1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "gc/parallel/parallelScavengeHeap.hpp"
  33 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  34 #include "gc/parallel/psMarkSweep.hpp"
  35 #include "gc/parallel/psMarkSweepDecorator.hpp"
  36 #include "gc/parallel/psOldGen.hpp"
  37 #include "gc/parallel/psScavenge.hpp"
  38 #include "gc/parallel/psYoungGen.hpp"
  39 #include "gc/serial/markSweep.hpp"
  40 #include "gc/shared/gcCause.hpp"
  41 #include "gc/shared/gcHeapSummary.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcLocker.hpp"
  44 #include "gc/shared/gcTimer.hpp"
  45 #include "gc/shared/gcTrace.hpp"
  46 #include "gc/shared/gcTraceTime.inline.hpp"
  47 #include "gc/shared/isGCActiveMark.hpp"
  48 #include "gc/shared/referencePolicy.hpp"
  49 #include "gc/shared/referenceProcessor.hpp"
  50 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  51 #include "gc/shared/spaceDecorator.hpp"
  52 #include "gc/shared/weakProcessor.hpp"
  53 #include "memory/universe.hpp"
  54 #include "logging/log.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/flags/flagSetting.hpp"
  58 #include "runtime/handles.inline.hpp"
  59 #include "runtime/safepoint.hpp"
  60 #include "runtime/vmThread.hpp"
  61 #include "services/management.hpp"
  62 #include "services/memoryService.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/events.inline.hpp"
  65 #include "utilities/stack.inline.hpp"
  66 #if INCLUDE_JVMCI
  67 #include "jvmci/jvmci.hpp"
  68 #endif
  69 
  70 elapsedTimer        PSMarkSweep::_accumulated_time;
  71 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  72 CollectorCounters*  PSMarkSweep::_counters = NULL;
  73 
  74 SpanSubjectToDiscoveryClosure PSMarkSweep::_span_based_discoverer;
  75 
  76 void PSMarkSweep::initialize() {
  77   _span_based_discoverer.set_span(ParallelScavengeHeap::heap()->reserved_region());
  78   set_ref_processor(new ReferenceProcessor(&_span_based_discoverer));     // a vanilla ref proc
  79   _counters = new CollectorCounters("Serial full collection pauses", 1);
  80   MarkSweep::initialize();
  81 }
  82 
  83 // This method contains all heap specific policy for invoking mark sweep.
  84 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  85 // the heap. It will do nothing further. If we need to bail out for policy
  86 // reasons, scavenge before full gc, or any other specialized behavior, it
  87 // needs to be added here.
  88 //
  89 // Note that this method should only be called from the vm_thread while
  90 // at a safepoint!
  91 //
  92 // Note that the all_soft_refs_clear flag in the soft ref policy
  93 // may be true because this method can be called without intervening
  94 // activity.  For example when the heap space is tight and full measure
  95 // are being taken to free space.
  96 
  97 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  98   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  99   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 100   assert(!ParallelScavengeHeap::heap()->is_gc_active(), "not reentrant");
 101 
 102   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 103   GCCause::Cause gc_cause = heap->gc_cause();
 104   PSAdaptiveSizePolicy* policy = heap->size_policy();
 105   IsGCActiveMark mark;
 106 
 107   if (ScavengeBeforeFullGC) {
 108     PSScavenge::invoke_no_policy();
 109   }
 110 
 111   const bool clear_all_soft_refs =
 112     heap->soft_ref_policy()->should_clear_all_soft_refs();
 113 
 114   uint count = maximum_heap_compaction ? 1 : MarkSweepAlwaysCompactCount;
 115   UIntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
 116   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
 117 }
 118 
 119 // This method contains no policy. You should probably
 120 // be calling invoke() instead.
 121 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 122   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 123   assert(ref_processor() != NULL, "Sanity");
 124 
 125   if (GCLocker::check_active_before_gc()) {
 126     return false;
 127   }
 128 
 129   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 130   GCCause::Cause gc_cause = heap->gc_cause();
 131 
 132   GCIdMark gc_id_mark;
 133   _gc_timer->register_gc_start();
 134   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 135 
 136   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 137 
 138   // The scope of casr should end after code that can change
 139   // SoftRefolicy::_should_clear_all_soft_refs.
 140   ClearedAllSoftRefs casr(clear_all_softrefs, heap->soft_ref_policy());
 141 
 142   PSYoungGen* young_gen = heap->young_gen();
 143   PSOldGen* old_gen = heap->old_gen();
 144 
 145   // Increment the invocation count
 146   heap->increment_total_collections(true /* full */);
 147 
 148   // Save information needed to minimize mangling
 149   heap->record_gen_tops_before_GC();
 150 
 151   // We need to track unique mark sweep invocations as well.
 152   _total_invocations++;
 153 
 154   heap->print_heap_before_gc();
 155   heap->trace_heap_before_gc(_gc_tracer);
 156 
 157   // Fill in TLABs
 158   heap->ensure_parsability(true);  // retire TLABs
 159 
 160   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 161     HandleMark hm;  // Discard invalid handles created during verification
 162     Universe::verify("Before GC");
 163   }
 164 
 165   // Verify object start arrays
 166   if (VerifyObjectStartArray &&
 167       VerifyBeforeGC) {
 168     old_gen->verify_object_start_array();
 169   }
 170 
 171   // Filled in below to track the state of the young gen after the collection.
 172   bool eden_empty;
 173   bool survivors_empty;
 174   bool young_gen_empty;
 175 
 176   {
 177     HandleMark hm;
 178 
 179     GCTraceCPUTime tcpu;
 180     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause, true);
 181 
 182     heap->pre_full_gc_dump(_gc_timer);
 183 
 184     TraceCollectorStats tcs(counters());
 185     TraceMemoryManagerStats tms(heap->old_gc_manager(),gc_cause);
 186 
 187     if (log_is_enabled(Debug, gc, heap, exit)) {
 188       accumulated_time()->start();
 189     }
 190 
 191     // Let the size policy know we're starting
 192     size_policy->major_collection_begin();
 193 
 194     BiasedLocking::preserve_marks();
 195 
 196     const PreGenGCValues pre_gc_values = heap->get_pre_gc_values();
 197 
 198     allocate_stacks();
 199 
 200 #if COMPILER2_OR_JVMCI
 201     DerivedPointerTable::clear();
 202 #endif
 203 
 204     ref_processor()->enable_discovery();
 205     ref_processor()->setup_policy(clear_all_softrefs);
 206 
 207     mark_sweep_phase1(clear_all_softrefs);
 208 
 209     mark_sweep_phase2();
 210 
 211 #if COMPILER2_OR_JVMCI
 212     // Don't add any more derived pointers during phase3
 213     assert(DerivedPointerTable::is_active(), "Sanity");
 214     DerivedPointerTable::set_active(false);
 215 #endif
 216 
 217     mark_sweep_phase3();
 218 
 219     mark_sweep_phase4();
 220 
 221     restore_marks();
 222 
 223     deallocate_stacks();
 224 
 225     if (ZapUnusedHeapArea) {
 226       // Do a complete mangle (top to end) because the usage for
 227       // scratch does not maintain a top pointer.
 228       young_gen->to_space()->mangle_unused_area_complete();
 229     }
 230 
 231     eden_empty = young_gen->eden_space()->is_empty();
 232     if (!eden_empty) {
 233       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 234     }
 235 
 236     // Update heap occupancy information which is used as
 237     // input to soft ref clearing policy at the next gc.
 238     Universe::update_heap_info_at_gc();
 239 
 240     survivors_empty = young_gen->from_space()->is_empty() &&
 241                       young_gen->to_space()->is_empty();
 242     young_gen_empty = eden_empty && survivors_empty;
 243 
 244     PSCardTable* card_table = heap->card_table();
 245     MemRegion old_mr = heap->old_gen()->reserved();
 246     if (young_gen_empty) {
 247       card_table->clear(MemRegion(old_mr.start(), old_mr.end()));
 248     } else {
 249       card_table->invalidate(MemRegion(old_mr.start(), old_mr.end()));
 250     }
 251 
 252     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 253     ClassLoaderDataGraph::purge();
 254     MetaspaceUtils::verify_metrics();
 255 
 256     BiasedLocking::restore_marks();
 257     heap->prune_scavengable_nmethods();
 258 
 259 #if COMPILER2_OR_JVMCI
 260     DerivedPointerTable::update_pointers();
 261 #endif
 262 
 263     assert(!ref_processor()->discovery_enabled(), "Should have been disabled earlier");
 264 
 265     // Update time of last GC
 266     reset_millis_since_last_gc();
 267 
 268     // Let the size policy know we're done
 269     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 270 
 271     if (UseAdaptiveSizePolicy) {
 272 
 273      log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
 274      log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
 275                          old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 276 
 277       // Don't check if the size_policy is ready here.  Let
 278       // the size_policy check that internally.
 279       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 280           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
 281         // Swap the survivor spaces if from_space is empty. The
 282         // resize_young_gen() called below is normally used after
 283         // a successful young GC and swapping of survivor spaces;
 284         // otherwise, it will fail to resize the young gen with
 285         // the current implementation.
 286         if (young_gen->from_space()->is_empty()) {
 287           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 288           young_gen->swap_spaces();
 289         }
 290 
 291         // Calculate optimal free space amounts
 292         assert(young_gen->max_size() >
 293           young_gen->from_space()->capacity_in_bytes() +
 294           young_gen->to_space()->capacity_in_bytes(),
 295           "Sizes of space in young gen are out of bounds");
 296 
 297         size_t young_live = young_gen->used_in_bytes();
 298         size_t eden_live = young_gen->eden_space()->used_in_bytes();
 299         size_t old_live = old_gen->used_in_bytes();
 300         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
 301         size_t max_old_gen_size = old_gen->max_gen_size();
 302         size_t max_eden_size = young_gen->max_size() -
 303           young_gen->from_space()->capacity_in_bytes() -
 304           young_gen->to_space()->capacity_in_bytes();
 305 
 306         // Used for diagnostics
 307         size_policy->clear_generation_free_space_flags();
 308 
 309         size_policy->compute_generations_free_space(young_live,
 310                                                     eden_live,
 311                                                     old_live,
 312                                                     cur_eden,
 313                                                     max_old_gen_size,
 314                                                     max_eden_size,
 315                                                     true /* full gc*/);
 316 
 317         size_policy->check_gc_overhead_limit(eden_live,
 318                                              max_old_gen_size,
 319                                              max_eden_size,
 320                                              true /* full gc*/,
 321                                              gc_cause,
 322                                              heap->soft_ref_policy());
 323 
 324         size_policy->decay_supplemental_growth(true /* full gc*/);
 325 
 326         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 327 
 328         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 329                                size_policy->calculated_survivor_size_in_bytes());
 330       }
 331       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
 332     }
 333 
 334     if (UsePerfData) {
 335       heap->gc_policy_counters()->update_counters();
 336       heap->gc_policy_counters()->update_old_capacity(
 337         old_gen->capacity_in_bytes());
 338       heap->gc_policy_counters()->update_young_capacity(
 339         young_gen->capacity_in_bytes());
 340     }
 341 
 342     heap->resize_all_tlabs();
 343 
 344     // We collected the heap, recalculate the metaspace capacity
 345     MetaspaceGC::compute_new_size();
 346 
 347     if (log_is_enabled(Debug, gc, heap, exit)) {
 348       accumulated_time()->stop();
 349     }
 350 
 351     heap->print_heap_change(pre_gc_values);
 352 
 353     // Track memory usage and detect low memory
 354     MemoryService::track_memory_usage();
 355     heap->update_counters();
 356 
 357     heap->post_full_gc_dump(_gc_timer);
 358   }
 359 
 360   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 361     HandleMark hm;  // Discard invalid handles created during verification
 362     Universe::verify("After GC");
 363   }
 364 
 365   // Re-verify object start arrays
 366   if (VerifyObjectStartArray &&
 367       VerifyAfterGC) {
 368     old_gen->verify_object_start_array();
 369   }
 370 
 371   if (ZapUnusedHeapArea) {
 372     old_gen->object_space()->check_mangled_unused_area_complete();
 373   }
 374 
 375   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 376 
 377   heap->print_heap_after_gc();
 378   heap->trace_heap_after_gc(_gc_tracer);
 379 
 380 #ifdef TRACESPINNING
 381   ParallelTaskTerminator::print_termination_counts();
 382 #endif
 383 
 384   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
 385 
 386   _gc_timer->register_gc_end();
 387 
 388   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 389 
 390   return true;
 391 }
 392 
 393 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 394                                              PSYoungGen* young_gen,
 395                                              PSOldGen* old_gen) {
 396   MutableSpace* const eden_space = young_gen->eden_space();
 397   assert(!eden_space->is_empty(), "eden must be non-empty");
 398   assert(young_gen->virtual_space()->alignment() ==
 399          old_gen->virtual_space()->alignment(), "alignments do not match");
 400 
 401   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 402     return false;
 403   }
 404 
 405   // Both generations must be completely committed.
 406   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 407     return false;
 408   }
 409   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 410     return false;
 411   }
 412 
 413   // Figure out how much to take from eden.  Include the average amount promoted
 414   // in the total; otherwise the next young gen GC will simply bail out to a
 415   // full GC.
 416   const size_t alignment = old_gen->virtual_space()->alignment();
 417   const size_t eden_used = eden_space->used_in_bytes();
 418   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 419   const size_t absorb_size = align_up(eden_used + promoted, alignment);
 420   const size_t eden_capacity = eden_space->capacity_in_bytes();
 421 
 422   if (absorb_size >= eden_capacity) {
 423     return false; // Must leave some space in eden.
 424   }
 425 
 426   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 427   if (new_young_size < young_gen->min_gen_size()) {
 428     return false; // Respect young gen minimum size.
 429   }
 430 
 431   log_trace(gc, ergo, heap)(" absorbing " SIZE_FORMAT "K:  "
 432                             "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 433                             "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 434                             "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 435                             absorb_size / K,
 436                             eden_capacity / K, (eden_capacity - absorb_size) / K,
 437                             young_gen->from_space()->used_in_bytes() / K,
 438                             young_gen->to_space()->used_in_bytes() / K,
 439                             young_gen->capacity_in_bytes() / K, new_young_size / K);
 440 
 441   // Fill the unused part of the old gen.
 442   MutableSpace* const old_space = old_gen->object_space();
 443   HeapWord* const unused_start = old_space->top();
 444   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 445 
 446   if (unused_words > 0) {
 447     if (unused_words < CollectedHeap::min_fill_size()) {
 448       return false;  // If the old gen cannot be filled, must give up.
 449     }
 450     CollectedHeap::fill_with_objects(unused_start, unused_words);
 451   }
 452 
 453   // Take the live data from eden and set both top and end in the old gen to
 454   // eden top.  (Need to set end because reset_after_change() mangles the region
 455   // from end to virtual_space->high() in debug builds).
 456   HeapWord* const new_top = eden_space->top();
 457   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 458                                         absorb_size);
 459   young_gen->reset_after_change();
 460   old_space->set_top(new_top);
 461   old_space->set_end(new_top);
 462   old_gen->reset_after_change();
 463 
 464   // Update the object start array for the filler object and the data from eden.
 465   ObjectStartArray* const start_array = old_gen->start_array();
 466   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 467     start_array->allocate_block(p);
 468   }
 469 
 470   // Could update the promoted average here, but it is not typically updated at
 471   // full GCs and the value to use is unclear.  Something like
 472   //
 473   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 474 
 475   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 476   return true;
 477 }
 478 
 479 void PSMarkSweep::allocate_stacks() {
 480   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 481   PSYoungGen* young_gen = heap->young_gen();
 482 
 483   MutableSpace* to_space = young_gen->to_space();
 484   _preserved_marks = (PreservedMark*)to_space->top();
 485   _preserved_count = 0;
 486 
 487   // We want to calculate the size in bytes first.
 488   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 489   // Now divide by the size of a PreservedMark
 490   _preserved_count_max /= sizeof(PreservedMark);
 491 }
 492 
 493 
 494 void PSMarkSweep::deallocate_stacks() {
 495   _preserved_mark_stack.clear(true);
 496   _preserved_oop_stack.clear(true);
 497   _marking_stack.clear();
 498   _objarray_stack.clear(true);
 499 }
 500 
 501 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 502   // Recursively traverse all live objects and mark them
 503   GCTraceTime(Info, gc, phases) tm("Phase 1: Mark live objects", _gc_timer);
 504 
 505   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 506 
 507   // Need to clear claim bits before the tracing starts.
 508   ClassLoaderDataGraph::clear_claimed_marks();
 509 
 510   // General strong roots.
 511   {
 512     ParallelScavengeHeap::ParStrongRootsScope psrs;
 513     Universe::oops_do(mark_and_push_closure());
 514     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 515     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
 516     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
 517     ObjectSynchronizer::oops_do(mark_and_push_closure());
 518     Management::oops_do(mark_and_push_closure());
 519     JvmtiExport::oops_do(mark_and_push_closure());
 520     SystemDictionary::oops_do(mark_and_push_closure());
 521     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());
 522     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 523     //ScavengableNMethods::scavengable_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 524     AOT_ONLY(AOTLoader::oops_do(mark_and_push_closure());)
 525   }
 526 
 527   // Flush marking stack.
 528   follow_stack();
 529 
 530   // Process reference objects found during marking
 531   {
 532     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer);
 533 
 534     ref_processor()->setup_policy(clear_all_softrefs);
 535     ReferenceProcessorPhaseTimes pt(_gc_timer, ref_processor()->max_num_queues());
 536     const ReferenceProcessorStats& stats =
 537       ref_processor()->process_discovered_references(
 538         is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL, &pt);
 539     gc_tracer()->report_gc_reference_stats(stats);
 540     pt.print_all_references();
 541   }
 542 
 543   // This is the point where the entire marking should have completed.
 544   assert(_marking_stack.is_empty(), "Marking should have completed");
 545 
 546   {
 547     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer);
 548     WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl);
 549   }
 550 
 551   {
 552     GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer);
 553 
 554     // Unload classes and purge the SystemDictionary.
 555     bool purged_class = SystemDictionary::do_unloading(_gc_timer);
 556 
 557     // Unload nmethods.
 558     CodeCache::do_unloading(is_alive_closure(), purged_class);
 559 
 560     // Prune dead klasses from subklass/sibling/implementor lists.
 561     Klass::clean_weak_klass_links(purged_class);
 562 
 563     // Clean JVMCI metadata handles.
 564     JVMCI_ONLY(JVMCI::do_unloading(purged_class));
 565   }
 566 
 567   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 568 }
 569 
 570 
 571 void PSMarkSweep::mark_sweep_phase2() {
 572   GCTraceTime(Info, gc, phases) tm("Phase 2: Compute new object addresses", _gc_timer);
 573 
 574   // Now all live objects are marked, compute the new object addresses.
 575 
 576   // It is not required that we traverse spaces in the same order in
 577   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 578   // tracking expects us to do so. See comment under phase4.
 579 
 580   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 581   PSOldGen* old_gen = heap->old_gen();
 582 
 583   // Begin compacting into the old gen
 584   PSMarkSweepDecorator::set_destination_decorator_tenured();
 585 
 586   // This will also compact the young gen spaces.
 587   old_gen->precompact();
 588 }
 589 
 590 void PSMarkSweep::mark_sweep_phase3() {
 591   // Adjust the pointers to reflect the new locations
 592   GCTraceTime(Info, gc, phases) tm("Phase 3: Adjust pointers", _gc_timer);
 593 
 594   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 595   PSYoungGen* young_gen = heap->young_gen();
 596   PSOldGen* old_gen = heap->old_gen();
 597 
 598   // Need to clear claim bits before the tracing starts.
 599   ClassLoaderDataGraph::clear_claimed_marks();
 600 
 601   // General strong roots.
 602   Universe::oops_do(adjust_pointer_closure());
 603   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 604   Threads::oops_do(adjust_pointer_closure(), NULL);
 605   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 606   Management::oops_do(adjust_pointer_closure());
 607   JvmtiExport::oops_do(adjust_pointer_closure());
 608   SystemDictionary::oops_do(adjust_pointer_closure());
 609   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
 610 
 611   // Now adjust pointers in remaining weak roots.  (All of which should
 612   // have been cleared if they pointed to non-surviving objects.)
 613   // Global (weak) JNI handles
 614   WeakProcessor::oops_do(adjust_pointer_closure());
 615 
 616   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
 617   CodeCache::blobs_do(&adjust_from_blobs);
 618   AOT_ONLY(AOTLoader::oops_do(adjust_pointer_closure());)
 619 
 620   ref_processor()->weak_oops_do(adjust_pointer_closure());
 621   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 622 
 623   adjust_marks();
 624 
 625   young_gen->adjust_pointers();
 626   old_gen->adjust_pointers();
 627 }
 628 
 629 void PSMarkSweep::mark_sweep_phase4() {
 630   EventMark m("4 compact heap");
 631   GCTraceTime(Info, gc, phases) tm("Phase 4: Move objects", _gc_timer);
 632 
 633   // All pointers are now adjusted, move objects accordingly
 634 
 635   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 636   PSYoungGen* young_gen = heap->young_gen();
 637   PSOldGen* old_gen = heap->old_gen();
 638 
 639   old_gen->compact();
 640   young_gen->compact();
 641 }
 642 
 643 jlong PSMarkSweep::millis_since_last_gc() {
 644   // We need a monotonically non-decreasing time in ms but
 645   // os::javaTimeMillis() does not guarantee monotonicity.
 646   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 647   jlong ret_val = now - _time_of_last_gc;
 648   // XXX See note in genCollectedHeap::millis_since_last_gc().
 649   if (ret_val < 0) {
 650     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
 651     return 0;
 652   }
 653   return ret_val;
 654 }
 655 
 656 void PSMarkSweep::reset_millis_since_last_gc() {
 657   // We need a monotonically non-decreasing time in ms but
 658   // os::javaTimeMillis() does not guarantee monotonicity.
 659   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 660 }