1 /*
   2  * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2007, 2008, 2009, 2010 Red Hat, Inc.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // no precompiled headers
  27 #include "jvm.h"
  28 #include "assembler_zero.inline.hpp"
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "nativeInst_zero.hpp"
  37 #include "os_share_linux.hpp"
  38 #include "prims/jniFastGetField.hpp"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "utilities/align.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // See stubGenerator_zero.cpp
  57 #include <setjmp.h>
  58 extern sigjmp_buf* get_jmp_buf_for_continuation();
  59 
  60 address os::current_stack_pointer() {
  61   // return the address of the current function
  62   return (address)__builtin_frame_address(0);
  63 }
  64 
  65 frame os::get_sender_for_C_frame(frame* fr) {
  66   ShouldNotCallThis();
  67   return frame(NULL, NULL); // silence compile warning.
  68 }
  69 
  70 frame os::current_frame() {
  71   // The only thing that calls this is the stack printing code in
  72   // VMError::report:
  73   //   - Step 110 (printing stack bounds) uses the sp in the frame
  74   //     to determine the amount of free space on the stack.  We
  75   //     set the sp to a close approximation of the real value in
  76   //     order to allow this step to complete.
  77   //   - Step 120 (printing native stack) tries to walk the stack.
  78   //     The frame we create has a NULL pc, which is ignored as an
  79   //     invalid frame.
  80   frame dummy = frame();
  81   dummy.set_sp((intptr_t *) current_stack_pointer());
  82   return dummy;
  83 }
  84 
  85 char* os::non_memory_address_word() {
  86   // Must never look like an address returned by reserve_memory,
  87   // even in its subfields (as defined by the CPU immediate fields,
  88   // if the CPU splits constants across multiple instructions).
  89 #ifdef SPARC
  90   // On SPARC, 0 != %hi(any real address), because there is no
  91   // allocation in the first 1Kb of the virtual address space.
  92   return (char *) 0;
  93 #else
  94   // This is the value for x86; works pretty well for PPC too.
  95   return (char *) -1;
  96 #endif // SPARC
  97 }
  98 
  99 address os::Linux::ucontext_get_pc(const ucontext_t* uc) {
 100   ShouldNotCallThis();
 101   return NULL; // silence compile warnings
 102 }
 103 
 104 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 105   ShouldNotCallThis();
 106 }
 107 
 108 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 109                                         intptr_t** ret_sp,
 110                                         intptr_t** ret_fp) {
 111   ShouldNotCallThis();
 112   return NULL; // silence compile warnings
 113 }
 114 
 115 frame os::fetch_frame_from_context(const void* ucVoid) {
 116   ShouldNotCallThis();
 117   return frame(NULL, NULL); // silence compile warnings
 118 }
 119 
 120 extern "C" JNIEXPORT int
 121 JVM_handle_linux_signal(int sig,
 122                         siginfo_t* info,
 123                         void* ucVoid,
 124                         int abort_if_unrecognized) {
 125   ucontext_t* uc = (ucontext_t*) ucVoid;
 126 
 127   Thread* t = Thread::current_or_null_safe();
 128 
 129   SignalHandlerMark shm(t);
 130 
 131   // handle SafeFetch faults
 132   if (sig == SIGSEGV || sig == SIGBUS) {
 133     sigjmp_buf* const pjb = get_jmp_buf_for_continuation();
 134     if (pjb) {
 135       siglongjmp(*pjb, 1);
 136     }
 137   }
 138 
 139   // Note: it's not uncommon that JNI code uses signal/sigset to
 140   // install then restore certain signal handler (e.g. to temporarily
 141   // block SIGPIPE, or have a SIGILL handler when detecting CPU
 142   // type). When that happens, JVM_handle_linux_signal() might be
 143   // invoked with junk info/ucVoid. To avoid unnecessary crash when
 144   // libjsig is not preloaded, try handle signals that do not require
 145   // siginfo/ucontext first.
 146 
 147   if (sig == SIGPIPE || sig == SIGXFSZ) {
 148     // allow chained handler to go first
 149     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 150       return true;
 151     } else {
 152       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 153       return true;
 154     }
 155   }
 156 
 157   JavaThread* thread = NULL;
 158   VMThread* vmthread = NULL;
 159   if (os::Linux::signal_handlers_are_installed) {
 160     if (t != NULL ){
 161       if(t->is_Java_thread()) {
 162         thread = (JavaThread*)t;
 163       }
 164       else if(t->is_VM_thread()){
 165         vmthread = (VMThread *)t;
 166       }
 167     }
 168   }
 169 
 170   if (info != NULL && thread != NULL) {
 171     // Handle ALL stack overflow variations here
 172     if (sig == SIGSEGV) {
 173       address addr = (address) info->si_addr;
 174 
 175       // check if fault address is within thread stack
 176       if (thread->on_local_stack(addr)) {
 177         // stack overflow
 178         if (thread->in_stack_yellow_reserved_zone(addr)) {
 179           thread->disable_stack_yellow_reserved_zone();
 180           ShouldNotCallThis();
 181         }
 182         else if (thread->in_stack_red_zone(addr)) {
 183           thread->disable_stack_red_zone();
 184           ShouldNotCallThis();
 185         }
 186         else {
 187           // Accessing stack address below sp may cause SEGV if
 188           // current thread has MAP_GROWSDOWN stack. This should
 189           // only happen when current thread was created by user
 190           // code with MAP_GROWSDOWN flag and then attached to VM.
 191           // See notes in os_linux.cpp.
 192           if (thread->osthread()->expanding_stack() == 0) {
 193             thread->osthread()->set_expanding_stack();
 194             if (os::Linux::manually_expand_stack(thread, addr)) {
 195               thread->osthread()->clear_expanding_stack();
 196               return true;
 197             }
 198             thread->osthread()->clear_expanding_stack();
 199           }
 200           else {
 201             fatal("recursive segv. expanding stack.");
 202           }
 203         }
 204       }
 205     }
 206 
 207     /*if (thread->thread_state() == _thread_in_Java) {
 208       ShouldNotCallThis();
 209     }
 210     else*/ if ((thread->thread_state() == _thread_in_vm ||
 211                thread->thread_state() == _thread_in_native) &&
 212                sig == SIGBUS && thread->doing_unsafe_access()) {
 213       ShouldNotCallThis();
 214     }
 215 
 216     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC
 217     // kicks in and the heap gets shrunk before the field access.
 218     /*if (sig == SIGSEGV || sig == SIGBUS) {
 219       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 220       if (addr != (address)-1) {
 221         stub = addr;
 222       }
 223     }*/
 224   }
 225 
 226   // signal-chaining
 227   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 228      return true;
 229   }
 230 
 231   if (!abort_if_unrecognized) {
 232     // caller wants another chance, so give it to him
 233     return false;
 234   }
 235 
 236 #ifndef PRODUCT
 237   if (sig == SIGSEGV) {
 238     fatal("\n#"
 239           "\n#    /--------------------\\"
 240           "\n#    | segmentation fault |"
 241           "\n#    \\---\\ /--------------/"
 242           "\n#        /"
 243           "\n#    [-]        |\\_/|    "
 244           "\n#    (+)=C      |o o|__  "
 245           "\n#    | |        =-*-=__\\ "
 246           "\n#    OOO        c_c_(___)");
 247   }
 248 #endif // !PRODUCT
 249 
 250   char buf[64];
 251 
 252   sprintf(buf, "caught unhandled signal %d", sig);
 253 
 254 // Silence -Wformat-security warning for fatal()
 255 PRAGMA_DIAG_PUSH
 256 PRAGMA_FORMAT_NONLITERAL_IGNORED
 257   fatal(buf);
 258 PRAGMA_DIAG_POP
 259   return true; // silence compiler warnings
 260 }
 261 
 262 void os::Linux::init_thread_fpu_state(void) {
 263   // Nothing to do
 264 }
 265 
 266 int os::Linux::get_fpu_control_word() {
 267   ShouldNotCallThis();
 268   return -1; // silence compile warnings
 269 }
 270 
 271 void os::Linux::set_fpu_control_word(int fpu) {
 272   ShouldNotCallThis();
 273 }
 274 
 275 bool os::is_allocatable(size_t bytes) {
 276 #ifdef _LP64
 277   return true;
 278 #else
 279   if (bytes < 2 * G) {
 280     return true;
 281   }
 282 
 283   char* addr = reserve_memory(bytes, NULL);
 284 
 285   if (addr != NULL) {
 286     release_memory(addr, bytes);
 287   }
 288 
 289   return addr != NULL;
 290 #endif // _LP64
 291 }
 292 
 293 ///////////////////////////////////////////////////////////////////////////////
 294 // thread stack
 295 
 296 size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
 297 size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
 298 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
 299 
 300 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 301 #ifdef _LP64
 302   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 303 #else
 304   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 305 #endif // _LP64
 306   return s;
 307 }
 308 
 309 static void current_stack_region(address *bottom, size_t *size) {
 310   pthread_attr_t attr;
 311   int res = pthread_getattr_np(pthread_self(), &attr);
 312   if (res != 0) {
 313     if (res == ENOMEM) {
 314       vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
 315     }
 316     else {
 317       fatal("pthread_getattr_np failed with error = %d", res);
 318     }
 319   }
 320 
 321   address stack_bottom;
 322   size_t stack_bytes;
 323   res = pthread_attr_getstack(&attr, (void **) &stack_bottom, &stack_bytes);
 324   if (res != 0) {
 325     fatal("pthread_attr_getstack failed with error = %d", res);
 326   }
 327   address stack_top = stack_bottom + stack_bytes;
 328 
 329   // The block of memory returned by pthread_attr_getstack() includes
 330   // guard pages where present.  We need to trim these off.
 331   size_t page_bytes = os::Linux::page_size();
 332   assert(((intptr_t) stack_bottom & (page_bytes - 1)) == 0, "unaligned stack");
 333 
 334   size_t guard_bytes;
 335   res = pthread_attr_getguardsize(&attr, &guard_bytes);
 336   if (res != 0) {
 337     fatal("pthread_attr_getguardsize failed with errno = %d", res);
 338   }
 339   int guard_pages = align_up(guard_bytes, page_bytes) / page_bytes;
 340   assert(guard_bytes == guard_pages * page_bytes, "unaligned guard");
 341 
 342 #ifdef IA64
 343   // IA64 has two stacks sharing the same area of memory, a normal
 344   // stack growing downwards and a register stack growing upwards.
 345   // Guard pages, if present, are in the centre.  This code splits
 346   // the stack in two even without guard pages, though in theory
 347   // there's nothing to stop us allocating more to the normal stack
 348   // or more to the register stack if one or the other were found
 349   // to grow faster.
 350   int total_pages = align_down(stack_bytes, page_bytes) / page_bytes;
 351   stack_bottom += (total_pages - guard_pages) / 2 * page_bytes;
 352 #endif // IA64
 353 
 354   stack_bottom += guard_bytes;
 355 
 356   pthread_attr_destroy(&attr);
 357 
 358   // The initial thread has a growable stack, and the size reported
 359   // by pthread_attr_getstack is the maximum size it could possibly
 360   // be given what currently mapped.  This can be huge, so we cap it.
 361   if (os::is_primordial_thread()) {
 362     stack_bytes = stack_top - stack_bottom;
 363 
 364     if (stack_bytes > JavaThread::stack_size_at_create())
 365       stack_bytes = JavaThread::stack_size_at_create();
 366 
 367     stack_bottom = stack_top - stack_bytes;
 368   }
 369 
 370   assert(os::current_stack_pointer() >= stack_bottom, "should do");
 371   assert(os::current_stack_pointer() < stack_top, "should do");
 372 
 373   *bottom = stack_bottom;
 374   *size = stack_top - stack_bottom;
 375 }
 376 
 377 address os::current_stack_base() {
 378   address bottom;
 379   size_t size;
 380   current_stack_region(&bottom, &size);
 381   return bottom + size;
 382 }
 383 
 384 size_t os::current_stack_size() {
 385   // stack size includes normal stack and HotSpot guard pages
 386   address bottom;
 387   size_t size;
 388   current_stack_region(&bottom, &size);
 389   return size;
 390 }
 391 
 392 /////////////////////////////////////////////////////////////////////////////
 393 // helper functions for fatal error handler
 394 
 395 void os::print_context(outputStream* st, const void* context) {
 396   ShouldNotCallThis();
 397 }
 398 
 399 void os::print_register_info(outputStream *st, const void *context) {
 400   ShouldNotCallThis();
 401 }
 402 
 403 /////////////////////////////////////////////////////////////////////////////
 404 // Stubs for things that would be in linux_zero.s if it existed.
 405 // You probably want to disassemble these monkeys to check they're ok.
 406 
 407 extern "C" {
 408   int SpinPause() {
 409       return -1; // silence compile warnings
 410   }
 411 
 412 
 413   void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {
 414     if (from > to) {
 415       jshort *end = from + count;
 416       while (from < end)
 417         *(to++) = *(from++);
 418     }
 419     else if (from < to) {
 420       jshort *end = from;
 421       from += count - 1;
 422       to   += count - 1;
 423       while (from >= end)
 424         *(to--) = *(from--);
 425     }
 426   }
 427   void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) {
 428     if (from > to) {
 429       jint *end = from + count;
 430       while (from < end)
 431         *(to++) = *(from++);
 432     }
 433     else if (from < to) {
 434       jint *end = from;
 435       from += count - 1;
 436       to   += count - 1;
 437       while (from >= end)
 438         *(to--) = *(from--);
 439     }
 440   }
 441   void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) {
 442     if (from > to) {
 443       jlong *end = from + count;
 444       while (from < end)
 445         os::atomic_copy64(from++, to++);
 446     }
 447     else if (from < to) {
 448       jlong *end = from;
 449       from += count - 1;
 450       to   += count - 1;
 451       while (from >= end)
 452         os::atomic_copy64(from--, to--);
 453     }
 454   }
 455 
 456   void _Copy_arrayof_conjoint_bytes(HeapWord* from,
 457                                     HeapWord* to,
 458                                     size_t    count) {
 459     memmove(to, from, count);
 460   }
 461   void _Copy_arrayof_conjoint_jshorts(HeapWord* from,
 462                                       HeapWord* to,
 463                                       size_t    count) {
 464     memmove(to, from, count * 2);
 465   }
 466   void _Copy_arrayof_conjoint_jints(HeapWord* from,
 467                                     HeapWord* to,
 468                                     size_t    count) {
 469     memmove(to, from, count * 4);
 470   }
 471   void _Copy_arrayof_conjoint_jlongs(HeapWord* from,
 472                                      HeapWord* to,
 473                                      size_t    count) {
 474     memmove(to, from, count * 8);
 475   }
 476 };
 477 
 478 /////////////////////////////////////////////////////////////////////////////
 479 // Implementations of atomic operations not supported by processors.
 480 //  -- http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Atomic-Builtins.html
 481 
 482 #ifndef _LP64
 483 extern "C" {
 484   long long unsigned int __sync_val_compare_and_swap_8(
 485     volatile void *ptr,
 486     long long unsigned int oldval,
 487     long long unsigned int newval) {
 488     ShouldNotCallThis();
 489   }
 490 };
 491 #endif // !_LP64
 492 
 493 #ifndef PRODUCT
 494 void os::verify_stack_alignment() {
 495 }
 496 #endif
 497 
 498 int os::extra_bang_size_in_bytes() {
 499   // Zero does not require an additional stack banging.
 500   return 0;
 501 }