1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2019 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "jvm.h"
  32 #include "classfile/classLoader.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/icBuffer.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "libo4.hpp"
  42 #include "libperfstat_aix.hpp"
  43 #include "libodm_aix.hpp"
  44 #include "loadlib_aix.hpp"
  45 #include "memory/allocation.inline.hpp"
  46 #include "memory/filemap.hpp"
  47 #include "misc_aix.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "os_aix.inline.hpp"
  50 #include "os_share_aix.hpp"
  51 #include "porting_aix.hpp"
  52 #include "prims/jniFastGetField.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/extendedPC.hpp"
  57 #include "runtime/globals.hpp"
  58 #include "runtime/interfaceSupport.inline.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/mutexLocker.inline.hpp"
  62 #include "runtime/objectMonitor.hpp"
  63 #include "runtime/orderAccess.hpp"
  64 #include "runtime/os.hpp"
  65 #include "runtime/osThread.hpp"
  66 #include "runtime/perfMemory.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/statSampler.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/thread.inline.hpp"
  71 #include "runtime/threadCritical.hpp"
  72 #include "runtime/timer.hpp"
  73 #include "runtime/vm_version.hpp"
  74 #include "services/attachListener.hpp"
  75 #include "services/runtimeService.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/decoder.hpp"
  78 #include "utilities/defaultStream.hpp"
  79 #include "utilities/events.inline.hpp"
  80 #include "utilities/growableArray.hpp"
  81 #include "utilities/vmError.hpp"
  82 
  83 // put OS-includes here (sorted alphabetically)
  84 #include <errno.h>
  85 #include <fcntl.h>
  86 #include <inttypes.h>
  87 #include <poll.h>
  88 #include <procinfo.h>
  89 #include <pthread.h>
  90 #include <pwd.h>
  91 #include <semaphore.h>
  92 #include <signal.h>
  93 #include <stdint.h>
  94 #include <stdio.h>
  95 #include <string.h>
  96 #include <unistd.h>
  97 #include <sys/ioctl.h>
  98 #include <sys/ipc.h>
  99 #include <sys/mman.h>
 100 #include <sys/resource.h>
 101 #include <sys/select.h>
 102 #include <sys/shm.h>
 103 #include <sys/socket.h>
 104 #include <sys/stat.h>
 105 #include <sys/sysinfo.h>
 106 #include <sys/systemcfg.h>
 107 #include <sys/time.h>
 108 #include <sys/times.h>
 109 #include <sys/types.h>
 110 #include <sys/utsname.h>
 111 #include <sys/vminfo.h>
 112 #include <sys/wait.h>
 113 
 114 // Missing prototypes for various system APIs.
 115 extern "C"
 116 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 117 
 118 #if !defined(_AIXVERSION_610)
 119 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 120 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 121 extern "C" int getargs(procsinfo*, int, char*, int);
 122 #endif
 123 
 124 #define MAX_PATH (2 * K)
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 // for multipage initialization error analysis (in 'g_multipage_error')
 129 #define ERROR_MP_OS_TOO_OLD                          100
 130 #define ERROR_MP_EXTSHM_ACTIVE                       101
 131 #define ERROR_MP_VMGETINFO_FAILED                    102
 132 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 133 
 134 // excerpts from systemcfg.h that might be missing on older os levels
 135 #ifndef PV_5_Compat
 136   #define PV_5_Compat 0x0F8000   /* Power PC 5 */
 137 #endif
 138 #ifndef PV_6
 139   #define PV_6 0x100000          /* Power PC 6 */
 140 #endif
 141 #ifndef PV_6_1
 142   #define PV_6_1 0x100001        /* Power PC 6 DD1.x */
 143 #endif
 144 #ifndef PV_6_Compat
 145   #define PV_6_Compat 0x108000   /* Power PC 6 */
 146 #endif
 147 #ifndef PV_7
 148   #define PV_7 0x200000          /* Power PC 7 */
 149 #endif
 150 #ifndef PV_7_Compat
 151   #define PV_7_Compat 0x208000   /* Power PC 7 */
 152 #endif
 153 #ifndef PV_8
 154   #define PV_8 0x300000          /* Power PC 8 */
 155 #endif
 156 #ifndef PV_8_Compat
 157   #define PV_8_Compat 0x308000   /* Power PC 8 */
 158 #endif
 159 
 160 static address resolve_function_descriptor_to_code_pointer(address p);
 161 
 162 static void vmembk_print_on(outputStream* os);
 163 
 164 ////////////////////////////////////////////////////////////////////////////////
 165 // global variables (for a description see os_aix.hpp)
 166 
 167 julong    os::Aix::_physical_memory = 0;
 168 
 169 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 170 int       os::Aix::_page_size = -1;
 171 
 172 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 173 int       os::Aix::_on_pase = -1;
 174 
 175 // 0 = uninitialized, otherwise 32 bit number:
 176 //  0xVVRRTTSS
 177 //  VV - major version
 178 //  RR - minor version
 179 //  TT - tech level, if known, 0 otherwise
 180 //  SS - service pack, if known, 0 otherwise
 181 uint32_t  os::Aix::_os_version = 0;
 182 
 183 // -1 = uninitialized, 0 - no, 1 - yes
 184 int       os::Aix::_xpg_sus_mode = -1;
 185 
 186 // -1 = uninitialized, 0 - no, 1 - yes
 187 int       os::Aix::_extshm = -1;
 188 
 189 ////////////////////////////////////////////////////////////////////////////////
 190 // local variables
 191 
 192 static volatile jlong max_real_time = 0;
 193 static jlong    initial_time_count = 0;
 194 static int      clock_tics_per_sec = 100;
 195 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 196 static bool     check_signals      = true;
 197 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 198 static sigset_t SR_sigset;
 199 
 200 // Process break recorded at startup.
 201 static address g_brk_at_startup = NULL;
 202 
 203 // This describes the state of multipage support of the underlying
 204 // OS. Note that this is of no interest to the outsize world and
 205 // therefore should not be defined in AIX class.
 206 //
 207 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 208 // latter two (16M "large" resp. 16G "huge" pages) require special
 209 // setup and are normally not available.
 210 //
 211 // AIX supports multiple page sizes per process, for:
 212 //  - Stack (of the primordial thread, so not relevant for us)
 213 //  - Data - data, bss, heap, for us also pthread stacks
 214 //  - Text - text code
 215 //  - shared memory
 216 //
 217 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 218 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 219 //
 220 // For shared memory, page size can be set dynamically via
 221 // shmctl(). Different shared memory regions can have different page
 222 // sizes.
 223 //
 224 // More information can be found at AIBM info center:
 225 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 226 //
 227 static struct {
 228   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 229   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 230   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 231   size_t pthr_stack_pagesize; // stack page size of pthread threads
 232   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 233   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 234   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 235   int error;                  // Error describing if something went wrong at multipage init.
 236 } g_multipage_support = {
 237   (size_t) -1,
 238   (size_t) -1,
 239   (size_t) -1,
 240   (size_t) -1,
 241   (size_t) -1,
 242   false, false,
 243   0
 244 };
 245 
 246 // We must not accidentally allocate memory close to the BRK - even if
 247 // that would work - because then we prevent the BRK segment from
 248 // growing which may result in a malloc OOM even though there is
 249 // enough memory. The problem only arises if we shmat() or mmap() at
 250 // a specific wish address, e.g. to place the heap in a
 251 // compressed-oops-friendly way.
 252 static bool is_close_to_brk(address a) {
 253   assert0(g_brk_at_startup != NULL);
 254   if (a >= g_brk_at_startup &&
 255       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 256     return true;
 257   }
 258   return false;
 259 }
 260 
 261 julong os::available_memory() {
 262   return Aix::available_memory();
 263 }
 264 
 265 julong os::Aix::available_memory() {
 266   // Avoid expensive API call here, as returned value will always be null.
 267   if (os::Aix::on_pase()) {
 268     return 0x0LL;
 269   }
 270   os::Aix::meminfo_t mi;
 271   if (os::Aix::get_meminfo(&mi)) {
 272     return mi.real_free;
 273   } else {
 274     return ULONG_MAX;
 275   }
 276 }
 277 
 278 julong os::physical_memory() {
 279   return Aix::physical_memory();
 280 }
 281 
 282 // Return true if user is running as root.
 283 
 284 bool os::have_special_privileges() {
 285   static bool init = false;
 286   static bool privileges = false;
 287   if (!init) {
 288     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 289     init = true;
 290   }
 291   return privileges;
 292 }
 293 
 294 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 295 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 296 static bool my_disclaim64(char* addr, size_t size) {
 297 
 298   if (size == 0) {
 299     return true;
 300   }
 301 
 302   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 303   const unsigned int maxDisclaimSize = 0x40000000;
 304 
 305   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 306   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 307 
 308   char* p = addr;
 309 
 310   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 311     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 312       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 313       return false;
 314     }
 315     p += maxDisclaimSize;
 316   }
 317 
 318   if (lastDisclaimSize > 0) {
 319     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 320       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 321       return false;
 322     }
 323   }
 324 
 325   return true;
 326 }
 327 
 328 // Cpu architecture string
 329 #if defined(PPC32)
 330 static char cpu_arch[] = "ppc";
 331 #elif defined(PPC64)
 332 static char cpu_arch[] = "ppc64";
 333 #else
 334 #error Add appropriate cpu_arch setting
 335 #endif
 336 
 337 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 338 static int checked_vmgetinfo(void *out, int command, int arg) {
 339   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 340     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 341   }
 342   return ::vmgetinfo(out, command, arg);
 343 }
 344 
 345 // Given an address, returns the size of the page backing that address.
 346 size_t os::Aix::query_pagesize(void* addr) {
 347 
 348   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 349     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 350     return 4*K;
 351   }
 352 
 353   vm_page_info pi;
 354   pi.addr = (uint64_t)addr;
 355   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 356     return pi.pagesize;
 357   } else {
 358     assert(false, "vmgetinfo failed to retrieve page size");
 359     return 4*K;
 360   }
 361 }
 362 
 363 void os::Aix::initialize_system_info() {
 364 
 365   // Get the number of online(logical) cpus instead of configured.
 366   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 367   assert(_processor_count > 0, "_processor_count must be > 0");
 368 
 369   // Retrieve total physical storage.
 370   os::Aix::meminfo_t mi;
 371   if (!os::Aix::get_meminfo(&mi)) {
 372     assert(false, "os::Aix::get_meminfo failed.");
 373   }
 374   _physical_memory = (julong) mi.real_total;
 375 }
 376 
 377 // Helper function for tracing page sizes.
 378 static const char* describe_pagesize(size_t pagesize) {
 379   switch (pagesize) {
 380     case 4*K : return "4K";
 381     case 64*K: return "64K";
 382     case 16*M: return "16M";
 383     case 16*G: return "16G";
 384     default:
 385       assert(false, "surprise");
 386       return "??";
 387   }
 388 }
 389 
 390 // Probe OS for multipage support.
 391 // Will fill the global g_multipage_support structure.
 392 // Must be called before calling os::large_page_init().
 393 static void query_multipage_support() {
 394 
 395   guarantee(g_multipage_support.pagesize == -1,
 396             "do not call twice");
 397 
 398   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 399 
 400   // This really would surprise me.
 401   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 402 
 403   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 404   // Default data page size is defined either by linker options (-bdatapsize)
 405   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 406   // default should be 4K.
 407   {
 408     void* p = ::malloc(16*M);
 409     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 410     ::free(p);
 411   }
 412 
 413   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 414   // Note that this is pure curiosity. We do not rely on default page size but set
 415   // our own page size after allocated.
 416   {
 417     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 418     guarantee(shmid != -1, "shmget failed");
 419     void* p = ::shmat(shmid, NULL, 0);
 420     ::shmctl(shmid, IPC_RMID, NULL);
 421     guarantee(p != (void*) -1, "shmat failed");
 422     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 423     ::shmdt(p);
 424   }
 425 
 426   // Before querying the stack page size, make sure we are not running as primordial
 427   // thread (because primordial thread's stack may have different page size than
 428   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 429   // number of reasons so we may just as well guarantee it here.
 430   guarantee0(!os::is_primordial_thread());
 431 
 432   // Query pthread stack page size. Should be the same as data page size because
 433   // pthread stacks are allocated from C-Heap.
 434   {
 435     int dummy = 0;
 436     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 437   }
 438 
 439   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 440   {
 441     address any_function =
 442       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 443     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 444   }
 445 
 446   // Now probe for support of 64K pages and 16M pages.
 447 
 448   // Before OS/400 V6R1, there is no support for pages other than 4K.
 449   if (os::Aix::on_pase_V5R4_or_older()) {
 450     trcVerbose("OS/400 < V6R1 - no large page support.");
 451     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 452     goto query_multipage_support_end;
 453   }
 454 
 455   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 456   {
 457     const int MAX_PAGE_SIZES = 4;
 458     psize_t sizes[MAX_PAGE_SIZES];
 459     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 460     if (num_psizes == -1) {
 461       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 462       trcVerbose("disabling multipage support.");
 463       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 464       goto query_multipage_support_end;
 465     }
 466     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 467     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 468     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 469     for (int i = 0; i < num_psizes; i ++) {
 470       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 471     }
 472 
 473     // Can we use 64K, 16M pages?
 474     for (int i = 0; i < num_psizes; i ++) {
 475       const size_t pagesize = sizes[i];
 476       if (pagesize != 64*K && pagesize != 16*M) {
 477         continue;
 478       }
 479       bool can_use = false;
 480       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 481       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 482         IPC_CREAT | S_IRUSR | S_IWUSR);
 483       guarantee0(shmid != -1); // Should always work.
 484       // Try to set pagesize.
 485       struct shmid_ds shm_buf = { 0 };
 486       shm_buf.shm_pagesize = pagesize;
 487       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 488         const int en = errno;
 489         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 490         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%d", errno);
 491       } else {
 492         // Attach and double check pageisze.
 493         void* p = ::shmat(shmid, NULL, 0);
 494         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 495         guarantee0(p != (void*) -1); // Should always work.
 496         const size_t real_pagesize = os::Aix::query_pagesize(p);
 497         if (real_pagesize != pagesize) {
 498           trcVerbose("real page size (" SIZE_FORMAT_HEX ") differs.", real_pagesize);
 499         } else {
 500           can_use = true;
 501         }
 502         ::shmdt(p);
 503       }
 504       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 505       if (pagesize == 64*K) {
 506         g_multipage_support.can_use_64K_pages = can_use;
 507       } else if (pagesize == 16*M) {
 508         g_multipage_support.can_use_16M_pages = can_use;
 509       }
 510     }
 511 
 512   } // end: check which pages can be used for shared memory
 513 
 514 query_multipage_support_end:
 515 
 516   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 517       describe_pagesize(g_multipage_support.pagesize));
 518   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 519       describe_pagesize(g_multipage_support.datapsize));
 520   trcVerbose("Text page size: %s",
 521       describe_pagesize(g_multipage_support.textpsize));
 522   trcVerbose("Thread stack page size (pthread): %s",
 523       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 524   trcVerbose("Default shared memory page size: %s",
 525       describe_pagesize(g_multipage_support.shmpsize));
 526   trcVerbose("Can use 64K pages dynamically with shared memory: %s",
 527       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 528   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 529       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 530   trcVerbose("Multipage error details: %d",
 531       g_multipage_support.error);
 532 
 533   // sanity checks
 534   assert0(g_multipage_support.pagesize == 4*K);
 535   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 536   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 537   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 538   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 539 
 540 }
 541 
 542 void os::init_system_properties_values() {
 543 
 544 #ifndef OVERRIDE_LIBPATH
 545   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 546 #else
 547   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 548 #endif
 549 #define EXTENSIONS_DIR  "/lib/ext"
 550 
 551   // Buffer that fits several sprintfs.
 552   // Note that the space for the trailing null is provided
 553   // by the nulls included by the sizeof operator.
 554   const size_t bufsize =
 555     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 556          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 557   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 558 
 559   // sysclasspath, java_home, dll_dir
 560   {
 561     char *pslash;
 562     os::jvm_path(buf, bufsize);
 563 
 564     // Found the full path to libjvm.so.
 565     // Now cut the path to <java_home>/jre if we can.
 566     pslash = strrchr(buf, '/');
 567     if (pslash != NULL) {
 568       *pslash = '\0';            // Get rid of /libjvm.so.
 569     }
 570     pslash = strrchr(buf, '/');
 571     if (pslash != NULL) {
 572       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 573     }
 574     Arguments::set_dll_dir(buf);
 575 
 576     if (pslash != NULL) {
 577       pslash = strrchr(buf, '/');
 578       if (pslash != NULL) {
 579         *pslash = '\0';        // Get rid of /lib.
 580       }
 581     }
 582     Arguments::set_java_home(buf);
 583     if (!set_boot_path('/', ':')) {
 584       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 585     }
 586   }
 587 
 588   // Where to look for native libraries.
 589 
 590   // On Aix we get the user setting of LIBPATH.
 591   // Eventually, all the library path setting will be done here.
 592   // Get the user setting of LIBPATH.
 593   const char *v = ::getenv("LIBPATH");
 594   const char *v_colon = ":";
 595   if (v == NULL) { v = ""; v_colon = ""; }
 596 
 597   // Concatenate user and invariant part of ld_library_path.
 598   // That's +1 for the colon and +1 for the trailing '\0'.
 599   char *ld_library_path = NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 600   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 601   Arguments::set_library_path(ld_library_path);
 602   FREE_C_HEAP_ARRAY(char, ld_library_path);
 603 
 604   // Extensions directories.
 605   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 606   Arguments::set_ext_dirs(buf);
 607 
 608   FREE_C_HEAP_ARRAY(char, buf);
 609 
 610 #undef DEFAULT_LIBPATH
 611 #undef EXTENSIONS_DIR
 612 }
 613 
 614 ////////////////////////////////////////////////////////////////////////////////
 615 // breakpoint support
 616 
 617 void os::breakpoint() {
 618   BREAKPOINT;
 619 }
 620 
 621 extern "C" void breakpoint() {
 622   // use debugger to set breakpoint here
 623 }
 624 
 625 ////////////////////////////////////////////////////////////////////////////////
 626 // signal support
 627 
 628 debug_only(static bool signal_sets_initialized = false);
 629 static sigset_t unblocked_sigs, vm_sigs;
 630 
 631 void os::Aix::signal_sets_init() {
 632   // Should also have an assertion stating we are still single-threaded.
 633   assert(!signal_sets_initialized, "Already initialized");
 634   // Fill in signals that are necessarily unblocked for all threads in
 635   // the VM. Currently, we unblock the following signals:
 636   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 637   //                         by -Xrs (=ReduceSignalUsage));
 638   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 639   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 640   // the dispositions or masks wrt these signals.
 641   // Programs embedding the VM that want to use the above signals for their
 642   // own purposes must, at this time, use the "-Xrs" option to prevent
 643   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 644   // (See bug 4345157, and other related bugs).
 645   // In reality, though, unblocking these signals is really a nop, since
 646   // these signals are not blocked by default.
 647   sigemptyset(&unblocked_sigs);
 648   sigaddset(&unblocked_sigs, SIGILL);
 649   sigaddset(&unblocked_sigs, SIGSEGV);
 650   sigaddset(&unblocked_sigs, SIGBUS);
 651   sigaddset(&unblocked_sigs, SIGFPE);
 652   sigaddset(&unblocked_sigs, SIGTRAP);
 653   sigaddset(&unblocked_sigs, SR_signum);
 654 
 655   if (!ReduceSignalUsage) {
 656    if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 657      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 658    }
 659    if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 660      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 661    }
 662    if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 663      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 664    }
 665   }
 666   // Fill in signals that are blocked by all but the VM thread.
 667   sigemptyset(&vm_sigs);
 668   if (!ReduceSignalUsage)
 669     sigaddset(&vm_sigs, BREAK_SIGNAL);
 670   debug_only(signal_sets_initialized = true);
 671 }
 672 
 673 // These are signals that are unblocked while a thread is running Java.
 674 // (For some reason, they get blocked by default.)
 675 sigset_t* os::Aix::unblocked_signals() {
 676   assert(signal_sets_initialized, "Not initialized");
 677   return &unblocked_sigs;
 678 }
 679 
 680 // These are the signals that are blocked while a (non-VM) thread is
 681 // running Java. Only the VM thread handles these signals.
 682 sigset_t* os::Aix::vm_signals() {
 683   assert(signal_sets_initialized, "Not initialized");
 684   return &vm_sigs;
 685 }
 686 
 687 void os::Aix::hotspot_sigmask(Thread* thread) {
 688 
 689   //Save caller's signal mask before setting VM signal mask
 690   sigset_t caller_sigmask;
 691   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 692 
 693   OSThread* osthread = thread->osthread();
 694   osthread->set_caller_sigmask(caller_sigmask);
 695 
 696   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 697 
 698   if (!ReduceSignalUsage) {
 699     if (thread->is_VM_thread()) {
 700       // Only the VM thread handles BREAK_SIGNAL ...
 701       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 702     } else {
 703       // ... all other threads block BREAK_SIGNAL
 704       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 705     }
 706   }
 707 }
 708 
 709 // retrieve memory information.
 710 // Returns false if something went wrong;
 711 // content of pmi undefined in this case.
 712 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 713 
 714   assert(pmi, "get_meminfo: invalid parameter");
 715 
 716   memset(pmi, 0, sizeof(meminfo_t));
 717 
 718   if (os::Aix::on_pase()) {
 719     // On PASE, use the libo4 porting library.
 720 
 721     unsigned long long virt_total = 0;
 722     unsigned long long real_total = 0;
 723     unsigned long long real_free = 0;
 724     unsigned long long pgsp_total = 0;
 725     unsigned long long pgsp_free = 0;
 726     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 727       pmi->virt_total = virt_total;
 728       pmi->real_total = real_total;
 729       pmi->real_free = real_free;
 730       pmi->pgsp_total = pgsp_total;
 731       pmi->pgsp_free = pgsp_free;
 732       return true;
 733     }
 734     return false;
 735 
 736   } else {
 737 
 738     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 739     // See:
 740     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 741     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 742     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 743     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 744 
 745     perfstat_memory_total_t psmt;
 746     memset (&psmt, '\0', sizeof(psmt));
 747     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 748     if (rc == -1) {
 749       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 750       assert(0, "perfstat_memory_total() failed");
 751       return false;
 752     }
 753 
 754     assert(rc == 1, "perfstat_memory_total() - weird return code");
 755 
 756     // excerpt from
 757     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 758     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 759     // The fields of perfstat_memory_total_t:
 760     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 761     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 762     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 763     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 764     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 765 
 766     pmi->virt_total = psmt.virt_total * 4096;
 767     pmi->real_total = psmt.real_total * 4096;
 768     pmi->real_free = psmt.real_free * 4096;
 769     pmi->pgsp_total = psmt.pgsp_total * 4096;
 770     pmi->pgsp_free = psmt.pgsp_free * 4096;
 771 
 772     return true;
 773 
 774   }
 775 } // end os::Aix::get_meminfo
 776 
 777 //////////////////////////////////////////////////////////////////////////////
 778 // create new thread
 779 
 780 // Thread start routine for all newly created threads
 781 static void *thread_native_entry(Thread *thread) {
 782 
 783   thread->record_stack_base_and_size();
 784 
 785   const pthread_t pthread_id = ::pthread_self();
 786   const tid_t kernel_thread_id = ::thread_self();
 787 
 788   LogTarget(Info, os, thread) lt;
 789   if (lt.is_enabled()) {
 790     address low_address = thread->stack_end();
 791     address high_address = thread->stack_base();
 792     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 793              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 794              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 795              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 796   }
 797 
 798   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 799   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 800   // tools hook pthread_create(). In this case, we may run into problems establishing
 801   // guard pages on those stacks, because the stacks may reside in memory which is not
 802   // protectable (shmated).
 803   if (thread->stack_base() > ::sbrk(0)) {
 804     log_warning(os, thread)("Thread stack not in data segment.");
 805   }
 806 
 807   // Try to randomize the cache line index of hot stack frames.
 808   // This helps when threads of the same stack traces evict each other's
 809   // cache lines. The threads can be either from the same JVM instance, or
 810   // from different JVM instances. The benefit is especially true for
 811   // processors with hyperthreading technology.
 812 
 813   static int counter = 0;
 814   int pid = os::current_process_id();
 815   alloca(((pid ^ counter++) & 7) * 128);
 816 
 817   thread->initialize_thread_current();
 818 
 819   OSThread* osthread = thread->osthread();
 820 
 821   // Thread_id is pthread id.
 822   osthread->set_thread_id(pthread_id);
 823 
 824   // .. but keep kernel thread id too for diagnostics
 825   osthread->set_kernel_thread_id(kernel_thread_id);
 826 
 827   // Initialize signal mask for this thread.
 828   os::Aix::hotspot_sigmask(thread);
 829 
 830   // Initialize floating point control register.
 831   os::Aix::init_thread_fpu_state();
 832 
 833   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 834 
 835   // Call one more level start routine.
 836   thread->call_run();
 837 
 838   // Note: at this point the thread object may already have deleted itself.
 839   // Prevent dereferencing it from here on out.
 840   thread = NULL;
 841 
 842   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 843     os::current_thread_id(), (uintx) kernel_thread_id);
 844 
 845   return 0;
 846 }
 847 
 848 bool os::create_thread(Thread* thread, ThreadType thr_type,
 849                        size_t req_stack_size) {
 850 
 851   assert(thread->osthread() == NULL, "caller responsible");
 852 
 853   // Allocate the OSThread object.
 854   OSThread* osthread = new OSThread(NULL, NULL);
 855   if (osthread == NULL) {
 856     return false;
 857   }
 858 
 859   // Set the correct thread state.
 860   osthread->set_thread_type(thr_type);
 861 
 862   // Initial state is ALLOCATED but not INITIALIZED
 863   osthread->set_state(ALLOCATED);
 864 
 865   thread->set_osthread(osthread);
 866 
 867   // Init thread attributes.
 868   pthread_attr_t attr;
 869   pthread_attr_init(&attr);
 870   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 871 
 872   // Make sure we run in 1:1 kernel-user-thread mode.
 873   if (os::Aix::on_aix()) {
 874     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 875     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 876   }
 877 
 878   // Start in suspended state, and in os::thread_start, wake the thread up.
 879   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 880 
 881   // Calculate stack size if it's not specified by caller.
 882   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 883 
 884   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 885   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 886   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 887   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 888   if (stack_size < 4096 * K) {
 889     stack_size += 64 * K;
 890   }
 891 
 892   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 893   // thread size in attr unchanged. If this is the minimal stack size as set
 894   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 895   // guard pages might not fit on the tiny stack created.
 896   int ret = pthread_attr_setstacksize(&attr, stack_size);
 897   if (ret != 0) {
 898     log_warning(os, thread)("The %sthread stack size specified is invalid: " SIZE_FORMAT "k",
 899                             (thr_type == compiler_thread) ? "compiler " : ((thr_type == java_thread) ? "" : "VM "),
 900                             stack_size / K);
 901     thread->set_osthread(NULL);
 902     delete osthread;
 903     return false;
 904   }
 905 
 906   // Save some cycles and a page by disabling OS guard pages where we have our own
 907   // VM guard pages (in java threads). For other threads, keep system default guard
 908   // pages in place.
 909   if (thr_type == java_thread || thr_type == compiler_thread) {
 910     ret = pthread_attr_setguardsize(&attr, 0);
 911   }
 912 
 913   pthread_t tid = 0;
 914   if (ret == 0) {
 915     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 916   }
 917 
 918   if (ret == 0) {
 919     char buf[64];
 920     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 921       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 922   } else {
 923     char buf[64];
 924     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 925       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 926     // Log some OS information which might explain why creating the thread failed.
 927     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 928     LogStream st(Log(os, thread)::info());
 929     os::Posix::print_rlimit_info(&st);
 930     os::print_memory_info(&st);
 931   }
 932 
 933   pthread_attr_destroy(&attr);
 934 
 935   if (ret != 0) {
 936     // Need to clean up stuff we've allocated so far.
 937     thread->set_osthread(NULL);
 938     delete osthread;
 939     return false;
 940   }
 941 
 942   // OSThread::thread_id is the pthread id.
 943   osthread->set_thread_id(tid);
 944 
 945   return true;
 946 }
 947 
 948 /////////////////////////////////////////////////////////////////////////////
 949 // attach existing thread
 950 
 951 // bootstrap the main thread
 952 bool os::create_main_thread(JavaThread* thread) {
 953   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 954   return create_attached_thread(thread);
 955 }
 956 
 957 bool os::create_attached_thread(JavaThread* thread) {
 958 #ifdef ASSERT
 959     thread->verify_not_published();
 960 #endif
 961 
 962   // Allocate the OSThread object
 963   OSThread* osthread = new OSThread(NULL, NULL);
 964 
 965   if (osthread == NULL) {
 966     return false;
 967   }
 968 
 969   const pthread_t pthread_id = ::pthread_self();
 970   const tid_t kernel_thread_id = ::thread_self();
 971 
 972   // OSThread::thread_id is the pthread id.
 973   osthread->set_thread_id(pthread_id);
 974 
 975   // .. but keep kernel thread id too for diagnostics
 976   osthread->set_kernel_thread_id(kernel_thread_id);
 977 
 978   // initialize floating point control register
 979   os::Aix::init_thread_fpu_state();
 980 
 981   // Initial thread state is RUNNABLE
 982   osthread->set_state(RUNNABLE);
 983 
 984   thread->set_osthread(osthread);
 985 
 986   if (UseNUMA) {
 987     int lgrp_id = os::numa_get_group_id();
 988     if (lgrp_id != -1) {
 989       thread->set_lgrp_id(lgrp_id);
 990     }
 991   }
 992 
 993   // initialize signal mask for this thread
 994   // and save the caller's signal mask
 995   os::Aix::hotspot_sigmask(thread);
 996 
 997   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 998     os::current_thread_id(), (uintx) kernel_thread_id);
 999 
1000   return true;
1001 }
1002 
1003 void os::pd_start_thread(Thread* thread) {
1004   int status = pthread_continue_np(thread->osthread()->pthread_id());
1005   assert(status == 0, "thr_continue failed");
1006 }
1007 
1008 // Free OS resources related to the OSThread
1009 void os::free_thread(OSThread* osthread) {
1010   assert(osthread != NULL, "osthread not set");
1011 
1012   // We are told to free resources of the argument thread,
1013   // but we can only really operate on the current thread.
1014   assert(Thread::current()->osthread() == osthread,
1015          "os::free_thread but not current thread");
1016 
1017   // Restore caller's signal mask
1018   sigset_t sigmask = osthread->caller_sigmask();
1019   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1020 
1021   delete osthread;
1022 }
1023 
1024 ////////////////////////////////////////////////////////////////////////////////
1025 // time support
1026 
1027 // Time since start-up in seconds to a fine granularity.
1028 // Used by VMSelfDestructTimer and the MemProfiler.
1029 double os::elapsedTime() {
1030   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1031 }
1032 
1033 jlong os::elapsed_counter() {
1034   return javaTimeNanos() - initial_time_count;
1035 }
1036 
1037 jlong os::elapsed_frequency() {
1038   return NANOSECS_PER_SEC; // nanosecond resolution
1039 }
1040 
1041 bool os::supports_vtime() { return true; }
1042 bool os::enable_vtime()   { return false; }
1043 bool os::vtime_enabled()  { return false; }
1044 
1045 double os::elapsedVTime() {
1046   struct rusage usage;
1047   int retval = getrusage(RUSAGE_THREAD, &usage);
1048   if (retval == 0) {
1049     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1050   } else {
1051     // better than nothing, but not much
1052     return elapsedTime();
1053   }
1054 }
1055 
1056 jlong os::javaTimeMillis() {
1057   timeval time;
1058   int status = gettimeofday(&time, NULL);
1059   assert(status != -1, "aix error at gettimeofday()");
1060   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1061 }
1062 
1063 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1064   timeval time;
1065   int status = gettimeofday(&time, NULL);
1066   assert(status != -1, "aix error at gettimeofday()");
1067   seconds = jlong(time.tv_sec);
1068   nanos = jlong(time.tv_usec) * 1000;
1069 }
1070 
1071 // We use mread_real_time here.
1072 // On AIX: If the CPU has a time register, the result will be RTC_POWER and
1073 // it has to be converted to real time. AIX documentations suggests to do
1074 // this unconditionally, so we do it.
1075 //
1076 // See: https://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.basetrf2/read_real_time.htm
1077 //
1078 // On PASE: mread_real_time will always return RTC_POWER_PC data, so no
1079 // conversion is necessary. However, mread_real_time will not return
1080 // monotonic results but merely matches read_real_time. So we need a tweak
1081 // to ensure monotonic results.
1082 //
1083 // For PASE no public documentation exists, just word by IBM
1084 jlong os::javaTimeNanos() {
1085   timebasestruct_t time;
1086   int rc = mread_real_time(&time, TIMEBASE_SZ);
1087   if (os::Aix::on_pase()) {
1088     assert(rc == RTC_POWER, "expected time format RTC_POWER from mread_real_time in PASE");
1089     jlong now = jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1090     jlong prev = max_real_time;
1091     if (now <= prev) {
1092       return prev;   // same or retrograde time;
1093     }
1094     jlong obsv = Atomic::cmpxchg(now, &max_real_time, prev);
1095     assert(obsv >= prev, "invariant");   // Monotonicity
1096     // If the CAS succeeded then we're done and return "now".
1097     // If the CAS failed and the observed value "obsv" is >= now then
1098     // we should return "obsv".  If the CAS failed and now > obsv > prv then
1099     // some other thread raced this thread and installed a new value, in which case
1100     // we could either (a) retry the entire operation, (b) retry trying to install now
1101     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1102     // we might discard a higher "now" value in deference to a slightly lower but freshly
1103     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1104     // to (a) or (b) -- and greatly reduces coherence traffic.
1105     // We might also condition (c) on the magnitude of the delta between obsv and now.
1106     // Avoiding excessive CAS operations to hot RW locations is critical.
1107     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1108     return (prev == obsv) ? now : obsv;
1109   } else {
1110     if (rc != RTC_POWER) {
1111       rc = time_base_to_time(&time, TIMEBASE_SZ);
1112       assert(rc != -1, "error calling time_base_to_time()");
1113     }
1114     return jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1115   }
1116 }
1117 
1118 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1119   info_ptr->max_value = ALL_64_BITS;
1120   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1121   info_ptr->may_skip_backward = false;
1122   info_ptr->may_skip_forward = false;
1123   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1124 }
1125 
1126 // Return the real, user, and system times in seconds from an
1127 // arbitrary fixed point in the past.
1128 bool os::getTimesSecs(double* process_real_time,
1129                       double* process_user_time,
1130                       double* process_system_time) {
1131   struct tms ticks;
1132   clock_t real_ticks = times(&ticks);
1133 
1134   if (real_ticks == (clock_t) (-1)) {
1135     return false;
1136   } else {
1137     double ticks_per_second = (double) clock_tics_per_sec;
1138     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1139     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1140     *process_real_time = ((double) real_ticks) / ticks_per_second;
1141 
1142     return true;
1143   }
1144 }
1145 
1146 char * os::local_time_string(char *buf, size_t buflen) {
1147   struct tm t;
1148   time_t long_time;
1149   time(&long_time);
1150   localtime_r(&long_time, &t);
1151   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1152                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1153                t.tm_hour, t.tm_min, t.tm_sec);
1154   return buf;
1155 }
1156 
1157 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1158   return localtime_r(clock, res);
1159 }
1160 
1161 ////////////////////////////////////////////////////////////////////////////////
1162 // runtime exit support
1163 
1164 // Note: os::shutdown() might be called very early during initialization, or
1165 // called from signal handler. Before adding something to os::shutdown(), make
1166 // sure it is async-safe and can handle partially initialized VM.
1167 void os::shutdown() {
1168 
1169   // allow PerfMemory to attempt cleanup of any persistent resources
1170   perfMemory_exit();
1171 
1172   // needs to remove object in file system
1173   AttachListener::abort();
1174 
1175   // flush buffered output, finish log files
1176   ostream_abort();
1177 
1178   // Check for abort hook
1179   abort_hook_t abort_hook = Arguments::abort_hook();
1180   if (abort_hook != NULL) {
1181     abort_hook();
1182   }
1183 }
1184 
1185 // Note: os::abort() might be called very early during initialization, or
1186 // called from signal handler. Before adding something to os::abort(), make
1187 // sure it is async-safe and can handle partially initialized VM.
1188 void os::abort(bool dump_core, void* siginfo, const void* context) {
1189   os::shutdown();
1190   if (dump_core) {
1191 #ifndef PRODUCT
1192     fdStream out(defaultStream::output_fd());
1193     out.print_raw("Current thread is ");
1194     char buf[16];
1195     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1196     out.print_raw_cr(buf);
1197     out.print_raw_cr("Dumping core ...");
1198 #endif
1199     ::abort(); // dump core
1200   }
1201 
1202   ::exit(1);
1203 }
1204 
1205 // Die immediately, no exit hook, no abort hook, no cleanup.
1206 // Dump a core file, if possible, for debugging.
1207 void os::die() {
1208   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1209     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1210     // and don't take the time to generate a core file.
1211     os::signal_raise(SIGKILL);
1212   } else {
1213     ::abort();
1214   }
1215 }
1216 
1217 intx os::current_thread_id() {
1218   return (intx)pthread_self();
1219 }
1220 
1221 int os::current_process_id() {
1222   return getpid();
1223 }
1224 
1225 // DLL functions
1226 
1227 const char* os::dll_file_extension() { return ".so"; }
1228 
1229 // This must be hard coded because it's the system's temporary
1230 // directory not the java application's temp directory, ala java.io.tmpdir.
1231 const char* os::get_temp_directory() { return "/tmp"; }
1232 
1233 // Check if addr is inside libjvm.so.
1234 bool os::address_is_in_vm(address addr) {
1235 
1236   // Input could be a real pc or a function pointer literal. The latter
1237   // would be a function descriptor residing in the data segment of a module.
1238   loaded_module_t lm;
1239   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1240     return lm.is_in_vm;
1241   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1242     return lm.is_in_vm;
1243   } else {
1244     return false;
1245   }
1246 
1247 }
1248 
1249 // Resolve an AIX function descriptor literal to a code pointer.
1250 // If the input is a valid code pointer to a text segment of a loaded module,
1251 //   it is returned unchanged.
1252 // If the input is a valid AIX function descriptor, it is resolved to the
1253 //   code entry point.
1254 // If the input is neither a valid function descriptor nor a valid code pointer,
1255 //   NULL is returned.
1256 static address resolve_function_descriptor_to_code_pointer(address p) {
1257 
1258   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1259     // It is a real code pointer.
1260     return p;
1261   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1262     // Pointer to data segment, potential function descriptor.
1263     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1264     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1265       // It is a function descriptor.
1266       return code_entry;
1267     }
1268   }
1269 
1270   return NULL;
1271 }
1272 
1273 bool os::dll_address_to_function_name(address addr, char *buf,
1274                                       int buflen, int *offset,
1275                                       bool demangle) {
1276   if (offset) {
1277     *offset = -1;
1278   }
1279   // Buf is not optional, but offset is optional.
1280   assert(buf != NULL, "sanity check");
1281   buf[0] = '\0';
1282 
1283   // Resolve function ptr literals first.
1284   addr = resolve_function_descriptor_to_code_pointer(addr);
1285   if (!addr) {
1286     return false;
1287   }
1288 
1289   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1290 }
1291 
1292 bool os::dll_address_to_library_name(address addr, char* buf,
1293                                      int buflen, int* offset) {
1294   if (offset) {
1295     *offset = -1;
1296   }
1297   // Buf is not optional, but offset is optional.
1298   assert(buf != NULL, "sanity check");
1299   buf[0] = '\0';
1300 
1301   // Resolve function ptr literals first.
1302   addr = resolve_function_descriptor_to_code_pointer(addr);
1303   if (!addr) {
1304     return false;
1305   }
1306 
1307   return AixSymbols::get_module_name(addr, buf, buflen);
1308 }
1309 
1310 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1311 // for the same architecture as Hotspot is running on.
1312 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1313 
1314   log_info(os)("attempting shared library load of %s", filename);
1315 
1316   if (ebuf && ebuflen > 0) {
1317     ebuf[0] = '\0';
1318     ebuf[ebuflen - 1] = '\0';
1319   }
1320 
1321   if (!filename || strlen(filename) == 0) {
1322     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1323     return NULL;
1324   }
1325 
1326   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1327   void * result= ::dlopen(filename, RTLD_LAZY);
1328   if (result != NULL) {
1329     Events::log(NULL, "Loaded shared library %s", filename);
1330     // Reload dll cache. Don't do this in signal handling.
1331     LoadedLibraries::reload();
1332     log_info(os)("shared library load of %s was successful", filename);
1333     return result;
1334   } else {
1335     // error analysis when dlopen fails
1336     const char* error_report = ::dlerror();
1337     if (error_report == NULL) {
1338       error_report = "dlerror returned no error description";
1339     }
1340     if (ebuf != NULL && ebuflen > 0) {
1341       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1342                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1343     }
1344     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1345     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1346   }
1347   return NULL;
1348 }
1349 
1350 void* os::dll_lookup(void* handle, const char* name) {
1351   void* res = dlsym(handle, name);
1352   return res;
1353 }
1354 
1355 void* os::get_default_process_handle() {
1356   return (void*)::dlopen(NULL, RTLD_LAZY);
1357 }
1358 
1359 void os::print_dll_info(outputStream *st) {
1360   st->print_cr("Dynamic libraries:");
1361   LoadedLibraries::print(st);
1362 }
1363 
1364 void os::get_summary_os_info(char* buf, size_t buflen) {
1365   // There might be something more readable than uname results for AIX.
1366   struct utsname name;
1367   uname(&name);
1368   snprintf(buf, buflen, "%s %s", name.release, name.version);
1369 }
1370 
1371 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1372   // Not yet implemented.
1373   return 0;
1374 }
1375 
1376 void os::print_os_info_brief(outputStream* st) {
1377   uint32_t ver = os::Aix::os_version();
1378   st->print_cr("AIX kernel version %u.%u.%u.%u",
1379                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1380 
1381   os::Posix::print_uname_info(st);
1382 
1383   // Linux uses print_libversion_info(st); here.
1384 }
1385 
1386 void os::print_os_info(outputStream* st) {
1387   st->print("OS:");
1388 
1389   st->print("uname:");
1390   struct utsname name;
1391   uname(&name);
1392   st->print(name.sysname); st->print(" ");
1393   st->print(name.nodename); st->print(" ");
1394   st->print(name.release); st->print(" ");
1395   st->print(name.version); st->print(" ");
1396   st->print(name.machine);
1397   st->cr();
1398 
1399   uint32_t ver = os::Aix::os_version();
1400   st->print_cr("AIX kernel version %u.%u.%u.%u",
1401                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1402 
1403   os::Posix::print_rlimit_info(st);
1404 
1405   // _SC_THREAD_THREADS_MAX is the maximum number of threads within a process.
1406   long tmax = sysconf(_SC_THREAD_THREADS_MAX);
1407   st->print_cr("maximum #threads within a process:%ld", tmax);
1408 
1409   // load average
1410   st->print("load average:");
1411   double loadavg[3] = {-1.L, -1.L, -1.L};
1412   os::loadavg(loadavg, 3);
1413   st->print_cr("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1414 
1415   // print wpar info
1416   libperfstat::wparinfo_t wi;
1417   if (libperfstat::get_wparinfo(&wi)) {
1418     st->print_cr("wpar info");
1419     st->print_cr("name: %s", wi.name);
1420     st->print_cr("id:   %d", wi.wpar_id);
1421     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1422   }
1423 
1424   VM_Version::print_platform_virtualization_info(st);
1425 }
1426 
1427 void os::print_memory_info(outputStream* st) {
1428 
1429   st->print_cr("Memory:");
1430 
1431   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1432     describe_pagesize(g_multipage_support.pagesize));
1433   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1434     describe_pagesize(g_multipage_support.datapsize));
1435   st->print_cr("  Text page size:                         %s",
1436     describe_pagesize(g_multipage_support.textpsize));
1437   st->print_cr("  Thread stack page size (pthread):       %s",
1438     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1439   st->print_cr("  Default shared memory page size:        %s",
1440     describe_pagesize(g_multipage_support.shmpsize));
1441   st->print_cr("  Can use 64K pages dynamically with shared memory:  %s",
1442     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1443   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1444     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1445   st->print_cr("  Multipage error: %d",
1446     g_multipage_support.error);
1447   st->cr();
1448   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1449 
1450   // print out LDR_CNTRL because it affects the default page sizes
1451   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1452   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1453 
1454   // Print out EXTSHM because it is an unsupported setting.
1455   const char* const extshm = ::getenv("EXTSHM");
1456   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1457   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1458     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1459   }
1460 
1461   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1462   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1463   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1464       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1465   st->cr();
1466 
1467   os::Aix::meminfo_t mi;
1468   if (os::Aix::get_meminfo(&mi)) {
1469     if (os::Aix::on_aix()) {
1470       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1471       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1472       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1473       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1474     } else {
1475       // PASE - Numbers are result of QWCRSSTS; they mean:
1476       // real_total: Sum of all system pools
1477       // real_free: always 0
1478       // pgsp_total: we take the size of the system ASP
1479       // pgsp_free: size of system ASP times percentage of system ASP unused
1480       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1481       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1482       st->print_cr("%% system asp used : %.2f",
1483         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1484     }
1485   }
1486   st->cr();
1487 
1488   // Print program break.
1489   st->print_cr("Program break at VM startup: " PTR_FORMAT ".", p2i(g_brk_at_startup));
1490   address brk_now = (address)::sbrk(0);
1491   if (brk_now != (address)-1) {
1492     st->print_cr("Program break now          : " PTR_FORMAT " (distance: " SIZE_FORMAT "k).",
1493                  p2i(brk_now), (size_t)((brk_now - g_brk_at_startup) / K));
1494   }
1495   st->print_cr("MaxExpectedDataSegmentSize    : " SIZE_FORMAT "k.", MaxExpectedDataSegmentSize / K);
1496   st->cr();
1497 
1498   // Print segments allocated with os::reserve_memory.
1499   st->print_cr("internal virtual memory regions used by vm:");
1500   vmembk_print_on(st);
1501 }
1502 
1503 // Get a string for the cpuinfo that is a summary of the cpu type
1504 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1505   // read _system_configuration.version
1506   switch (_system_configuration.version) {
1507   case PV_8:
1508     strncpy(buf, "Power PC 8", buflen);
1509     break;
1510   case PV_7:
1511     strncpy(buf, "Power PC 7", buflen);
1512     break;
1513   case PV_6_1:
1514     strncpy(buf, "Power PC 6 DD1.x", buflen);
1515     break;
1516   case PV_6:
1517     strncpy(buf, "Power PC 6", buflen);
1518     break;
1519   case PV_5:
1520     strncpy(buf, "Power PC 5", buflen);
1521     break;
1522   case PV_5_2:
1523     strncpy(buf, "Power PC 5_2", buflen);
1524     break;
1525   case PV_5_3:
1526     strncpy(buf, "Power PC 5_3", buflen);
1527     break;
1528   case PV_5_Compat:
1529     strncpy(buf, "PV_5_Compat", buflen);
1530     break;
1531   case PV_6_Compat:
1532     strncpy(buf, "PV_6_Compat", buflen);
1533     break;
1534   case PV_7_Compat:
1535     strncpy(buf, "PV_7_Compat", buflen);
1536     break;
1537   case PV_8_Compat:
1538     strncpy(buf, "PV_8_Compat", buflen);
1539     break;
1540   default:
1541     strncpy(buf, "unknown", buflen);
1542   }
1543 }
1544 
1545 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1546   // Nothing to do beyond of what os::print_cpu_info() does.
1547 }
1548 
1549 static void print_signal_handler(outputStream* st, int sig,
1550                                  char* buf, size_t buflen);
1551 
1552 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1553   st->print_cr("Signal Handlers:");
1554   print_signal_handler(st, SIGSEGV, buf, buflen);
1555   print_signal_handler(st, SIGBUS , buf, buflen);
1556   print_signal_handler(st, SIGFPE , buf, buflen);
1557   print_signal_handler(st, SIGPIPE, buf, buflen);
1558   print_signal_handler(st, SIGXFSZ, buf, buflen);
1559   print_signal_handler(st, SIGILL , buf, buflen);
1560   print_signal_handler(st, SR_signum, buf, buflen);
1561   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1562   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1563   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1564   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1565   print_signal_handler(st, SIGTRAP, buf, buflen);
1566   // We also want to know if someone else adds a SIGDANGER handler because
1567   // that will interfere with OOM killling.
1568   print_signal_handler(st, SIGDANGER, buf, buflen);
1569 }
1570 
1571 static char saved_jvm_path[MAXPATHLEN] = {0};
1572 
1573 // Find the full path to the current module, libjvm.so.
1574 void os::jvm_path(char *buf, jint buflen) {
1575   // Error checking.
1576   if (buflen < MAXPATHLEN) {
1577     assert(false, "must use a large-enough buffer");
1578     buf[0] = '\0';
1579     return;
1580   }
1581   // Lazy resolve the path to current module.
1582   if (saved_jvm_path[0] != 0) {
1583     strcpy(buf, saved_jvm_path);
1584     return;
1585   }
1586 
1587   Dl_info dlinfo;
1588   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1589   assert(ret != 0, "cannot locate libjvm");
1590   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1591   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1592 
1593   if (Arguments::sun_java_launcher_is_altjvm()) {
1594     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1595     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1596     // If "/jre/lib/" appears at the right place in the string, then
1597     // assume we are installed in a JDK and we're done. Otherwise, check
1598     // for a JAVA_HOME environment variable and fix up the path so it
1599     // looks like libjvm.so is installed there (append a fake suffix
1600     // hotspot/libjvm.so).
1601     const char *p = buf + strlen(buf) - 1;
1602     for (int count = 0; p > buf && count < 4; ++count) {
1603       for (--p; p > buf && *p != '/'; --p)
1604         /* empty */ ;
1605     }
1606 
1607     if (strncmp(p, "/jre/lib/", 9) != 0) {
1608       // Look for JAVA_HOME in the environment.
1609       char* java_home_var = ::getenv("JAVA_HOME");
1610       if (java_home_var != NULL && java_home_var[0] != 0) {
1611         char* jrelib_p;
1612         int len;
1613 
1614         // Check the current module name "libjvm.so".
1615         p = strrchr(buf, '/');
1616         if (p == NULL) {
1617           return;
1618         }
1619         assert(strstr(p, "/libjvm") == p, "invalid library name");
1620 
1621         rp = os::Posix::realpath(java_home_var, buf, buflen);
1622         if (rp == NULL) {
1623           return;
1624         }
1625 
1626         // determine if this is a legacy image or modules image
1627         // modules image doesn't have "jre" subdirectory
1628         len = strlen(buf);
1629         assert(len < buflen, "Ran out of buffer room");
1630         jrelib_p = buf + len;
1631         snprintf(jrelib_p, buflen-len, "/jre/lib");
1632         if (0 != access(buf, F_OK)) {
1633           snprintf(jrelib_p, buflen-len, "/lib");
1634         }
1635 
1636         if (0 == access(buf, F_OK)) {
1637           // Use current module name "libjvm.so"
1638           len = strlen(buf);
1639           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1640         } else {
1641           // Go back to path of .so
1642           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1643           if (rp == NULL) {
1644             return;
1645           }
1646         }
1647       }
1648     }
1649   }
1650 
1651   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1652   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1653 }
1654 
1655 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1656   // no prefix required, not even "_"
1657 }
1658 
1659 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1660   // no suffix required
1661 }
1662 
1663 ////////////////////////////////////////////////////////////////////////////////
1664 // sun.misc.Signal support
1665 
1666 static void
1667 UserHandler(int sig, void *siginfo, void *context) {
1668   // Ctrl-C is pressed during error reporting, likely because the error
1669   // handler fails to abort. Let VM die immediately.
1670   if (sig == SIGINT && VMError::is_error_reported()) {
1671     os::die();
1672   }
1673 
1674   os::signal_notify(sig);
1675 }
1676 
1677 void* os::user_handler() {
1678   return CAST_FROM_FN_PTR(void*, UserHandler);
1679 }
1680 
1681 extern "C" {
1682   typedef void (*sa_handler_t)(int);
1683   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1684 }
1685 
1686 void* os::signal(int signal_number, void* handler) {
1687   struct sigaction sigAct, oldSigAct;
1688 
1689   sigfillset(&(sigAct.sa_mask));
1690 
1691   // Do not block out synchronous signals in the signal handler.
1692   // Blocking synchronous signals only makes sense if you can really
1693   // be sure that those signals won't happen during signal handling,
1694   // when the blocking applies. Normal signal handlers are lean and
1695   // do not cause signals. But our signal handlers tend to be "risky"
1696   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1697   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1698   // by a SIGILL, which was blocked due to the signal mask. The process
1699   // just hung forever. Better to crash from a secondary signal than to hang.
1700   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1701   sigdelset(&(sigAct.sa_mask), SIGBUS);
1702   sigdelset(&(sigAct.sa_mask), SIGILL);
1703   sigdelset(&(sigAct.sa_mask), SIGFPE);
1704   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1705 
1706   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1707 
1708   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1709 
1710   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1711     // -1 means registration failed
1712     return (void *)-1;
1713   }
1714 
1715   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1716 }
1717 
1718 void os::signal_raise(int signal_number) {
1719   ::raise(signal_number);
1720 }
1721 
1722 //
1723 // The following code is moved from os.cpp for making this
1724 // code platform specific, which it is by its very nature.
1725 //
1726 
1727 // Will be modified when max signal is changed to be dynamic
1728 int os::sigexitnum_pd() {
1729   return NSIG;
1730 }
1731 
1732 // a counter for each possible signal value
1733 static volatile jint pending_signals[NSIG+1] = { 0 };
1734 
1735 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1736 // On AIX, we use sem_init(), sem_post(), sem_wait()
1737 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1738 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1739 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1740 // on AIX, msem_..() calls are suspected of causing problems.
1741 static sem_t sig_sem;
1742 static msemaphore* p_sig_msem = 0;
1743 
1744 static void local_sem_init() {
1745   if (os::Aix::on_aix()) {
1746     int rc = ::sem_init(&sig_sem, 0, 0);
1747     guarantee(rc != -1, "sem_init failed");
1748   } else {
1749     // Memory semaphores must live in shared mem.
1750     guarantee0(p_sig_msem == NULL);
1751     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1752     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1753     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1754   }
1755 }
1756 
1757 static void local_sem_post() {
1758   static bool warn_only_once = false;
1759   if (os::Aix::on_aix()) {
1760     int rc = ::sem_post(&sig_sem);
1761     if (rc == -1 && !warn_only_once) {
1762       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1763       warn_only_once = true;
1764     }
1765   } else {
1766     guarantee0(p_sig_msem != NULL);
1767     int rc = ::msem_unlock(p_sig_msem, 0);
1768     if (rc == -1 && !warn_only_once) {
1769       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1770       warn_only_once = true;
1771     }
1772   }
1773 }
1774 
1775 static void local_sem_wait() {
1776   static bool warn_only_once = false;
1777   if (os::Aix::on_aix()) {
1778     int rc = ::sem_wait(&sig_sem);
1779     if (rc == -1 && !warn_only_once) {
1780       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1781       warn_only_once = true;
1782     }
1783   } else {
1784     guarantee0(p_sig_msem != NULL); // must init before use
1785     int rc = ::msem_lock(p_sig_msem, 0);
1786     if (rc == -1 && !warn_only_once) {
1787       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1788       warn_only_once = true;
1789     }
1790   }
1791 }
1792 
1793 static void jdk_misc_signal_init() {
1794   // Initialize signal structures
1795   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1796 
1797   // Initialize signal semaphore
1798   local_sem_init();
1799 }
1800 
1801 void os::signal_notify(int sig) {
1802   Atomic::inc(&pending_signals[sig]);
1803   local_sem_post();
1804 }
1805 
1806 static int check_pending_signals() {
1807   for (;;) {
1808     for (int i = 0; i < NSIG + 1; i++) {
1809       jint n = pending_signals[i];
1810       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1811         return i;
1812       }
1813     }
1814     JavaThread *thread = JavaThread::current();
1815     ThreadBlockInVM tbivm(thread);
1816 
1817     bool threadIsSuspended;
1818     do {
1819       thread->set_suspend_equivalent();
1820       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1821 
1822       local_sem_wait();
1823 
1824       // were we externally suspended while we were waiting?
1825       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1826       if (threadIsSuspended) {
1827         //
1828         // The semaphore has been incremented, but while we were waiting
1829         // another thread suspended us. We don't want to continue running
1830         // while suspended because that would surprise the thread that
1831         // suspended us.
1832         //
1833 
1834         local_sem_post();
1835 
1836         thread->java_suspend_self();
1837       }
1838     } while (threadIsSuspended);
1839   }
1840 }
1841 
1842 int os::signal_wait() {
1843   return check_pending_signals();
1844 }
1845 
1846 ////////////////////////////////////////////////////////////////////////////////
1847 // Virtual Memory
1848 
1849 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1850 
1851 #define VMEM_MAPPED  1
1852 #define VMEM_SHMATED 2
1853 
1854 struct vmembk_t {
1855   int type;         // 1 - mmap, 2 - shmat
1856   char* addr;
1857   size_t size;      // Real size, may be larger than usersize.
1858   size_t pagesize;  // page size of area
1859   vmembk_t* next;
1860 
1861   bool contains_addr(char* p) const {
1862     return p >= addr && p < (addr + size);
1863   }
1864 
1865   bool contains_range(char* p, size_t s) const {
1866     return contains_addr(p) && contains_addr(p + s - 1);
1867   }
1868 
1869   void print_on(outputStream* os) const {
1870     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1871       " bytes, %d %s pages), %s",
1872       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1873       (type == VMEM_SHMATED ? "shmat" : "mmap")
1874     );
1875   }
1876 
1877   // Check that range is a sub range of memory block (or equal to memory block);
1878   // also check that range is fully page aligned to the page size if the block.
1879   void assert_is_valid_subrange(char* p, size_t s) const {
1880     if (!contains_range(p, s)) {
1881       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1882               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1883               p2i(p), p2i(p + s), p2i(addr), p2i(addr + size));
1884       guarantee0(false);
1885     }
1886     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1887       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1888               " aligned to pagesize (%lu)", p2i(p), p2i(p + s), (unsigned long) pagesize);
1889       guarantee0(false);
1890     }
1891   }
1892 };
1893 
1894 static struct {
1895   vmembk_t* first;
1896   MiscUtils::CritSect cs;
1897 } vmem;
1898 
1899 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1900   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1901   assert0(p);
1902   if (p) {
1903     MiscUtils::AutoCritSect lck(&vmem.cs);
1904     p->addr = addr; p->size = size;
1905     p->pagesize = pagesize;
1906     p->type = type;
1907     p->next = vmem.first;
1908     vmem.first = p;
1909   }
1910 }
1911 
1912 static vmembk_t* vmembk_find(char* addr) {
1913   MiscUtils::AutoCritSect lck(&vmem.cs);
1914   for (vmembk_t* p = vmem.first; p; p = p->next) {
1915     if (p->addr <= addr && (p->addr + p->size) > addr) {
1916       return p;
1917     }
1918   }
1919   return NULL;
1920 }
1921 
1922 static void vmembk_remove(vmembk_t* p0) {
1923   MiscUtils::AutoCritSect lck(&vmem.cs);
1924   assert0(p0);
1925   assert0(vmem.first); // List should not be empty.
1926   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1927     if (*pp == p0) {
1928       *pp = p0->next;
1929       ::free(p0);
1930       return;
1931     }
1932   }
1933   assert0(false); // Not found?
1934 }
1935 
1936 static void vmembk_print_on(outputStream* os) {
1937   MiscUtils::AutoCritSect lck(&vmem.cs);
1938   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1939     vmi->print_on(os);
1940     os->cr();
1941   }
1942 }
1943 
1944 // Reserve and attach a section of System V memory.
1945 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1946 // address. Failing that, it will attach the memory anywhere.
1947 // If <requested_addr> is NULL, function will attach the memory anywhere.
1948 //
1949 // <alignment_hint> is being ignored by this function. It is very probable however that the
1950 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1951 // Should this be not enogh, we can put more work into it.
1952 static char* reserve_shmated_memory (
1953   size_t bytes,
1954   char* requested_addr,
1955   size_t alignment_hint) {
1956 
1957   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1958     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1959     bytes, p2i(requested_addr), alignment_hint);
1960 
1961   // Either give me wish address or wish alignment but not both.
1962   assert0(!(requested_addr != NULL && alignment_hint != 0));
1963 
1964   // We must prevent anyone from attaching too close to the
1965   // BRK because that may cause malloc OOM.
1966   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1967     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1968       "Will attach anywhere.", p2i(requested_addr));
1969     // Act like the OS refused to attach there.
1970     requested_addr = NULL;
1971   }
1972 
1973   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1974   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1975   if (os::Aix::on_pase_V5R4_or_older()) {
1976     ShouldNotReachHere();
1977   }
1978 
1979   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1980   const size_t size = align_up(bytes, 64*K);
1981 
1982   // Reserve the shared segment.
1983   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1984   if (shmid == -1) {
1985     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1986     return NULL;
1987   }
1988 
1989   // Important note:
1990   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
1991   // We must right after attaching it remove it from the system. System V shm segments are global and
1992   // survive the process.
1993   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
1994 
1995   struct shmid_ds shmbuf;
1996   memset(&shmbuf, 0, sizeof(shmbuf));
1997   shmbuf.shm_pagesize = 64*K;
1998   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
1999     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
2000                size / (64*K), errno);
2001     // I want to know if this ever happens.
2002     assert(false, "failed to set page size for shmat");
2003   }
2004 
2005   // Now attach the shared segment.
2006   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
2007   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
2008   // were not a segment boundary.
2009   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
2010   const int errno_shmat = errno;
2011 
2012   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2013   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2014     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2015     assert(false, "failed to remove shared memory segment!");
2016   }
2017 
2018   // Handle shmat error. If we failed to attach, just return.
2019   if (addr == (char*)-1) {
2020     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", p2i(requested_addr), errno_shmat);
2021     return NULL;
2022   }
2023 
2024   // Just for info: query the real page size. In case setting the page size did not
2025   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2026   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2027   if (real_pagesize != shmbuf.shm_pagesize) {
2028     trcVerbose("pagesize is, surprisingly, " SIZE_FORMAT, real_pagesize);
2029   }
2030 
2031   if (addr) {
2032     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2033       p2i(addr), p2i(addr + size - 1), size, size/real_pagesize, describe_pagesize(real_pagesize));
2034   } else {
2035     if (requested_addr != NULL) {
2036       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, p2i(requested_addr));
2037     } else {
2038       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2039     }
2040   }
2041 
2042   // book-keeping
2043   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2044   assert0(is_aligned_to(addr, os::vm_page_size()));
2045 
2046   return addr;
2047 }
2048 
2049 static bool release_shmated_memory(char* addr, size_t size) {
2050 
2051   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2052     p2i(addr), p2i(addr + size - 1));
2053 
2054   bool rc = false;
2055 
2056   // TODO: is there a way to verify shm size without doing bookkeeping?
2057   if (::shmdt(addr) != 0) {
2058     trcVerbose("error (%d).", errno);
2059   } else {
2060     trcVerbose("ok.");
2061     rc = true;
2062   }
2063   return rc;
2064 }
2065 
2066 static bool uncommit_shmated_memory(char* addr, size_t size) {
2067   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2068     p2i(addr), p2i(addr + size - 1));
2069 
2070   const bool rc = my_disclaim64(addr, size);
2071 
2072   if (!rc) {
2073     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", p2i(addr), size);
2074     return false;
2075   }
2076   return true;
2077 }
2078 
2079 ////////////////////////////////  mmap-based routines /////////////////////////////////
2080 
2081 // Reserve memory via mmap.
2082 // If <requested_addr> is given, an attempt is made to attach at the given address.
2083 // Failing that, memory is allocated at any address.
2084 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2085 // allocate at an address aligned with the given alignment. Failing that, memory
2086 // is aligned anywhere.
2087 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2088   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2089     "alignment_hint " UINTX_FORMAT "...",
2090     bytes, p2i(requested_addr), alignment_hint);
2091 
2092   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2093   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2094     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", p2i(requested_addr));
2095     return NULL;
2096   }
2097 
2098   // We must prevent anyone from attaching too close to the
2099   // BRK because that may cause malloc OOM.
2100   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2101     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2102       "Will attach anywhere.", p2i(requested_addr));
2103     // Act like the OS refused to attach there.
2104     requested_addr = NULL;
2105   }
2106 
2107   // Specify one or the other but not both.
2108   assert0(!(requested_addr != NULL && alignment_hint > 0));
2109 
2110   // In 64K mode, we claim the global page size (os::vm_page_size())
2111   // is 64K. This is one of the few points where that illusion may
2112   // break, because mmap() will always return memory aligned to 4K. So
2113   // we must ensure we only ever return memory aligned to 64k.
2114   if (alignment_hint) {
2115     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2116   } else {
2117     alignment_hint = os::vm_page_size();
2118   }
2119 
2120   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2121   const size_t size = align_up(bytes, os::vm_page_size());
2122 
2123   // alignment: Allocate memory large enough to include an aligned range of the right size and
2124   // cut off the leading and trailing waste pages.
2125   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2126   const size_t extra_size = size + alignment_hint;
2127 
2128   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2129   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2130   int flags = MAP_ANONYMOUS | MAP_SHARED;
2131 
2132   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2133   // it means if wishaddress is given but MAP_FIXED is not set.
2134   //
2135   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2136   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2137   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2138   // get clobbered.
2139   if (requested_addr != NULL) {
2140     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2141       flags |= MAP_FIXED;
2142     }
2143   }
2144 
2145   char* addr = (char*)::mmap(requested_addr, extra_size,
2146       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2147 
2148   if (addr == MAP_FAILED) {
2149     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", p2i(requested_addr), size, errno);
2150     return NULL;
2151   }
2152 
2153   // Handle alignment.
2154   char* const addr_aligned = align_up(addr, alignment_hint);
2155   const size_t waste_pre = addr_aligned - addr;
2156   char* const addr_aligned_end = addr_aligned + size;
2157   const size_t waste_post = extra_size - waste_pre - size;
2158   if (waste_pre > 0) {
2159     ::munmap(addr, waste_pre);
2160   }
2161   if (waste_post > 0) {
2162     ::munmap(addr_aligned_end, waste_post);
2163   }
2164   addr = addr_aligned;
2165 
2166   if (addr) {
2167     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2168       p2i(addr), p2i(addr + bytes), bytes);
2169   } else {
2170     if (requested_addr != NULL) {
2171       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, p2i(requested_addr));
2172     } else {
2173       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2174     }
2175   }
2176 
2177   // bookkeeping
2178   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2179 
2180   // Test alignment, see above.
2181   assert0(is_aligned_to(addr, os::vm_page_size()));
2182 
2183   return addr;
2184 }
2185 
2186 static bool release_mmaped_memory(char* addr, size_t size) {
2187   assert0(is_aligned_to(addr, os::vm_page_size()));
2188   assert0(is_aligned_to(size, os::vm_page_size()));
2189 
2190   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2191     p2i(addr), p2i(addr + size - 1));
2192   bool rc = false;
2193 
2194   if (::munmap(addr, size) != 0) {
2195     trcVerbose("failed (%d)\n", errno);
2196     rc = false;
2197   } else {
2198     trcVerbose("ok.");
2199     rc = true;
2200   }
2201 
2202   return rc;
2203 }
2204 
2205 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2206 
2207   assert0(is_aligned_to(addr, os::vm_page_size()));
2208   assert0(is_aligned_to(size, os::vm_page_size()));
2209 
2210   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2211     p2i(addr), p2i(addr + size - 1));
2212   bool rc = false;
2213 
2214   // Uncommit mmap memory with msync MS_INVALIDATE.
2215   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2216     trcVerbose("failed (%d)\n", errno);
2217     rc = false;
2218   } else {
2219     trcVerbose("ok.");
2220     rc = true;
2221   }
2222 
2223   return rc;
2224 }
2225 
2226 int os::vm_page_size() {
2227   // Seems redundant as all get out.
2228   assert(os::Aix::page_size() != -1, "must call os::init");
2229   return os::Aix::page_size();
2230 }
2231 
2232 // Aix allocates memory by pages.
2233 int os::vm_allocation_granularity() {
2234   assert(os::Aix::page_size() != -1, "must call os::init");
2235   return os::Aix::page_size();
2236 }
2237 
2238 #ifdef PRODUCT
2239 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2240                                     int err) {
2241   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2242           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2243           os::errno_name(err), err);
2244 }
2245 #endif
2246 
2247 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2248                                   const char* mesg) {
2249   assert(mesg != NULL, "mesg must be specified");
2250   if (!pd_commit_memory(addr, size, exec)) {
2251     // Add extra info in product mode for vm_exit_out_of_memory():
2252     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2253     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2254   }
2255 }
2256 
2257 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2258 
2259   assert(is_aligned_to(addr, os::vm_page_size()),
2260     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2261     p2i(addr), os::vm_page_size());
2262   assert(is_aligned_to(size, os::vm_page_size()),
2263     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2264     size, os::vm_page_size());
2265 
2266   vmembk_t* const vmi = vmembk_find(addr);
2267   guarantee0(vmi);
2268   vmi->assert_is_valid_subrange(addr, size);
2269 
2270   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", p2i(addr), p2i(addr + size - 1));
2271 
2272   if (UseExplicitCommit) {
2273     // AIX commits memory on touch. So, touch all pages to be committed.
2274     for (char* p = addr; p < (addr + size); p += 4*K) {
2275       *p = '\0';
2276     }
2277   }
2278 
2279   return true;
2280 }
2281 
2282 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2283   return pd_commit_memory(addr, size, exec);
2284 }
2285 
2286 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2287                                   size_t alignment_hint, bool exec,
2288                                   const char* mesg) {
2289   // Alignment_hint is ignored on this OS.
2290   pd_commit_memory_or_exit(addr, size, exec, mesg);
2291 }
2292 
2293 bool os::pd_uncommit_memory(char* addr, size_t size) {
2294   assert(is_aligned_to(addr, os::vm_page_size()),
2295     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2296     p2i(addr), os::vm_page_size());
2297   assert(is_aligned_to(size, os::vm_page_size()),
2298     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2299     size, os::vm_page_size());
2300 
2301   // Dynamically do different things for mmap/shmat.
2302   const vmembk_t* const vmi = vmembk_find(addr);
2303   guarantee0(vmi);
2304   vmi->assert_is_valid_subrange(addr, size);
2305 
2306   if (vmi->type == VMEM_SHMATED) {
2307     return uncommit_shmated_memory(addr, size);
2308   } else {
2309     return uncommit_mmaped_memory(addr, size);
2310   }
2311 }
2312 
2313 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2314   // Do not call this; no need to commit stack pages on AIX.
2315   ShouldNotReachHere();
2316   return true;
2317 }
2318 
2319 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2320   // Do not call this; no need to commit stack pages on AIX.
2321   ShouldNotReachHere();
2322   return true;
2323 }
2324 
2325 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2326 }
2327 
2328 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2329 }
2330 
2331 void os::numa_make_global(char *addr, size_t bytes) {
2332 }
2333 
2334 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2335 }
2336 
2337 bool os::numa_topology_changed() {
2338   return false;
2339 }
2340 
2341 size_t os::numa_get_groups_num() {
2342   return 1;
2343 }
2344 
2345 int os::numa_get_group_id() {
2346   return 0;
2347 }
2348 
2349 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2350   if (size > 0) {
2351     ids[0] = 0;
2352     return 1;
2353   }
2354   return 0;
2355 }
2356 
2357 bool os::get_page_info(char *start, page_info* info) {
2358   return false;
2359 }
2360 
2361 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2362   return end;
2363 }
2364 
2365 // Reserves and attaches a shared memory segment.
2366 // Will assert if a wish address is given and could not be obtained.
2367 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2368 
2369   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2370   // thereby clobbering old mappings at that place. That is probably
2371   // not intended, never used and almost certainly an error were it
2372   // ever be used this way (to try attaching at a specified address
2373   // without clobbering old mappings an alternate API exists,
2374   // os::attempt_reserve_memory_at()).
2375   // Instead of mimicking the dangerous coding of the other platforms, here I
2376   // just ignore the request address (release) or assert(debug).
2377   assert0(requested_addr == NULL);
2378 
2379   // Always round to os::vm_page_size(), which may be larger than 4K.
2380   bytes = align_up(bytes, os::vm_page_size());
2381   const size_t alignment_hint0 =
2382     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2383 
2384   // In 4K mode always use mmap.
2385   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2386   if (os::vm_page_size() == 4*K) {
2387     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2388   } else {
2389     if (bytes >= Use64KPagesThreshold) {
2390       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2391     } else {
2392       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2393     }
2394   }
2395 }
2396 
2397 bool os::pd_release_memory(char* addr, size_t size) {
2398 
2399   // Dynamically do different things for mmap/shmat.
2400   vmembk_t* const vmi = vmembk_find(addr);
2401   guarantee0(vmi);
2402 
2403   // Always round to os::vm_page_size(), which may be larger than 4K.
2404   size = align_up(size, os::vm_page_size());
2405   addr = align_up(addr, os::vm_page_size());
2406 
2407   bool rc = false;
2408   bool remove_bookkeeping = false;
2409   if (vmi->type == VMEM_SHMATED) {
2410     // For shmatted memory, we do:
2411     // - If user wants to release the whole range, release the memory (shmdt).
2412     // - If user only wants to release a partial range, uncommit (disclaim) that
2413     //   range. That way, at least, we do not use memory anymore (bust still page
2414     //   table space).
2415     vmi->assert_is_valid_subrange(addr, size);
2416     if (addr == vmi->addr && size == vmi->size) {
2417       rc = release_shmated_memory(addr, size);
2418       remove_bookkeeping = true;
2419     } else {
2420       rc = uncommit_shmated_memory(addr, size);
2421     }
2422   } else {
2423     // User may unmap partial regions but region has to be fully contained.
2424 #ifdef ASSERT
2425     vmi->assert_is_valid_subrange(addr, size);
2426 #endif
2427     rc = release_mmaped_memory(addr, size);
2428     remove_bookkeeping = true;
2429   }
2430 
2431   // update bookkeeping
2432   if (rc && remove_bookkeeping) {
2433     vmembk_remove(vmi);
2434   }
2435 
2436   return rc;
2437 }
2438 
2439 static bool checked_mprotect(char* addr, size_t size, int prot) {
2440 
2441   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2442   // not tell me if protection failed when trying to protect an un-protectable range.
2443   //
2444   // This means if the memory was allocated using shmget/shmat, protection wont work
2445   // but mprotect will still return 0:
2446   //
2447   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2448 
2449   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+size), prot);
2450   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2451 
2452   if (!rc) {
2453     const char* const s_errno = os::errno_name(errno);
2454     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2455     return false;
2456   }
2457 
2458   // mprotect success check
2459   //
2460   // Mprotect said it changed the protection but can I believe it?
2461   //
2462   // To be sure I need to check the protection afterwards. Try to
2463   // read from protected memory and check whether that causes a segfault.
2464   //
2465   if (!os::Aix::xpg_sus_mode()) {
2466 
2467     if (CanUseSafeFetch32()) {
2468 
2469       const bool read_protected =
2470         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2471          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2472 
2473       if (prot & PROT_READ) {
2474         rc = !read_protected;
2475       } else {
2476         rc = read_protected;
2477       }
2478 
2479       if (!rc) {
2480         if (os::Aix::on_pase()) {
2481           // There is an issue on older PASE systems where mprotect() will return success but the
2482           // memory will not be protected.
2483           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2484           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2485           // a stack. It is an OS error.
2486           //
2487           // A valid strategy is just to try again. This usually works. :-/
2488 
2489           ::usleep(1000);
2490           Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+size), prot);
2491           if (::mprotect(addr, size, prot) == 0) {
2492             const bool read_protected_2 =
2493               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2494               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2495             rc = true;
2496           }
2497         }
2498       }
2499     }
2500   }
2501 
2502   assert(rc == true, "mprotect failed.");
2503 
2504   return rc;
2505 }
2506 
2507 // Set protections specified
2508 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2509   unsigned int p = 0;
2510   switch (prot) {
2511   case MEM_PROT_NONE: p = PROT_NONE; break;
2512   case MEM_PROT_READ: p = PROT_READ; break;
2513   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2514   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2515   default:
2516     ShouldNotReachHere();
2517   }
2518   // is_committed is unused.
2519   return checked_mprotect(addr, size, p);
2520 }
2521 
2522 bool os::guard_memory(char* addr, size_t size) {
2523   return checked_mprotect(addr, size, PROT_NONE);
2524 }
2525 
2526 bool os::unguard_memory(char* addr, size_t size) {
2527   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2528 }
2529 
2530 // Large page support
2531 
2532 static size_t _large_page_size = 0;
2533 
2534 // Enable large page support if OS allows that.
2535 void os::large_page_init() {
2536   return; // Nothing to do. See query_multipage_support and friends.
2537 }
2538 
2539 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2540   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2541   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2542   // so this is not needed.
2543   assert(false, "should not be called on AIX");
2544   return NULL;
2545 }
2546 
2547 bool os::release_memory_special(char* base, size_t bytes) {
2548   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2549   Unimplemented();
2550   return false;
2551 }
2552 
2553 size_t os::large_page_size() {
2554   return _large_page_size;
2555 }
2556 
2557 bool os::can_commit_large_page_memory() {
2558   // Does not matter, we do not support huge pages.
2559   return false;
2560 }
2561 
2562 bool os::can_execute_large_page_memory() {
2563   // Does not matter, we do not support huge pages.
2564   return false;
2565 }
2566 
2567 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2568   assert(file_desc >= 0, "file_desc is not valid");
2569   char* result = NULL;
2570 
2571   // Always round to os::vm_page_size(), which may be larger than 4K.
2572   bytes = align_up(bytes, os::vm_page_size());
2573   result = reserve_mmaped_memory(bytes, requested_addr, 0);
2574 
2575   if (result != NULL) {
2576     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2577       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2578     }
2579   }
2580   return result;
2581 }
2582 
2583 // Reserve memory at an arbitrary address, only if that area is
2584 // available (and not reserved for something else).
2585 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2586   char* addr = NULL;
2587 
2588   // Always round to os::vm_page_size(), which may be larger than 4K.
2589   bytes = align_up(bytes, os::vm_page_size());
2590 
2591   // In 4K mode always use mmap.
2592   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2593   if (os::vm_page_size() == 4*K) {
2594     return reserve_mmaped_memory(bytes, requested_addr, 0);
2595   } else {
2596     if (bytes >= Use64KPagesThreshold) {
2597       return reserve_shmated_memory(bytes, requested_addr, 0);
2598     } else {
2599       return reserve_mmaped_memory(bytes, requested_addr, 0);
2600     }
2601   }
2602 
2603   return addr;
2604 }
2605 
2606 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2607 void os::infinite_sleep() {
2608   while (true) {    // sleep forever ...
2609     ::sleep(100);   // ... 100 seconds at a time
2610   }
2611 }
2612 
2613 // Used to convert frequent JVM_Yield() to nops
2614 bool os::dont_yield() {
2615   return DontYieldALot;
2616 }
2617 
2618 void os::naked_yield() {
2619   sched_yield();
2620 }
2621 
2622 ////////////////////////////////////////////////////////////////////////////////
2623 // thread priority support
2624 
2625 // From AIX manpage to pthread_setschedparam
2626 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2627 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2628 //
2629 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2630 // range from 40 to 80, where 40 is the least favored priority and 80
2631 // is the most favored."
2632 //
2633 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2634 // scheduling there; however, this still leaves iSeries.)
2635 //
2636 // We use the same values for AIX and PASE.
2637 int os::java_to_os_priority[CriticalPriority + 1] = {
2638   54,             // 0 Entry should never be used
2639 
2640   55,             // 1 MinPriority
2641   55,             // 2
2642   56,             // 3
2643 
2644   56,             // 4
2645   57,             // 5 NormPriority
2646   57,             // 6
2647 
2648   58,             // 7
2649   58,             // 8
2650   59,             // 9 NearMaxPriority
2651 
2652   60,             // 10 MaxPriority
2653 
2654   60              // 11 CriticalPriority
2655 };
2656 
2657 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2658   if (!UseThreadPriorities) return OS_OK;
2659   pthread_t thr = thread->osthread()->pthread_id();
2660   int policy = SCHED_OTHER;
2661   struct sched_param param;
2662   param.sched_priority = newpri;
2663   int ret = pthread_setschedparam(thr, policy, &param);
2664 
2665   if (ret != 0) {
2666     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2667         (int)thr, newpri, ret, os::errno_name(ret));
2668   }
2669   return (ret == 0) ? OS_OK : OS_ERR;
2670 }
2671 
2672 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2673   if (!UseThreadPriorities) {
2674     *priority_ptr = java_to_os_priority[NormPriority];
2675     return OS_OK;
2676   }
2677   pthread_t thr = thread->osthread()->pthread_id();
2678   int policy = SCHED_OTHER;
2679   struct sched_param param;
2680   int ret = pthread_getschedparam(thr, &policy, &param);
2681   *priority_ptr = param.sched_priority;
2682 
2683   return (ret == 0) ? OS_OK : OS_ERR;
2684 }
2685 
2686 ////////////////////////////////////////////////////////////////////////////////
2687 // suspend/resume support
2688 
2689 //  The low-level signal-based suspend/resume support is a remnant from the
2690 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2691 //  within hotspot. Currently used by JFR's OSThreadSampler
2692 //
2693 //  The remaining code is greatly simplified from the more general suspension
2694 //  code that used to be used.
2695 //
2696 //  The protocol is quite simple:
2697 //  - suspend:
2698 //      - sends a signal to the target thread
2699 //      - polls the suspend state of the osthread using a yield loop
2700 //      - target thread signal handler (SR_handler) sets suspend state
2701 //        and blocks in sigsuspend until continued
2702 //  - resume:
2703 //      - sets target osthread state to continue
2704 //      - sends signal to end the sigsuspend loop in the SR_handler
2705 //
2706 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2707 //  but is checked for NULL in SR_handler as a thread termination indicator.
2708 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2709 //
2710 //  Note that resume_clear_context() and suspend_save_context() are needed
2711 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2712 //  which in part is used by:
2713 //    - Forte Analyzer: AsyncGetCallTrace()
2714 //    - StackBanging: get_frame_at_stack_banging_point()
2715 
2716 static void resume_clear_context(OSThread *osthread) {
2717   osthread->set_ucontext(NULL);
2718   osthread->set_siginfo(NULL);
2719 }
2720 
2721 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2722   osthread->set_ucontext(context);
2723   osthread->set_siginfo(siginfo);
2724 }
2725 
2726 //
2727 // Handler function invoked when a thread's execution is suspended or
2728 // resumed. We have to be careful that only async-safe functions are
2729 // called here (Note: most pthread functions are not async safe and
2730 // should be avoided.)
2731 //
2732 // Note: sigwait() is a more natural fit than sigsuspend() from an
2733 // interface point of view, but sigwait() prevents the signal hander
2734 // from being run. libpthread would get very confused by not having
2735 // its signal handlers run and prevents sigwait()'s use with the
2736 // mutex granting granting signal.
2737 //
2738 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2739 //
2740 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2741   // Save and restore errno to avoid confusing native code with EINTR
2742   // after sigsuspend.
2743   int old_errno = errno;
2744 
2745   Thread* thread = Thread::current_or_null_safe();
2746   assert(thread != NULL, "Missing current thread in SR_handler");
2747 
2748   // On some systems we have seen signal delivery get "stuck" until the signal
2749   // mask is changed as part of thread termination. Check that the current thread
2750   // has not already terminated (via SR_lock()) - else the following assertion
2751   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2752   // destructor has completed.
2753 
2754   if (thread->SR_lock() == NULL) {
2755     return;
2756   }
2757 
2758   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2759 
2760   OSThread* osthread = thread->osthread();
2761 
2762   os::SuspendResume::State current = osthread->sr.state();
2763   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2764     suspend_save_context(osthread, siginfo, context);
2765 
2766     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2767     os::SuspendResume::State state = osthread->sr.suspended();
2768     if (state == os::SuspendResume::SR_SUSPENDED) {
2769       sigset_t suspend_set;  // signals for sigsuspend()
2770 
2771       // get current set of blocked signals and unblock resume signal
2772       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2773       sigdelset(&suspend_set, SR_signum);
2774 
2775       // wait here until we are resumed
2776       while (1) {
2777         sigsuspend(&suspend_set);
2778 
2779         os::SuspendResume::State result = osthread->sr.running();
2780         if (result == os::SuspendResume::SR_RUNNING) {
2781           break;
2782         }
2783       }
2784 
2785     } else if (state == os::SuspendResume::SR_RUNNING) {
2786       // request was cancelled, continue
2787     } else {
2788       ShouldNotReachHere();
2789     }
2790 
2791     resume_clear_context(osthread);
2792   } else if (current == os::SuspendResume::SR_RUNNING) {
2793     // request was cancelled, continue
2794   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2795     // ignore
2796   } else {
2797     ShouldNotReachHere();
2798   }
2799 
2800   errno = old_errno;
2801 }
2802 
2803 static int SR_initialize() {
2804   struct sigaction act;
2805   char *s;
2806   // Get signal number to use for suspend/resume
2807   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2808     int sig = ::strtol(s, 0, 10);
2809     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2810         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2811       SR_signum = sig;
2812     } else {
2813       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2814               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2815     }
2816   }
2817 
2818   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2819         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2820 
2821   sigemptyset(&SR_sigset);
2822   sigaddset(&SR_sigset, SR_signum);
2823 
2824   // Set up signal handler for suspend/resume.
2825   act.sa_flags = SA_RESTART|SA_SIGINFO;
2826   act.sa_handler = (void (*)(int)) SR_handler;
2827 
2828   // SR_signum is blocked by default.
2829   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2830 
2831   if (sigaction(SR_signum, &act, 0) == -1) {
2832     return -1;
2833   }
2834 
2835   // Save signal flag
2836   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2837   return 0;
2838 }
2839 
2840 static int SR_finalize() {
2841   return 0;
2842 }
2843 
2844 static int sr_notify(OSThread* osthread) {
2845   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2846   assert_status(status == 0, status, "pthread_kill");
2847   return status;
2848 }
2849 
2850 // "Randomly" selected value for how long we want to spin
2851 // before bailing out on suspending a thread, also how often
2852 // we send a signal to a thread we want to resume
2853 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2854 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2855 
2856 // returns true on success and false on error - really an error is fatal
2857 // but this seems the normal response to library errors
2858 static bool do_suspend(OSThread* osthread) {
2859   assert(osthread->sr.is_running(), "thread should be running");
2860   // mark as suspended and send signal
2861 
2862   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2863     // failed to switch, state wasn't running?
2864     ShouldNotReachHere();
2865     return false;
2866   }
2867 
2868   if (sr_notify(osthread) != 0) {
2869     // try to cancel, switch to running
2870 
2871     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2872     if (result == os::SuspendResume::SR_RUNNING) {
2873       // cancelled
2874       return false;
2875     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2876       // somehow managed to suspend
2877       return true;
2878     } else {
2879       ShouldNotReachHere();
2880       return false;
2881     }
2882   }
2883 
2884   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2885 
2886   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2887     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2888       os::naked_yield();
2889     }
2890 
2891     // timeout, try to cancel the request
2892     if (n >= RANDOMLY_LARGE_INTEGER) {
2893       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2894       if (cancelled == os::SuspendResume::SR_RUNNING) {
2895         return false;
2896       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2897         return true;
2898       } else {
2899         ShouldNotReachHere();
2900         return false;
2901       }
2902     }
2903   }
2904 
2905   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2906   return true;
2907 }
2908 
2909 static void do_resume(OSThread* osthread) {
2910   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2911 
2912   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2913     // failed to switch to WAKEUP_REQUEST
2914     ShouldNotReachHere();
2915     return;
2916   }
2917 
2918   while (!osthread->sr.is_running()) {
2919     if (sr_notify(osthread) == 0) {
2920       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2921         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2922           os::naked_yield();
2923         }
2924       }
2925     } else {
2926       ShouldNotReachHere();
2927     }
2928   }
2929 
2930   guarantee(osthread->sr.is_running(), "Must be running!");
2931 }
2932 
2933 ///////////////////////////////////////////////////////////////////////////////////
2934 // signal handling (except suspend/resume)
2935 
2936 // This routine may be used by user applications as a "hook" to catch signals.
2937 // The user-defined signal handler must pass unrecognized signals to this
2938 // routine, and if it returns true (non-zero), then the signal handler must
2939 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2940 // routine will never retun false (zero), but instead will execute a VM panic
2941 // routine kill the process.
2942 //
2943 // If this routine returns false, it is OK to call it again. This allows
2944 // the user-defined signal handler to perform checks either before or after
2945 // the VM performs its own checks. Naturally, the user code would be making
2946 // a serious error if it tried to handle an exception (such as a null check
2947 // or breakpoint) that the VM was generating for its own correct operation.
2948 //
2949 // This routine may recognize any of the following kinds of signals:
2950 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2951 // It should be consulted by handlers for any of those signals.
2952 //
2953 // The caller of this routine must pass in the three arguments supplied
2954 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2955 // field of the structure passed to sigaction(). This routine assumes that
2956 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2957 //
2958 // Note that the VM will print warnings if it detects conflicting signal
2959 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2960 //
2961 extern "C" JNIEXPORT int
2962 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2963 
2964 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2965 // to be the thing to call; documentation is not terribly clear about whether
2966 // pthread_sigmask also works, and if it does, whether it does the same.
2967 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2968   const int rc = ::pthread_sigmask(how, set, oset);
2969   // return value semantics differ slightly for error case:
2970   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2971   // (so, pthread_sigmask is more theadsafe for error handling)
2972   // But success is always 0.
2973   return rc == 0 ? true : false;
2974 }
2975 
2976 // Function to unblock all signals which are, according
2977 // to POSIX, typical program error signals. If they happen while being blocked,
2978 // they typically will bring down the process immediately.
2979 bool unblock_program_error_signals() {
2980   sigset_t set;
2981   ::sigemptyset(&set);
2982   ::sigaddset(&set, SIGILL);
2983   ::sigaddset(&set, SIGBUS);
2984   ::sigaddset(&set, SIGFPE);
2985   ::sigaddset(&set, SIGSEGV);
2986   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
2987 }
2988 
2989 // Renamed from 'signalHandler' to avoid collision with other shared libs.
2990 static void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
2991   assert(info != NULL && uc != NULL, "it must be old kernel");
2992 
2993   // Never leave program error signals blocked;
2994   // on all our platforms they would bring down the process immediately when
2995   // getting raised while being blocked.
2996   unblock_program_error_signals();
2997 
2998   int orig_errno = errno;  // Preserve errno value over signal handler.
2999   JVM_handle_aix_signal(sig, info, uc, true);
3000   errno = orig_errno;
3001 }
3002 
3003 // This boolean allows users to forward their own non-matching signals
3004 // to JVM_handle_aix_signal, harmlessly.
3005 bool os::Aix::signal_handlers_are_installed = false;
3006 
3007 // For signal-chaining
3008 bool os::Aix::libjsig_is_loaded = false;
3009 typedef struct sigaction *(*get_signal_t)(int);
3010 get_signal_t os::Aix::get_signal_action = NULL;
3011 
3012 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3013   struct sigaction *actp = NULL;
3014 
3015   if (libjsig_is_loaded) {
3016     // Retrieve the old signal handler from libjsig
3017     actp = (*get_signal_action)(sig);
3018   }
3019   if (actp == NULL) {
3020     // Retrieve the preinstalled signal handler from jvm
3021     actp = os::Posix::get_preinstalled_handler(sig);
3022   }
3023 
3024   return actp;
3025 }
3026 
3027 static bool call_chained_handler(struct sigaction *actp, int sig,
3028                                  siginfo_t *siginfo, void *context) {
3029   // Call the old signal handler
3030   if (actp->sa_handler == SIG_DFL) {
3031     // It's more reasonable to let jvm treat it as an unexpected exception
3032     // instead of taking the default action.
3033     return false;
3034   } else if (actp->sa_handler != SIG_IGN) {
3035     if ((actp->sa_flags & SA_NODEFER) == 0) {
3036       // automaticlly block the signal
3037       sigaddset(&(actp->sa_mask), sig);
3038     }
3039 
3040     sa_handler_t hand = NULL;
3041     sa_sigaction_t sa = NULL;
3042     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3043     // retrieve the chained handler
3044     if (siginfo_flag_set) {
3045       sa = actp->sa_sigaction;
3046     } else {
3047       hand = actp->sa_handler;
3048     }
3049 
3050     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3051       actp->sa_handler = SIG_DFL;
3052     }
3053 
3054     // try to honor the signal mask
3055     sigset_t oset;
3056     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3057 
3058     // call into the chained handler
3059     if (siginfo_flag_set) {
3060       (*sa)(sig, siginfo, context);
3061     } else {
3062       (*hand)(sig);
3063     }
3064 
3065     // restore the signal mask
3066     pthread_sigmask(SIG_SETMASK, &oset, 0);
3067   }
3068   // Tell jvm's signal handler the signal is taken care of.
3069   return true;
3070 }
3071 
3072 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3073   bool chained = false;
3074   // signal-chaining
3075   if (UseSignalChaining) {
3076     struct sigaction *actp = get_chained_signal_action(sig);
3077     if (actp != NULL) {
3078       chained = call_chained_handler(actp, sig, siginfo, context);
3079     }
3080   }
3081   return chained;
3082 }
3083 
3084 // for diagnostic
3085 int sigflags[NSIG];
3086 
3087 int os::Aix::get_our_sigflags(int sig) {
3088   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3089   return sigflags[sig];
3090 }
3091 
3092 void os::Aix::set_our_sigflags(int sig, int flags) {
3093   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3094   if (sig > 0 && sig < NSIG) {
3095     sigflags[sig] = flags;
3096   }
3097 }
3098 
3099 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3100   // Check for overwrite.
3101   struct sigaction oldAct;
3102   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3103 
3104   void* oldhand = oldAct.sa_sigaction
3105     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3106     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3107   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3108       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3109       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3110     if (AllowUserSignalHandlers || !set_installed) {
3111       // Do not overwrite; user takes responsibility to forward to us.
3112       return;
3113     } else if (UseSignalChaining) {
3114       // save the old handler in jvm
3115       os::Posix::save_preinstalled_handler(sig, oldAct);
3116       // libjsig also interposes the sigaction() call below and saves the
3117       // old sigaction on it own.
3118     } else {
3119       fatal("Encountered unexpected pre-existing sigaction handler "
3120             "%#lx for signal %d.", (long)oldhand, sig);
3121     }
3122   }
3123 
3124   struct sigaction sigAct;
3125   sigfillset(&(sigAct.sa_mask));
3126   if (!set_installed) {
3127     sigAct.sa_handler = SIG_DFL;
3128     sigAct.sa_flags = SA_RESTART;
3129   } else {
3130     sigAct.sa_sigaction = javaSignalHandler;
3131     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3132   }
3133   // Save flags, which are set by ours
3134   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3135   sigflags[sig] = sigAct.sa_flags;
3136 
3137   int ret = sigaction(sig, &sigAct, &oldAct);
3138   assert(ret == 0, "check");
3139 
3140   void* oldhand2 = oldAct.sa_sigaction
3141                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3142                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3143   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3144 }
3145 
3146 // install signal handlers for signals that HotSpot needs to
3147 // handle in order to support Java-level exception handling.
3148 void os::Aix::install_signal_handlers() {
3149   if (!signal_handlers_are_installed) {
3150     signal_handlers_are_installed = true;
3151 
3152     // signal-chaining
3153     typedef void (*signal_setting_t)();
3154     signal_setting_t begin_signal_setting = NULL;
3155     signal_setting_t end_signal_setting = NULL;
3156     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3157                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3158     if (begin_signal_setting != NULL) {
3159       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3160                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3161       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3162                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3163       libjsig_is_loaded = true;
3164       assert(UseSignalChaining, "should enable signal-chaining");
3165     }
3166     if (libjsig_is_loaded) {
3167       // Tell libjsig jvm is setting signal handlers.
3168       (*begin_signal_setting)();
3169     }
3170 
3171     set_signal_handler(SIGSEGV, true);
3172     set_signal_handler(SIGPIPE, true);
3173     set_signal_handler(SIGBUS, true);
3174     set_signal_handler(SIGILL, true);
3175     set_signal_handler(SIGFPE, true);
3176     set_signal_handler(SIGTRAP, true);
3177     set_signal_handler(SIGXFSZ, true);
3178 
3179     if (libjsig_is_loaded) {
3180       // Tell libjsig jvm finishes setting signal handlers.
3181       (*end_signal_setting)();
3182     }
3183 
3184     // We don't activate signal checker if libjsig is in place, we trust ourselves
3185     // and if UserSignalHandler is installed all bets are off.
3186     // Log that signal checking is off only if -verbose:jni is specified.
3187     if (CheckJNICalls) {
3188       if (libjsig_is_loaded) {
3189         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3190         check_signals = false;
3191       }
3192       if (AllowUserSignalHandlers) {
3193         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3194         check_signals = false;
3195       }
3196       // Need to initialize check_signal_done.
3197       ::sigemptyset(&check_signal_done);
3198     }
3199   }
3200 }
3201 
3202 static const char* get_signal_handler_name(address handler,
3203                                            char* buf, int buflen) {
3204   int offset;
3205   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3206   if (found) {
3207     // skip directory names
3208     const char *p1, *p2;
3209     p1 = buf;
3210     size_t len = strlen(os::file_separator());
3211     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3212     // The way os::dll_address_to_library_name is implemented on Aix
3213     // right now, it always returns -1 for the offset which is not
3214     // terribly informative.
3215     // Will fix that. For now, omit the offset.
3216     jio_snprintf(buf, buflen, "%s", p1);
3217   } else {
3218     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3219   }
3220   return buf;
3221 }
3222 
3223 static void print_signal_handler(outputStream* st, int sig,
3224                                  char* buf, size_t buflen) {
3225   struct sigaction sa;
3226   sigaction(sig, NULL, &sa);
3227 
3228   st->print("%s: ", os::exception_name(sig, buf, buflen));
3229 
3230   address handler = (sa.sa_flags & SA_SIGINFO)
3231     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3232     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3233 
3234   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3235     st->print("SIG_DFL");
3236   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3237     st->print("SIG_IGN");
3238   } else {
3239     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3240   }
3241 
3242   // Print readable mask.
3243   st->print(", sa_mask[0]=");
3244   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3245 
3246   address rh = VMError::get_resetted_sighandler(sig);
3247   // May be, handler was resetted by VMError?
3248   if (rh != NULL) {
3249     handler = rh;
3250     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3251   }
3252 
3253   // Print textual representation of sa_flags.
3254   st->print(", sa_flags=");
3255   os::Posix::print_sa_flags(st, sa.sa_flags);
3256 
3257   // Check: is it our handler?
3258   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3259       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3260     // It is our signal handler.
3261     // Check for flags, reset system-used one!
3262     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3263       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3264                 os::Aix::get_our_sigflags(sig));
3265     }
3266   }
3267   st->cr();
3268 }
3269 
3270 #define DO_SIGNAL_CHECK(sig) \
3271   if (!sigismember(&check_signal_done, sig)) \
3272     os::Aix::check_signal_handler(sig)
3273 
3274 // This method is a periodic task to check for misbehaving JNI applications
3275 // under CheckJNI, we can add any periodic checks here
3276 
3277 void os::run_periodic_checks() {
3278 
3279   if (check_signals == false) return;
3280 
3281   // SEGV and BUS if overridden could potentially prevent
3282   // generation of hs*.log in the event of a crash, debugging
3283   // such a case can be very challenging, so we absolutely
3284   // check the following for a good measure:
3285   DO_SIGNAL_CHECK(SIGSEGV);
3286   DO_SIGNAL_CHECK(SIGILL);
3287   DO_SIGNAL_CHECK(SIGFPE);
3288   DO_SIGNAL_CHECK(SIGBUS);
3289   DO_SIGNAL_CHECK(SIGPIPE);
3290   DO_SIGNAL_CHECK(SIGXFSZ);
3291   if (UseSIGTRAP) {
3292     DO_SIGNAL_CHECK(SIGTRAP);
3293   }
3294 
3295   // ReduceSignalUsage allows the user to override these handlers
3296   // see comments at the very top and jvm_md.h
3297   if (!ReduceSignalUsage) {
3298     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3299     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3300     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3301     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3302   }
3303 
3304   DO_SIGNAL_CHECK(SR_signum);
3305 }
3306 
3307 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3308 
3309 static os_sigaction_t os_sigaction = NULL;
3310 
3311 void os::Aix::check_signal_handler(int sig) {
3312   char buf[O_BUFLEN];
3313   address jvmHandler = NULL;
3314 
3315   struct sigaction act;
3316   if (os_sigaction == NULL) {
3317     // only trust the default sigaction, in case it has been interposed
3318     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3319     if (os_sigaction == NULL) return;
3320   }
3321 
3322   os_sigaction(sig, (struct sigaction*)NULL, &act);
3323 
3324   address thisHandler = (act.sa_flags & SA_SIGINFO)
3325     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3326     : CAST_FROM_FN_PTR(address, act.sa_handler);
3327 
3328   switch(sig) {
3329   case SIGSEGV:
3330   case SIGBUS:
3331   case SIGFPE:
3332   case SIGPIPE:
3333   case SIGILL:
3334   case SIGXFSZ:
3335     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3336     break;
3337 
3338   case SHUTDOWN1_SIGNAL:
3339   case SHUTDOWN2_SIGNAL:
3340   case SHUTDOWN3_SIGNAL:
3341   case BREAK_SIGNAL:
3342     jvmHandler = (address)user_handler();
3343     break;
3344 
3345   default:
3346     if (sig == SR_signum) {
3347       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3348     } else {
3349       return;
3350     }
3351     break;
3352   }
3353 
3354   if (thisHandler != jvmHandler) {
3355     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3356     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3357     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3358     // No need to check this sig any longer
3359     sigaddset(&check_signal_done, sig);
3360     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3361     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3362       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3363                     exception_name(sig, buf, O_BUFLEN));
3364     }
3365   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3366     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3367     tty->print("expected:");
3368     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3369     tty->cr();
3370     tty->print("  found:");
3371     os::Posix::print_sa_flags(tty, act.sa_flags);
3372     tty->cr();
3373     // No need to check this sig any longer
3374     sigaddset(&check_signal_done, sig);
3375   }
3376 
3377   // Dump all the signal
3378   if (sigismember(&check_signal_done, sig)) {
3379     print_signal_handlers(tty, buf, O_BUFLEN);
3380   }
3381 }
3382 
3383 // To install functions for atexit system call
3384 extern "C" {
3385   static void perfMemory_exit_helper() {
3386     perfMemory_exit();
3387   }
3388 }
3389 
3390 // This is called _before_ the most of global arguments have been parsed.
3391 void os::init(void) {
3392   // This is basic, we want to know if that ever changes.
3393   // (Shared memory boundary is supposed to be a 256M aligned.)
3394   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3395 
3396   // Record process break at startup.
3397   g_brk_at_startup = (address) ::sbrk(0);
3398   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3399 
3400   // First off, we need to know whether we run on AIX or PASE, and
3401   // the OS level we run on.
3402   os::Aix::initialize_os_info();
3403 
3404   // Scan environment (SPEC1170 behaviour, etc).
3405   os::Aix::scan_environment();
3406 
3407   // Probe multipage support.
3408   query_multipage_support();
3409 
3410   // Act like we only have one page size by eliminating corner cases which
3411   // we did not support very well anyway.
3412   // We have two input conditions:
3413   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3414   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3415   //    setting.
3416   //    Data segment page size is important for us because it defines the thread stack page
3417   //    size, which is needed for guard page handling, stack banging etc.
3418   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3419   //    and should be allocated with 64k pages.
3420   //
3421   // So, we do the following:
3422   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3423   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3424   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3425   // 64k          no              --- AIX 5.2 ? ---
3426   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3427 
3428   // We explicitly leave no option to change page size, because only upgrading would work,
3429   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3430 
3431   if (g_multipage_support.datapsize == 4*K) {
3432     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3433     if (g_multipage_support.can_use_64K_pages) {
3434       // .. but we are able to use 64K pages dynamically.
3435       // This would be typical for java launchers which are not linked
3436       // with datapsize=64K (like, any other launcher but our own).
3437       //
3438       // In this case it would be smart to allocate the java heap with 64K
3439       // to get the performance benefit, and to fake 64k pages for the
3440       // data segment (when dealing with thread stacks).
3441       //
3442       // However, leave a possibility to downgrade to 4K, using
3443       // -XX:-Use64KPages.
3444       if (Use64KPages) {
3445         trcVerbose("64K page mode (faked for data segment)");
3446         Aix::_page_size = 64*K;
3447       } else {
3448         trcVerbose("4K page mode (Use64KPages=off)");
3449         Aix::_page_size = 4*K;
3450       }
3451     } else {
3452       // .. and not able to allocate 64k pages dynamically. Here, just
3453       // fall back to 4K paged mode and use mmap for everything.
3454       trcVerbose("4K page mode");
3455       Aix::_page_size = 4*K;
3456       FLAG_SET_ERGO(Use64KPages, false);
3457     }
3458   } else {
3459     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3460     // This normally means that we can allocate 64k pages dynamically.
3461     // (There is one special case where this may be false: EXTSHM=on.
3462     // but we decided to not support that mode).
3463     assert0(g_multipage_support.can_use_64K_pages);
3464     Aix::_page_size = 64*K;
3465     trcVerbose("64K page mode");
3466     FLAG_SET_ERGO(Use64KPages, true);
3467   }
3468 
3469   // For now UseLargePages is just ignored.
3470   FLAG_SET_ERGO(UseLargePages, false);
3471   _page_sizes[0] = 0;
3472 
3473   // debug trace
3474   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3475 
3476   // Next, we need to initialize libo4 and libperfstat libraries.
3477   if (os::Aix::on_pase()) {
3478     os::Aix::initialize_libo4();
3479   } else {
3480     os::Aix::initialize_libperfstat();
3481   }
3482 
3483   // Reset the perfstat information provided by ODM.
3484   if (os::Aix::on_aix()) {
3485     libperfstat::perfstat_reset();
3486   }
3487 
3488   // Now initialze basic system properties. Note that for some of the values we
3489   // need libperfstat etc.
3490   os::Aix::initialize_system_info();
3491 
3492   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3493 
3494   init_random(1234567);
3495 
3496   // _main_thread points to the thread that created/loaded the JVM.
3497   Aix::_main_thread = pthread_self();
3498 
3499   initial_time_count = javaTimeNanos();
3500 
3501   os::Posix::init();
3502 }
3503 
3504 // This is called _after_ the global arguments have been parsed.
3505 jint os::init_2(void) {
3506 
3507   // This could be set after os::Posix::init() but all platforms
3508   // have to set it the same so we have to mirror Solaris.
3509   DEBUG_ONLY(os::set_mutex_init_done();)
3510 
3511   os::Posix::init_2();
3512 
3513   if (os::Aix::on_pase()) {
3514     trcVerbose("Running on PASE.");
3515   } else {
3516     trcVerbose("Running on AIX (not PASE).");
3517   }
3518 
3519   trcVerbose("processor count: %d", os::_processor_count);
3520   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3521 
3522   // Initially build up the loaded dll map.
3523   LoadedLibraries::reload();
3524   if (Verbose) {
3525     trcVerbose("Loaded Libraries: ");
3526     LoadedLibraries::print(tty);
3527   }
3528 
3529   // initialize suspend/resume support - must do this before signal_sets_init()
3530   if (SR_initialize() != 0) {
3531     perror("SR_initialize failed");
3532     return JNI_ERR;
3533   }
3534 
3535   Aix::signal_sets_init();
3536   Aix::install_signal_handlers();
3537   // Initialize data for jdk.internal.misc.Signal
3538   if (!ReduceSignalUsage) {
3539     jdk_misc_signal_init();
3540   }
3541 
3542   // Check and sets minimum stack sizes against command line options
3543   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3544     return JNI_ERR;
3545   }
3546 
3547   if (UseNUMA) {
3548     UseNUMA = false;
3549     warning("NUMA optimizations are not available on this OS.");
3550   }
3551 
3552   if (MaxFDLimit) {
3553     // Set the number of file descriptors to max. print out error
3554     // if getrlimit/setrlimit fails but continue regardless.
3555     struct rlimit nbr_files;
3556     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3557     if (status != 0) {
3558       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3559     } else {
3560       nbr_files.rlim_cur = nbr_files.rlim_max;
3561       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3562       if (status != 0) {
3563         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3564       }
3565     }
3566   }
3567 
3568   if (PerfAllowAtExitRegistration) {
3569     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3570     // At exit functions can be delayed until process exit time, which
3571     // can be problematic for embedded VM situations. Embedded VMs should
3572     // call DestroyJavaVM() to assure that VM resources are released.
3573 
3574     // Note: perfMemory_exit_helper atexit function may be removed in
3575     // the future if the appropriate cleanup code can be added to the
3576     // VM_Exit VMOperation's doit method.
3577     if (atexit(perfMemory_exit_helper) != 0) {
3578       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3579     }
3580   }
3581 
3582   return JNI_OK;
3583 }
3584 
3585 // Mark the polling page as unreadable
3586 void os::make_polling_page_unreadable(void) {
3587   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3588     fatal("Could not disable polling page");
3589   }
3590 };
3591 
3592 // Mark the polling page as readable
3593 void os::make_polling_page_readable(void) {
3594   // Changed according to os_linux.cpp.
3595   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3596     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3597   }
3598 };
3599 
3600 int os::active_processor_count() {
3601   // User has overridden the number of active processors
3602   if (ActiveProcessorCount > 0) {
3603     log_trace(os)("active_processor_count: "
3604                   "active processor count set by user : %d",
3605                   ActiveProcessorCount);
3606     return ActiveProcessorCount;
3607   }
3608 
3609   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3610   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3611   return online_cpus;
3612 }
3613 
3614 void os::set_native_thread_name(const char *name) {
3615   // Not yet implemented.
3616   return;
3617 }
3618 
3619 bool os::distribute_processes(uint length, uint* distribution) {
3620   // Not yet implemented.
3621   return false;
3622 }
3623 
3624 bool os::bind_to_processor(uint processor_id) {
3625   // Not yet implemented.
3626   return false;
3627 }
3628 
3629 void os::SuspendedThreadTask::internal_do_task() {
3630   if (do_suspend(_thread->osthread())) {
3631     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3632     do_task(context);
3633     do_resume(_thread->osthread());
3634   }
3635 }
3636 
3637 ////////////////////////////////////////////////////////////////////////////////
3638 // debug support
3639 
3640 bool os::find(address addr, outputStream* st) {
3641 
3642   st->print(PTR_FORMAT ": ", addr);
3643 
3644   loaded_module_t lm;
3645   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3646       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3647     st->print_cr("%s", lm.path);
3648     return true;
3649   }
3650 
3651   return false;
3652 }
3653 
3654 ////////////////////////////////////////////////////////////////////////////////
3655 // misc
3656 
3657 // This does not do anything on Aix. This is basically a hook for being
3658 // able to use structured exception handling (thread-local exception filters)
3659 // on, e.g., Win32.
3660 void
3661 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3662                          JavaCallArguments* args, Thread* thread) {
3663   f(value, method, args, thread);
3664 }
3665 
3666 void os::print_statistics() {
3667 }
3668 
3669 bool os::message_box(const char* title, const char* message) {
3670   int i;
3671   fdStream err(defaultStream::error_fd());
3672   for (i = 0; i < 78; i++) err.print_raw("=");
3673   err.cr();
3674   err.print_raw_cr(title);
3675   for (i = 0; i < 78; i++) err.print_raw("-");
3676   err.cr();
3677   err.print_raw_cr(message);
3678   for (i = 0; i < 78; i++) err.print_raw("=");
3679   err.cr();
3680 
3681   char buf[16];
3682   // Prevent process from exiting upon "read error" without consuming all CPU
3683   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3684 
3685   return buf[0] == 'y' || buf[0] == 'Y';
3686 }
3687 
3688 // Is a (classpath) directory empty?
3689 bool os::dir_is_empty(const char* path) {
3690   DIR *dir = NULL;
3691   struct dirent *ptr;
3692 
3693   dir = opendir(path);
3694   if (dir == NULL) return true;
3695 
3696   /* Scan the directory */
3697   bool result = true;
3698   while (result && (ptr = readdir(dir)) != NULL) {
3699     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3700       result = false;
3701     }
3702   }
3703   closedir(dir);
3704   return result;
3705 }
3706 
3707 // This code originates from JDK's sysOpen and open64_w
3708 // from src/solaris/hpi/src/system_md.c
3709 
3710 int os::open(const char *path, int oflag, int mode) {
3711 
3712   if (strlen(path) > MAX_PATH - 1) {
3713     errno = ENAMETOOLONG;
3714     return -1;
3715   }
3716   int fd;
3717 
3718   fd = ::open64(path, oflag, mode);
3719   if (fd == -1) return -1;
3720 
3721   // If the open succeeded, the file might still be a directory.
3722   {
3723     struct stat64 buf64;
3724     int ret = ::fstat64(fd, &buf64);
3725     int st_mode = buf64.st_mode;
3726 
3727     if (ret != -1) {
3728       if ((st_mode & S_IFMT) == S_IFDIR) {
3729         errno = EISDIR;
3730         ::close(fd);
3731         return -1;
3732       }
3733     } else {
3734       ::close(fd);
3735       return -1;
3736     }
3737   }
3738 
3739   // All file descriptors that are opened in the JVM and not
3740   // specifically destined for a subprocess should have the
3741   // close-on-exec flag set. If we don't set it, then careless 3rd
3742   // party native code might fork and exec without closing all
3743   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3744   // UNIXProcess.c), and this in turn might:
3745   //
3746   // - cause end-of-file to fail to be detected on some file
3747   //   descriptors, resulting in mysterious hangs, or
3748   //
3749   // - might cause an fopen in the subprocess to fail on a system
3750   //   suffering from bug 1085341.
3751   //
3752   // (Yes, the default setting of the close-on-exec flag is a Unix
3753   // design flaw.)
3754   //
3755   // See:
3756   // 1085341: 32-bit stdio routines should support file descriptors >255
3757   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3758   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3759 #ifdef FD_CLOEXEC
3760   {
3761     int flags = ::fcntl(fd, F_GETFD);
3762     if (flags != -1)
3763       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3764   }
3765 #endif
3766 
3767   return fd;
3768 }
3769 
3770 // create binary file, rewriting existing file if required
3771 int os::create_binary_file(const char* path, bool rewrite_existing) {
3772   int oflags = O_WRONLY | O_CREAT;
3773   if (!rewrite_existing) {
3774     oflags |= O_EXCL;
3775   }
3776   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3777 }
3778 
3779 // return current position of file pointer
3780 jlong os::current_file_offset(int fd) {
3781   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3782 }
3783 
3784 // move file pointer to the specified offset
3785 jlong os::seek_to_file_offset(int fd, jlong offset) {
3786   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3787 }
3788 
3789 // This code originates from JDK's sysAvailable
3790 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3791 
3792 int os::available(int fd, jlong *bytes) {
3793   jlong cur, end;
3794   int mode;
3795   struct stat64 buf64;
3796 
3797   if (::fstat64(fd, &buf64) >= 0) {
3798     mode = buf64.st_mode;
3799     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3800       int n;
3801       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3802         *bytes = n;
3803         return 1;
3804       }
3805     }
3806   }
3807   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3808     return 0;
3809   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3810     return 0;
3811   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3812     return 0;
3813   }
3814   *bytes = end - cur;
3815   return 1;
3816 }
3817 
3818 // Map a block of memory.
3819 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3820                         char *addr, size_t bytes, bool read_only,
3821                         bool allow_exec) {
3822   int prot;
3823   int flags = MAP_PRIVATE;
3824 
3825   if (read_only) {
3826     prot = PROT_READ;
3827     flags = MAP_SHARED;
3828   } else {
3829     prot = PROT_READ | PROT_WRITE;
3830     flags = MAP_PRIVATE;
3831   }
3832 
3833   if (allow_exec) {
3834     prot |= PROT_EXEC;
3835   }
3836 
3837   if (addr != NULL) {
3838     flags |= MAP_FIXED;
3839   }
3840 
3841   // Allow anonymous mappings if 'fd' is -1.
3842   if (fd == -1) {
3843     flags |= MAP_ANONYMOUS;
3844   }
3845 
3846   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3847                                      fd, file_offset);
3848   if (mapped_address == MAP_FAILED) {
3849     return NULL;
3850   }
3851   return mapped_address;
3852 }
3853 
3854 // Remap a block of memory.
3855 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3856                           char *addr, size_t bytes, bool read_only,
3857                           bool allow_exec) {
3858   // same as map_memory() on this OS
3859   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3860                         allow_exec);
3861 }
3862 
3863 // Unmap a block of memory.
3864 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3865   return munmap(addr, bytes) == 0;
3866 }
3867 
3868 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3869 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3870 // of a thread.
3871 //
3872 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3873 // the fast estimate available on the platform.
3874 
3875 jlong os::current_thread_cpu_time() {
3876   // return user + sys since the cost is the same
3877   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3878   assert(n >= 0, "negative CPU time");
3879   return n;
3880 }
3881 
3882 jlong os::thread_cpu_time(Thread* thread) {
3883   // consistent with what current_thread_cpu_time() returns
3884   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3885   assert(n >= 0, "negative CPU time");
3886   return n;
3887 }
3888 
3889 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3890   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3891   assert(n >= 0, "negative CPU time");
3892   return n;
3893 }
3894 
3895 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3896   bool error = false;
3897 
3898   jlong sys_time = 0;
3899   jlong user_time = 0;
3900 
3901   // Reimplemented using getthrds64().
3902   //
3903   // Works like this:
3904   // For the thread in question, get the kernel thread id. Then get the
3905   // kernel thread statistics using that id.
3906   //
3907   // This only works of course when no pthread scheduling is used,
3908   // i.e. there is a 1:1 relationship to kernel threads.
3909   // On AIX, see AIXTHREAD_SCOPE variable.
3910 
3911   pthread_t pthtid = thread->osthread()->pthread_id();
3912 
3913   // retrieve kernel thread id for the pthread:
3914   tid64_t tid = 0;
3915   struct __pthrdsinfo pinfo;
3916   // I just love those otherworldly IBM APIs which force me to hand down
3917   // dummy buffers for stuff I dont care for...
3918   char dummy[1];
3919   int dummy_size = sizeof(dummy);
3920   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3921                           dummy, &dummy_size) == 0) {
3922     tid = pinfo.__pi_tid;
3923   } else {
3924     tty->print_cr("pthread_getthrds_np failed.");
3925     error = true;
3926   }
3927 
3928   // retrieve kernel timing info for that kernel thread
3929   if (!error) {
3930     struct thrdentry64 thrdentry;
3931     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3932       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3933       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3934     } else {
3935       tty->print_cr("pthread_getthrds_np failed.");
3936       error = true;
3937     }
3938   }
3939 
3940   if (p_sys_time) {
3941     *p_sys_time = sys_time;
3942   }
3943 
3944   if (p_user_time) {
3945     *p_user_time = user_time;
3946   }
3947 
3948   if (error) {
3949     return false;
3950   }
3951 
3952   return true;
3953 }
3954 
3955 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3956   jlong sys_time;
3957   jlong user_time;
3958 
3959   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
3960     return -1;
3961   }
3962 
3963   return user_sys_cpu_time ? sys_time + user_time : user_time;
3964 }
3965 
3966 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3967   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3968   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3969   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3970   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3971 }
3972 
3973 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3974   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3975   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3976   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3977   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3978 }
3979 
3980 bool os::is_thread_cpu_time_supported() {
3981   return true;
3982 }
3983 
3984 // System loadavg support. Returns -1 if load average cannot be obtained.
3985 // For now just return the system wide load average (no processor sets).
3986 int os::loadavg(double values[], int nelem) {
3987 
3988   guarantee(nelem >= 0 && nelem <= 3, "argument error");
3989   guarantee(values, "argument error");
3990 
3991   if (os::Aix::on_pase()) {
3992 
3993     // AS/400 PASE: use libo4 porting library
3994     double v[3] = { 0.0, 0.0, 0.0 };
3995 
3996     if (libo4::get_load_avg(v, v + 1, v + 2)) {
3997       for (int i = 0; i < nelem; i ++) {
3998         values[i] = v[i];
3999       }
4000       return nelem;
4001     } else {
4002       return -1;
4003     }
4004 
4005   } else {
4006 
4007     // AIX: use libperfstat
4008     libperfstat::cpuinfo_t ci;
4009     if (libperfstat::get_cpuinfo(&ci)) {
4010       for (int i = 0; i < nelem; i++) {
4011         values[i] = ci.loadavg[i];
4012       }
4013     } else {
4014       return -1;
4015     }
4016     return nelem;
4017   }
4018 }
4019 
4020 void os::pause() {
4021   char filename[MAX_PATH];
4022   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4023     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4024   } else {
4025     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4026   }
4027 
4028   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4029   if (fd != -1) {
4030     struct stat buf;
4031     ::close(fd);
4032     while (::stat(filename, &buf) == 0) {
4033       (void)::poll(NULL, 0, 100);
4034     }
4035   } else {
4036     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
4037   }
4038 }
4039 
4040 bool os::is_primordial_thread(void) {
4041   if (pthread_self() == (pthread_t)1) {
4042     return true;
4043   } else {
4044     return false;
4045   }
4046 }
4047 
4048 // OS recognitions (PASE/AIX, OS level) call this before calling any
4049 // one of Aix::on_pase(), Aix::os_version() static
4050 void os::Aix::initialize_os_info() {
4051 
4052   assert(_on_pase == -1 && _os_version == 0, "already called.");
4053 
4054   struct utsname uts;
4055   memset(&uts, 0, sizeof(uts));
4056   strcpy(uts.sysname, "?");
4057   if (::uname(&uts) == -1) {
4058     trcVerbose("uname failed (%d)", errno);
4059     guarantee(0, "Could not determine whether we run on AIX or PASE");
4060   } else {
4061     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4062                "node \"%s\" machine \"%s\"\n",
4063                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4064     const int major = atoi(uts.version);
4065     assert(major > 0, "invalid OS version");
4066     const int minor = atoi(uts.release);
4067     assert(minor > 0, "invalid OS release");
4068     _os_version = (major << 24) | (minor << 16);
4069     char ver_str[20] = {0};
4070     const char* name_str = "unknown OS";
4071     if (strcmp(uts.sysname, "OS400") == 0) {
4072       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4073       _on_pase = 1;
4074       if (os_version_short() < 0x0504) {
4075         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4076         assert(false, "OS/400 release too old.");
4077       }
4078       name_str = "OS/400 (pase)";
4079       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4080     } else if (strcmp(uts.sysname, "AIX") == 0) {
4081       // We run on AIX. We do not support versions older than AIX 7.1.
4082       _on_pase = 0;
4083       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4084       odmWrapper::determine_os_kernel_version(&_os_version);
4085       if (os_version_short() < 0x0701) {
4086         trcVerbose("AIX releases older than AIX 7.1 are not supported.");
4087         assert(false, "AIX release too old.");
4088       }
4089       name_str = "AIX";
4090       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4091                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4092     } else {
4093       assert(false, "%s", name_str);
4094     }
4095     trcVerbose("We run on %s %s", name_str, ver_str);
4096   }
4097 
4098   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4099 } // end: os::Aix::initialize_os_info()
4100 
4101 // Scan environment for important settings which might effect the VM.
4102 // Trace out settings. Warn about invalid settings and/or correct them.
4103 //
4104 // Must run after os::Aix::initialue_os_info().
4105 void os::Aix::scan_environment() {
4106 
4107   char* p;
4108   int rc;
4109 
4110   // Warn explicity if EXTSHM=ON is used. That switch changes how
4111   // System V shared memory behaves. One effect is that page size of
4112   // shared memory cannot be change dynamically, effectivly preventing
4113   // large pages from working.
4114   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4115   // recommendation is (in OSS notes) to switch it off.
4116   p = ::getenv("EXTSHM");
4117   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4118   if (p && strcasecmp(p, "ON") == 0) {
4119     _extshm = 1;
4120     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4121     if (!AllowExtshm) {
4122       // We allow under certain conditions the user to continue. However, we want this
4123       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4124       // that the VM is not able to allocate 64k pages for the heap.
4125       // We do not want to run with reduced performance.
4126       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4127     }
4128   } else {
4129     _extshm = 0;
4130   }
4131 
4132   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4133   // Not tested, not supported.
4134   //
4135   // Note that it might be worth the trouble to test and to require it, if only to
4136   // get useful return codes for mprotect.
4137   //
4138   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4139   // exec() ? before loading the libjvm ? ....)
4140   p = ::getenv("XPG_SUS_ENV");
4141   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4142   if (p && strcmp(p, "ON") == 0) {
4143     _xpg_sus_mode = 1;
4144     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4145     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4146     // clobber address ranges. If we ever want to support that, we have to do some
4147     // testing first.
4148     guarantee(false, "XPG_SUS_ENV=ON not supported");
4149   } else {
4150     _xpg_sus_mode = 0;
4151   }
4152 
4153   if (os::Aix::on_pase()) {
4154     p = ::getenv("QIBM_MULTI_THREADED");
4155     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4156   }
4157 
4158   p = ::getenv("LDR_CNTRL");
4159   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4160   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4161     if (p && ::strstr(p, "TEXTPSIZE")) {
4162       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4163         "you may experience hangs or crashes on OS/400 V7R1.");
4164     }
4165   }
4166 
4167   p = ::getenv("AIXTHREAD_GUARDPAGES");
4168   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4169 
4170 } // end: os::Aix::scan_environment()
4171 
4172 // PASE: initialize the libo4 library (PASE porting library).
4173 void os::Aix::initialize_libo4() {
4174   guarantee(os::Aix::on_pase(), "OS/400 only.");
4175   if (!libo4::init()) {
4176     trcVerbose("libo4 initialization failed.");
4177     assert(false, "libo4 initialization failed");
4178   } else {
4179     trcVerbose("libo4 initialized.");
4180   }
4181 }
4182 
4183 // AIX: initialize the libperfstat library.
4184 void os::Aix::initialize_libperfstat() {
4185   assert(os::Aix::on_aix(), "AIX only");
4186   if (!libperfstat::init()) {
4187     trcVerbose("libperfstat initialization failed.");
4188     assert(false, "libperfstat initialization failed");
4189   } else {
4190     trcVerbose("libperfstat initialized.");
4191   }
4192 }
4193 
4194 /////////////////////////////////////////////////////////////////////////////
4195 // thread stack
4196 
4197 // Get the current stack base from the OS (actually, the pthread library).
4198 // Note: usually not page aligned.
4199 address os::current_stack_base() {
4200   AixMisc::stackbounds_t bounds;
4201   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4202   guarantee(rc, "Unable to retrieve stack bounds.");
4203   return bounds.base;
4204 }
4205 
4206 // Get the current stack size from the OS (actually, the pthread library).
4207 // Returned size is such that (base - size) is always aligned to page size.
4208 size_t os::current_stack_size() {
4209   AixMisc::stackbounds_t bounds;
4210   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4211   guarantee(rc, "Unable to retrieve stack bounds.");
4212   // Align the returned stack size such that the stack low address
4213   // is aligned to page size (Note: base is usually not and we do not care).
4214   // We need to do this because caller code will assume stack low address is
4215   // page aligned and will place guard pages without checking.
4216   address low = bounds.base - bounds.size;
4217   address low_aligned = (address)align_up(low, os::vm_page_size());
4218   size_t s = bounds.base - low_aligned;
4219   return s;
4220 }
4221 
4222 extern char** environ;
4223 
4224 // Run the specified command in a separate process. Return its exit value,
4225 // or -1 on failure (e.g. can't fork a new process).
4226 // Unlike system(), this function can be called from signal handler. It
4227 // doesn't block SIGINT et al.
4228 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
4229   char* argv[4] = { (char*)"sh", (char*)"-c", cmd, NULL};
4230 
4231   pid_t pid = fork();
4232 
4233   if (pid < 0) {
4234     // fork failed
4235     return -1;
4236 
4237   } else if (pid == 0) {
4238     // child process
4239 
4240     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4241     execve("/usr/bin/sh", argv, environ);
4242 
4243     // execve failed
4244     _exit(-1);
4245 
4246   } else {
4247     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4248     // care about the actual exit code, for now.
4249 
4250     int status;
4251 
4252     // Wait for the child process to exit. This returns immediately if
4253     // the child has already exited. */
4254     while (waitpid(pid, &status, 0) < 0) {
4255       switch (errno) {
4256         case ECHILD: return 0;
4257         case EINTR: break;
4258         default: return -1;
4259       }
4260     }
4261 
4262     if (WIFEXITED(status)) {
4263       // The child exited normally; get its exit code.
4264       return WEXITSTATUS(status);
4265     } else if (WIFSIGNALED(status)) {
4266       // The child exited because of a signal.
4267       // The best value to return is 0x80 + signal number,
4268       // because that is what all Unix shells do, and because
4269       // it allows callers to distinguish between process exit and
4270       // process death by signal.
4271       return 0x80 + WTERMSIG(status);
4272     } else {
4273       // Unknown exit code; pass it through.
4274       return status;
4275     }
4276   }
4277   return -1;
4278 }
4279 
4280 // Get the default path to the core file
4281 // Returns the length of the string
4282 int os::get_core_path(char* buffer, size_t bufferSize) {
4283   const char* p = get_current_directory(buffer, bufferSize);
4284 
4285   if (p == NULL) {
4286     assert(p != NULL, "failed to get current directory");
4287     return 0;
4288   }
4289 
4290   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4291                                                p, current_process_id());
4292 
4293   return strlen(buffer);
4294 }
4295 
4296 #ifndef PRODUCT
4297 void TestReserveMemorySpecial_test() {
4298   // No tests available for this platform
4299 }
4300 #endif
4301 
4302 bool os::start_debugging(char *buf, int buflen) {
4303   int len = (int)strlen(buf);
4304   char *p = &buf[len];
4305 
4306   jio_snprintf(p, buflen -len,
4307                  "\n\n"
4308                  "Do you want to debug the problem?\n\n"
4309                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4310                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4311                  "Otherwise, press RETURN to abort...",
4312                  os::current_process_id(),
4313                  os::current_thread_id(), thread_self());
4314 
4315   bool yes = os::message_box("Unexpected Error", buf);
4316 
4317   if (yes) {
4318     // yes, user asked VM to launch debugger
4319     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4320 
4321     os::fork_and_exec(buf);
4322     yes = false;
4323   }
4324   return yes;
4325 }
4326 
4327 static inline time_t get_mtime(const char* filename) {
4328   struct stat st;
4329   int ret = os::stat(filename, &st);
4330   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
4331   return st.st_mtime;
4332 }
4333 
4334 int os::compare_file_modified_times(const char* file1, const char* file2) {
4335   time_t t1 = get_mtime(file1);
4336   time_t t2 = get_mtime(file2);
4337   return t1 - t2;
4338 }
4339 
4340 bool os::supports_map_sync() {
4341   return false;
4342 }