1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc/shared/allocTracer.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "gc/shared/gcLocker.inline.hpp"
  32 #include "gc/shared/gcHeapSummary.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/gcVMOperations.hpp"
  36 #include "gc/shared/gcWhen.hpp"
  37 #include "gc/shared/memAllocator.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/metaspace.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "memory/universe.hpp"
  42 #include "oops/instanceMirrorKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/handles.inline.hpp"
  45 #include "runtime/init.hpp"
  46 #include "runtime/mutexLocker.inline.hpp"
  47 #include "runtime/thread.inline.hpp"
  48 #include "runtime/threadSMR.hpp"
  49 #include "runtime/vmThread.hpp"
  50 #include "services/heapDumper.hpp"
  51 #include "utilities/align.hpp"
  52 #include "utilities/copy.hpp"
  53 #include "utilities/events.inline.hpp"
  54 
  55 class ClassLoaderData;
  56 
  57 size_t CollectedHeap::_filler_array_max_size = 0;
  58 
  59 class GCHeapLog : public EventLogBase<GCMessage> {
  60  private:
  61   void log_heap(CollectedHeap* heap, bool before);
  62 
  63  public:
  64   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History", "gc") {}
  65 
  66   void log_heap_before(CollectedHeap* heap) {
  67     log_heap(heap, true);
  68   }
  69   void log_heap_after(CollectedHeap* heap) {
  70     log_heap(heap, false);
  71   }
  72 };
  73 
  74 template <>
  75 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
  76   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
  77   st->print_raw(m);
  78 }
  79 
  80 void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
  81   if (!should_log()) {
  82     return;
  83   }
  84 
  85   double timestamp = fetch_timestamp();
  86   MutexLocker ml(&_mutex, Mutex::_no_safepoint_check_flag);
  87   int index = compute_log_index();
  88   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
  89   _records[index].timestamp = timestamp;
  90   _records[index].data.is_before = before;
  91   stringStream st(_records[index].data.buffer(), _records[index].data.size());
  92 
  93   st.print_cr("{Heap %s GC invocations=%u (full %u):",
  94                  before ? "before" : "after",
  95                  heap->total_collections(),
  96                  heap->total_full_collections());
  97 
  98   heap->print_on(&st);
  99   st.print_cr("}");
 100 }
 101 
 102 size_t CollectedHeap::unused() const {
 103   MutexLocker ml(Heap_lock);
 104   return capacity() - used();
 105 }
 106 
 107 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
 108   size_t capacity_in_words = capacity() / HeapWordSize;
 109 
 110   return VirtualSpaceSummary(
 111     _reserved.start(), _reserved.start() + capacity_in_words, _reserved.end());
 112 }
 113 
 114 GCHeapSummary CollectedHeap::create_heap_summary() {
 115   VirtualSpaceSummary heap_space = create_heap_space_summary();
 116   return GCHeapSummary(heap_space, used());
 117 }
 118 
 119 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
 120   const MetaspaceSizes meta_space(
 121       MetaspaceUtils::committed_bytes(),
 122       MetaspaceUtils::used_bytes(),
 123       MetaspaceUtils::reserved_bytes());
 124   const MetaspaceSizes data_space(
 125       MetaspaceUtils::committed_bytes(Metaspace::NonClassType),
 126       MetaspaceUtils::used_bytes(Metaspace::NonClassType),
 127       MetaspaceUtils::reserved_bytes(Metaspace::NonClassType));
 128   const MetaspaceSizes class_space(
 129       MetaspaceUtils::committed_bytes(Metaspace::ClassType),
 130       MetaspaceUtils::used_bytes(Metaspace::ClassType),
 131       MetaspaceUtils::reserved_bytes(Metaspace::ClassType));
 132 
 133   const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
 134     MetaspaceUtils::chunk_free_list_summary(Metaspace::NonClassType);
 135   const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
 136     MetaspaceUtils::chunk_free_list_summary(Metaspace::ClassType);
 137 
 138   return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
 139                           ms_chunk_free_list_summary, class_chunk_free_list_summary);
 140 }
 141 
 142 void CollectedHeap::print_heap_before_gc() {
 143   Universe::print_heap_before_gc();
 144   if (_gc_heap_log != NULL) {
 145     _gc_heap_log->log_heap_before(this);
 146   }
 147 }
 148 
 149 void CollectedHeap::print_heap_after_gc() {
 150   Universe::print_heap_after_gc();
 151   if (_gc_heap_log != NULL) {
 152     _gc_heap_log->log_heap_after(this);
 153   }
 154 }
 155 
 156 void CollectedHeap::print() const { print_on(tty); }
 157 
 158 void CollectedHeap::print_on_error(outputStream* st) const {
 159   st->print_cr("Heap:");
 160   print_extended_on(st);
 161   st->cr();
 162 
 163   BarrierSet::barrier_set()->print_on(st);
 164 }
 165 
 166 void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 167   const GCHeapSummary& heap_summary = create_heap_summary();
 168   gc_tracer->report_gc_heap_summary(when, heap_summary);
 169 
 170   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 171   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 172 }
 173 
 174 void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
 175   trace_heap(GCWhen::BeforeGC, gc_tracer);
 176 }
 177 
 178 void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
 179   trace_heap(GCWhen::AfterGC, gc_tracer);
 180 }
 181 
 182 // WhiteBox API support for concurrent collectors.  These are the
 183 // default implementations, for collectors which don't support this
 184 // feature.
 185 bool CollectedHeap::supports_concurrent_phase_control() const {
 186   return false;
 187 }
 188 
 189 bool CollectedHeap::request_concurrent_phase(const char* phase) {
 190   return false;
 191 }
 192 
 193 bool CollectedHeap::is_oop(oop object) const {
 194   if (!is_object_aligned(object)) {
 195     return false;
 196   }
 197 
 198   if (!is_in(object)) {
 199     return false;
 200   }
 201 
 202   if (is_in(object->klass_or_null())) {
 203     return false;
 204   }
 205 
 206   return true;
 207 }
 208 
 209 // Memory state functions.
 210 
 211 
 212 CollectedHeap::CollectedHeap() :
 213   _is_gc_active(false),
 214   _total_collections(0),
 215   _total_full_collections(0),
 216   _gc_cause(GCCause::_no_gc),
 217   _gc_lastcause(GCCause::_no_gc)
 218 {
 219   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
 220   const size_t elements_per_word = HeapWordSize / sizeof(jint);
 221   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
 222                                              max_len / elements_per_word);
 223 
 224   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
 225   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
 226 
 227   if (UsePerfData) {
 228     EXCEPTION_MARK;
 229 
 230     // create the gc cause jvmstat counters
 231     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
 232                              80, GCCause::to_string(_gc_cause), CHECK);
 233 
 234     _perf_gc_lastcause =
 235                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
 236                              80, GCCause::to_string(_gc_lastcause), CHECK);
 237   }
 238 
 239   // Create the ring log
 240   if (LogEvents) {
 241     _gc_heap_log = new GCHeapLog();
 242   } else {
 243     _gc_heap_log = NULL;
 244   }
 245 }
 246 
 247 // This interface assumes that it's being called by the
 248 // vm thread. It collects the heap assuming that the
 249 // heap lock is already held and that we are executing in
 250 // the context of the vm thread.
 251 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 252   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 253   assert(Heap_lock->is_locked(), "Precondition#2");
 254   GCCauseSetter gcs(this, cause);
 255   switch (cause) {
 256     case GCCause::_heap_inspection:
 257     case GCCause::_heap_dump:
 258     case GCCause::_metadata_GC_threshold : {
 259       HandleMark hm;
 260       do_full_collection(false);        // don't clear all soft refs
 261       break;
 262     }
 263     case GCCause::_metadata_GC_clear_soft_refs: {
 264       HandleMark hm;
 265       do_full_collection(true);         // do clear all soft refs
 266       break;
 267     }
 268     default:
 269       ShouldNotReachHere(); // Unexpected use of this function
 270   }
 271 }
 272 
 273 MetaWord* CollectedHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 274                                                             size_t word_size,
 275                                                             Metaspace::MetadataType mdtype) {
 276   uint loop_count = 0;
 277   uint gc_count = 0;
 278   uint full_gc_count = 0;
 279 
 280   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 281 
 282   do {
 283     MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
 284     if (result != NULL) {
 285       return result;
 286     }
 287 
 288     if (GCLocker::is_active_and_needs_gc()) {
 289       // If the GCLocker is active, just expand and allocate.
 290       // If that does not succeed, wait if this thread is not
 291       // in a critical section itself.
 292       result = loader_data->metaspace_non_null()->expand_and_allocate(word_size, mdtype);
 293       if (result != NULL) {
 294         return result;
 295       }
 296       JavaThread* jthr = JavaThread::current();
 297       if (!jthr->in_critical()) {
 298         // Wait for JNI critical section to be exited
 299         GCLocker::stall_until_clear();
 300         // The GC invoked by the last thread leaving the critical
 301         // section will be a young collection and a full collection
 302         // is (currently) needed for unloading classes so continue
 303         // to the next iteration to get a full GC.
 304         continue;
 305       } else {
 306         if (CheckJNICalls) {
 307           fatal("Possible deadlock due to allocating while"
 308                 " in jni critical section");
 309         }
 310         return NULL;
 311       }
 312     }
 313 
 314     {  // Need lock to get self consistent gc_count's
 315       MutexLocker ml(Heap_lock);
 316       gc_count      = Universe::heap()->total_collections();
 317       full_gc_count = Universe::heap()->total_full_collections();
 318     }
 319 
 320     // Generate a VM operation
 321     VM_CollectForMetadataAllocation op(loader_data,
 322                                        word_size,
 323                                        mdtype,
 324                                        gc_count,
 325                                        full_gc_count,
 326                                        GCCause::_metadata_GC_threshold);
 327     VMThread::execute(&op);
 328 
 329     // If GC was locked out, try again. Check before checking success because the
 330     // prologue could have succeeded and the GC still have been locked out.
 331     if (op.gc_locked()) {
 332       continue;
 333     }
 334 
 335     if (op.prologue_succeeded()) {
 336       return op.result();
 337     }
 338     loop_count++;
 339     if ((QueuedAllocationWarningCount > 0) &&
 340         (loop_count % QueuedAllocationWarningCount == 0)) {
 341       log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times,"
 342                             " size=" SIZE_FORMAT, loop_count, word_size);
 343     }
 344   } while (true);  // Until a GC is done
 345 }
 346 
 347 MemoryUsage CollectedHeap::memory_usage() {
 348   return MemoryUsage(InitialHeapSize, used(), capacity(), max_capacity());
 349 }
 350 
 351 
 352 #ifndef PRODUCT
 353 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 354   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 355     for (size_t slot = 0; slot < size; slot += 1) {
 356       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 357              "Found non badHeapWordValue in pre-allocation check");
 358     }
 359   }
 360 }
 361 #endif // PRODUCT
 362 
 363 size_t CollectedHeap::max_tlab_size() const {
 364   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
 365   // This restriction could be removed by enabling filling with multiple arrays.
 366   // If we compute that the reasonable way as
 367   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
 368   // we'll overflow on the multiply, so we do the divide first.
 369   // We actually lose a little by dividing first,
 370   // but that just makes the TLAB  somewhat smaller than the biggest array,
 371   // which is fine, since we'll be able to fill that.
 372   size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
 373               sizeof(jint) *
 374               ((juint) max_jint / (size_t) HeapWordSize);
 375   return align_down(max_int_size, MinObjAlignment);
 376 }
 377 
 378 size_t CollectedHeap::filler_array_hdr_size() {
 379   return align_object_offset(arrayOopDesc::header_size(T_INT)); // align to Long
 380 }
 381 
 382 size_t CollectedHeap::filler_array_min_size() {
 383   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 384 }
 385 
 386 #ifdef ASSERT
 387 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 388 {
 389   assert(words >= min_fill_size(), "too small to fill");
 390   assert(is_object_aligned(words), "unaligned size");
 391 }
 392 
 393 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 394 {
 395   if (ZapFillerObjects && zap) {
 396     Copy::fill_to_words(start + filler_array_hdr_size(),
 397                         words - filler_array_hdr_size(), 0XDEAFBABE);
 398   }
 399 }
 400 #endif // ASSERT
 401 
 402 void
 403 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 404 {
 405   assert(words >= filler_array_min_size(), "too small for an array");
 406   assert(words <= filler_array_max_size(), "too big for a single object");
 407 
 408   const size_t payload_size = words - filler_array_hdr_size();
 409   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 410   assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len);
 411 
 412   ObjArrayAllocator allocator(Universe::intArrayKlassObj(), words, (int)len, /* do_zero */ false);
 413   allocator.initialize(start);
 414   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 415 }
 416 
 417 void
 418 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 419 {
 420   assert(words <= filler_array_max_size(), "too big for a single object");
 421 
 422   if (words >= filler_array_min_size()) {
 423     fill_with_array(start, words, zap);
 424   } else if (words > 0) {
 425     assert(words == min_fill_size(), "unaligned size");
 426     ObjAllocator allocator(SystemDictionary::Object_klass(), words);
 427     allocator.initialize(start);
 428   }
 429 }
 430 
 431 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 432 {
 433   DEBUG_ONLY(fill_args_check(start, words);)
 434   HandleMark hm;  // Free handles before leaving.
 435   fill_with_object_impl(start, words, zap);
 436 }
 437 
 438 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 439 {
 440   DEBUG_ONLY(fill_args_check(start, words);)
 441   HandleMark hm;  // Free handles before leaving.
 442 
 443   // Multiple objects may be required depending on the filler array maximum size. Fill
 444   // the range up to that with objects that are filler_array_max_size sized. The
 445   // remainder is filled with a single object.
 446   const size_t min = min_fill_size();
 447   const size_t max = filler_array_max_size();
 448   while (words > max) {
 449     const size_t cur = (words - max) >= min ? max : max - min;
 450     fill_with_array(start, cur, zap);
 451     start += cur;
 452     words -= cur;
 453   }
 454 
 455   fill_with_object_impl(start, words, zap);
 456 }
 457 
 458 void CollectedHeap::fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap) {
 459   CollectedHeap::fill_with_object(start, end, zap);
 460 }
 461 
 462 size_t CollectedHeap::min_dummy_object_size() const {
 463   return oopDesc::header_size();
 464 }
 465 
 466 size_t CollectedHeap::tlab_alloc_reserve() const {
 467   size_t min_size = min_dummy_object_size();
 468   return min_size > (size_t)MinObjAlignment ? align_object_size(min_size) : 0;
 469 }
 470 
 471 HeapWord* CollectedHeap::allocate_new_tlab(size_t min_size,
 472                                            size_t requested_size,
 473                                            size_t* actual_size) {
 474   guarantee(false, "thread-local allocation buffers not supported");
 475   return NULL;
 476 }
 477 
 478 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 479   assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
 480          "Should only be called at a safepoint or at start-up");
 481 
 482   ThreadLocalAllocStats stats;
 483 
 484   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next();) {
 485     BarrierSet::barrier_set()->make_parsable(thread);
 486     if (UseTLAB) {
 487       if (retire_tlabs) {
 488         thread->tlab().retire(&stats);
 489       } else {
 490         thread->tlab().make_parsable();
 491       }
 492     }
 493   }
 494 
 495   stats.publish();
 496 }
 497 
 498 void CollectedHeap::resize_all_tlabs() {
 499   assert(SafepointSynchronize::is_at_safepoint() || !is_init_completed(),
 500          "Should only resize tlabs at safepoint");
 501 
 502   if (UseTLAB && ResizeTLAB) {
 503     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
 504       thread->tlab().resize();
 505     }
 506   }
 507 }
 508 
 509 void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
 510   assert(timer != NULL, "timer is null");
 511   if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
 512     GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
 513     HeapDumper::dump_heap();
 514   }
 515 
 516   LogTarget(Trace, gc, classhisto) lt;
 517   if (lt.is_enabled()) {
 518     GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
 519     ResourceMark rm;
 520     LogStream ls(lt);
 521     VM_GC_HeapInspection inspector(&ls, false /* ! full gc */);
 522     inspector.doit();
 523   }
 524 }
 525 
 526 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
 527   full_gc_dump(timer, true);
 528 }
 529 
 530 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
 531   full_gc_dump(timer, false);
 532 }
 533 
 534 void CollectedHeap::initialize_reserved_region(const ReservedHeapSpace& rs) {
 535   // It is important to do this in a way such that concurrent readers can't
 536   // temporarily think something is in the heap.  (Seen this happen in asserts.)
 537   _reserved.set_word_size(0);
 538   _reserved.set_start((HeapWord*)rs.base());
 539   _reserved.set_end((HeapWord*)rs.end());
 540 }
 541 
 542 void CollectedHeap::post_initialize() {
 543   initialize_serviceability();
 544 }
 545 
 546 #ifndef PRODUCT
 547 
 548 bool CollectedHeap::promotion_should_fail(volatile size_t* count) {
 549   // Access to count is not atomic; the value does not have to be exact.
 550   if (PromotionFailureALot) {
 551     const size_t gc_num = total_collections();
 552     const size_t elapsed_gcs = gc_num - _promotion_failure_alot_gc_number;
 553     if (elapsed_gcs >= PromotionFailureALotInterval) {
 554       // Test for unsigned arithmetic wrap-around.
 555       if (++*count >= PromotionFailureALotCount) {
 556         *count = 0;
 557         return true;
 558       }
 559     }
 560   }
 561   return false;
 562 }
 563 
 564 bool CollectedHeap::promotion_should_fail() {
 565   return promotion_should_fail(&_promotion_failure_alot_count);
 566 }
 567 
 568 void CollectedHeap::reset_promotion_should_fail(volatile size_t* count) {
 569   if (PromotionFailureALot) {
 570     _promotion_failure_alot_gc_number = total_collections();
 571     *count = 0;
 572   }
 573 }
 574 
 575 void CollectedHeap::reset_promotion_should_fail() {
 576   reset_promotion_should_fail(&_promotion_failure_alot_count);
 577 }
 578 
 579 #endif  // #ifndef PRODUCT
 580 
 581 bool CollectedHeap::supports_object_pinning() const {
 582   return false;
 583 }
 584 
 585 oop CollectedHeap::pin_object(JavaThread* thread, oop obj) {
 586   ShouldNotReachHere();
 587   return NULL;
 588 }
 589 
 590 void CollectedHeap::unpin_object(JavaThread* thread, oop obj) {
 591   ShouldNotReachHere();
 592 }
 593 
 594 void CollectedHeap::deduplicate_string(oop str) {
 595   // Do nothing, unless overridden in subclass.
 596 }
 597 
 598 size_t CollectedHeap::obj_size(oop obj) const {
 599   return obj->size();
 600 }
 601 
 602 uint32_t CollectedHeap::hash_oop(oop obj) const {
 603   const uintptr_t addr = cast_from_oop<uintptr_t>(obj);
 604   return static_cast<uint32_t>(addr >> LogMinObjAlignment);
 605 }