1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/serial/serialHeap.inline.hpp"
  28 #include "gc/serial/tenuredGeneration.hpp"
  29 #include "gc/shared/adaptiveSizePolicy.hpp"
  30 #include "gc/shared/ageTable.inline.hpp"
  31 #include "gc/shared/cardTableRS.hpp"
  32 #include "gc/shared/collectorCounters.hpp"
  33 #include "gc/shared/gcArguments.hpp"
  34 #include "gc/shared/gcHeapSummary.hpp"
  35 #include "gc/shared/gcLocker.hpp"
  36 #include "gc/shared/gcPolicyCounters.hpp"
  37 #include "gc/shared/gcTimer.hpp"
  38 #include "gc/shared/gcTrace.hpp"
  39 #include "gc/shared/gcTraceTime.inline.hpp"
  40 #include "gc/shared/genOopClosures.inline.hpp"
  41 #include "gc/shared/generationSpec.hpp"
  42 #include "gc/shared/preservedMarks.inline.hpp"
  43 #include "gc/shared/referencePolicy.hpp"
  44 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  45 #include "gc/shared/space.inline.hpp"
  46 #include "gc/shared/spaceDecorator.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/weakProcessor.hpp"
  49 #include "logging/log.hpp"
  50 #include "memory/iterator.inline.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "oops/instanceRefKlass.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/mutexLocker.inline.hpp"
  57 #include "runtime/prefetch.inline.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "utilities/align.hpp"
  60 #include "utilities/copy.hpp"
  61 #include "utilities/globalDefinitions.hpp"
  62 #include "utilities/stack.inline.hpp"
  63 
  64 //
  65 // DefNewGeneration functions.
  66 
  67 // Methods of protected closure types.
  68 
  69 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  70   assert(_young_gen->kind() == Generation::ParNew ||
  71          _young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  72 }
  73 
  74 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  75   return (HeapWord*)p >= _young_gen->reserved().end() || p->is_forwarded();
  76 }
  77 
  78 DefNewGeneration::KeepAliveClosure::
  79 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  80   _rs = GenCollectedHeap::heap()->rem_set();
  81 }
  82 
  83 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  84 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  85 
  86 
  87 DefNewGeneration::FastKeepAliveClosure::
  88 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  89   DefNewGeneration::KeepAliveClosure(cl) {
  90   _boundary = g->reserved().end();
  91 }
  92 
  93 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  94 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  95 
  96 DefNewGeneration::FastEvacuateFollowersClosure::
  97 FastEvacuateFollowersClosure(SerialHeap* heap,
  98                              FastScanClosure* cur,
  99                              FastScanClosure* older) :
 100   _heap(heap), _scan_cur_or_nonheap(cur), _scan_older(older)
 101 {
 102 }
 103 
 104 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 105   do {
 106     _heap->oop_since_save_marks_iterate(_scan_cur_or_nonheap, _scan_older);
 107   } while (!_heap->no_allocs_since_save_marks());
 108   guarantee(_heap->young_gen()->promo_failure_scan_is_complete(), "Failed to finish scan");
 109 }
 110 
 111 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 112     OopsInClassLoaderDataOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 113 {
 114   _boundary = _g->reserved().end();
 115 }
 116 
 117 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 118     OopsInClassLoaderDataOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 119 {
 120   _boundary = _g->reserved().end();
 121 }
 122 
 123 void CLDScanClosure::do_cld(ClassLoaderData* cld) {
 124   NOT_PRODUCT(ResourceMark rm);
 125   log_develop_trace(gc, scavenge)("CLDScanClosure::do_cld " PTR_FORMAT ", %s, dirty: %s",
 126                                   p2i(cld),
 127                                   cld->loader_name_and_id(),
 128                                   cld->has_modified_oops() ? "true" : "false");
 129 
 130   // If the cld has not been dirtied we know that there's
 131   // no references into  the young gen and we can skip it.
 132   if (cld->has_modified_oops()) {
 133     if (_accumulate_modified_oops) {
 134       cld->accumulate_modified_oops();
 135     }
 136 
 137     // Tell the closure which CLD is being scanned so that it can be dirtied
 138     // if oops are left pointing into the young gen.
 139     _scavenge_closure->set_scanned_cld(cld);
 140 
 141     // Clean the cld since we're going to scavenge all the metadata.
 142     cld->oops_do(_scavenge_closure, ClassLoaderData::_claim_none, /*clear_modified_oops*/true);
 143 
 144     _scavenge_closure->set_scanned_cld(NULL);
 145   }
 146 }
 147 
 148 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 149   _g(g)
 150 {
 151   _boundary = _g->reserved().end();
 152 }
 153 
 154 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 155                                    size_t initial_size,
 156                                    size_t min_size,
 157                                    size_t max_size,
 158                                    const char* policy)
 159   : Generation(rs, initial_size),
 160     _preserved_marks_set(false /* in_c_heap */),
 161     _promo_failure_drain_in_progress(false),
 162     _should_allocate_from_space(false)
 163 {
 164   MemRegion cmr((HeapWord*)_virtual_space.low(),
 165                 (HeapWord*)_virtual_space.high());
 166   GenCollectedHeap* gch = GenCollectedHeap::heap();
 167 
 168   gch->rem_set()->resize_covered_region(cmr);
 169 
 170   _eden_space = new ContiguousSpace();
 171   _from_space = new ContiguousSpace();
 172   _to_space   = new ContiguousSpace();
 173 
 174   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
 175     vm_exit_during_initialization("Could not allocate a new gen space");
 176   }
 177 
 178   // Compute the maximum eden and survivor space sizes. These sizes
 179   // are computed assuming the entire reserved space is committed.
 180   // These values are exported as performance counters.
 181   uintx size = _virtual_space.reserved_size();
 182   _max_survivor_size = compute_survivor_size(size, SpaceAlignment);
 183   _max_eden_size = size - (2*_max_survivor_size);
 184 
 185   // allocate the performance counters
 186 
 187   // Generation counters -- generation 0, 3 subspaces
 188   _gen_counters = new GenerationCounters("new", 0, 3,
 189       min_size, max_size, &_virtual_space);
 190   _gc_counters = new CollectorCounters(policy, 0);
 191 
 192   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 193                                       _gen_counters);
 194   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 195                                       _gen_counters);
 196   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 197                                     _gen_counters);
 198 
 199   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 200   update_counters();
 201   _old_gen = NULL;
 202   _tenuring_threshold = MaxTenuringThreshold;
 203   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 204 
 205   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 206 }
 207 
 208 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 209                                                 bool clear_space,
 210                                                 bool mangle_space) {
 211   // If the spaces are being cleared (only done at heap initialization
 212   // currently), the survivor spaces need not be empty.
 213   // Otherwise, no care is taken for used areas in the survivor spaces
 214   // so check.
 215   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 216     "Initialization of the survivor spaces assumes these are empty");
 217 
 218   // Compute sizes
 219   uintx size = _virtual_space.committed_size();
 220   uintx survivor_size = compute_survivor_size(size, SpaceAlignment);
 221   uintx eden_size = size - (2*survivor_size);
 222   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 223 
 224   if (eden_size < minimum_eden_size) {
 225     // May happen due to 64Kb rounding, if so adjust eden size back up
 226     minimum_eden_size = align_up(minimum_eden_size, SpaceAlignment);
 227     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 228     uintx unaligned_survivor_size =
 229       align_down(maximum_survivor_size, SpaceAlignment);
 230     survivor_size = MAX2(unaligned_survivor_size, SpaceAlignment);
 231     eden_size = size - (2*survivor_size);
 232     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 233     assert(eden_size >= minimum_eden_size, "just checking");
 234   }
 235 
 236   char *eden_start = _virtual_space.low();
 237   char *from_start = eden_start + eden_size;
 238   char *to_start   = from_start + survivor_size;
 239   char *to_end     = to_start   + survivor_size;
 240 
 241   assert(to_end == _virtual_space.high(), "just checking");
 242   assert(Space::is_aligned(eden_start), "checking alignment");
 243   assert(Space::is_aligned(from_start), "checking alignment");
 244   assert(Space::is_aligned(to_start),   "checking alignment");
 245 
 246   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 247   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 248   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 249 
 250   // A minimum eden size implies that there is a part of eden that
 251   // is being used and that affects the initialization of any
 252   // newly formed eden.
 253   bool live_in_eden = minimum_eden_size > 0;
 254 
 255   // If not clearing the spaces, do some checking to verify that
 256   // the space are already mangled.
 257   if (!clear_space) {
 258     // Must check mangling before the spaces are reshaped.  Otherwise,
 259     // the bottom or end of one space may have moved into another
 260     // a failure of the check may not correctly indicate which space
 261     // is not properly mangled.
 262     if (ZapUnusedHeapArea) {
 263       HeapWord* limit = (HeapWord*) _virtual_space.high();
 264       eden()->check_mangled_unused_area(limit);
 265       from()->check_mangled_unused_area(limit);
 266         to()->check_mangled_unused_area(limit);
 267     }
 268   }
 269 
 270   // Reset the spaces for their new regions.
 271   eden()->initialize(edenMR,
 272                      clear_space && !live_in_eden,
 273                      SpaceDecorator::Mangle);
 274   // If clear_space and live_in_eden, we will not have cleared any
 275   // portion of eden above its top. This can cause newly
 276   // expanded space not to be mangled if using ZapUnusedHeapArea.
 277   // We explicitly do such mangling here.
 278   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 279     eden()->mangle_unused_area();
 280   }
 281   from()->initialize(fromMR, clear_space, mangle_space);
 282   to()->initialize(toMR, clear_space, mangle_space);
 283 
 284   // Set next compaction spaces.
 285   eden()->set_next_compaction_space(from());
 286   // The to-space is normally empty before a compaction so need
 287   // not be considered.  The exception is during promotion
 288   // failure handling when to-space can contain live objects.
 289   from()->set_next_compaction_space(NULL);
 290 }
 291 
 292 void DefNewGeneration::swap_spaces() {
 293   ContiguousSpace* s = from();
 294   _from_space        = to();
 295   _to_space          = s;
 296   eden()->set_next_compaction_space(from());
 297   // The to-space is normally empty before a compaction so need
 298   // not be considered.  The exception is during promotion
 299   // failure handling when to-space can contain live objects.
 300   from()->set_next_compaction_space(NULL);
 301 
 302   if (UsePerfData) {
 303     CSpaceCounters* c = _from_counters;
 304     _from_counters = _to_counters;
 305     _to_counters = c;
 306   }
 307 }
 308 
 309 bool DefNewGeneration::expand(size_t bytes) {
 310   MutexLocker x(ExpandHeap_lock);
 311   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 312   bool success = _virtual_space.expand_by(bytes);
 313   if (success && ZapUnusedHeapArea) {
 314     // Mangle newly committed space immediately because it
 315     // can be done here more simply that after the new
 316     // spaces have been computed.
 317     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 318     MemRegion mangle_region(prev_high, new_high);
 319     SpaceMangler::mangle_region(mangle_region);
 320   }
 321 
 322   // Do not attempt an expand-to-the reserve size.  The
 323   // request should properly observe the maximum size of
 324   // the generation so an expand-to-reserve should be
 325   // unnecessary.  Also a second call to expand-to-reserve
 326   // value potentially can cause an undue expansion.
 327   // For example if the first expand fail for unknown reasons,
 328   // but the second succeeds and expands the heap to its maximum
 329   // value.
 330   if (GCLocker::is_active()) {
 331     log_debug(gc)("Garbage collection disabled, expanded heap instead");
 332   }
 333 
 334   return success;
 335 }
 336 
 337 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate,
 338                                                     size_t new_size_before,
 339                                                     size_t alignment) const {
 340   size_t desired_new_size = new_size_before;
 341 
 342   if (NewSizeThreadIncrease > 0) {
 343     int threads_count;
 344     size_t thread_increase_size = 0;
 345 
 346     // 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'.
 347     threads_count = Threads::number_of_non_daemon_threads();
 348     if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) {
 349       thread_increase_size = threads_count * NewSizeThreadIncrease;
 350 
 351       // 2. Check an overflow at 'new_size_candidate + thread_increase_size'.
 352       if (new_size_candidate <= max_uintx - thread_increase_size) {
 353         new_size_candidate += thread_increase_size;
 354 
 355         // 3. Check an overflow at 'align_up'.
 356         size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
 357         if (new_size_candidate <= aligned_max) {
 358           desired_new_size = align_up(new_size_candidate, alignment);
 359         }
 360       }
 361     }
 362   }
 363 
 364   return desired_new_size;
 365 }
 366 
 367 void DefNewGeneration::compute_new_size() {
 368   // This is called after a GC that includes the old generation, so from-space
 369   // will normally be empty.
 370   // Note that we check both spaces, since if scavenge failed they revert roles.
 371   // If not we bail out (otherwise we would have to relocate the objects).
 372   if (!from()->is_empty() || !to()->is_empty()) {
 373     return;
 374   }
 375 
 376   GenCollectedHeap* gch = GenCollectedHeap::heap();
 377 
 378   size_t old_size = gch->old_gen()->capacity();
 379   size_t new_size_before = _virtual_space.committed_size();
 380   size_t min_new_size = initial_size();
 381   size_t max_new_size = reserved().byte_size();
 382   assert(min_new_size <= new_size_before &&
 383          new_size_before <= max_new_size,
 384          "just checking");
 385   // All space sizes must be multiples of Generation::GenGrain.
 386   size_t alignment = Generation::GenGrain;
 387 
 388   int threads_count = 0;
 389   size_t thread_increase_size = 0;
 390 
 391   size_t new_size_candidate = old_size / NewRatio;
 392   // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease
 393   // and reverts to previous value if any overflow happens
 394   size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, alignment);
 395 
 396   // Adjust new generation size
 397   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 398   assert(desired_new_size <= max_new_size, "just checking");
 399 
 400   bool changed = false;
 401   if (desired_new_size > new_size_before) {
 402     size_t change = desired_new_size - new_size_before;
 403     assert(change % alignment == 0, "just checking");
 404     if (expand(change)) {
 405        changed = true;
 406     }
 407     // If the heap failed to expand to the desired size,
 408     // "changed" will be false.  If the expansion failed
 409     // (and at this point it was expected to succeed),
 410     // ignore the failure (leaving "changed" as false).
 411   }
 412   if (desired_new_size < new_size_before && eden()->is_empty()) {
 413     // bail out of shrinking if objects in eden
 414     size_t change = new_size_before - desired_new_size;
 415     assert(change % alignment == 0, "just checking");
 416     _virtual_space.shrink_by(change);
 417     changed = true;
 418   }
 419   if (changed) {
 420     // The spaces have already been mangled at this point but
 421     // may not have been cleared (set top = bottom) and should be.
 422     // Mangling was done when the heap was being expanded.
 423     compute_space_boundaries(eden()->used(),
 424                              SpaceDecorator::Clear,
 425                              SpaceDecorator::DontMangle);
 426     MemRegion cmr((HeapWord*)_virtual_space.low(),
 427                   (HeapWord*)_virtual_space.high());
 428     gch->rem_set()->resize_covered_region(cmr);
 429 
 430     log_debug(gc, ergo, heap)(
 431         "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 432         new_size_before/K, _virtual_space.committed_size()/K,
 433         eden()->capacity()/K, from()->capacity()/K);
 434     log_trace(gc, ergo, heap)(
 435         "  [allowed " SIZE_FORMAT "K extra for %d threads]",
 436           thread_increase_size/K, threads_count);
 437       }
 438 }
 439 
 440 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 441   assert(false, "NYI -- are you sure you want to call this?");
 442 }
 443 
 444 
 445 size_t DefNewGeneration::capacity() const {
 446   return eden()->capacity()
 447        + from()->capacity();  // to() is only used during scavenge
 448 }
 449 
 450 
 451 size_t DefNewGeneration::used() const {
 452   return eden()->used()
 453        + from()->used();      // to() is only used during scavenge
 454 }
 455 
 456 
 457 size_t DefNewGeneration::free() const {
 458   return eden()->free()
 459        + from()->free();      // to() is only used during scavenge
 460 }
 461 
 462 size_t DefNewGeneration::max_capacity() const {
 463   const size_t reserved_bytes = reserved().byte_size();
 464   return reserved_bytes - compute_survivor_size(reserved_bytes, SpaceAlignment);
 465 }
 466 
 467 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 468   return eden()->free();
 469 }
 470 
 471 size_t DefNewGeneration::capacity_before_gc() const {
 472   return eden()->capacity();
 473 }
 474 
 475 size_t DefNewGeneration::contiguous_available() const {
 476   return eden()->free();
 477 }
 478 
 479 
 480 HeapWord* volatile* DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 481 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 482 
 483 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 484   eden()->object_iterate(blk);
 485   from()->object_iterate(blk);
 486 }
 487 
 488 
 489 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 490                                      bool usedOnly) {
 491   blk->do_space(eden());
 492   blk->do_space(from());
 493   blk->do_space(to());
 494 }
 495 
 496 // The last collection bailed out, we are running out of heap space,
 497 // so we try to allocate the from-space, too.
 498 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 499   bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc();
 500 
 501   // If the Heap_lock is not locked by this thread, this will be called
 502   // again later with the Heap_lock held.
 503   bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
 504 
 505   HeapWord* result = NULL;
 506   if (do_alloc) {
 507     result = from()->allocate(size);
 508   }
 509 
 510   log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):  will_fail: %s  heap_lock: %s  free: " SIZE_FORMAT "%s%s returns %s",
 511                         size,
 512                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 513                           "true" : "false",
 514                         Heap_lock->is_locked() ? "locked" : "unlocked",
 515                         from()->free(),
 516                         should_try_alloc ? "" : "  should_allocate_from_space: NOT",
 517                         do_alloc ? "  Heap_lock is not owned by self" : "",
 518                         result == NULL ? "NULL" : "object");
 519 
 520   return result;
 521 }
 522 
 523 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 524                                                 bool   is_tlab,
 525                                                 bool   parallel) {
 526   // We don't attempt to expand the young generation (but perhaps we should.)
 527   return allocate(size, is_tlab);
 528 }
 529 
 530 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 531   // Set the desired survivor size to half the real survivor space
 532   size_t const survivor_capacity = to()->capacity() / HeapWordSize;
 533   size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 534 
 535   _tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size);
 536 
 537   if (UsePerfData) {
 538     GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->counters();
 539     gc_counters->tenuring_threshold()->set_value(_tenuring_threshold);
 540     gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize);
 541   }
 542 
 543   age_table()->print_age_table(_tenuring_threshold);
 544 }
 545 
 546 void DefNewGeneration::collect(bool   full,
 547                                bool   clear_all_soft_refs,
 548                                size_t size,
 549                                bool   is_tlab) {
 550   assert(full || size > 0, "otherwise we don't want to collect");
 551 
 552   SerialHeap* heap = SerialHeap::heap();
 553 
 554   _gc_timer->register_gc_start();
 555   DefNewTracer gc_tracer;
 556   gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer->gc_start());
 557 
 558   _old_gen = heap->old_gen();
 559 
 560   // If the next generation is too full to accommodate promotion
 561   // from this generation, pass on collection; let the next generation
 562   // do it.
 563   if (!collection_attempt_is_safe()) {
 564     log_trace(gc)(":: Collection attempt not safe ::");
 565     heap->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 566     return;
 567   }
 568   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 569 
 570   init_assuming_no_promotion_failure();
 571 
 572   GCTraceTime(Trace, gc, phases) tm("DefNew", NULL, heap->gc_cause());
 573 
 574   heap->trace_heap_before_gc(&gc_tracer);
 575 
 576   // These can be shared for all code paths
 577   IsAliveClosure is_alive(this);
 578   ScanWeakRefClosure scan_weak_ref(this);
 579 
 580   age_table()->clear();
 581   to()->clear(SpaceDecorator::Mangle);
 582   // The preserved marks should be empty at the start of the GC.
 583   _preserved_marks_set.init(1);
 584 
 585   heap->rem_set()->prepare_for_younger_refs_iterate(false);
 586 
 587   assert(heap->no_allocs_since_save_marks(),
 588          "save marks have not been newly set.");
 589 
 590   FastScanClosure fsc_with_no_gc_barrier(this, false);
 591   FastScanClosure fsc_with_gc_barrier(this, true);
 592 
 593   CLDScanClosure cld_scan_closure(&fsc_with_no_gc_barrier,
 594                                   heap->rem_set()->cld_rem_set()->accumulate_modified_oops());
 595 
 596   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 597   FastEvacuateFollowersClosure evacuate_followers(heap,
 598                                                   &fsc_with_no_gc_barrier,
 599                                                   &fsc_with_gc_barrier);
 600 
 601   assert(heap->no_allocs_since_save_marks(),
 602          "save marks have not been newly set.");
 603 
 604   {
 605     // DefNew needs to run with n_threads == 0, to make sure the serial
 606     // version of the card table scanning code is used.
 607     // See: CardTableRS::non_clean_card_iterate_possibly_parallel.
 608     StrongRootsScope srs(0);
 609 
 610     heap->young_process_roots(&srs,
 611                               &fsc_with_no_gc_barrier,
 612                               &fsc_with_gc_barrier,
 613                               &cld_scan_closure);
 614   }
 615 
 616   // "evacuate followers".
 617   evacuate_followers.do_void();
 618 
 619   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 620   ReferenceProcessor* rp = ref_processor();
 621   rp->setup_policy(clear_all_soft_refs);
 622   ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues());
 623   const ReferenceProcessorStats& stats =
 624   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 625                                     NULL, &pt);
 626   gc_tracer.report_gc_reference_stats(stats);
 627   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 628   pt.print_all_references();
 629 
 630   assert(heap->no_allocs_since_save_marks(), "save marks have not been newly set.");
 631 
 632   WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
 633 
 634   // Verify that the usage of keep_alive didn't copy any objects.
 635   assert(heap->no_allocs_since_save_marks(), "save marks have not been newly set.");
 636 
 637   if (!_promotion_failed) {
 638     // Swap the survivor spaces.
 639     eden()->clear(SpaceDecorator::Mangle);
 640     from()->clear(SpaceDecorator::Mangle);
 641     if (ZapUnusedHeapArea) {
 642       // This is now done here because of the piece-meal mangling which
 643       // can check for valid mangling at intermediate points in the
 644       // collection(s).  When a young collection fails to collect
 645       // sufficient space resizing of the young generation can occur
 646       // an redistribute the spaces in the young generation.  Mangle
 647       // here so that unzapped regions don't get distributed to
 648       // other spaces.
 649       to()->mangle_unused_area();
 650     }
 651     swap_spaces();
 652 
 653     assert(to()->is_empty(), "to space should be empty now");
 654 
 655     adjust_desired_tenuring_threshold();
 656 
 657     // A successful scavenge should restart the GC time limit count which is
 658     // for full GC's.
 659     AdaptiveSizePolicy* size_policy = heap->size_policy();
 660     size_policy->reset_gc_overhead_limit_count();
 661     assert(!heap->incremental_collection_failed(), "Should be clear");
 662   } else {
 663     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 664     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 665 
 666     remove_forwarding_pointers();
 667     log_info(gc, promotion)("Promotion failed");
 668     // Add to-space to the list of space to compact
 669     // when a promotion failure has occurred.  In that
 670     // case there can be live objects in to-space
 671     // as a result of a partial evacuation of eden
 672     // and from-space.
 673     swap_spaces();   // For uniformity wrt ParNewGeneration.
 674     from()->set_next_compaction_space(to());
 675     heap->set_incremental_collection_failed();
 676 
 677     // Inform the next generation that a promotion failure occurred.
 678     _old_gen->promotion_failure_occurred();
 679     gc_tracer.report_promotion_failed(_promotion_failed_info);
 680 
 681     // Reset the PromotionFailureALot counters.
 682     NOT_PRODUCT(heap->reset_promotion_should_fail();)
 683   }
 684   // We should have processed and cleared all the preserved marks.
 685   _preserved_marks_set.reclaim();
 686   // set new iteration safe limit for the survivor spaces
 687   from()->set_concurrent_iteration_safe_limit(from()->top());
 688   to()->set_concurrent_iteration_safe_limit(to()->top());
 689 
 690   // We need to use a monotonically non-decreasing time in ms
 691   // or we will see time-warp warnings and os::javaTimeMillis()
 692   // does not guarantee monotonicity.
 693   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 694   update_time_of_last_gc(now);
 695 
 696   heap->trace_heap_after_gc(&gc_tracer);
 697 
 698   _gc_timer->register_gc_end();
 699 
 700   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 701 }
 702 
 703 void DefNewGeneration::init_assuming_no_promotion_failure() {
 704   _promotion_failed = false;
 705   _promotion_failed_info.reset();
 706   from()->set_next_compaction_space(NULL);
 707 }
 708 
 709 void DefNewGeneration::remove_forwarding_pointers() {
 710   RemoveForwardedPointerClosure rspc;
 711   eden()->object_iterate(&rspc);
 712   from()->object_iterate(&rspc);
 713   restore_preserved_marks();
 714 }
 715 
 716 void DefNewGeneration::restore_preserved_marks() {
 717   SharedRestorePreservedMarksTaskExecutor task_executor(NULL);
 718   _preserved_marks_set.restore(&task_executor);
 719 }
 720 
 721 void DefNewGeneration::handle_promotion_failure(oop old) {
 722   log_debug(gc, promotion)("Promotion failure size = %d) ", old->size());
 723 
 724   _promotion_failed = true;
 725   _promotion_failed_info.register_copy_failure(old->size());
 726   _preserved_marks_set.get()->push_if_necessary(old, old->mark_raw());
 727   // forward to self
 728   old->forward_to(old);
 729 
 730   _promo_failure_scan_stack.push(old);
 731 
 732   if (!_promo_failure_drain_in_progress) {
 733     // prevent recursion in copy_to_survivor_space()
 734     _promo_failure_drain_in_progress = true;
 735     drain_promo_failure_scan_stack();
 736     _promo_failure_drain_in_progress = false;
 737   }
 738 }
 739 
 740 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 741   assert(is_in_reserved(old) && !old->is_forwarded(),
 742          "shouldn't be scavenging this oop");
 743   size_t s = old->size();
 744   oop obj = NULL;
 745 
 746   // Try allocating obj in to-space (unless too old)
 747   if (old->age() < tenuring_threshold()) {
 748     obj = (oop) to()->allocate_aligned(s);
 749   }
 750 
 751   // Otherwise try allocating obj tenured
 752   if (obj == NULL) {
 753     obj = _old_gen->promote(old, s);
 754     if (obj == NULL) {
 755       handle_promotion_failure(old);
 756       return old;
 757     }
 758   } else {
 759     // Prefetch beyond obj
 760     const intx interval = PrefetchCopyIntervalInBytes;
 761     Prefetch::write(obj, interval);
 762 
 763     // Copy obj
 764     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 765 
 766     // Increment age if obj still in new generation
 767     obj->incr_age();
 768     age_table()->add(obj, s);
 769   }
 770 
 771   // Done, insert forward pointer to obj in this header
 772   old->forward_to(obj);
 773 
 774   return obj;
 775 }
 776 
 777 void DefNewGeneration::drain_promo_failure_scan_stack() {
 778   while (!_promo_failure_scan_stack.is_empty()) {
 779      oop obj = _promo_failure_scan_stack.pop();
 780      obj->oop_iterate(_promo_failure_scan_stack_closure);
 781   }
 782 }
 783 
 784 void DefNewGeneration::save_marks() {
 785   eden()->set_saved_mark();
 786   to()->set_saved_mark();
 787   from()->set_saved_mark();
 788 }
 789 
 790 
 791 void DefNewGeneration::reset_saved_marks() {
 792   eden()->reset_saved_mark();
 793   to()->reset_saved_mark();
 794   from()->reset_saved_mark();
 795 }
 796 
 797 
 798 bool DefNewGeneration::no_allocs_since_save_marks() {
 799   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 800   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 801   return to()->saved_mark_at_top();
 802 }
 803 
 804 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 805                                          size_t max_alloc_words) {
 806   if (requestor == this || _promotion_failed) {
 807     return;
 808   }
 809   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 810 
 811   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 812   if (to_space->top() > to_space->bottom()) {
 813     trace("to_space not empty when contribute_scratch called");
 814   }
 815   */
 816 
 817   ContiguousSpace* to_space = to();
 818   assert(to_space->end() >= to_space->top(), "pointers out of order");
 819   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 820   if (free_words >= MinFreeScratchWords) {
 821     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 822     sb->num_words = free_words;
 823     sb->next = list;
 824     list = sb;
 825   }
 826 }
 827 
 828 void DefNewGeneration::reset_scratch() {
 829   // If contributing scratch in to_space, mangle all of
 830   // to_space if ZapUnusedHeapArea.  This is needed because
 831   // top is not maintained while using to-space as scratch.
 832   if (ZapUnusedHeapArea) {
 833     to()->mangle_unused_area_complete();
 834   }
 835 }
 836 
 837 bool DefNewGeneration::collection_attempt_is_safe() {
 838   if (!to()->is_empty()) {
 839     log_trace(gc)(":: to is not empty ::");
 840     return false;
 841   }
 842   if (_old_gen == NULL) {
 843     GenCollectedHeap* gch = GenCollectedHeap::heap();
 844     _old_gen = gch->old_gen();
 845   }
 846   return _old_gen->promotion_attempt_is_safe(used());
 847 }
 848 
 849 void DefNewGeneration::gc_epilogue(bool full) {
 850   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 851 
 852   assert(!GCLocker::is_active(), "We should not be executing here");
 853   // Check if the heap is approaching full after a collection has
 854   // been done.  Generally the young generation is empty at
 855   // a minimum at the end of a collection.  If it is not, then
 856   // the heap is approaching full.
 857   GenCollectedHeap* gch = GenCollectedHeap::heap();
 858   if (full) {
 859     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 860     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 861       log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 862                             GCCause::to_string(gch->gc_cause()));
 863       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 864       set_should_allocate_from_space(); // we seem to be running out of space
 865     } else {
 866       log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 867                             GCCause::to_string(gch->gc_cause()));
 868       gch->clear_incremental_collection_failed(); // We just did a full collection
 869       clear_should_allocate_from_space(); // if set
 870     }
 871   } else {
 872 #ifdef ASSERT
 873     // It is possible that incremental_collection_failed() == true
 874     // here, because an attempted scavenge did not succeed. The policy
 875     // is normally expected to cause a full collection which should
 876     // clear that condition, so we should not be here twice in a row
 877     // with incremental_collection_failed() == true without having done
 878     // a full collection in between.
 879     if (!seen_incremental_collection_failed &&
 880         gch->incremental_collection_failed()) {
 881       log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 882                             GCCause::to_string(gch->gc_cause()));
 883       seen_incremental_collection_failed = true;
 884     } else if (seen_incremental_collection_failed) {
 885       log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 886                             GCCause::to_string(gch->gc_cause()));
 887       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 888              (GCCause::is_user_requested_gc(gch->gc_cause()) && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 889              !gch->incremental_collection_failed(),
 890              "Twice in a row");
 891       seen_incremental_collection_failed = false;
 892     }
 893 #endif // ASSERT
 894   }
 895 
 896   if (ZapUnusedHeapArea) {
 897     eden()->check_mangled_unused_area_complete();
 898     from()->check_mangled_unused_area_complete();
 899     to()->check_mangled_unused_area_complete();
 900   }
 901 
 902   if (!CleanChunkPoolAsync) {
 903     Chunk::clean_chunk_pool();
 904   }
 905 
 906   // update the generation and space performance counters
 907   update_counters();
 908   gch->counters()->update_counters();
 909 }
 910 
 911 void DefNewGeneration::record_spaces_top() {
 912   assert(ZapUnusedHeapArea, "Not mangling unused space");
 913   eden()->set_top_for_allocations();
 914   to()->set_top_for_allocations();
 915   from()->set_top_for_allocations();
 916 }
 917 
 918 void DefNewGeneration::ref_processor_init() {
 919   Generation::ref_processor_init();
 920 }
 921 
 922 
 923 void DefNewGeneration::update_counters() {
 924   if (UsePerfData) {
 925     _eden_counters->update_all();
 926     _from_counters->update_all();
 927     _to_counters->update_all();
 928     _gen_counters->update_all();
 929   }
 930 }
 931 
 932 void DefNewGeneration::verify() {
 933   eden()->verify();
 934   from()->verify();
 935     to()->verify();
 936 }
 937 
 938 void DefNewGeneration::print_on(outputStream* st) const {
 939   Generation::print_on(st);
 940   st->print("  eden");
 941   eden()->print_on(st);
 942   st->print("  from");
 943   from()->print_on(st);
 944   st->print("  to  ");
 945   to()->print_on(st);
 946 }
 947 
 948 
 949 const char* DefNewGeneration::name() const {
 950   return "def new generation";
 951 }
 952 
 953 // Moved from inline file as they are not called inline
 954 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
 955   return eden();
 956 }
 957 
 958 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
 959   // This is the slow-path allocation for the DefNewGeneration.
 960   // Most allocations are fast-path in compiled code.
 961   // We try to allocate from the eden.  If that works, we are happy.
 962   // Note that since DefNewGeneration supports lock-free allocation, we
 963   // have to use it here, as well.
 964   HeapWord* result = eden()->par_allocate(word_size);
 965   if (result != NULL) {
 966     if (_old_gen != NULL) {
 967       _old_gen->sample_eden_chunk();
 968     }
 969   } else {
 970     // If the eden is full and the last collection bailed out, we are running
 971     // out of heap space, and we try to allocate the from-space, too.
 972     // allocate_from_space can't be inlined because that would introduce a
 973     // circular dependency at compile time.
 974     result = allocate_from_space(word_size);
 975   }
 976   return result;
 977 }
 978 
 979 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
 980                                          bool is_tlab) {
 981   HeapWord* res = eden()->par_allocate(word_size);
 982   if (_old_gen != NULL) {
 983     _old_gen->sample_eden_chunk();
 984   }
 985   return res;
 986 }
 987 
 988 size_t DefNewGeneration::tlab_capacity() const {
 989   return eden()->capacity();
 990 }
 991 
 992 size_t DefNewGeneration::tlab_used() const {
 993   return eden()->used();
 994 }
 995 
 996 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
 997   return unsafe_max_alloc_nogc();
 998 }