
1004                       *op->stub()->entry());
1005   }
1006   __ bind(*op->stub()->continuation());
1007 }
1008 
1009 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
1010                                         ciMethodData *md, ciProfileData *data,
1011                                         Register recv, Register tmp1, Label* update_done) {
1012   assert_different_registers(mdo, recv, tmp1);
1013   uint i;
1014   for (i = 0; i < VirtualCallData::row_limit(); i++) {
1015     Label next_test;
1016     // See if the receiver is receiver[n].
1017     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
1018                           mdo_offset_bias);
1019     __ ldr(tmp1, receiver_addr);
1020     __ verify_klass_ptr(tmp1);
1021     __ cmp(recv, tmp1);
1022     __ b(next_test, ne);
1023     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
1024                       mdo_offset_bias);
1025     __ ldr(tmp1, data_addr);
1026     __ add(tmp1, tmp1, DataLayout::counter_increment);
1027     __ str(tmp1, data_addr);
1028     __ b(*update_done);
1029     __ bind(next_test);
1030   }
1031 
1032   // Didn't find receiver; find next empty slot and fill it in
1033   for (i = 0; i < VirtualCallData::row_limit(); i++) {
1034     Label next_test;
1035     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
1036                       mdo_offset_bias);
1037     __ ldr(tmp1, recv_addr);
1038     __ cbnz(tmp1, next_test);
1039     __ str(recv, recv_addr);
1040     __ mov(tmp1, DataLayout::counter_increment);
1041     __ str(tmp1, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
1042                          mdo_offset_bias));
1043     __ b(*update_done);
1044     __ bind(next_test);
1045   }
1046 }
1047 
1048 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
1049                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
1050   md = method->method_data_or_null();
1051   assert(md != NULL, "Sanity");
1052   data = md->bci_to_data(bci);
1053   assert(data != NULL,       "need data for checkcast");
1054   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1055   if (md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes() >= 4096) {
1056     // The offset is large so bias the mdo by the base of the slot so
1057     // that the ldr can use an immediate offset to reference the slots of the data
1058     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
1059   }
1060 }
1061 
1062 // On 32-bit ARM, code before this helper should test obj for null (ZF should be set if obj is null).
1063 void LIR_Assembler::typecheck_profile_helper1(ciMethod* method, int bci,
1064                                               ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias,
1065                                               Register obj, Register mdo, Register data_val, Label* obj_is_null) {
1066   assert(method != NULL, "Should have method");
1067   assert_different_registers(obj, mdo, data_val);
1068   setup_md_access(method, bci, md, data, mdo_offset_bias);
1069   Label not_null;
1070   __ b(not_null, ne);
1071   __ mov_metadata(mdo, md->constant_encoding());
1072   if (mdo_offset_bias > 0) {
1073     __ mov_slow(data_val, mdo_offset_bias);
1074     __ add(mdo, mdo, data_val);
1075   }
1076   Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
1077   __ ldrb(data_val, flags_addr);
1078   __ orr(data_val, data_val, (uint)BitData::null_seen_byte_constant());
1079   __ strb(data_val, flags_addr);
1080   __ b(*obj_is_null);
1081   __ bind(not_null);
1082 }
1083 
1084 void LIR_Assembler::typecheck_profile_helper2(ciMethodData* md, ciProfileData* data, int mdo_offset_bias,
1085                                               Register mdo, Register recv, Register value, Register tmp1,
1086                                               Label* profile_cast_success, Label* profile_cast_failure,
1087                                               Label* success, Label* failure) {
1088   assert_different_registers(mdo, value, tmp1);
1089   __ bind(*profile_cast_success);
1090   __ mov_metadata(mdo, md->constant_encoding());
1091   if (mdo_offset_bias > 0) {
1092     __ mov_slow(tmp1, mdo_offset_bias);
1093     __ add(mdo, mdo, tmp1);
1094   }
1095   __ load_klass(recv, value);
1096   type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
1097   __ b(*success);
1098   // Cast failure case
1099   __ bind(*profile_cast_failure);
1100   __ mov_metadata(mdo, md->constant_encoding());
1101   if (mdo_offset_bias > 0) {
1102     __ mov_slow(tmp1, mdo_offset_bias);
1103     __ add(mdo, mdo, tmp1);
1104   }
1105   Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
1106   __ ldr(tmp1, data_addr);
1107   __ sub(tmp1, tmp1, DataLayout::counter_increment);
1108   __ str(tmp1, data_addr);
1109   __ b(*failure);
1110 }
1111 
1112 // Sets `res` to true, if `cond` holds.
1113 static void set_instanceof_result(MacroAssembler* _masm, Register res, AsmCondition cond) {
1114   __ mov(res, 1, cond);
1115 }
1116 
1117 
1118 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1119   // TODO: ARM - can be more effective with one more register
1120   switch (op->code()) {
1121     case lir_store_check: {
1122       CodeStub* stub = op->stub();
1123       Register value = op->object()->as_register();
1124       Register array = op->array()->as_register();
1125       Register klass_RInfo = op->tmp1()->as_register();
1126       Register k_RInfo = op->tmp2()->as_register();
1127       assert_different_registers(klass_RInfo, k_RInfo, Rtemp);
1128       if (op->should_profile()) {
1129         assert_different_registers(value, klass_RInfo, k_RInfo, Rtemp);
1130       }
1131 
1132       // check if it needs to be profiled
1133       ciMethodData* md;
1134       ciProfileData* data;
1135       int mdo_offset_bias = 0;
1136       Label profile_cast_success, profile_cast_failure, done;
1137       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1138       Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1139 
1140       if (op->should_profile()) {
1141         __ cmp(value, 0);
1142         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, value, k_RInfo, Rtemp, &done);
1143       } else {
1144         __ cbz(value, done);
1145       }
1146       assert_different_registers(k_RInfo, value);
1147       add_debug_info_for_null_check_here(op->info_for_exception());
1148       __ load_klass(k_RInfo, array);
1149       __ load_klass(klass_RInfo, value);
1150       __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1151       __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1152       // check for immediate positive hit
1153       __ ldr(Rtemp, Address(klass_RInfo, Rtemp));
1154       __ cmp(klass_RInfo, k_RInfo);
1155       __ cond_cmp(Rtemp, k_RInfo, ne);
1156       __ b(*success_target, eq);
1157       // check for immediate negative hit
1158       __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1159       __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1160       __ b(*failure_target, ne);
1161       // slow case
1162       assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1163       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1164       __ cbz(R0, *failure_target);
1165       if (op->should_profile()) {
1166         Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
1167         if (mdo == value) {
1168           mdo = k_RInfo;
1169           recv = klass_RInfo;
1170         }
1171         typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, value, tmp1,
1172                                   &profile_cast_success, &profile_cast_failure,
1173                                   &done, stub->entry());
1174       }
1175       __ bind(done);
1176       break;
1177     }
1178 
1179     case lir_checkcast: {
1180       CodeStub* stub = op->stub();
1181       Register obj = op->object()->as_register();
1182       Register res = op->result_opr()->as_register();
1183       Register klass_RInfo = op->tmp1()->as_register();
1184       Register k_RInfo = op->tmp2()->as_register();
1185       ciKlass* k = op->klass();
1186       assert_different_registers(res, k_RInfo, klass_RInfo, Rtemp);
1187 
1188       if (stub->is_simple_exception_stub()) {
1189       // TODO: ARM - Late binding is used to prevent confusion of register allocator
1190       assert(stub->is_exception_throw_stub(), "must be");
1191       ((SimpleExceptionStub*)stub)->set_obj(op->result_opr());
1192       }
1193       ciMethodData* md;
1194       ciProfileData* data;
1195       int mdo_offset_bias = 0;
1196 
1197       Label done;
1198 
1199       Label profile_cast_failure, profile_cast_success;
1200       Label *failure_target = op->should_profile() ? &profile_cast_failure : op->stub()->entry();
1201       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1202 
1203 
1204       __ movs(res, obj);
1205       if (op->should_profile()) {
1206         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
1207       } else {
1208         __ b(done, eq);
1209       }
1210       if (k->is_loaded()) {
1211         __ mov_metadata(k_RInfo, k->constant_encoding());
1212       } else if (k_RInfo != obj) {
1213         klass2reg_with_patching(k_RInfo, op->info_for_patch());
1214         __ movs(res, obj);
1215       } else {
1216         // Patching doesn't update "res" register after GC, so do patching first
1217         klass2reg_with_patching(Rtemp, op->info_for_patch());
1218         __ movs(res, obj);
1219         __ mov(k_RInfo, Rtemp);
1220       }
1221       __ load_klass(klass_RInfo, res, ne);
1222 
1223       if (op->fast_check()) {
1224         __ cmp(klass_RInfo, k_RInfo, ne);
1225         __ b(*failure_target, ne);
1226       } else if (k->is_loaded()) {
1227         __ b(*success_target, eq);
1228         __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset()));
1229         if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) {
1230           __ cmp(Rtemp, k_RInfo);
1231           __ b(*failure_target, ne);
1232         } else {
1233           __ cmp(klass_RInfo, k_RInfo);
1234           __ cmp(Rtemp, k_RInfo, ne);
1235           __ b(*success_target, eq);
1236           assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1237           __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1238           __ cbz(R0, *failure_target);
1239         }
1240       } else {
1241         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1242         __ b(*success_target, eq);
1243         // check for immediate positive hit
1244         __ ldr(Rtemp, Address(klass_RInfo, Rtemp));
1245         __ cmp(klass_RInfo, k_RInfo);
1246         __ cmp(Rtemp, k_RInfo, ne);
1247         __ b(*success_target, eq);
1248         // check for immediate negative hit
1249         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1250         __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1251         __ b(*failure_target, ne);
1252         // slow case
1253         assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1254         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1255         __ cbz(R0, *failure_target);
1256       }
1257 
1258       if (op->should_profile()) {
1259         Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
1260         typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1,
1261                                   &profile_cast_success, &profile_cast_failure,
1262                                   &done, stub->entry());
1263       }
1264       __ bind(done);
1265       break;
1266     }
1267 
1268     case lir_instanceof: {
1269       Register obj = op->object()->as_register();
1270       Register res = op->result_opr()->as_register();
1271       Register klass_RInfo = op->tmp1()->as_register();
1272       Register k_RInfo = op->tmp2()->as_register();
1273       ciKlass* k = op->klass();
1274       assert_different_registers(res, klass_RInfo, k_RInfo, Rtemp);
1275 
1276       ciMethodData* md;
1277       ciProfileData* data;
1278       int mdo_offset_bias = 0;
1279 
1280       Label done;
1281 
1282       Label profile_cast_failure, profile_cast_success;
1283       Label *failure_target = op->should_profile() ? &profile_cast_failure : &done;
1284       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1285 
1286       __ movs(res, obj);
1287 
1288       if (op->should_profile()) {
1289         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
1290       } else {
1291         __ b(done, eq);
1292       }
1293 
1294       if (k->is_loaded()) {
1295         __ mov_metadata(k_RInfo, k->constant_encoding());
1296       } else {
1297         op->info_for_patch()->add_register_oop(FrameMap::as_oop_opr(res));
1298         klass2reg_with_patching(k_RInfo, op->info_for_patch());
1299       }
1300       __ load_klass(klass_RInfo, res);
1301 
1302       if (!op->should_profile()) {
1303         __ mov(res, 0);
1304       }
1305 
1306       if (op->fast_check()) {
1307         __ cmp(klass_RInfo, k_RInfo);
1308         if (!op->should_profile()) {
1309           set_instanceof_result(_masm, res, eq);
1310         } else {
1311           __ b(profile_cast_failure, ne);
1312         }
1313       } else if (k->is_loaded()) {
1314         __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset()));
1315         if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) {
1316           __ cmp(Rtemp, k_RInfo);
1317           if (!op->should_profile()) {
1318             set_instanceof_result(_masm, res, eq);
1319           } else {
1320             __ b(profile_cast_failure, ne);
1321           }
1322         } else {
1323           __ cmp(klass_RInfo, k_RInfo);
1324           __ cond_cmp(Rtemp, k_RInfo, ne);
1325           if (!op->should_profile()) {
1326             set_instanceof_result(_masm, res, eq);
1327           }
1328           __ b(*success_target, eq);
1329           assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1330           __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1331           if (!op->should_profile()) {
1332             move_regs(R0, res);
1333           } else {
1334             __ cbz(R0, *failure_target);
1335           }
1336         }
1337       } else {
1338         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1339         // check for immediate positive hit
1340         __ cmp(klass_RInfo, k_RInfo);
1341         if (!op->should_profile()) {
1342           __ ldr(res, Address(klass_RInfo, Rtemp), ne);
1343           __ cond_cmp(res, k_RInfo, ne);
1344           set_instanceof_result(_masm, res, eq);
1345         } else {
1346           __ ldr(Rtemp, Address(klass_RInfo, Rtemp), ne);
1347           __ cond_cmp(Rtemp, k_RInfo, ne);
1348         }
1349         __ b(*success_target, eq);
1350         // check for immediate negative hit
1351         if (op->should_profile()) {
1352           __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1353         }
1354         __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1355         if (!op->should_profile()) {
1356           __ mov(res, 0, ne);
1357         }
1358         __ b(*failure_target, ne);
1359         // slow case
1360         assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1361         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1362         if (!op->should_profile()) {
1363           move_regs(R0, res);
1364         }
1365         if (op->should_profile()) {
1366           __ cbz(R0, *failure_target);
1367         }
1368       }
1369 
1370       if (op->should_profile()) {
1371         Label done_ok, done_failure;
1372         Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
1373         typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1,
1374                                   &profile_cast_success, &profile_cast_failure,
1375                                   &done_ok, &done_failure);
1376         __ bind(done_failure);
1377         __ mov(res, 0);
1378         __ b(done);
1379         __ bind(done_ok);
1380         __ mov(res, 1);
1381       }
1382       __ bind(done);
1383       break;
1384     }
1385     default:
1386       ShouldNotReachHere();
1387   }
1388 }
1389 
1390 
1391 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1392   //   if (*addr == cmpval) {
1393   //     *addr = newval;
1394   //     dest = 1;
1395   //   } else {
1396   //     dest = 0;
1397   //   }
1398   // FIXME: membar_release
1399   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
1400   Register addr = op->addr()->is_register() ?
1401     op->addr()->as_pointer_register() :
1402     op->addr()->as_address_ptr()->base()->as_pointer_register();
1403   assert(op->addr()->is_register() || op->addr()->as_address_ptr()->disp() == 0, "unexpected disp");
1404   assert(op->addr()->is_register() || op->addr()->as_address_ptr()->index() == LIR_OprDesc::illegalOpr(), "unexpected index");
1405   if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
1406     Register cmpval = op->cmp_value()->as_register();
1407     Register newval = op->new_value()->as_register();
1408     Register dest = op->result_opr()->as_register();
1409     assert_different_registers(dest, addr, cmpval, newval, Rtemp);
1410 
1411     __ atomic_cas_bool(cmpval, newval, addr, 0, Rtemp); // Rtemp free by default at C1 LIR layer
1412     __ mov(dest, 1, eq);
1413     __ mov(dest, 0, ne);
1414   } else if (op->code() == lir_cas_long) {
1415     assert(VM_Version::supports_cx8(), "wrong machine");
1416     Register cmp_value_lo = op->cmp_value()->as_register_lo();
1417     Register cmp_value_hi = op->cmp_value()->as_register_hi();
1418     Register new_value_lo = op->new_value()->as_register_lo();
1419     Register new_value_hi = op->new_value()->as_register_hi();
1420     Register dest = op->result_opr()->as_register();
1421     Register tmp_lo = op->tmp1()->as_register_lo();
1422     Register tmp_hi = op->tmp1()->as_register_hi();
1423 
1424     assert_different_registers(tmp_lo, tmp_hi, cmp_value_lo, cmp_value_hi, dest, new_value_lo, new_value_hi, addr);
1425     assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair");
1426     assert(new_value_hi->encoding() == new_value_lo->encoding() + 1, "non aligned register pair");
1427     assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair");
1428     assert((new_value_lo->encoding() & 0x1) == 0, "misaligned register pair");
1429     __ atomic_cas64(tmp_lo, tmp_hi, dest, cmp_value_lo, cmp_value_hi,
1430                     new_value_lo, new_value_hi, addr, 0);
1431   } else {
1432     Unimplemented();
1433   }
1434   // FIXME: is full membar really needed instead of just membar_acquire?
1435   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
1436 }
1437 
1438 
1439 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1440   AsmCondition acond = al;
1441   AsmCondition ncond = nv;
1442   if (opr1 != opr2) {
1443     switch (condition) {
1444       case lir_cond_equal:        acond = eq; ncond = ne; break;
1445       case lir_cond_notEqual:     acond = ne; ncond = eq; break;
1446       case lir_cond_less:         acond = lt; ncond = ge; break;
1447       case lir_cond_lessEqual:    acond = le; ncond = gt; break;
1448       case lir_cond_greaterEqual: acond = ge; ncond = lt; break;
1449       case lir_cond_greater:      acond = gt; ncond = le; break;
1450       case lir_cond_aboveEqual:   acond = hs; ncond = lo; break;
1451       case lir_cond_belowEqual:   acond = ls; ncond = hi; break;
1452       default: ShouldNotReachHere();
1453     }
1454   }
1455 
1456   for (;;) {                         // two iterations only
1457     if (opr1 == result) {
1458       // do nothing
1459     } else if (opr1->is_single_cpu()) {
1460       __ mov(result->as_register(), opr1->as_register(), acond);
1461     } else if (opr1->is_double_cpu()) {
1462       __ long_move(result->as_register_lo(), result->as_register_hi(),
1463                    opr1->as_register_lo(), opr1->as_register_hi(), acond);
1464     } else if (opr1->is_single_stack()) {
1465       __ ldr(result->as_register(), frame_map()->address_for_slot(opr1->single_stack_ix()), acond);
1466     } else if (opr1->is_double_stack()) {
1467       __ ldr(result->as_register_lo(),
1468              frame_map()->address_for_slot(opr1->double_stack_ix(), lo_word_offset_in_bytes), acond);
1469       __ ldr(result->as_register_hi(),
1470              frame_map()->address_for_slot(opr1->double_stack_ix(), hi_word_offset_in_bytes), acond);
1471     } else if (opr1->is_illegal()) {
1472       // do nothing: this part of the cmove has been optimized away in the peephole optimizer
1473     } else {
1474       assert(opr1->is_constant(), "must be");
1475       LIR_Const* c = opr1->as_constant_ptr();
1476 
1477       switch (c->type()) {
1478         case T_INT:
1479           __ mov_slow(result->as_register(), c->as_jint(), acond);
1480           break;
1481         case T_LONG:
1482           __ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond);
1483           __ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond);
1484           break;
1485         case T_OBJECT:
1486           __ mov_oop(result->as_register(), c->as_jobject(), 0, acond);
1487           break;
1488         case T_FLOAT:
1489 #ifdef __SOFTFP__
1490           // not generated now.
1491           __ mov_slow(result->as_register(), c->as_jint(), acond);
1492 #else
1493           __ mov_float(result->as_float_reg(), c->as_jfloat(), acond);
1494 #endif // __SOFTFP__
1495           break;
1496         case T_DOUBLE:
1497 #ifdef __SOFTFP__
1498           // not generated now.
1499           __ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond);
1500           __ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond);
1501 #else
1502           __ mov_double(result->as_double_reg(), c->as_jdouble(), acond);
1503 #endif // __SOFTFP__
1504           break;
1505         default:
1506           ShouldNotReachHere();
1507       }
1508     }
1509 
1510     // Negate the condition and repeat the algorithm with the second operand
1511     if (opr1 == opr2) { break; }
1512     opr1 = opr2;
1513     acond = ncond;
1514   }
1515 }
1516 
1517 #ifdef ASSERT
1518 static int reg_size(LIR_Opr op) {
1519   switch (op->type()) {
1520   case T_FLOAT:
1521   case T_INT:      return BytesPerInt;
1522   case T_LONG:
1523   case T_DOUBLE:   return BytesPerLong;
1524   case T_OBJECT:
1525   case T_ARRAY:
1526   case T_METADATA: return BytesPerWord;
1527   case T_ADDRESS:
1528   case T_ILLEGAL:  // fall through
1529   default: ShouldNotReachHere(); return -1;
1530   }
1531 }
1532 #endif
1533 
1534 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1535   assert(info == NULL, "unused on this code path");
1536   assert(dest->is_register(), "wrong items state");
1537 
1538   if (right->is_address()) {
1539     // special case for adding shifted/extended register
1540     const Register res = dest->as_pointer_register();
1541     const Register lreg = left->as_pointer_register();
1542     const LIR_Address* addr = right->as_address_ptr();
1543 
1544     assert(addr->base()->as_pointer_register() == lreg && addr->index()->is_register() && addr->disp() == 0, "must be");
1545 
1546     int scale = addr->scale();
1547     AsmShift shift = lsl;
1548 
1549 
1550     assert(reg_size(addr->base()) == reg_size(addr->index()), "should be");
1551     assert(reg_size(addr->base()) == reg_size(dest), "should be");
1552     assert(reg_size(dest) == wordSize, "should be");
1553 
1554     AsmOperand operand(addr->index()->as_pointer_register(), shift, scale);
1555     switch (code) {
1556       case lir_add: __ add(res, lreg, operand); break;
1557       case lir_sub: __ sub(res, lreg, operand); break;
1558       default: ShouldNotReachHere();
1559     }
1560 
1561   } else if (left->is_address()) {
1562     assert(code == lir_sub && right->is_single_cpu(), "special case used by strength_reduce_multiply()");
1563     const LIR_Address* addr = left->as_address_ptr();
1564     const Register res = dest->as_register();
1565     const Register rreg = right->as_register();
1566     assert(addr->base()->as_register() == rreg && addr->index()->is_register() && addr->disp() == 0, "must be");
1567     __ rsb(res, rreg, AsmOperand(addr->index()->as_register(), lsl, addr->scale()));
1568 
1569   } else if (dest->is_single_cpu()) {
1570     assert(left->is_single_cpu(), "unexpected left operand");
1571 
1572     const Register res = dest->as_register();
1573     const Register lreg = left->as_register();
1574 
1575     if (right->is_single_cpu()) {
1576       const Register rreg = right->as_register();
1577       switch (code) {
1578         case lir_add: __ add_32(res, lreg, rreg); break;
1579         case lir_sub: __ sub_32(res, lreg, rreg); break;
1580         case lir_mul: __ mul_32(res, lreg, rreg); break;
1581         default: ShouldNotReachHere();
1582       }
1583     } else {
1584       assert(right->is_constant(), "must be");
1585       const jint c = right->as_constant_ptr()->as_jint();
1586       if (!Assembler::is_arith_imm_in_range(c)) {
1587         BAILOUT("illegal arithmetic operand");
1588       }
1589       switch (code) {
1590         case lir_add: __ add_32(res, lreg, c); break;
1591         case lir_sub: __ sub_32(res, lreg, c); break;
1592         default: ShouldNotReachHere();
1593       }
1594     }
1595 
1596   } else if (dest->is_double_cpu()) {
1597     Register res_lo = dest->as_register_lo();
1598     Register res_hi = dest->as_register_hi();
1599     Register lreg_lo = left->as_register_lo();
1600     Register lreg_hi = left->as_register_hi();
1601     if (right->is_double_cpu()) {
1602       Register rreg_lo = right->as_register_lo();
1603       Register rreg_hi = right->as_register_hi();
1604       if (res_lo == lreg_hi || res_lo == rreg_hi) {
1605         res_lo = Rtemp;
1606       }
1607       switch (code) {
1608         case lir_add:
1609           __ adds(res_lo, lreg_lo, rreg_lo);
1610           __ adc(res_hi, lreg_hi, rreg_hi);
1611           break;
1612         case lir_sub:
1613           __ subs(res_lo, lreg_lo, rreg_lo);
1614           __ sbc(res_hi, lreg_hi, rreg_hi);
1615           break;
1616         default:
1617           ShouldNotReachHere();
1618       }
1619     } else {
1620       assert(right->is_constant(), "must be");
1621       assert((right->as_constant_ptr()->as_jlong() >> 32) == 0, "out of range");
1622       const jint c = (jint) right->as_constant_ptr()->as_jlong();
1623       if (res_lo == lreg_hi) {
1624         res_lo = Rtemp;
1625       }
1626       switch (code) {
1627         case lir_add:
1628           __ adds(res_lo, lreg_lo, c);
1629           __ adc(res_hi, lreg_hi, 0);
1630           break;
1631         case lir_sub:
1632           __ subs(res_lo, lreg_lo, c);
1633           __ sbc(res_hi, lreg_hi, 0);
1634           break;
1635         default:
1636           ShouldNotReachHere();
1637       }
1638     }
1639     move_regs(res_lo, dest->as_register_lo());
1640 
1641   } else if (dest->is_single_fpu()) {
1642     assert(left->is_single_fpu(), "must be");
1643     assert(right->is_single_fpu(), "must be");
1644     const FloatRegister res = dest->as_float_reg();
1645     const FloatRegister lreg = left->as_float_reg();
1646     const FloatRegister rreg = right->as_float_reg();
1647     switch (code) {
1648       case lir_add: __ add_float(res, lreg, rreg); break;
1649       case lir_sub: __ sub_float(res, lreg, rreg); break;
1650       case lir_mul_strictfp: // fall through
1651       case lir_mul: __ mul_float(res, lreg, rreg); break;
1652       case lir_div_strictfp: // fall through
1653       case lir_div: __ div_float(res, lreg, rreg); break;
1654       default: ShouldNotReachHere();
1655     }
1656   } else if (dest->is_double_fpu()) {
1657     assert(left->is_double_fpu(), "must be");
1658     assert(right->is_double_fpu(), "must be");
1659     const FloatRegister res = dest->as_double_reg();
1660     const FloatRegister lreg = left->as_double_reg();
1661     const FloatRegister rreg = right->as_double_reg();
1662     switch (code) {
1663       case lir_add: __ add_double(res, lreg, rreg); break;
1664       case lir_sub: __ sub_double(res, lreg, rreg); break;
1665       case lir_mul_strictfp: // fall through
1666       case lir_mul: __ mul_double(res, lreg, rreg); break;
1667       case lir_div_strictfp: // fall through
1668       case lir_div: __ div_double(res, lreg, rreg); break;
1669       default: ShouldNotReachHere();
1670     }
1671   } else {
1672     ShouldNotReachHere();
1673   }
1674 }
1675 
1676 
1677 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
1678   switch (code) {
1679     case lir_abs:
1680       __ abs_double(dest->as_double_reg(), value->as_double_reg());
1681       break;
1682     case lir_sqrt:
1683       __ sqrt_double(dest->as_double_reg(), value->as_double_reg());
1684       break;
1685     default:
1686       ShouldNotReachHere();
1687   }
1688 }
1689 
1690 
1691 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1692   assert(dest->is_register(), "wrong items state");
1693   assert(left->is_register(), "wrong items state");
1694 
1695   if (dest->is_single_cpu()) {
1696 
1697     const Register res = dest->as_register();
1698     const Register lreg = left->as_register();
1699 
1700     if (right->is_single_cpu()) {
1701       const Register rreg = right->as_register();
1702       switch (code) {
1703         case lir_logic_and: __ and_32(res, lreg, rreg); break;
1704         case lir_logic_or:  __ orr_32(res, lreg, rreg); break;
1705         case lir_logic_xor: __ eor_32(res, lreg, rreg); break;
1706         default: ShouldNotReachHere();
1707       }
1708     } else {
1709       assert(right->is_constant(), "must be");
1710       const uint c = (uint)right->as_constant_ptr()->as_jint();
1711       switch (code) {
1712         case lir_logic_and: __ and_32(res, lreg, c); break;
1713         case lir_logic_or:  __ orr_32(res, lreg, c); break;
1714         case lir_logic_xor: __ eor_32(res, lreg, c); break;
1715         default: ShouldNotReachHere();
1716       }
1717     }
1718   } else {
1719     assert(dest->is_double_cpu(), "should be");
1720     Register res_lo = dest->as_register_lo();
1721 
1722     assert (dest->type() == T_LONG, "unexpected result type");
1723     assert (left->type() == T_LONG, "unexpected left type");
1724     assert (right->type() == T_LONG, "unexpected right type");
1725 
1726     const Register res_hi = dest->as_register_hi();
1727     const Register lreg_lo = left->as_register_lo();
1728     const Register lreg_hi = left->as_register_hi();
1729 
1730     if (right->is_register()) {
1731       const Register rreg_lo = right->as_register_lo();
1732       const Register rreg_hi = right->as_register_hi();
1733       if (res_lo == lreg_hi || res_lo == rreg_hi) {
1734         res_lo = Rtemp; // Temp register helps to avoid overlap between result and input
1735       }
1736       switch (code) {
1737         case lir_logic_and:
1738           __ andr(res_lo, lreg_lo, rreg_lo);
1739           __ andr(res_hi, lreg_hi, rreg_hi);
1740           break;
1741         case lir_logic_or:
1742           __ orr(res_lo, lreg_lo, rreg_lo);
1743           __ orr(res_hi, lreg_hi, rreg_hi);
1744           break;
1745         case lir_logic_xor:
1746           __ eor(res_lo, lreg_lo, rreg_lo);
1747           __ eor(res_hi, lreg_hi, rreg_hi);
1748           break;
1749         default:
1750           ShouldNotReachHere();
1751       }
1752       move_regs(res_lo, dest->as_register_lo());
1753     } else {
1754       assert(right->is_constant(), "must be");
1755       const jint c_lo = (jint) right->as_constant_ptr()->as_jlong();
1756       const jint c_hi = (jint) (right->as_constant_ptr()->as_jlong() >> 32);
1757       // Case for logic_or from do_ClassIDIntrinsic()
1758       if (c_hi == 0 && AsmOperand::is_rotated_imm(c_lo)) {
1759         switch (code) {
1760           case lir_logic_and:
1761             __ andr(res_lo, lreg_lo, c_lo);
1762             __ mov(res_hi, 0);
1763             break;
1764           case lir_logic_or:
1765             __ orr(res_lo, lreg_lo, c_lo);
1766             break;
1767           case lir_logic_xor:
1768             __ eor(res_lo, lreg_lo, c_lo);
1769             break;
1770         default:
1771           ShouldNotReachHere();
1772         }
1773       } else if (code == lir_logic_and &&
1774                  c_hi == -1 &&
1775                  (AsmOperand::is_rotated_imm(c_lo) ||
1776                   AsmOperand::is_rotated_imm(~c_lo))) {
1777         // Another case which handles logic_and from do_ClassIDIntrinsic()
1778         if (AsmOperand::is_rotated_imm(c_lo)) {
1779           __ andr(res_lo, lreg_lo, c_lo);
1780         } else {
1781           __ bic(res_lo, lreg_lo, ~c_lo);
1782         }
1783         if (res_hi != lreg_hi) {
1784           __ mov(res_hi, lreg_hi);
1785         }
1786       } else {
1787         BAILOUT("64 bit constant cannot be inlined");
1788       }
1789     }
1790   }
1791 }
1792 
1793 
1794 
1795 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1796   if (opr1->is_single_cpu()) {
1797     if (opr2->is_constant()) {
1798       switch (opr2->as_constant_ptr()->type()) {
1799         case T_INT: {
1800           const jint c = opr2->as_constant_ptr()->as_jint();
1801           if (Assembler::is_arith_imm_in_range(c)) {
1802             __ cmp_32(opr1->as_register(), c);
1803           } else if (Assembler::is_arith_imm_in_range(-c)) {
1804             __ cmn_32(opr1->as_register(), -c);
1805           } else {
1806             // This can happen when compiling lookupswitch
1807             __ mov_slow(Rtemp, c);
1808             __ cmp_32(opr1->as_register(), Rtemp);
1809           }
1810           break;
1811         }
1812         case T_OBJECT:
1813           assert(opr2->as_constant_ptr()->as_jobject() == NULL, "cannot handle otherwise");
1814           __ cmp(opr1->as_register(), 0);
1815           break;
1816         default:
1817           ShouldNotReachHere();
1818       }
1819     } else if (opr2->is_single_cpu()) {
1820       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1821         assert(opr2->type() == T_OBJECT || opr2->type() == T_ARRAY, "incompatibe type");
1822         __ cmpoop(opr1->as_register(), opr2->as_register());
1823       } else if (opr1->type() == T_METADATA || opr1->type() == T_ADDRESS) {
1824         assert(opr2->type() == T_METADATA || opr2->type() == T_ADDRESS, "incompatibe type");
1825         __ cmp(opr1->as_register(), opr2->as_register());
1826       } else {
1827         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY && opr2->type() != T_METADATA && opr2->type() != T_ADDRESS, "incompatibe type");
1828         __ cmp_32(opr1->as_register(), opr2->as_register());
1829       }
1830     } else {
1831       ShouldNotReachHere();
1832     }
1833   } else if (opr1->is_double_cpu()) {
1834     Register xlo = opr1->as_register_lo();
1835     Register xhi = opr1->as_register_hi();
1836     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1837       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "cannot handle otherwise");
1838       __ orrs(Rtemp, xlo, xhi);
1839     } else if (opr2->is_register()) {
1840       Register ylo = opr2->as_register_lo();
1841       Register yhi = opr2->as_register_hi();
1842       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1843         __ teq(xhi, yhi);
1844         __ teq(xlo, ylo, eq);
1845       } else {
1846         __ subs(xlo, xlo, ylo);
1847         __ sbcs(xhi, xhi, yhi);
1848       }
1849     } else {
1850       ShouldNotReachHere();
1851     }
1852   } else if (opr1->is_single_fpu()) {
1853     if (opr2->is_constant()) {
1854       assert(opr2->as_jfloat() == 0.0f, "cannot handle otherwise");
1855       __ cmp_zero_float(opr1->as_float_reg());
1856     } else {
1857       __ cmp_float(opr1->as_float_reg(), opr2->as_float_reg());
1858     }
1859   } else if (opr1->is_double_fpu()) {
1860     if (opr2->is_constant()) {
1861       assert(opr2->as_jdouble() == 0.0, "cannot handle otherwise");
1862       __ cmp_zero_double(opr1->as_double_reg());
1863     } else {
1864       __ cmp_double(opr1->as_double_reg(), opr2->as_double_reg());
1865     }
1866   } else {
1867     ShouldNotReachHere();
1868   }
1869 }
1870 
1871 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
1872   const Register res = dst->as_register();
1873   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1874     comp_op(lir_cond_unknown, left, right, op);
1875     __ fmstat();
1876     if (code == lir_ucmp_fd2i) {  // unordered is less
1877       __ mvn(res, 0, lt);
1878       __ mov(res, 1, ge);
1879     } else {                      // unordered is greater
1880       __ mov(res, 1, cs);
1881       __ mvn(res, 0, cc);
1882     }
1883     __ mov(res, 0, eq);
1884 
1885   } else {
1886     assert(code == lir_cmp_l2i, "must be");
1887 
1888     Label done;
1889     const Register xlo = left->as_register_lo();
1890     const Register xhi = left->as_register_hi();
1891     const Register ylo = right->as_register_lo();
1892     const Register yhi = right->as_register_hi();
1893     __ cmp(xhi, yhi);
1894     __ mov(res, 1, gt);
1895     __ mvn(res, 0, lt);
1896     __ b(done, ne);
1897     __ subs(res, xlo, ylo);
1898     __ mov(res, 1, hi);
1899     __ mvn(res, 0, lo);
1900     __ bind(done);
1901   }
1902 }
1903 
1904 
1905 void LIR_Assembler::align_call(LIR_Code code) {
1906   // Not needed
1907 }
1908 
1909 
1910 void LIR_Assembler::call(LIR_OpJavaCall *op, relocInfo::relocType rtype) {
1911   int ret_addr_offset = __ patchable_call(op->addr(), rtype);
1912   assert(ret_addr_offset == __ offset(), "embedded return address not allowed");
1913   add_call_info_here(op->info());
1914 }
1915 
1916 
1917 void LIR_Assembler::ic_call(LIR_OpJavaCall *op) {
1918   bool near_range = __ cache_fully_reachable();
1919   address oop_address = pc();
1920 
1921   bool use_movw = VM_Version::supports_movw();
1922 
1923   // Ricklass may contain something that is not a metadata pointer so
1924   // mov_metadata can't be used
1925   InlinedAddress value((address)Universe::non_oop_word());
1926   InlinedAddress addr(op->addr());
1927   if (use_movw) {
1928     __ movw(Ricklass, ((unsigned int)Universe::non_oop_word()) & 0xffff);
1929     __ movt(Ricklass, ((unsigned int)Universe::non_oop_word()) >> 16);
1930   } else {
1931     // No movw/movt, must be load a pc relative value but no
1932     // relocation so no metadata table to load from.
1933     // Use a b instruction rather than a bl, inline constant after the
1934     // branch, use a PC relative ldr to load the constant, arrange for
1935     // the call to return after the constant(s).
1936     __ ldr_literal(Ricklass, value);
1937   }
1938   __ relocate(virtual_call_Relocation::spec(oop_address));
1939   if (near_range && use_movw) {
1940     __ bl(op->addr());
1941   } else {
1942     Label call_return;
1943     __ adr(LR, call_return);
1944     if (near_range) {
1945       __ b(op->addr());
1946     } else {
1947       __ indirect_jump(addr, Rtemp);
1948       __ bind_literal(addr);
1949     }
1950     if (!use_movw) {
1951       __ bind_literal(value);
1952     }
1953     __ bind(call_return);
1954   }
1955   add_call_info(code_offset(), op->info());
1956 }
1957 
1958 
1959 /* Currently, vtable-dispatch is only enabled for sparc platforms */
1960 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
1961   ShouldNotReachHere();
1962 }
1963 
1964 void LIR_Assembler::emit_static_call_stub() {
1965   address call_pc = __ pc();
1966   address stub = __ start_a_stub(call_stub_size());
1967   if (stub == NULL) {
1968     BAILOUT("static call stub overflow");
1969   }
1970 
1971   DEBUG_ONLY(int offset = code_offset();)
1972 
1973   InlinedMetadata metadata_literal(NULL);
1974   __ relocate(static_stub_Relocation::spec(call_pc));
1975   // If not a single instruction, NativeMovConstReg::next_instruction_address()
1976   // must jump over the whole following ldr_literal.
1977   // (See CompiledStaticCall::set_to_interpreted())
1978 #ifdef ASSERT
1979   address ldr_site = __ pc();
1980 #endif
1981   __ ldr_literal(Rmethod, metadata_literal);
1982   assert(nativeMovConstReg_at(ldr_site)->next_instruction_address() == __ pc(), "Fix ldr_literal or its parsing");
1983   bool near_range = __ cache_fully_reachable();
1984   InlinedAddress dest((address)-1);
1985   if (near_range) {
1986     address branch_site = __ pc();
1987     __ b(branch_site); // b to self maps to special NativeJump -1 destination
1988   } else {
1989     __ indirect_jump(dest, Rtemp);
1990   }
1991   __ bind_literal(metadata_literal); // includes spec_for_immediate reloc
1992   if (!near_range) {
1993     __ bind_literal(dest); // special NativeJump -1 destination
1994   }
1995 
1996   assert(code_offset() - offset <= call_stub_size(), "overflow");
1997   __ end_a_stub();
1998 }
1999 
2000 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2001   assert(exceptionOop->as_register() == Rexception_obj, "must match");
2002   assert(exceptionPC->as_register()  == Rexception_pc, "must match");
2003   info->add_register_oop(exceptionOop);
2004 
2005   Runtime1::StubID handle_id = compilation()->has_fpu_code() ?
2006                                Runtime1::handle_exception_id :
2007                                Runtime1::handle_exception_nofpu_id;
2008   Label return_address;
2009   __ adr(Rexception_pc, return_address);
2010   __ call(Runtime1::entry_for(handle_id), relocInfo::runtime_call_type);
2011   __ bind(return_address);
2012   add_call_info_here(info);  // for exception handler
2013 }
2014 
2015 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2016   assert(exceptionOop->as_register() == Rexception_obj, "must match");
2017   __ b(_unwind_handler_entry);
2018 }
2019 
2020 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2021   AsmShift shift = lsl;
2022   switch (code) {
2023     case lir_shl:  shift = lsl; break;
2024     case lir_shr:  shift = asr; break;
2025     case lir_ushr: shift = lsr; break;
2026     default: ShouldNotReachHere();
2027   }
2028 
2029   if (dest->is_single_cpu()) {
2030     __ andr(Rtemp, count->as_register(), 31);
2031     __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, Rtemp));
2032   } else if (dest->is_double_cpu()) {
2033     Register dest_lo = dest->as_register_lo();
2034     Register dest_hi = dest->as_register_hi();
2035     Register src_lo  = left->as_register_lo();
2036     Register src_hi  = left->as_register_hi();
2037     Register Rcount  = count->as_register();
2038     // Resolve possible register conflicts
2039     if (shift == lsl && dest_hi == src_lo) {
2040       dest_hi = Rtemp;
2041     } else if (shift != lsl && dest_lo == src_hi) {
2042       dest_lo = Rtemp;
2043     } else if (dest_lo == src_lo && dest_hi == src_hi) {
2044       dest_lo = Rtemp;
2045     } else if (dest_lo == Rcount || dest_hi == Rcount) {
2046       Rcount = Rtemp;
2047     }
2048     __ andr(Rcount, count->as_register(), 63);
2049     __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, Rcount);
2050     move_regs(dest_lo, dest->as_register_lo());
2051     move_regs(dest_hi, dest->as_register_hi());
2052   } else {
2053     ShouldNotReachHere();
2054   }
2055 }
2056 
2057 
2058 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2059   AsmShift shift = lsl;
2060   switch (code) {
2061     case lir_shl:  shift = lsl; break;
2062     case lir_shr:  shift = asr; break;
2063     case lir_ushr: shift = lsr; break;
2064     default: ShouldNotReachHere();
2065   }
2066 
2067   if (dest->is_single_cpu()) {
2068     count &= 31;
2069     if (count != 0) {
2070       __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, count));
2071     } else {
2072       move_regs(left->as_register(), dest->as_register());
2073     }
2074   } else if (dest->is_double_cpu()) {
2075     count &= 63;
2076     if (count != 0) {
2077       Register dest_lo = dest->as_register_lo();
2078       Register dest_hi = dest->as_register_hi();
2079       Register src_lo  = left->as_register_lo();
2080       Register src_hi  = left->as_register_hi();
2081       // Resolve possible register conflicts
2082       if (shift == lsl && dest_hi == src_lo) {
2083         dest_hi = Rtemp;
2084       } else if (shift != lsl && dest_lo == src_hi) {
2085         dest_lo = Rtemp;
2086       }
2087       __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, count);
2088       move_regs(dest_lo, dest->as_register_lo());
2089       move_regs(dest_hi, dest->as_register_hi());
2090     } else {
2091       __ long_move(dest->as_register_lo(), dest->as_register_hi(),
2092                    left->as_register_lo(), left->as_register_hi());
2093     }
2094   } else {
2095     ShouldNotReachHere();
2096   }
2097 }
2098 
2099 
2100 // Saves 4 given registers in reserved argument area.
2101 void LIR_Assembler::save_in_reserved_area(Register r1, Register r2, Register r3, Register r4) {
2102   verify_reserved_argument_area_size(4);
2103   __ stmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4));
2104 }
2105 
2106 // Restores 4 given registers from reserved argument area.
2107 void LIR_Assembler::restore_from_reserved_area(Register r1, Register r2, Register r3, Register r4) {
2108   __ ldmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4), no_writeback);
2109 }
2110 
2111 
2112 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2113   ciArrayKlass* default_type = op->expected_type();
2114   Register src = op->src()->as_register();
2115   Register src_pos = op->src_pos()->as_register();
2116   Register dst = op->dst()->as_register();
2117   Register dst_pos = op->dst_pos()->as_register();
2118   Register length  = op->length()->as_register();
2119   Register tmp = op->tmp()->as_register();
2120   Register tmp2 = Rtemp;
2121 
2122   assert(src == R0 && src_pos == R1 && dst == R2 && dst_pos == R3, "code assumption");
2123 
2124   __ resolve(ACCESS_READ, src);
2125   __ resolve(ACCESS_WRITE, dst);
2126 
2127   CodeStub* stub = op->stub();
2128 
2129   int flags = op->flags();
2130   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2131   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2132 
2133   // If we don't know anything or it's an object array, just go through the generic arraycopy
2134   if (default_type == NULL) {
2135 
2136     // save arguments, because they will be killed by a runtime call
2137     save_in_reserved_area(R0, R1, R2, R3);
2138 
2139     // pass length argument on SP[0]
2140     __ str(length, Address(SP, -2*wordSize, pre_indexed));  // 2 words for a proper stack alignment
2141 
2142     address copyfunc_addr = StubRoutines::generic_arraycopy();
2143     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
2144 #ifndef PRODUCT
2145     if (PrintC1Statistics) {
2146       __ inc_counter((address)&Runtime1::_generic_arraycopystub_cnt, tmp, tmp2);
2147     }
2148 #endif // !PRODUCT
2149     // the stub is in the code cache so close enough
2150     __ call(copyfunc_addr, relocInfo::runtime_call_type);
2151 
2152     __ add(SP, SP, 2*wordSize);
2153 
2154     __ cbz_32(R0, *stub->continuation());
2155 
2156     __ mvn_32(tmp, R0);
2157     restore_from_reserved_area(R0, R1, R2, R3);  // load saved arguments in slow case only
2158     __ sub_32(length, length, tmp);
2159     __ add_32(src_pos, src_pos, tmp);
2160     __ add_32(dst_pos, dst_pos, tmp);
2161 
2162     __ b(*stub->entry());
2163 
2164     __ bind(*stub->continuation());
2165     return;
2166   }
2167 
2168   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(),
2169          "must be true at this point");
2170   int elem_size = type2aelembytes(basic_type);
2171   int shift = exact_log2(elem_size);
2172 
2173   // Check for NULL
2174   if (flags & LIR_OpArrayCopy::src_null_check) {
2175     if (flags & LIR_OpArrayCopy::dst_null_check) {
2176       __ cmp(src, 0);
2177       __ cond_cmp(dst, 0, ne);  // make one instruction shorter if both checks are needed
2178       __ b(*stub->entry(), eq);
2179     } else {
2180       __ cbz(src, *stub->entry());
2181     }
2182   } else if (flags & LIR_OpArrayCopy::dst_null_check) {
2183     __ cbz(dst, *stub->entry());
2184   }
2185 
2186   // If the compiler was not able to prove that exact type of the source or the destination
2187   // of the arraycopy is an array type, check at runtime if the source or the destination is
2188   // an instance type.
2189   if (flags & LIR_OpArrayCopy::type_check) {
2190     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2191       __ load_klass(tmp, dst);
2192       __ ldr_u32(tmp2, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2193       __ mov_slow(tmp, Klass::_lh_neutral_value);
2194       __ cmp_32(tmp2, tmp);
2195       __ b(*stub->entry(), ge);
2196     }
2197 
2198     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2199       __ load_klass(tmp, src);
2200       __ ldr_u32(tmp2, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2201       __ mov_slow(tmp, Klass::_lh_neutral_value);
2202       __ cmp_32(tmp2, tmp);
2203       __ b(*stub->entry(), ge);
2204     }
2205   }
2206 
2207   // Check if negative
2208   const int all_positive_checks = LIR_OpArrayCopy::src_pos_positive_check |
2209                                   LIR_OpArrayCopy::dst_pos_positive_check |
2210                                   LIR_OpArrayCopy::length_positive_check;
2211   switch (flags & all_positive_checks) {
2212     case LIR_OpArrayCopy::src_pos_positive_check:
2213       __ branch_if_negative_32(src_pos, *stub->entry());
2214       break;
2215     case LIR_OpArrayCopy::dst_pos_positive_check:
2216       __ branch_if_negative_32(dst_pos, *stub->entry());
2217       break;
2218     case LIR_OpArrayCopy::length_positive_check:
2219       __ branch_if_negative_32(length, *stub->entry());
2220       break;
2221     case LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::dst_pos_positive_check:
2222       __ branch_if_any_negative_32(src_pos, dst_pos, tmp, *stub->entry());
2223       break;
2224     case LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::length_positive_check:
2225       __ branch_if_any_negative_32(src_pos, length, tmp, *stub->entry());
2226       break;
2227     case LIR_OpArrayCopy::dst_pos_positive_check | LIR_OpArrayCopy::length_positive_check:
2228       __ branch_if_any_negative_32(dst_pos, length, tmp, *stub->entry());
2229       break;
2230     case all_positive_checks:
2231       __ branch_if_any_negative_32(src_pos, dst_pos, length, tmp, *stub->entry());
2232       break;
2233     default:
2234       assert((flags & all_positive_checks) == 0, "the last option");
2235   }
2236 
2237   // Range checks
2238   if (flags & LIR_OpArrayCopy::src_range_check) {
2239     __ ldr_s32(tmp2, Address(src, arrayOopDesc::length_offset_in_bytes()));
2240     __ add_32(tmp, src_pos, length);
2241     __ cmp_32(tmp, tmp2);
2242     __ b(*stub->entry(), hi);
2243   }
2244   if (flags & LIR_OpArrayCopy::dst_range_check) {
2245     __ ldr_s32(tmp2, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2246     __ add_32(tmp, dst_pos, length);
2247     __ cmp_32(tmp, tmp2);
2248     __ b(*stub->entry(), hi);
2249   }
2250 
2251   // Check if src and dst are of the same type
2252   if (flags & LIR_OpArrayCopy::type_check) {
2253     // We don't know the array types are compatible
2254     if (basic_type != T_OBJECT) {
2255       // Simple test for basic type arrays
2256       if (UseCompressedClassPointers) {
2257         // We don't need decode because we just need to compare
2258         __ ldr_u32(tmp, Address(src, oopDesc::klass_offset_in_bytes()));
2259         __ ldr_u32(tmp2, Address(dst, oopDesc::klass_offset_in_bytes()));
2260         __ cmp_32(tmp, tmp2);
2261       } else {
2262         __ load_klass(tmp, src);
2263         __ load_klass(tmp2, dst);
2264         __ cmp(tmp, tmp2);
2265       }
2266       __ b(*stub->entry(), ne);
2267     } else {
2268       // For object arrays, if src is a sub class of dst then we can
2269       // safely do the copy.
2270       Label cont, slow;
2271 
2272       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2273 
2274       __ load_klass(tmp, src);
2275       __ load_klass(tmp2, dst);
2276 
2277       // We are at a call so all live registers are saved before we
2278       // get here
2279       assert_different_registers(tmp, tmp2, R6, altFP_7_11);
2280 
2281       __ check_klass_subtype_fast_path(tmp, tmp2, R6, altFP_7_11, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2282 
2283       __ mov(R6, R0);
2284       __ mov(altFP_7_11, R1);
2285       __ mov(R0, tmp);
2286       __ mov(R1, tmp2);
2287       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); // does not blow any registers except R0, LR and Rtemp
2288       __ cmp_32(R0, 0);
2289       __ mov(R0, R6);
2290       __ mov(R1, altFP_7_11);
2291 
2292       if (copyfunc_addr != NULL) { // use stub if available
2293         // src is not a sub class of dst so we have to do a
2294         // per-element check.
2295 
2296         __ b(cont, ne);
2297 
2298         __ bind(slow);
2299 
2300         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2301         if ((flags & mask) != mask) {
2302           // Check that at least both of them object arrays.
2303           assert(flags & mask, "one of the two should be known to be an object array");
2304 
2305           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2306             __ load_klass(tmp, src);
2307           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2308             __ load_klass(tmp, dst);
2309           }
2310           int lh_offset = in_bytes(Klass::layout_helper_offset());
2311 
2312           __ ldr_u32(tmp2, Address(tmp, lh_offset));
2313 
2314           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2315           __ mov_slow(tmp, objArray_lh);
2316           __ cmp_32(tmp, tmp2);
2317           __ b(*stub->entry(), ne);
2318         }
2319 
2320         save_in_reserved_area(R0, R1, R2, R3);
2321 
2322         Register src_ptr = R0;
2323         Register dst_ptr = R1;
2324         Register len     = R2;
2325         Register chk_off = R3;
2326         Register super_k = tmp;
2327 
2328         __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2329         __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift);
2330 
2331         __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2332         __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift);
2333         __ load_klass(tmp, dst);
2334 
2335         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2336         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2337 
2338         __ ldr(super_k, Address(tmp, ek_offset));
2339 
2340         __ mov(len, length);
2341         __ ldr_u32(chk_off, Address(super_k, sco_offset));
2342         __ push(super_k);
2343 
2344         __ call(copyfunc_addr, relocInfo::runtime_call_type);
2345 
2346 #ifndef PRODUCT
2347         if (PrintC1Statistics) {
2348           Label failed;
2349           __ cbnz_32(R0, failed);
2350           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, tmp, tmp2);
2351           __ bind(failed);
2352         }
2353 #endif // PRODUCT
2354 
2355         __ add(SP, SP, wordSize);  // Drop super_k argument
2356 
2357         __ cbz_32(R0, *stub->continuation());
2358         __ mvn_32(tmp, R0);
2359 
2360         // load saved arguments in slow case only
2361         restore_from_reserved_area(R0, R1, R2, R3);
2362 
2363         __ sub_32(length, length, tmp);
2364         __ add_32(src_pos, src_pos, tmp);
2365         __ add_32(dst_pos, dst_pos, tmp);
2366 
2367 #ifndef PRODUCT
2368         if (PrintC1Statistics) {
2369           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, tmp, tmp2);
2370         }
2371 #endif
2372 
2373         __ b(*stub->entry());
2374 
2375         __ bind(cont);
2376       } else {
2377         __ b(*stub->entry(), eq);
2378         __ bind(cont);
2379       }
2380     }
2381   }
2382 
2383 #ifndef PRODUCT
2384   if (PrintC1Statistics) {
2385     address counter = Runtime1::arraycopy_count_address(basic_type);
2386     __ inc_counter(counter, tmp, tmp2);
2387   }
2388 #endif // !PRODUCT
2389 
2390   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2391   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2392   const char *name;
2393   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2394 
2395   Register src_ptr = R0;
2396   Register dst_ptr = R1;
2397   Register len     = R2;
2398 
2399   __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2400   __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift);
2401 
2402   __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2403   __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift);
2404 
2405   __ mov(len, length);
2406 
2407   __ call(entry, relocInfo::runtime_call_type);
2408 
2409   __ bind(*stub->continuation());
2410 }
2411 
2412 #ifdef ASSERT
2413  // emit run-time assertion
2414 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2415   assert(op->code() == lir_assert, "must be");
2416 
2417   if (op->in_opr1()->is_valid()) {
2418     assert(op->in_opr2()->is_valid(), "both operands must be valid");
2419     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2420   } else {
2421     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2422     assert(op->condition() == lir_cond_always, "no other conditions allowed");
2423   }
2424 
2425   Label ok;
2426   if (op->condition() != lir_cond_always) {
2427     AsmCondition acond = al;
2428     switch (op->condition()) {
2429       case lir_cond_equal:        acond = eq; break;
2430       case lir_cond_notEqual:     acond = ne; break;
2431       case lir_cond_less:         acond = lt; break;
2432       case lir_cond_lessEqual:    acond = le; break;
2433       case lir_cond_greaterEqual: acond = ge; break;
2434       case lir_cond_greater:      acond = gt; break;
2435       case lir_cond_aboveEqual:   acond = hs; break;
2436       case lir_cond_belowEqual:   acond = ls; break;
2437       default:                    ShouldNotReachHere();
2438     }
2439     __ b(ok, acond);
2440   }
2441   if (op->halt()) {
2442     const char* str = __ code_string(op->msg());
2443     __ stop(str);
2444   } else {
2445     breakpoint();
2446   }
2447   __ bind(ok);
2448 }
2449 #endif // ASSERT
2450 
2451 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2452   fatal("CRC32 intrinsic is not implemented on this platform");
2453 }
2454 
2455 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2456   Register obj = op->obj_opr()->as_pointer_register();
2457   Register hdr = op->hdr_opr()->as_pointer_register();
2458   Register lock = op->lock_opr()->as_pointer_register();
2459   Register tmp = op->scratch_opr()->is_illegal() ? noreg :
2460                  op->scratch_opr()->as_pointer_register();
2461 
2462   if (!UseFastLocking) {
2463     __ b(*op->stub()->entry());
2464   } else if (op->code() == lir_lock) {
2465     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2466     __ resolve(ACCESS_READ | ACCESS_WRITE, obj);
2467     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
2468     if (op->info() != NULL) {
2469       add_debug_info_for_null_check(null_check_offset, op->info());
2470     }
2471   } else if (op->code() == lir_unlock) {
2472     __ unlock_object(hdr, obj, lock, tmp, *op->stub()->entry());
2473   } else {
2474     ShouldNotReachHere();
2475   }
2476   __ bind(*op->stub()->continuation());
2477 }
2478 
2479 
2480 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2481   ciMethod* method = op->profiled_method();
2482   int bci          = op->profiled_bci();
2483   ciMethod* callee = op->profiled_callee();
2484 
2485   // Update counter for all call types
2486   ciMethodData* md = method->method_data_or_null();
2487   assert(md != NULL, "Sanity");
2488   ciProfileData* data = md->bci_to_data(bci);
2489   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2490   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2491   Register mdo  = op->mdo()->as_register();
2492   assert(op->tmp1()->is_register(), "tmp1 must be allocated");
2493   Register tmp1 = op->tmp1()->as_pointer_register();
2494   assert_different_registers(mdo, tmp1);
2495   __ mov_metadata(mdo, md->constant_encoding());
2496   int mdo_offset_bias = 0;
2497   int max_offset = 4096;
2498   if (md->byte_offset_of_slot(data, CounterData::count_offset()) + data->size_in_bytes() >= max_offset) {
2499     // The offset is large so bias the mdo by the base of the slot so
2500     // that the ldr can use an immediate offset to reference the slots of the data
2501     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2502     __ mov_slow(tmp1, mdo_offset_bias);
2503     __ add(mdo, mdo, tmp1);
2504   }
2505 
2506   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2507   // Perform additional virtual call profiling for invokevirtual and
2508   // invokeinterface bytecodes
2509   if (op->should_profile_receiver_type()) {
2510     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2511     Register recv = op->recv()->as_register();
2512     assert_different_registers(mdo, tmp1, recv);
2513     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2514     ciKlass* known_klass = op->known_holder();
2515     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2516       // We know the type that will be seen at this call site; we can
2517       // statically update the MethodData* rather than needing to do
2518       // dynamic tests on the receiver type
2519 
2520       // NOTE: we should probably put a lock around this search to
2521       // avoid collisions by concurrent compilations
2522       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2523       uint i;
2524       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2525         ciKlass* receiver = vc_data->receiver(i);
2526         if (known_klass->equals(receiver)) {
2527           Address data_addr(mdo, md->byte_offset_of_slot(data,
2528                                                          VirtualCallData::receiver_count_offset(i)) -
2529                             mdo_offset_bias);
2530           __ ldr(tmp1, data_addr);
2531           __ add(tmp1, tmp1, DataLayout::counter_increment);
2532           __ str(tmp1, data_addr);
2533           return;
2534         }
2535       }
2536 
2537       // Receiver type not found in profile data; select an empty slot
2538 
2539       // Note that this is less efficient than it should be because it
2540       // always does a write to the receiver part of the
2541       // VirtualCallData rather than just the first time
2542       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2543         ciKlass* receiver = vc_data->receiver(i);
2544         if (receiver == NULL) {
2545           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2546                             mdo_offset_bias);
2547           __ mov_metadata(tmp1, known_klass->constant_encoding());
2548           __ str(tmp1, recv_addr);
2549           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2550                             mdo_offset_bias);
2551           __ ldr(tmp1, data_addr);
2552           __ add(tmp1, tmp1, DataLayout::counter_increment);
2553           __ str(tmp1, data_addr);
2554           return;
2555         }
2556       }
2557     } else {
2558       __ load_klass(recv, recv);
2559       Label update_done;
2560       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2561       // Receiver did not match any saved receiver and there is no empty row for it.
2562       // Increment total counter to indicate polymorphic case.
2563       __ ldr(tmp1, counter_addr);
2564       __ add(tmp1, tmp1, DataLayout::counter_increment);
2565       __ str(tmp1, counter_addr);
2566 
2567       __ bind(update_done);
2568     }
2569   } else {
2570     // Static call
2571     __ ldr(tmp1, counter_addr);
2572     __ add(tmp1, tmp1, DataLayout::counter_increment);
2573     __ str(tmp1, counter_addr);
2574   }
2575 }
2576 
2577 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2578   fatal("Type profiling not implemented on this platform");
2579 }
2580 
2581 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2582   Unimplemented();
2583 }
2584 
2585 
2586 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2587   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2588   __ add_slow(dst->as_pointer_register(), mon_addr.base(), mon_addr.disp());
2589 }
2590 
2591 
2592 void LIR_Assembler::align_backward_branch_target() {
2593   // Some ARM processors do better with 8-byte branch target alignment
2594   __ align(8);
2595 }
2596 
2597 
2598 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2599   // tmp must be unused
2600   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2601 
2602   if (left->is_single_cpu()) {
2603     assert (dest->type() == T_INT, "unexpected result type");
2604     assert (left->type() == T_INT, "unexpected left type");
2605     __ neg_32(dest->as_register(), left->as_register());
2606   } else if (left->is_double_cpu()) {
2607     Register dest_lo = dest->as_register_lo();
2608     Register dest_hi = dest->as_register_hi();
2609     Register src_lo = left->as_register_lo();
2610     Register src_hi = left->as_register_hi();
2611     if (dest_lo == src_hi) {
2612       dest_lo = Rtemp;
2613     }
2614     __ rsbs(dest_lo, src_lo, 0);
2615     __ rsc(dest_hi, src_hi, 0);
2616     move_regs(dest_lo, dest->as_register_lo());
2617   } else if (left->is_single_fpu()) {
2618     __ neg_float(dest->as_float_reg(), left->as_float_reg());
2619   } else if (left->is_double_fpu()) {
2620     __ neg_double(dest->as_double_reg(), left->as_double_reg());
2621   } else {
2622     ShouldNotReachHere();
2623   }
2624 }
2625 
2626 
2627 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2628   assert(patch_code == lir_patch_none, "Patch code not supported");
2629   LIR_Address* addr = addr_opr->as_address_ptr();
2630   if (addr->index()->is_illegal()) {
2631     jint c = addr->disp();
2632     if (!Assembler::is_arith_imm_in_range(c)) {
2633       BAILOUT("illegal arithmetic operand");
2634     }
2635     __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), c);
2636   } else {
2637     assert(addr->disp() == 0, "cannot handle otherwise");
2638     __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(),
2639            AsmOperand(addr->index()->as_pointer_register(), lsl, addr->scale()));
2640   }
2641 }
2642 
2643 
2644 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2645   assert(!tmp->is_valid(), "don't need temporary");
2646   __ call(dest);
2647   if (info != NULL) {
2648     add_call_info_here(info);
2649   }
2650 }
2651 
2652 
2653 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2654   assert(src->is_double_cpu() && dest->is_address() ||
2655          src->is_address() && dest->is_double_cpu(),
2656          "Simple move_op is called for all other cases");
2657 
2658   int null_check_offset;
2659   if (dest->is_address()) {
2660     // Store
2661     const LIR_Address* addr = dest->as_address_ptr();
2662     const Register src_lo = src->as_register_lo();
2663     const Register src_hi = src->as_register_hi();
2664     assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already");
2665 
2666     if (src_lo < src_hi) {
2667       null_check_offset = __ offset();
2668       __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(src_hi));
2669     } else {
2670       assert(src_lo < Rtemp, "Rtemp is higher than any allocatable register");
2671       __ mov(Rtemp, src_hi);
2672       null_check_offset = __ offset();
2673       __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(Rtemp));
2674     }
2675   } else {
2676     // Load
2677     const LIR_Address* addr = src->as_address_ptr();
2678     const Register dest_lo = dest->as_register_lo();
2679     const Register dest_hi = dest->as_register_hi();
2680     assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already");
2681 
2682     null_check_offset = __ offset();
2683     if (dest_lo < dest_hi) {
2684       __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(dest_hi));
2685     } else {
2686       assert(dest_lo < Rtemp, "Rtemp is higher than any allocatable register");
2687       __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(Rtemp));
2688       __ mov(dest_hi, Rtemp);
2689     }
2690   }
2691 
2692   if (info != NULL) {
2693     add_debug_info_for_null_check(null_check_offset, info);
2694   }
2695 }
2696 
2697 
2698 void LIR_Assembler::membar() {
2699   __ membar(MacroAssembler::StoreLoad, Rtemp);
2700 }
2701 
2702 void LIR_Assembler::membar_acquire() {
2703   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
2704 }
2705 
2706 void LIR_Assembler::membar_release() {
2707   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
2708 }
2709 
2710 void LIR_Assembler::membar_loadload() {
2711   __ membar(MacroAssembler::LoadLoad, Rtemp);
2712 }
2713 
2714 void LIR_Assembler::membar_storestore() {
2715   __ membar(MacroAssembler::StoreStore, Rtemp);
2716 }
2717 
2718 void LIR_Assembler::membar_loadstore() {
2719   __ membar(MacroAssembler::LoadStore, Rtemp);
2720 }
2721 
2722 void LIR_Assembler::membar_storeload() {
2723   __ membar(MacroAssembler::StoreLoad, Rtemp);
2724 }
2725 
2726 void LIR_Assembler::on_spin_wait() {
2727   Unimplemented();
2728 }
2729 
2730 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2731   // Not used on ARM
2732   Unimplemented();
2733 }
2734 
2735 void LIR_Assembler::peephole(LIR_List* lir) {
2736   LIR_OpList* inst = lir->instructions_list();
2737   const int inst_length = inst->length();
2738   for (int i = 0; i < inst_length; i++) {
2739     LIR_Op* op = inst->at(i);
2740     switch (op->code()) {
2741       case lir_cmp: {
2742         // Replace:
2743         //   cmp rX, y
2744         //   cmove [EQ] y, z, rX
2745         // with
2746         //   cmp rX, y
2747         //   cmove [EQ] illegalOpr, z, rX
2748         //
2749         // or
2750         //   cmp rX, y
2751         //   cmove [NE] z, y, rX
2752         // with
2753         //   cmp rX, y
2754         //   cmove [NE] z, illegalOpr, rX
2755         //
2756         // moves from illegalOpr should be removed when converting LIR to native assembly
2757 
2758         LIR_Op2* cmp = op->as_Op2();
2759         assert(cmp != NULL, "cmp LIR instruction is not an op2");
2760 
2761         if (i + 1 < inst_length) {
2762           LIR_Op2* cmove = inst->at(i + 1)->as_Op2();
2763           if (cmove != NULL && cmove->code() == lir_cmove) {
2764             LIR_Opr cmove_res = cmove->result_opr();
2765             bool res_is_op1 = cmove_res == cmp->in_opr1();
2766             bool res_is_op2 = cmove_res == cmp->in_opr2();
2767             LIR_Opr cmp_res, cmp_arg;
2768             if (res_is_op1) {
2769               cmp_res = cmp->in_opr1();
2770               cmp_arg = cmp->in_opr2();
2771             } else if (res_is_op2) {
2772               cmp_res = cmp->in_opr2();
2773               cmp_arg = cmp->in_opr1();
2774             } else {
2775               cmp_res = LIR_OprFact::illegalOpr;
2776               cmp_arg = LIR_OprFact::illegalOpr;
2777             }
2778 
2779             if (cmp_res != LIR_OprFact::illegalOpr) {
2780               LIR_Condition cond = cmove->condition();
2781               if (cond == lir_cond_equal && cmove->in_opr1() == cmp_arg) {
2782                 cmove->set_in_opr1(LIR_OprFact::illegalOpr);
2783               } else if (cond == lir_cond_notEqual && cmove->in_opr2() == cmp_arg) {
2784                 cmove->set_in_opr2(LIR_OprFact::illegalOpr);
2785               }
2786             }
2787           }
2788         }
2789         break;
2790       }
2791 
2792       default:
2793         break;
2794     }
2795   }
2796 }
2797 
2798 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
2799   assert(src->is_address(), "sanity");
2800   Address addr = as_Address(src->as_address_ptr());
2801 
2802   if (code == lir_xchg) {
2803   } else {
2804     assert (!data->is_oop(), "xadd for oops");
2805   }
2806 
2807   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
2808 
2809   Label retry;
2810   __ bind(retry);
2811 
2812   if (data->type() == T_INT || data->is_oop()) {
2813     Register dst = dest->as_register();
2814     Register new_val = noreg;
2815     __ ldrex(dst, addr);
2816     if (code == lir_xadd) {
2817       Register tmp_reg = tmp->as_register();
2818       if (data->is_constant()) {
2819         assert_different_registers(dst, tmp_reg);
2820         __ add_32(tmp_reg, dst, data->as_constant_ptr()->as_jint());
2821       } else {
2822         assert_different_registers(dst, tmp_reg, data->as_register());
2823         __ add_32(tmp_reg, dst, data->as_register());
2824       }
2825       new_val = tmp_reg;
2826     } else {
2827       if (UseCompressedOops && data->is_oop()) {
2828         new_val = tmp->as_pointer_register();
2829       } else {
2830         new_val = data->as_register();
2831       }
2832       assert_different_registers(dst, new_val);
2833     }
2834     __ strex(Rtemp, new_val, addr);
2835 
2836   } else if (data->type() == T_LONG) {
2837     Register dst_lo = dest->as_register_lo();
2838     Register new_val_lo = noreg;
2839     Register dst_hi = dest->as_register_hi();
2840 
2841     assert(dst_hi->encoding() == dst_lo->encoding() + 1, "non aligned register pair");
2842     assert((dst_lo->encoding() & 0x1) == 0, "misaligned register pair");
2843 
2844     __ bind(retry);
2845     __ ldrexd(dst_lo, addr);
2846     if (code == lir_xadd) {
2847       Register tmp_lo = tmp->as_register_lo();
2848       Register tmp_hi = tmp->as_register_hi();
2849 
2850       assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair");
2851       assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair");
2852 
2853       if (data->is_constant()) {
2854         jlong c = data->as_constant_ptr()->as_jlong();
2855         assert((jlong)((jint)c) == c, "overflow");
2856         assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi);
2857         __ adds(tmp_lo, dst_lo, (jint)c);
2858         __ adc(tmp_hi, dst_hi, 0);
2859       } else {
2860         Register new_val_lo = data->as_register_lo();
2861         Register new_val_hi = data->as_register_hi();
2862         __ adds(tmp_lo, dst_lo, new_val_lo);
2863         __ adc(tmp_hi, dst_hi, new_val_hi);
2864         assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi, new_val_lo, new_val_hi);
2865       }
2866       new_val_lo = tmp_lo;
2867     } else {
2868       new_val_lo = data->as_register_lo();
2869       Register new_val_hi = data->as_register_hi();
2870 
2871       assert_different_registers(dst_lo, dst_hi, new_val_lo, new_val_hi);
2872       assert(new_val_hi->encoding() == new_val_lo->encoding() + 1, "non aligned register pair");
2873       assert((new_val_lo->encoding() & 0x1) == 0, "misaligned register pair");
2874     }
2875     __ strexd(Rtemp, new_val_lo, addr);
2876   } else {
2877     ShouldNotReachHere();
2878   }
2879 
2880   __ cbnz_32(Rtemp, retry);
2881   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
2882 
2883 }
2884 
2885 #undef __