/* * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_OPTO_REGMASK_HPP #define SHARE_OPTO_REGMASK_HPP #include "code/vmreg.hpp" #include "opto/optoreg.hpp" #include "utilities/count_leading_zeros.hpp" #include "utilities/count_trailing_zeros.hpp" //-------------Non-zero bit search methods used by RegMask--------------------- // Find lowest 1, undefined if empty/0 static int find_lowest_bit(uint32_t mask) { return count_trailing_zeros(mask); } // Find highest 1, undefined if empty/0 static int find_highest_bit(uint32_t mask) { return count_leading_zeros(mask) ^ 31; } //------------------------------RegMask---------------------------------------- // The ADL file describes how to print the machine-specific registers, as well // as any notion of register classes. We provide a register mask, which is // just a collection of Register numbers. // The ADLC defines 2 macros, RM_SIZE and FORALL_BODY. // RM_SIZE is the size of a register mask in words. // FORALL_BODY replicates a BODY macro once per word in the register mask. // The usage is somewhat clumsy and limited to the regmask.[h,c]pp files. // However, it means the ADLC can redefine the unroll macro and all loops // over register masks will be unrolled by the correct amount. class RegMask { union { double _dummy_force_double_alignment[RM_SIZE>>1]; // Array of Register Mask bits. This array is large enough to cover // all the machine registers and all parameters that need to be passed // on the stack (stack registers) up to some interesting limit. Methods // that need more parameters will NOT be compiled. On Intel, the limit // is something like 90+ parameters. int _A[RM_SIZE]; }; // The low and high water marks represents the lowest and highest word // that might contain set register mask bits, respectively. We guarantee // that there are no bits in words outside this range, but any word at // and between the two marks can still be 0. int _lwm; int _hwm; enum { _WordBits = BitsPerInt, _LogWordBits = LogBitsPerInt, _RM_SIZE = RM_SIZE // local constant, imported, then hidden by #undef }; public: enum { CHUNK_SIZE = RM_SIZE*_WordBits }; // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits. // Also, consider the maximum alignment size for a normally allocated // value. Since we allocate register pairs but not register quads (at // present), this alignment is SlotsPerLong (== 2). A normally // aligned allocated register is either a single register, or a pair // of adjacent registers, the lower-numbered being even. // See also is_aligned_Pairs() below, and the padding added before // Matcher::_new_SP to keep allocated pairs aligned properly. // If we ever go to quad-word allocations, SlotsPerQuad will become // the controlling alignment constraint. Note that this alignment // requirement is internal to the allocator, and independent of any // particular platform. enum { SlotsPerLong = 2, SlotsPerVecS = 1, SlotsPerVecD = 2, SlotsPerVecX = 4, SlotsPerVecY = 8, SlotsPerVecZ = 16 }; // A constructor only used by the ADLC output. All mask fields are filled // in directly. Calls to this look something like RM(1,2,3,4); RegMask( # define BODY(I) int a##I, FORALL_BODY # undef BODY int dummy = 0) { # define BODY(I) _A[I] = a##I; FORALL_BODY # undef BODY _lwm = 0; while ((_lwm < RM_SIZE - 1) && _A[_lwm] == 0) _lwm++; _hwm = RM_SIZE - 1; while (_hwm > 0 && _A[_hwm] == 0) _hwm--; assert(valid_watermarks(), "post-condition"); } // Handy copying constructor RegMask(RegMask *rm) { _hwm = rm->_hwm; _lwm = rm->_lwm; for (int i = 0; i < RM_SIZE; i++) { _A[i] = rm->_A[i]; } assert(valid_watermarks(), "post-condition"); } // Construct an empty mask RegMask() { Clear(); } // Construct a mask with a single bit RegMask(OptoReg::Name reg) { Clear(); Insert(reg); } // Check for register being in mask int Member(OptoReg::Name reg) const { assert(reg < CHUNK_SIZE, ""); return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1))); } // The last bit in the register mask indicates that the mask should repeat // indefinitely with ONE bits. Returns TRUE if mask is infinite or // unbounded in size. Returns FALSE if mask is finite size. int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); } // Work around an -xO3 optimization problme in WS6U1. The old way: // void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); } // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack() // follows an Insert() loop, like the one found in init_spill_mask(). Using // Insert() instead works because the index into _A in computed instead of // constant. See bug 4665841. void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); } // Test for being a not-empty mask. int is_NotEmpty() const { assert(valid_watermarks(), "sanity"); int tmp = 0; for (int i = _lwm; i <= _hwm; i++) { tmp |= _A[i]; } return tmp; } // Find lowest-numbered register from mask, or BAD if mask is empty. OptoReg::Name find_first_elem() const { assert(valid_watermarks(), "sanity"); for (int i = _lwm; i <= _hwm; i++) { int bits = _A[i]; if (bits) { return OptoReg::Name((i<<_LogWordBits) + find_lowest_bit(bits)); } } return OptoReg::Name(OptoReg::Bad); } // Get highest-numbered register from mask, or BAD if mask is empty. OptoReg::Name find_last_elem() const { assert(valid_watermarks(), "sanity"); for (int i = _hwm; i >= _lwm; i--) { int bits = _A[i]; if (bits) { return OptoReg::Name((i<<_LogWordBits) + find_highest_bit(bits)); } } return OptoReg::Name(OptoReg::Bad); } // Clear out partial bits; leave only aligned adjacent bit pairs. void clear_to_pairs(); #ifdef ASSERT // Verify watermarks are sane, i.e., within bounds and that no // register words below or above the watermarks have bits set. bool valid_watermarks() const { assert(_hwm >= 0 && _hwm < RM_SIZE, "_hwm out of range: %d", _hwm); assert(_lwm >= 0 && _lwm < RM_SIZE, "_lwm out of range: %d", _lwm); for (int i = 0; i < _lwm; i++) { assert(_A[i] == 0, "_lwm too high: %d regs at: %d", _lwm, i); } for (int i = _hwm + 1; i < RM_SIZE; i++) { assert(_A[i] == 0, "_hwm too low: %d regs at: %d", _hwm, i); } return true; } #endif // !ASSERT // Test that the mask contains only aligned adjacent bit pairs bool is_aligned_pairs() const; // mask is a pair of misaligned registers bool is_misaligned_pair() const { return Size()==2 && !is_aligned_pairs(); } // Test for single register int is_bound1() const; // Test for a single adjacent pair int is_bound_pair() const; // Test for a single adjacent set of ideal register's size. int is_bound(uint ireg) const { if (is_vector(ireg)) { if (is_bound_set(num_registers(ireg))) return true; } else if (is_bound1() || is_bound_pair()) { return true; } return false; } // Find the lowest-numbered register set in the mask. Return the // HIGHEST register number in the set, or BAD if no sets. // Assert that the mask contains only bit sets. OptoReg::Name find_first_set(const int size) const; // Clear out partial bits; leave only aligned adjacent bit sets of size. void clear_to_sets(const int size); // Smear out partial bits to aligned adjacent bit sets. void smear_to_sets(const int size); // Test that the mask contains only aligned adjacent bit sets bool is_aligned_sets(const int size) const; // Test for a single adjacent set int is_bound_set(const int size) const; static bool is_vector(uint ireg); static int num_registers(uint ireg); // Fast overlap test. Non-zero if any registers in common. int overlap(const RegMask &rm) const { assert(valid_watermarks() && rm.valid_watermarks(), "sanity"); int hwm = MIN2(_hwm, rm._hwm); int lwm = MAX2(_lwm, rm._lwm); int result = 0; for (int i = lwm; i <= hwm; i++) { result |= _A[i] & rm._A[i]; } return result; } // Special test for register pressure based splitting // UP means register only, Register plus stack, or stack only is DOWN bool is_UP() const; // Clear a register mask void Clear() { _lwm = RM_SIZE - 1; _hwm = 0; memset(_A, 0, sizeof(int)*RM_SIZE); assert(valid_watermarks(), "sanity"); } // Fill a register mask with 1's void Set_All() { _lwm = 0; _hwm = RM_SIZE - 1; memset(_A, 0xFF, sizeof(int)*RM_SIZE); assert(valid_watermarks(), "sanity"); } // Insert register into mask void Insert(OptoReg::Name reg) { assert(reg < CHUNK_SIZE, "sanity"); assert(valid_watermarks(), "pre-condition"); int index = reg>>_LogWordBits; if (index > _hwm) _hwm = index; if (index < _lwm) _lwm = index; _A[index] |= (1<<(reg&(_WordBits-1))); assert(valid_watermarks(), "post-condition"); } // Remove register from mask void Remove(OptoReg::Name reg) { assert(reg < CHUNK_SIZE, ""); _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1))); } // OR 'rm' into 'this' void OR(const RegMask &rm) { assert(valid_watermarks() && rm.valid_watermarks(), "sanity"); // OR widens the live range if (rm._hwm > _hwm) _hwm = rm._hwm; if (rm._lwm < _lwm) _lwm = rm._lwm; for (int i = _lwm; i <= _hwm; i++) { _A[i] |= rm._A[i]; } assert(valid_watermarks(), "sanity"); } // AND 'rm' into 'this' void AND(const RegMask &rm) { assert(valid_watermarks() && rm.valid_watermarks(), "sanity"); // Do not evaluate words outside the current watermark range, as they are // already zero and an &= would not change that for (int i = _lwm; i <= _hwm; i++) { _A[i] &= rm._A[i]; } // Narrow the watermarks if &rm spans a narrower range. // Update after to ensure non-overlapping words are zeroed out. if (rm._hwm < _hwm) _hwm = rm._hwm; if (rm._lwm > _lwm) _lwm = rm._lwm; } // Subtract 'rm' from 'this' void SUBTRACT(const RegMask &rm) { assert(valid_watermarks() && rm.valid_watermarks(), "sanity"); // Evaluate the narrowest overlapping range int hwm = MIN2(_hwm, rm._hwm); int lwm = MAX2(_lwm, rm._lwm); for (int i = lwm; i <= hwm; i++) { _A[i] &= ~rm._A[i]; } } // Compute size of register mask: number of bits uint Size() const; #ifndef PRODUCT void print() const { dump(); } void dump(outputStream *st = tty) const; // Print a mask #endif static const RegMask Empty; // Common empty mask static bool can_represent(OptoReg::Name reg) { // NOTE: -1 in computation reflects the usage of the last // bit of the regmask as an infinite stack flag and // -7 is to keep mask aligned for largest value (VecZ). return (int)reg < (int)(CHUNK_SIZE-1); } static bool can_represent_arg(OptoReg::Name reg) { // NOTE: -SlotsPerVecZ in computation reflects the need // to keep mask aligned for largest value (VecZ). return (int)reg < (int)(CHUNK_SIZE-SlotsPerVecZ); } }; // Do not use this constant directly in client code! #undef RM_SIZE #endif // SHARE_OPTO_REGMASK_HPP