1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "interpreter/bytecode.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/oopMapCache.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "memory/universe.hpp"
  41 #include "oops/constantPool.hpp"
  42 #include "oops/method.hpp"
  43 #include "oops/objArrayKlass.hpp"
  44 #include "oops/objArrayOop.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/fieldStreams.hpp"
  47 #include "oops/typeArrayOop.inline.hpp"
  48 #include "oops/verifyOopClosure.hpp"
  49 #include "prims/jvmtiThreadState.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/fieldDescriptor.hpp"
  54 #include "runtime/fieldDescriptor.inline.hpp"
  55 #include "runtime/frame.inline.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/interfaceSupport.inline.hpp"
  59 #include "runtime/safepointVerifiers.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/signature.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/thread.hpp"
  64 #include "runtime/threadSMR.hpp"
  65 #include "runtime/vframe.hpp"
  66 #include "runtime/vframeArray.hpp"
  67 #include "runtime/vframe_hp.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/preserveException.hpp"
  70 #include "utilities/xmlstream.hpp"
  71 
  72 
  73 bool DeoptimizationMarker::_is_active = false;
  74 
  75 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  76                                          int  caller_adjustment,
  77                                          int  caller_actual_parameters,
  78                                          int  number_of_frames,
  79                                          intptr_t* frame_sizes,
  80                                          address* frame_pcs,
  81                                          BasicType return_type,
  82                                          int exec_mode) {
  83   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  84   _caller_adjustment         = caller_adjustment;
  85   _caller_actual_parameters  = caller_actual_parameters;
  86   _number_of_frames          = number_of_frames;
  87   _frame_sizes               = frame_sizes;
  88   _frame_pcs                 = frame_pcs;
  89   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  90   _return_type               = return_type;
  91   _initial_info              = 0;
  92   // PD (x86 only)
  93   _counter_temp              = 0;
  94   _unpack_kind               = exec_mode;
  95   _sender_sp_temp            = 0;
  96 
  97   _total_frame_sizes         = size_of_frames();
  98   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  99 }
 100 
 101 
 102 Deoptimization::UnrollBlock::~UnrollBlock() {
 103   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 104   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 105   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 106 }
 107 
 108 
 109 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 110   assert(register_number < RegisterMap::reg_count, "checking register number");
 111   return &_register_block[register_number * 2];
 112 }
 113 
 114 
 115 
 116 int Deoptimization::UnrollBlock::size_of_frames() const {
 117   // Acount first for the adjustment of the initial frame
 118   int result = _caller_adjustment;
 119   for (int index = 0; index < number_of_frames(); index++) {
 120     result += frame_sizes()[index];
 121   }
 122   return result;
 123 }
 124 
 125 
 126 void Deoptimization::UnrollBlock::print() {
 127   ttyLocker ttyl;
 128   tty->print_cr("UnrollBlock");
 129   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 130   tty->print(   "  frame_sizes: ");
 131   for (int index = 0; index < number_of_frames(); index++) {
 132     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 133   }
 134   tty->cr();
 135 }
 136 
 137 
 138 // In order to make fetch_unroll_info work properly with escape
 139 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 140 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 141 // of previously eliminated objects occurs in realloc_objects, which is
 142 // called from the method fetch_unroll_info_helper below.
 143 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 144   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 145   // but makes the entry a little slower. There is however a little dance we have to
 146   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 147 
 148   // fetch_unroll_info() is called at the beginning of the deoptimization
 149   // handler. Note this fact before we start generating temporary frames
 150   // that can confuse an asynchronous stack walker. This counter is
 151   // decremented at the end of unpack_frames().
 152   if (TraceDeoptimization) {
 153     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 154   }
 155   thread->inc_in_deopt_handler();
 156 
 157   return fetch_unroll_info_helper(thread, exec_mode);
 158 JRT_END
 159 
 160 #if COMPILER2_OR_JVMCI
 161 static bool eliminate_allocations(JavaThread* thread, int exec_mode, CompiledMethod* compiled_method,
 162                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk) {
 163   bool realloc_failures = false;
 164   assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 165 
 166   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 167 
 168   // The flag return_oop() indicates call sites which return oop
 169   // in compiled code. Such sites include java method calls,
 170   // runtime calls (for example, used to allocate new objects/arrays
 171   // on slow code path) and any other calls generated in compiled code.
 172   // It is not guaranteed that we can get such information here only
 173   // by analyzing bytecode in deoptimized frames. This is why this flag
 174   // is set during method compilation (see Compile::Process_OopMap_Node()).
 175   // If the previous frame was popped or if we are dispatching an exception,
 176   // we don't have an oop result.
 177   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 178   Handle return_value;
 179   if (save_oop_result) {
 180     // Reallocation may trigger GC. If deoptimization happened on return from
 181     // call which returns oop we need to save it since it is not in oopmap.
 182     oop result = deoptee.saved_oop_result(&map);
 183     assert(oopDesc::is_oop_or_null(result), "must be oop");
 184     return_value = Handle(thread, result);
 185     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 186     if (TraceDeoptimization) {
 187       ttyLocker ttyl;
 188       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 189     }
 190   }
 191   if (objects != NULL) {
 192     JRT_BLOCK
 193       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 194     JRT_END
 195     bool skip_internal = (compiled_method != NULL) && !compiled_method->is_compiled_by_jvmci();
 196     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 197 #ifndef PRODUCT
 198     if (TraceDeoptimization) {
 199       ttyLocker ttyl;
 200       tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 201       Deoptimization::print_objects(objects, realloc_failures);
 202     }
 203 #endif
 204   }
 205   if (save_oop_result) {
 206     // Restore result.
 207     deoptee.set_saved_oop_result(&map, return_value());
 208   }
 209   return realloc_failures;
 210 }
 211 
 212 static void eliminate_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
 213 #ifndef PRODUCT
 214   bool first = true;
 215 #endif
 216   for (int i = 0; i < chunk->length(); i++) {
 217     compiledVFrame* cvf = chunk->at(i);
 218     assert (cvf->scope() != NULL,"expect only compiled java frames");
 219     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 220     if (monitors->is_nonempty()) {
 221       Deoptimization::relock_objects(monitors, thread, realloc_failures);
 222 #ifndef PRODUCT
 223       if (PrintDeoptimizationDetails) {
 224         ttyLocker ttyl;
 225         for (int j = 0; j < monitors->length(); j++) {
 226           MonitorInfo* mi = monitors->at(j);
 227           if (mi->eliminated()) {
 228             if (first) {
 229               first = false;
 230               tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 231             }
 232             if (mi->owner_is_scalar_replaced()) {
 233               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 234               tty->print_cr("     failed reallocation for klass %s", k->external_name());
 235             } else {
 236               tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 237             }
 238           }
 239         }
 240       }
 241 #endif // !PRODUCT
 242     }
 243   }
 244 }
 245 #endif // COMPILER2_OR_JVMCI
 246 
 247 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 248 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 249 
 250   // Note: there is a safepoint safety issue here. No matter whether we enter
 251   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 252   // the vframeArray is created.
 253   //
 254 
 255   // Allocate our special deoptimization ResourceMark
 256   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 257   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 258   thread->set_deopt_mark(dmark);
 259 
 260   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 261   RegisterMap map(thread, true);
 262   RegisterMap dummy_map(thread, false);
 263   // Now get the deoptee with a valid map
 264   frame deoptee = stub_frame.sender(&map);
 265   // Set the deoptee nmethod
 266   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 267   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 268   thread->set_deopt_compiled_method(cm);
 269 
 270   if (VerifyStack) {
 271     thread->validate_frame_layout();
 272   }
 273 
 274   // Create a growable array of VFrames where each VFrame represents an inlined
 275   // Java frame.  This storage is allocated with the usual system arena.
 276   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 277   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 278   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 279   while (!vf->is_top()) {
 280     assert(vf->is_compiled_frame(), "Wrong frame type");
 281     chunk->push(compiledVFrame::cast(vf));
 282     vf = vf->sender();
 283   }
 284   assert(vf->is_compiled_frame(), "Wrong frame type");
 285   chunk->push(compiledVFrame::cast(vf));
 286 
 287   bool realloc_failures = false;
 288 
 289 #if COMPILER2_OR_JVMCI
 290 #if INCLUDE_JVMCI
 291   bool jvmci_enabled = true;
 292 #else
 293   bool jvmci_enabled = false;
 294 #endif
 295 
 296   // Reallocate the non-escaping objects and restore their fields. Then
 297   // relock objects if synchronization on them was eliminated.
 298   if (jvmci_enabled || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateAllocations)) {
 299     realloc_failures = eliminate_allocations(thread, exec_mode, cm, deoptee, map, chunk);
 300   }
 301 #endif // COMPILER2_OR_JVMCI
 302 
 303   // Revoke biases, done with in java state.
 304   // No safepoints allowed after this
 305   revoke_from_deopt_handler(thread, deoptee, &map);
 306 
 307   // Ensure that no safepoint is taken after pointers have been stored
 308   // in fields of rematerialized objects.  If a safepoint occurs from here on
 309   // out the java state residing in the vframeArray will be missed.
 310   // Locks may be rebaised in a safepoint.
 311   NoSafepointVerifier no_safepoint;
 312 
 313 #if COMPILER2_OR_JVMCI
 314   if (jvmci_enabled || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks)) {
 315     eliminate_locks(thread, chunk, realloc_failures);
 316   }
 317 #endif // COMPILER2_OR_JVMCI
 318 
 319   ScopeDesc* trap_scope = chunk->at(0)->scope();
 320   Handle exceptionObject;
 321   if (trap_scope->rethrow_exception()) {
 322     if (PrintDeoptimizationDetails) {
 323       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 324     }
 325     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 326     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 327     ScopeValue* topOfStack = expressions->top();
 328     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 329     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 330   }
 331 
 332   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 333 #if COMPILER2_OR_JVMCI
 334   if (realloc_failures) {
 335     pop_frames_failed_reallocs(thread, array);
 336   }
 337 #endif
 338 
 339   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 340   thread->set_vframe_array_head(array);
 341 
 342   // Now that the vframeArray has been created if we have any deferred local writes
 343   // added by jvmti then we can free up that structure as the data is now in the
 344   // vframeArray
 345 
 346   if (thread->deferred_locals() != NULL) {
 347     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 348     int i = 0;
 349     do {
 350       // Because of inlining we could have multiple vframes for a single frame
 351       // and several of the vframes could have deferred writes. Find them all.
 352       if (list->at(i)->id() == array->original().id()) {
 353         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 354         list->remove_at(i);
 355         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 356         delete dlv;
 357       } else {
 358         i++;
 359       }
 360     } while ( i < list->length() );
 361     if (list->length() == 0) {
 362       thread->set_deferred_locals(NULL);
 363       // free the list and elements back to C heap.
 364       delete list;
 365     }
 366 
 367   }
 368 
 369   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 370   CodeBlob* cb = stub_frame.cb();
 371   // Verify we have the right vframeArray
 372   assert(cb->frame_size() >= 0, "Unexpected frame size");
 373   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 374 
 375   // If the deopt call site is a MethodHandle invoke call site we have
 376   // to adjust the unpack_sp.
 377   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 378   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 379     unpack_sp = deoptee.unextended_sp();
 380 
 381 #ifdef ASSERT
 382   assert(cb->is_deoptimization_stub() ||
 383          cb->is_uncommon_trap_stub() ||
 384          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 385          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 386          "unexpected code blob: %s", cb->name());
 387 #endif
 388 
 389   // This is a guarantee instead of an assert because if vframe doesn't match
 390   // we will unpack the wrong deoptimized frame and wind up in strange places
 391   // where it will be very difficult to figure out what went wrong. Better
 392   // to die an early death here than some very obscure death later when the
 393   // trail is cold.
 394   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 395   // in that it will fail to detect a problem when there is one. This needs
 396   // more work in tiger timeframe.
 397   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 398 
 399   int number_of_frames = array->frames();
 400 
 401   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 402   // virtual activation, which is the reverse of the elements in the vframes array.
 403   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 404   // +1 because we always have an interpreter return address for the final slot.
 405   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 406   int popframe_extra_args = 0;
 407   // Create an interpreter return address for the stub to use as its return
 408   // address so the skeletal frames are perfectly walkable
 409   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 410 
 411   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 412   // activation be put back on the expression stack of the caller for reexecution
 413   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 414     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 415   }
 416 
 417   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 418   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 419   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 420   //
 421   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 422   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 423 
 424   // It's possible that the number of parameters at the call site is
 425   // different than number of arguments in the callee when method
 426   // handles are used.  If the caller is interpreted get the real
 427   // value so that the proper amount of space can be added to it's
 428   // frame.
 429   bool caller_was_method_handle = false;
 430   if (deopt_sender.is_interpreted_frame()) {
 431     methodHandle method = deopt_sender.interpreter_frame_method();
 432     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 433     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 434       // Method handle invokes may involve fairly arbitrary chains of
 435       // calls so it's impossible to know how much actual space the
 436       // caller has for locals.
 437       caller_was_method_handle = true;
 438     }
 439   }
 440 
 441   //
 442   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 443   // frame_sizes/frame_pcs[1] next oldest frame (int)
 444   // frame_sizes/frame_pcs[n] youngest frame (int)
 445   //
 446   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 447   // owns the space for the return address to it's caller).  Confusing ain't it.
 448   //
 449   // The vframe array can address vframes with indices running from
 450   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 451   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 452   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 453   // so things look a little strange in this loop.
 454   //
 455   int callee_parameters = 0;
 456   int callee_locals = 0;
 457   for (int index = 0; index < array->frames(); index++ ) {
 458     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 459     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 460     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 461     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 462                                                                                                     callee_locals,
 463                                                                                                     index == 0,
 464                                                                                                     popframe_extra_args);
 465     // This pc doesn't have to be perfect just good enough to identify the frame
 466     // as interpreted so the skeleton frame will be walkable
 467     // The correct pc will be set when the skeleton frame is completely filled out
 468     // The final pc we store in the loop is wrong and will be overwritten below
 469     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 470 
 471     callee_parameters = array->element(index)->method()->size_of_parameters();
 472     callee_locals = array->element(index)->method()->max_locals();
 473     popframe_extra_args = 0;
 474   }
 475 
 476   // Compute whether the root vframe returns a float or double value.
 477   BasicType return_type;
 478   {
 479     methodHandle method(thread, array->element(0)->method());
 480     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 481     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 482   }
 483 
 484   // Compute information for handling adapters and adjusting the frame size of the caller.
 485   int caller_adjustment = 0;
 486 
 487   // Compute the amount the oldest interpreter frame will have to adjust
 488   // its caller's stack by. If the caller is a compiled frame then
 489   // we pretend that the callee has no parameters so that the
 490   // extension counts for the full amount of locals and not just
 491   // locals-parms. This is because without a c2i adapter the parm
 492   // area as created by the compiled frame will not be usable by
 493   // the interpreter. (Depending on the calling convention there
 494   // may not even be enough space).
 495 
 496   // QQQ I'd rather see this pushed down into last_frame_adjust
 497   // and have it take the sender (aka caller).
 498 
 499   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 500     caller_adjustment = last_frame_adjust(0, callee_locals);
 501   } else if (callee_locals > callee_parameters) {
 502     // The caller frame may need extending to accommodate
 503     // non-parameter locals of the first unpacked interpreted frame.
 504     // Compute that adjustment.
 505     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 506   }
 507 
 508   // If the sender is deoptimized the we must retrieve the address of the handler
 509   // since the frame will "magically" show the original pc before the deopt
 510   // and we'd undo the deopt.
 511 
 512   frame_pcs[0] = deopt_sender.raw_pc();
 513 
 514   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 515 
 516 #if INCLUDE_JVMCI
 517   if (exceptionObject() != NULL) {
 518     thread->set_exception_oop(exceptionObject());
 519     exec_mode = Unpack_exception;
 520   }
 521 #endif
 522 
 523   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 524     assert(thread->has_pending_exception(), "should have thrown OOME");
 525     thread->set_exception_oop(thread->pending_exception());
 526     thread->clear_pending_exception();
 527     exec_mode = Unpack_exception;
 528   }
 529 
 530 #if INCLUDE_JVMCI
 531   if (thread->frames_to_pop_failed_realloc() > 0) {
 532     thread->set_pending_monitorenter(false);
 533   }
 534 #endif
 535 
 536   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 537                                       caller_adjustment * BytesPerWord,
 538                                       caller_was_method_handle ? 0 : callee_parameters,
 539                                       number_of_frames,
 540                                       frame_sizes,
 541                                       frame_pcs,
 542                                       return_type,
 543                                       exec_mode);
 544   // On some platforms, we need a way to pass some platform dependent
 545   // information to the unpacking code so the skeletal frames come out
 546   // correct (initial fp value, unextended sp, ...)
 547   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 548 
 549   if (array->frames() > 1) {
 550     if (VerifyStack && TraceDeoptimization) {
 551       ttyLocker ttyl;
 552       tty->print_cr("Deoptimizing method containing inlining");
 553     }
 554   }
 555 
 556   array->set_unroll_block(info);
 557   return info;
 558 }
 559 
 560 // Called to cleanup deoptimization data structures in normal case
 561 // after unpacking to stack and when stack overflow error occurs
 562 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 563                                         vframeArray *array) {
 564 
 565   // Get array if coming from exception
 566   if (array == NULL) {
 567     array = thread->vframe_array_head();
 568   }
 569   thread->set_vframe_array_head(NULL);
 570 
 571   // Free the previous UnrollBlock
 572   vframeArray* old_array = thread->vframe_array_last();
 573   thread->set_vframe_array_last(array);
 574 
 575   if (old_array != NULL) {
 576     UnrollBlock* old_info = old_array->unroll_block();
 577     old_array->set_unroll_block(NULL);
 578     delete old_info;
 579     delete old_array;
 580   }
 581 
 582   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 583   // inside the vframeArray (StackValueCollections)
 584 
 585   delete thread->deopt_mark();
 586   thread->set_deopt_mark(NULL);
 587   thread->set_deopt_compiled_method(NULL);
 588 
 589 
 590   if (JvmtiExport::can_pop_frame()) {
 591 #ifndef CC_INTERP
 592     // Regardless of whether we entered this routine with the pending
 593     // popframe condition bit set, we should always clear it now
 594     thread->clear_popframe_condition();
 595 #else
 596     // C++ interpreter will clear has_pending_popframe when it enters
 597     // with method_resume. For deopt_resume2 we clear it now.
 598     if (thread->popframe_forcing_deopt_reexecution())
 599         thread->clear_popframe_condition();
 600 #endif /* CC_INTERP */
 601   }
 602 
 603   // unpack_frames() is called at the end of the deoptimization handler
 604   // and (in C2) at the end of the uncommon trap handler. Note this fact
 605   // so that an asynchronous stack walker can work again. This counter is
 606   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 607   // the beginning of uncommon_trap().
 608   thread->dec_in_deopt_handler();
 609 }
 610 
 611 // Moved from cpu directories because none of the cpus has callee save values.
 612 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 613 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 614 
 615   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 616   // the days we had adapter frames. When we deoptimize a situation where a
 617   // compiled caller calls a compiled caller will have registers it expects
 618   // to survive the call to the callee. If we deoptimize the callee the only
 619   // way we can restore these registers is to have the oldest interpreter
 620   // frame that we create restore these values. That is what this routine
 621   // will accomplish.
 622 
 623   // At the moment we have modified c2 to not have any callee save registers
 624   // so this problem does not exist and this routine is just a place holder.
 625 
 626   assert(f->is_interpreted_frame(), "must be interpreted");
 627 }
 628 
 629 // Return BasicType of value being returned
 630 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 631 
 632   // We are already active in the special DeoptResourceMark any ResourceObj's we
 633   // allocate will be freed at the end of the routine.
 634 
 635   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 636   // but makes the entry a little slower. There is however a little dance we have to
 637   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 638   ResetNoHandleMark rnhm; // No-op in release/product versions
 639   HandleMark hm;
 640 
 641   frame stub_frame = thread->last_frame();
 642 
 643   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 644   // must point to the vframeArray for the unpack frame.
 645   vframeArray* array = thread->vframe_array_head();
 646 
 647 #ifndef PRODUCT
 648   if (TraceDeoptimization) {
 649     ttyLocker ttyl;
 650     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 651                   p2i(thread), p2i(array), exec_mode);
 652   }
 653 #endif
 654   Events::log_deopt_message(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 655               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 656 
 657   UnrollBlock* info = array->unroll_block();
 658 
 659   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 660   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 661 
 662   BasicType bt = info->return_type();
 663 
 664   // If we have an exception pending, claim that the return type is an oop
 665   // so the deopt_blob does not overwrite the exception_oop.
 666 
 667   if (exec_mode == Unpack_exception)
 668     bt = T_OBJECT;
 669 
 670   // Cleanup thread deopt data
 671   cleanup_deopt_info(thread, array);
 672 
 673 #ifndef PRODUCT
 674   if (VerifyStack) {
 675     ResourceMark res_mark;
 676     // Clear pending exception to not break verification code (restored afterwards)
 677     PRESERVE_EXCEPTION_MARK;
 678 
 679     thread->validate_frame_layout();
 680 
 681     // Verify that the just-unpacked frames match the interpreter's
 682     // notions of expression stack and locals
 683     vframeArray* cur_array = thread->vframe_array_last();
 684     RegisterMap rm(thread, false);
 685     rm.set_include_argument_oops(false);
 686     bool is_top_frame = true;
 687     int callee_size_of_parameters = 0;
 688     int callee_max_locals = 0;
 689     for (int i = 0; i < cur_array->frames(); i++) {
 690       vframeArrayElement* el = cur_array->element(i);
 691       frame* iframe = el->iframe();
 692       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 693 
 694       // Get the oop map for this bci
 695       InterpreterOopMap mask;
 696       int cur_invoke_parameter_size = 0;
 697       bool try_next_mask = false;
 698       int next_mask_expression_stack_size = -1;
 699       int top_frame_expression_stack_adjustment = 0;
 700       methodHandle mh(thread, iframe->interpreter_frame_method());
 701       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 702       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 703       int max_bci = mh->code_size();
 704       // Get to the next bytecode if possible
 705       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 706       // Check to see if we can grab the number of outgoing arguments
 707       // at an uncommon trap for an invoke (where the compiler
 708       // generates debug info before the invoke has executed)
 709       Bytecodes::Code cur_code = str.next();
 710       if (Bytecodes::is_invoke(cur_code)) {
 711         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 712         cur_invoke_parameter_size = invoke.size_of_parameters();
 713         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 714           callee_size_of_parameters++;
 715         }
 716       }
 717       if (str.bci() < max_bci) {
 718         Bytecodes::Code next_code = str.next();
 719         if (next_code >= 0) {
 720           // The interpreter oop map generator reports results before
 721           // the current bytecode has executed except in the case of
 722           // calls. It seems to be hard to tell whether the compiler
 723           // has emitted debug information matching the "state before"
 724           // a given bytecode or the state after, so we try both
 725           if (!Bytecodes::is_invoke(cur_code) && cur_code != Bytecodes::_athrow) {
 726             // Get expression stack size for the next bytecode
 727             InterpreterOopMap next_mask;
 728             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 729             next_mask_expression_stack_size = next_mask.expression_stack_size();
 730             if (Bytecodes::is_invoke(next_code)) {
 731               Bytecode_invoke invoke(mh, str.bci());
 732               next_mask_expression_stack_size += invoke.size_of_parameters();
 733             }
 734             // Need to subtract off the size of the result type of
 735             // the bytecode because this is not described in the
 736             // debug info but returned to the interpreter in the TOS
 737             // caching register
 738             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 739             if (bytecode_result_type != T_ILLEGAL) {
 740               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 741             }
 742             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 743             try_next_mask = true;
 744           }
 745         }
 746       }
 747 
 748       // Verify stack depth and oops in frame
 749       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 750       if (!(
 751             /* SPARC */
 752             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 753             /* x86 */
 754             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 755             (try_next_mask &&
 756              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 757                                                                     top_frame_expression_stack_adjustment))) ||
 758             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 759             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 760              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 761             )) {
 762         {
 763           ttyLocker ttyl;
 764 
 765           // Print out some information that will help us debug the problem
 766           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 767           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 768           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 769                         iframe->interpreter_frame_expression_stack_size());
 770           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 771           tty->print_cr("  try_next_mask = %d", try_next_mask);
 772           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 773           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 774           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 775           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 776           tty->print_cr("  exec_mode = %d", exec_mode);
 777           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 778           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 779           tty->print_cr("  Interpreted frames:");
 780           for (int k = 0; k < cur_array->frames(); k++) {
 781             vframeArrayElement* el = cur_array->element(k);
 782             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 783           }
 784           cur_array->print_on_2(tty);
 785         } // release tty lock before calling guarantee
 786         guarantee(false, "wrong number of expression stack elements during deopt");
 787       }
 788       VerifyOopClosure verify;
 789       iframe->oops_interpreted_do(&verify, &rm, false);
 790       callee_size_of_parameters = mh->size_of_parameters();
 791       callee_max_locals = mh->max_locals();
 792       is_top_frame = false;
 793     }
 794   }
 795 #endif /* !PRODUCT */
 796 
 797 
 798   return bt;
 799 JRT_END
 800 
 801 class DeoptimizeMarkedTC : public ThreadClosure {
 802  public:
 803   virtual void do_thread(Thread* thread) {
 804     assert(thread->is_Java_thread(), "must be");
 805     JavaThread* jt = (JavaThread*)thread;
 806     jt->deoptimize_marked_methods();
 807   }
 808 };
 809 
 810 void Deoptimization::deoptimize_all_marked() {
 811   ResourceMark rm;
 812   DeoptimizationMarker dm;
 813 
 814   if (SafepointSynchronize::is_at_safepoint()) {
 815     DeoptimizeMarkedTC deopt;
 816     // Make the dependent methods not entrant
 817     CodeCache::make_marked_nmethods_not_entrant();
 818     Threads::java_threads_do(&deopt);
 819   } else {
 820     // Make the dependent methods not entrant
 821     {
 822       MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 823       CodeCache::make_marked_nmethods_not_entrant();
 824     }
 825     DeoptimizeMarkedTC deopt;
 826     Handshake::execute(&deopt);
 827   }
 828 }
 829 
 830 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 831   = Deoptimization::Action_reinterpret;
 832 
 833 
 834 
 835 #if INCLUDE_JVMCI || INCLUDE_AOT
 836 template<typename CacheType>
 837 class BoxCacheBase : public CHeapObj<mtCompiler> {
 838 protected:
 839   static InstanceKlass* find_cache_klass(Symbol* klass_name, TRAPS) {
 840     ResourceMark rm;
 841     char* klass_name_str = klass_name->as_C_string();
 842     Klass* k = SystemDictionary::find(klass_name, Handle(), Handle(), THREAD);
 843     guarantee(k != NULL, "%s must be loaded", klass_name_str);
 844     InstanceKlass* ik = InstanceKlass::cast(k);
 845     guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
 846     CacheType::compute_offsets(ik);
 847     return ik;
 848   }
 849 };
 850 
 851 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
 852   PrimitiveType _low;
 853   PrimitiveType _high;
 854   jobject _cache;
 855 protected:
 856   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
 857   BoxCache(Thread* thread) {
 858     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(CacheType::symbol(), thread);
 859     objArrayOop cache = CacheType::cache(ik);
 860     assert(cache->length() > 0, "Empty cache");
 861     _low = BoxType::value(cache->obj_at(0));
 862     _high = _low + cache->length() - 1;
 863     _cache = JNIHandles::make_global(Handle(thread, cache));
 864   }
 865   ~BoxCache() {
 866     JNIHandles::destroy_global(_cache);
 867   }
 868 public:
 869   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
 870     if (_singleton == NULL) {
 871       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
 872       if (!Atomic::replace_if_null(s, &_singleton)) {
 873         delete s;
 874       }
 875     }
 876     return _singleton;
 877   }
 878   oop lookup(PrimitiveType value) {
 879     if (_low <= value && value <= _high) {
 880       int offset = value - _low;
 881       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
 882     }
 883     return NULL;
 884   }
 885   oop lookup_raw(intptr_t raw_value) {
 886     // Have to cast to avoid little/big-endian problems.
 887     if (sizeof(PrimitiveType) > sizeof(jint)) {
 888       jlong value = (jlong)raw_value;
 889       return lookup(value);
 890     }
 891     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
 892     return lookup(value);
 893   }
 894 };
 895 
 896 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
 897 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
 898 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
 899 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
 900 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
 901 
 902 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = NULL;
 903 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = NULL;
 904 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = NULL;
 905 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = NULL;
 906 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = NULL;
 907 
 908 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
 909   jobject _true_cache;
 910   jobject _false_cache;
 911 protected:
 912   static BooleanBoxCache *_singleton;
 913   BooleanBoxCache(Thread *thread) {
 914     InstanceKlass* ik = find_cache_klass(java_lang_Boolean::symbol(), thread);
 915     _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
 916     _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
 917   }
 918   ~BooleanBoxCache() {
 919     JNIHandles::destroy_global(_true_cache);
 920     JNIHandles::destroy_global(_false_cache);
 921   }
 922 public:
 923   static BooleanBoxCache* singleton(Thread* thread) {
 924     if (_singleton == NULL) {
 925       BooleanBoxCache* s = new BooleanBoxCache(thread);
 926       if (!Atomic::replace_if_null(s, &_singleton)) {
 927         delete s;
 928       }
 929     }
 930     return _singleton;
 931   }
 932   oop lookup_raw(intptr_t raw_value) {
 933     // Have to cast to avoid little/big-endian problems.
 934     jboolean value = (jboolean)*((jint*)&raw_value);
 935     return lookup(value);
 936   }
 937   oop lookup(jboolean value) {
 938     if (value != 0) {
 939       return JNIHandles::resolve_non_null(_true_cache);
 940     }
 941     return JNIHandles::resolve_non_null(_false_cache);
 942   }
 943 };
 944 
 945 BooleanBoxCache* BooleanBoxCache::_singleton = NULL;
 946 
 947 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, TRAPS) {
 948    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
 949    BasicType box_type = SystemDictionary::box_klass_type(k);
 950    if (box_type != T_OBJECT) {
 951      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
 952      switch(box_type) {
 953        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 954        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 955        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 956        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 957        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 958        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 959        default:;
 960      }
 961    }
 962    return NULL;
 963 }
 964 #endif // INCLUDE_JVMCI || INCLUDE_AOT
 965 
 966 #if COMPILER2_OR_JVMCI
 967 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
 968   Handle pending_exception(THREAD, thread->pending_exception());
 969   const char* exception_file = thread->exception_file();
 970   int exception_line = thread->exception_line();
 971   thread->clear_pending_exception();
 972 
 973   bool failures = false;
 974 
 975   for (int i = 0; i < objects->length(); i++) {
 976     assert(objects->at(i)->is_object(), "invalid debug information");
 977     ObjectValue* sv = (ObjectValue*) objects->at(i);
 978 
 979     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 980     oop obj = NULL;
 981 
 982     if (k->is_instance_klass()) {
 983 #if INCLUDE_JVMCI || INCLUDE_AOT
 984       CompiledMethod* cm = fr->cb()->as_compiled_method_or_null();
 985       if (cm->is_compiled_by_jvmci() && sv->is_auto_box()) {
 986         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
 987         obj = get_cached_box(abv, fr, reg_map, THREAD);
 988         if (obj != NULL) {
 989           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
 990           abv->set_cached(true);
 991         }
 992       }
 993 #endif // INCLUDE_JVMCI || INCLUDE_AOT
 994       InstanceKlass* ik = InstanceKlass::cast(k);
 995       if (obj == NULL) {
 996         obj = ik->allocate_instance(THREAD);
 997       }
 998     } else if (k->is_typeArray_klass()) {
 999       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1000       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1001       int len = sv->field_size() / type2size[ak->element_type()];
1002       obj = ak->allocate(len, THREAD);
1003     } else if (k->is_objArray_klass()) {
1004       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1005       obj = ak->allocate(sv->field_size(), THREAD);
1006     }
1007 
1008     if (obj == NULL) {
1009       failures = true;
1010     }
1011 
1012     assert(sv->value().is_null(), "redundant reallocation");
1013     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
1014     CLEAR_PENDING_EXCEPTION;
1015     sv->set_value(obj);
1016   }
1017 
1018   if (failures) {
1019     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1020   } else if (pending_exception.not_null()) {
1021     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1022   }
1023 
1024   return failures;
1025 }
1026 
1027 // restore elements of an eliminated type array
1028 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1029   int index = 0;
1030   intptr_t val;
1031 
1032   for (int i = 0; i < sv->field_size(); i++) {
1033     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1034     switch(type) {
1035     case T_LONG: case T_DOUBLE: {
1036       assert(value->type() == T_INT, "Agreement.");
1037       StackValue* low =
1038         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1039 #ifdef _LP64
1040       jlong res = (jlong)low->get_int();
1041 #else
1042 #ifdef SPARC
1043       // For SPARC we have to swap high and low words.
1044       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1045 #else
1046       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1047 #endif //SPARC
1048 #endif
1049       obj->long_at_put(index, res);
1050       break;
1051     }
1052 
1053     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1054     case T_INT: case T_FLOAT: { // 4 bytes.
1055       assert(value->type() == T_INT, "Agreement.");
1056       bool big_value = false;
1057       if (i + 1 < sv->field_size() && type == T_INT) {
1058         if (sv->field_at(i)->is_location()) {
1059           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1060           if (type == Location::dbl || type == Location::lng) {
1061             big_value = true;
1062           }
1063         } else if (sv->field_at(i)->is_constant_int()) {
1064           ScopeValue* next_scope_field = sv->field_at(i + 1);
1065           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1066             big_value = true;
1067           }
1068         }
1069       }
1070 
1071       if (big_value) {
1072         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1073   #ifdef _LP64
1074         jlong res = (jlong)low->get_int();
1075   #else
1076   #ifdef SPARC
1077         // For SPARC we have to swap high and low words.
1078         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1079   #else
1080         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1081   #endif //SPARC
1082   #endif
1083         obj->int_at_put(index, (jint)*((jint*)&res));
1084         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
1085       } else {
1086         val = value->get_int();
1087         obj->int_at_put(index, (jint)*((jint*)&val));
1088       }
1089       break;
1090     }
1091 
1092     case T_SHORT:
1093       assert(value->type() == T_INT, "Agreement.");
1094       val = value->get_int();
1095       obj->short_at_put(index, (jshort)*((jint*)&val));
1096       break;
1097 
1098     case T_CHAR:
1099       assert(value->type() == T_INT, "Agreement.");
1100       val = value->get_int();
1101       obj->char_at_put(index, (jchar)*((jint*)&val));
1102       break;
1103 
1104     case T_BYTE:
1105       assert(value->type() == T_INT, "Agreement.");
1106       val = value->get_int();
1107       obj->byte_at_put(index, (jbyte)*((jint*)&val));
1108       break;
1109 
1110     case T_BOOLEAN:
1111       assert(value->type() == T_INT, "Agreement.");
1112       val = value->get_int();
1113       obj->bool_at_put(index, (jboolean)*((jint*)&val));
1114       break;
1115 
1116       default:
1117         ShouldNotReachHere();
1118     }
1119     index++;
1120   }
1121 }
1122 
1123 
1124 // restore fields of an eliminated object array
1125 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1126   for (int i = 0; i < sv->field_size(); i++) {
1127     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1128     assert(value->type() == T_OBJECT, "object element expected");
1129     obj->obj_at_put(i, value->get_obj()());
1130   }
1131 }
1132 
1133 class ReassignedField {
1134 public:
1135   int _offset;
1136   BasicType _type;
1137 public:
1138   ReassignedField() {
1139     _offset = 0;
1140     _type = T_ILLEGAL;
1141   }
1142 };
1143 
1144 int compare(ReassignedField* left, ReassignedField* right) {
1145   return left->_offset - right->_offset;
1146 }
1147 
1148 // Restore fields of an eliminated instance object using the same field order
1149 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1150 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1151   if (klass->superklass() != NULL) {
1152     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
1153   }
1154 
1155   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1156   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1157     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
1158       ReassignedField field;
1159       field._offset = fs.offset();
1160       field._type = FieldType::basic_type(fs.signature());
1161       fields->append(field);
1162     }
1163   }
1164   fields->sort(compare);
1165   for (int i = 0; i < fields->length(); i++) {
1166     intptr_t val;
1167     ScopeValue* scope_field = sv->field_at(svIndex);
1168     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1169     int offset = fields->at(i)._offset;
1170     BasicType type = fields->at(i)._type;
1171     switch (type) {
1172       case T_OBJECT: case T_ARRAY:
1173         assert(value->type() == T_OBJECT, "Agreement.");
1174         obj->obj_field_put(offset, value->get_obj()());
1175         break;
1176 
1177       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1178       case T_INT: case T_FLOAT: { // 4 bytes.
1179         assert(value->type() == T_INT, "Agreement.");
1180         bool big_value = false;
1181         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1182           if (scope_field->is_location()) {
1183             Location::Type type = ((LocationValue*) scope_field)->location().type();
1184             if (type == Location::dbl || type == Location::lng) {
1185               big_value = true;
1186             }
1187           }
1188           if (scope_field->is_constant_int()) {
1189             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1190             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1191               big_value = true;
1192             }
1193           }
1194         }
1195 
1196         if (big_value) {
1197           i++;
1198           assert(i < fields->length(), "second T_INT field needed");
1199           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1200         } else {
1201           val = value->get_int();
1202           obj->int_field_put(offset, (jint)*((jint*)&val));
1203           break;
1204         }
1205       }
1206         /* no break */
1207 
1208       case T_LONG: case T_DOUBLE: {
1209         assert(value->type() == T_INT, "Agreement.");
1210         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1211 #ifdef _LP64
1212         jlong res = (jlong)low->get_int();
1213 #else
1214 #ifdef SPARC
1215         // For SPARC we have to swap high and low words.
1216         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1217 #else
1218         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1219 #endif //SPARC
1220 #endif
1221         obj->long_field_put(offset, res);
1222         break;
1223       }
1224 
1225       case T_SHORT:
1226         assert(value->type() == T_INT, "Agreement.");
1227         val = value->get_int();
1228         obj->short_field_put(offset, (jshort)*((jint*)&val));
1229         break;
1230 
1231       case T_CHAR:
1232         assert(value->type() == T_INT, "Agreement.");
1233         val = value->get_int();
1234         obj->char_field_put(offset, (jchar)*((jint*)&val));
1235         break;
1236 
1237       case T_BYTE:
1238         assert(value->type() == T_INT, "Agreement.");
1239         val = value->get_int();
1240         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1241         break;
1242 
1243       case T_BOOLEAN:
1244         assert(value->type() == T_INT, "Agreement.");
1245         val = value->get_int();
1246         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1247         break;
1248 
1249       default:
1250         ShouldNotReachHere();
1251     }
1252     svIndex++;
1253   }
1254   return svIndex;
1255 }
1256 
1257 // restore fields of all eliminated objects and arrays
1258 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1259   for (int i = 0; i < objects->length(); i++) {
1260     ObjectValue* sv = (ObjectValue*) objects->at(i);
1261     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1262     Handle obj = sv->value();
1263     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1264     if (PrintDeoptimizationDetails) {
1265       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1266     }
1267     if (obj.is_null()) {
1268       continue;
1269     }
1270 #if INCLUDE_JVMCI || INCLUDE_AOT
1271     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1272     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1273       continue;
1274     }
1275 #endif // INCLUDE_JVMCI || INCLUDE_AOT
1276     if (k->is_instance_klass()) {
1277       InstanceKlass* ik = InstanceKlass::cast(k);
1278       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1279     } else if (k->is_typeArray_klass()) {
1280       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1281       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1282     } else if (k->is_objArray_klass()) {
1283       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1284     }
1285   }
1286 }
1287 
1288 
1289 // relock objects for which synchronization was eliminated
1290 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1291   for (int i = 0; i < monitors->length(); i++) {
1292     MonitorInfo* mon_info = monitors->at(i);
1293     if (mon_info->eliminated()) {
1294       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1295       if (!mon_info->owner_is_scalar_replaced()) {
1296         Handle obj(thread, mon_info->owner());
1297         markWord mark = obj->mark();
1298         if (UseBiasedLocking && mark.has_bias_pattern()) {
1299           // New allocated objects may have the mark set to anonymously biased.
1300           // Also the deoptimized method may called methods with synchronization
1301           // where the thread-local object is bias locked to the current thread.
1302           assert(mark.is_biased_anonymously() ||
1303                  mark.biased_locker() == thread, "should be locked to current thread");
1304           // Reset mark word to unbiased prototype.
1305           markWord unbiased_prototype = markWord::prototype().set_age(mark.age());
1306           obj->set_mark(unbiased_prototype);
1307         }
1308         BasicLock* lock = mon_info->lock();
1309         ObjectSynchronizer::enter(obj, lock, thread);
1310         assert(mon_info->owner()->is_locked(), "object must be locked now");
1311       }
1312     }
1313   }
1314 }
1315 
1316 
1317 #ifndef PRODUCT
1318 // print information about reallocated objects
1319 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1320   fieldDescriptor fd;
1321 
1322   for (int i = 0; i < objects->length(); i++) {
1323     ObjectValue* sv = (ObjectValue*) objects->at(i);
1324     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1325     Handle obj = sv->value();
1326 
1327     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1328     k->print_value();
1329     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1330     if (obj.is_null()) {
1331       tty->print(" allocation failed");
1332     } else {
1333       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1334     }
1335     tty->cr();
1336 
1337     if (Verbose && !obj.is_null()) {
1338       k->oop_print_on(obj(), tty);
1339     }
1340   }
1341 }
1342 #endif
1343 #endif // COMPILER2_OR_JVMCI
1344 
1345 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1346   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1347 
1348 #ifndef PRODUCT
1349   if (PrintDeoptimizationDetails) {
1350     ttyLocker ttyl;
1351     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1352     fr.print_on(tty);
1353     tty->print_cr("     Virtual frames (innermost first):");
1354     for (int index = 0; index < chunk->length(); index++) {
1355       compiledVFrame* vf = chunk->at(index);
1356       tty->print("       %2d - ", index);
1357       vf->print_value();
1358       int bci = chunk->at(index)->raw_bci();
1359       const char* code_name;
1360       if (bci == SynchronizationEntryBCI) {
1361         code_name = "sync entry";
1362       } else {
1363         Bytecodes::Code code = vf->method()->code_at(bci);
1364         code_name = Bytecodes::name(code);
1365       }
1366       tty->print(" - %s", code_name);
1367       tty->print_cr(" @ bci %d ", bci);
1368       if (Verbose) {
1369         vf->print();
1370         tty->cr();
1371       }
1372     }
1373   }
1374 #endif
1375 
1376   // Register map for next frame (used for stack crawl).  We capture
1377   // the state of the deopt'ing frame's caller.  Thus if we need to
1378   // stuff a C2I adapter we can properly fill in the callee-save
1379   // register locations.
1380   frame caller = fr.sender(reg_map);
1381   int frame_size = caller.sp() - fr.sp();
1382 
1383   frame sender = caller;
1384 
1385   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1386   // the vframeArray containing the unpacking information is allocated in the C heap.
1387   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1388   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1389 
1390   // Compare the vframeArray to the collected vframes
1391   assert(array->structural_compare(thread, chunk), "just checking");
1392 
1393 #ifndef PRODUCT
1394   if (PrintDeoptimizationDetails) {
1395     ttyLocker ttyl;
1396     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1397   }
1398 #endif // PRODUCT
1399 
1400   return array;
1401 }
1402 
1403 #if COMPILER2_OR_JVMCI
1404 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1405   // Reallocation of some scalar replaced objects failed. Record
1406   // that we need to pop all the interpreter frames for the
1407   // deoptimized compiled frame.
1408   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1409   thread->set_frames_to_pop_failed_realloc(array->frames());
1410   // Unlock all monitors here otherwise the interpreter will see a
1411   // mix of locked and unlocked monitors (because of failed
1412   // reallocations of synchronized objects) and be confused.
1413   for (int i = 0; i < array->frames(); i++) {
1414     MonitorChunk* monitors = array->element(i)->monitors();
1415     if (monitors != NULL) {
1416       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1417         BasicObjectLock* src = monitors->at(j);
1418         if (src->obj() != NULL) {
1419           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1420         }
1421       }
1422       array->element(i)->free_monitors(thread);
1423 #ifdef ASSERT
1424       array->element(i)->set_removed_monitors();
1425 #endif
1426     }
1427   }
1428 }
1429 #endif
1430 
1431 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1432   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1433   Thread* thread = Thread::current();
1434   for (int i = 0; i < monitors->length(); i++) {
1435     MonitorInfo* mon_info = monitors->at(i);
1436     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1437       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1438     }
1439   }
1440 }
1441 
1442 static void get_monitors_from_stack(GrowableArray<Handle>* objects_to_revoke, JavaThread* thread, frame fr, RegisterMap* map) {
1443   // Unfortunately we don't have a RegisterMap available in most of
1444   // the places we want to call this routine so we need to walk the
1445   // stack again to update the register map.
1446   if (map == NULL || !map->update_map()) {
1447     StackFrameStream sfs(thread, true);
1448     bool found = false;
1449     while (!found && !sfs.is_done()) {
1450       frame* cur = sfs.current();
1451       sfs.next();
1452       found = cur->id() == fr.id();
1453     }
1454     assert(found, "frame to be deoptimized not found on target thread's stack");
1455     map = sfs.register_map();
1456   }
1457 
1458   vframe* vf = vframe::new_vframe(&fr, map, thread);
1459   compiledVFrame* cvf = compiledVFrame::cast(vf);
1460   // Revoke monitors' biases in all scopes
1461   while (!cvf->is_top()) {
1462     collect_monitors(cvf, objects_to_revoke);
1463     cvf = compiledVFrame::cast(cvf->sender());
1464   }
1465   collect_monitors(cvf, objects_to_revoke);
1466 }
1467 
1468 void Deoptimization::revoke_from_deopt_handler(JavaThread* thread, frame fr, RegisterMap* map) {
1469   if (!UseBiasedLocking) {
1470     return;
1471   }
1472   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1473   get_monitors_from_stack(objects_to_revoke, thread, fr, map);
1474 
1475   int len = objects_to_revoke->length();
1476   for (int i = 0; i < len; i++) {
1477     oop obj = (objects_to_revoke->at(i))();
1478     BiasedLocking::revoke_own_lock(objects_to_revoke->at(i), thread);
1479     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
1480   }
1481 }
1482 
1483 
1484 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1485   assert(fr.can_be_deoptimized(), "checking frame type");
1486 
1487   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1488 
1489   if (LogCompilation && xtty != NULL) {
1490     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1491     assert(cm != NULL, "only compiled methods can deopt");
1492 
1493     ttyLocker ttyl;
1494     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1495     cm->log_identity(xtty);
1496     xtty->end_head();
1497     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1498       xtty->begin_elem("jvms bci='%d'", sd->bci());
1499       xtty->method(sd->method());
1500       xtty->end_elem();
1501       if (sd->is_top())  break;
1502     }
1503     xtty->tail("deoptimized");
1504   }
1505 
1506   // Patch the compiled method so that when execution returns to it we will
1507   // deopt the execution state and return to the interpreter.
1508   fr.deoptimize(thread);
1509 }
1510 
1511 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1512   // Deoptimize only if the frame comes from compile code.
1513   // Do not deoptimize the frame which is already patched
1514   // during the execution of the loops below.
1515   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1516     return;
1517   }
1518   ResourceMark rm;
1519   DeoptimizationMarker dm;
1520   deoptimize_single_frame(thread, fr, reason);
1521 }
1522 
1523 #if INCLUDE_JVMCI
1524 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1525   // there is no exception handler for this pc => deoptimize
1526   cm->make_not_entrant();
1527 
1528   // Use Deoptimization::deoptimize for all of its side-effects:
1529   // revoking biases of monitors, gathering traps statistics, logging...
1530   // it also patches the return pc but we do not care about that
1531   // since we return a continuation to the deopt_blob below.
1532   JavaThread* thread = JavaThread::current();
1533   RegisterMap reg_map(thread, UseBiasedLocking);
1534   frame runtime_frame = thread->last_frame();
1535   frame caller_frame = runtime_frame.sender(&reg_map);
1536   assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method");
1537   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1538 
1539   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1540   if (trap_mdo != NULL) {
1541     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1542   }
1543 
1544   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1545 }
1546 #endif
1547 
1548 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1549   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1550          "can only deoptimize other thread at a safepoint");
1551   // Compute frame and register map based on thread and sp.
1552   RegisterMap reg_map(thread, UseBiasedLocking);
1553   frame fr = thread->last_frame();
1554   while (fr.id() != id) {
1555     fr = fr.sender(&reg_map);
1556   }
1557   deoptimize(thread, fr, &reg_map, reason);
1558 }
1559 
1560 
1561 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1562   if (thread == Thread::current()) {
1563     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1564   } else {
1565     VM_DeoptimizeFrame deopt(thread, id, reason);
1566     VMThread::execute(&deopt);
1567   }
1568 }
1569 
1570 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1571   deoptimize_frame(thread, id, Reason_constraint);
1572 }
1573 
1574 // JVMTI PopFrame support
1575 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1576 {
1577   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1578 }
1579 JRT_END
1580 
1581 MethodData*
1582 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1583                                 bool create_if_missing) {
1584   Thread* THREAD = thread;
1585   MethodData* mdo = m()->method_data();
1586   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1587     // Build an MDO.  Ignore errors like OutOfMemory;
1588     // that simply means we won't have an MDO to update.
1589     Method::build_interpreter_method_data(m, THREAD);
1590     if (HAS_PENDING_EXCEPTION) {
1591       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1592       CLEAR_PENDING_EXCEPTION;
1593     }
1594     mdo = m()->method_data();
1595   }
1596   return mdo;
1597 }
1598 
1599 #if COMPILER2_OR_JVMCI
1600 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1601   // in case of an unresolved klass entry, load the class.
1602   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1603     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1604     return;
1605   }
1606 
1607   if (!constant_pool->tag_at(index).is_symbol()) return;
1608 
1609   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1610   Symbol*  symbol  = constant_pool->symbol_at(index);
1611 
1612   // class name?
1613   if (symbol->char_at(0) != '(') {
1614     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1615     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1616     return;
1617   }
1618 
1619   // then it must be a signature!
1620   ResourceMark rm(THREAD);
1621   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1622     if (ss.is_object()) {
1623       Symbol* class_name = ss.as_symbol();
1624       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1625       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1626     }
1627   }
1628 }
1629 
1630 
1631 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1632   EXCEPTION_MARK;
1633   load_class_by_index(constant_pool, index, THREAD);
1634   if (HAS_PENDING_EXCEPTION) {
1635     // Exception happened during classloading. We ignore the exception here, since it
1636     // is going to be rethrown since the current activation is going to be deoptimized and
1637     // the interpreter will re-execute the bytecode.
1638     CLEAR_PENDING_EXCEPTION;
1639     // Class loading called java code which may have caused a stack
1640     // overflow. If the exception was thrown right before the return
1641     // to the runtime the stack is no longer guarded. Reguard the
1642     // stack otherwise if we return to the uncommon trap blob and the
1643     // stack bang causes a stack overflow we crash.
1644     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1645     JavaThread* thread = (JavaThread*)THREAD;
1646     bool guard_pages_enabled = thread->stack_guards_enabled();
1647     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1648     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1649   }
1650 }
1651 
1652 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1653   HandleMark hm;
1654 
1655   // uncommon_trap() is called at the beginning of the uncommon trap
1656   // handler. Note this fact before we start generating temporary frames
1657   // that can confuse an asynchronous stack walker. This counter is
1658   // decremented at the end of unpack_frames().
1659   thread->inc_in_deopt_handler();
1660 
1661   // We need to update the map if we have biased locking.
1662 #if INCLUDE_JVMCI
1663   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1664   RegisterMap reg_map(thread, true);
1665 #else
1666   RegisterMap reg_map(thread, UseBiasedLocking);
1667 #endif
1668   frame stub_frame = thread->last_frame();
1669   frame fr = stub_frame.sender(&reg_map);
1670   // Make sure the calling nmethod is not getting deoptimized and removed
1671   // before we are done with it.
1672   nmethodLocker nl(fr.pc());
1673 
1674   // Log a message
1675   Events::log_deopt_message(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1676               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1677 
1678   {
1679     ResourceMark rm;
1680 
1681     DeoptReason reason = trap_request_reason(trap_request);
1682     DeoptAction action = trap_request_action(trap_request);
1683 #if INCLUDE_JVMCI
1684     int debug_id = trap_request_debug_id(trap_request);
1685 #endif
1686     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1687 
1688     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1689     compiledVFrame* cvf = compiledVFrame::cast(vf);
1690 
1691     CompiledMethod* nm = cvf->code();
1692 
1693     ScopeDesc*      trap_scope  = cvf->scope();
1694 
1695     if (TraceDeoptimization) {
1696       ttyLocker ttyl;
1697       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1698 #if INCLUDE_JVMCI
1699           , debug_id
1700 #endif
1701           );
1702     }
1703 
1704     methodHandle    trap_method = trap_scope->method();
1705     int             trap_bci    = trap_scope->bci();
1706 #if INCLUDE_JVMCI
1707     jlong           speculation = thread->pending_failed_speculation();
1708     if (nm->is_compiled_by_jvmci() && nm->is_nmethod()) { // Exclude AOTed methods
1709       nm->as_nmethod()->update_speculation(thread);
1710     } else {
1711       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
1712     }
1713 
1714     if (trap_bci == SynchronizationEntryBCI) {
1715       trap_bci = 0;
1716       thread->set_pending_monitorenter(true);
1717     }
1718 
1719     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1720       thread->set_pending_transfer_to_interpreter(true);
1721     }
1722 #endif
1723 
1724     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1725     // Record this event in the histogram.
1726     gather_statistics(reason, action, trap_bc);
1727 
1728     // Ensure that we can record deopt. history:
1729     // Need MDO to record RTM code generation state.
1730     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1731 
1732     methodHandle profiled_method;
1733 #if INCLUDE_JVMCI
1734     if (nm->is_compiled_by_jvmci()) {
1735       profiled_method = nm->method();
1736     } else {
1737       profiled_method = trap_method;
1738     }
1739 #else
1740     profiled_method = trap_method;
1741 #endif
1742 
1743     MethodData* trap_mdo =
1744       get_method_data(thread, profiled_method, create_if_missing);
1745 
1746     // Log a message
1747     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1748                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1749                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1750 
1751     // Print a bunch of diagnostics, if requested.
1752     if (TraceDeoptimization || LogCompilation) {
1753       ResourceMark rm;
1754       ttyLocker ttyl;
1755       char buf[100];
1756       if (xtty != NULL) {
1757         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1758                          os::current_thread_id(),
1759                          format_trap_request(buf, sizeof(buf), trap_request));
1760 #if INCLUDE_JVMCI
1761         if (speculation != 0) {
1762           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
1763         }
1764 #endif
1765         nm->log_identity(xtty);
1766       }
1767       Symbol* class_name = NULL;
1768       bool unresolved = false;
1769       if (unloaded_class_index >= 0) {
1770         constantPoolHandle constants (THREAD, trap_method->constants());
1771         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1772           class_name = constants->klass_name_at(unloaded_class_index);
1773           unresolved = true;
1774           if (xtty != NULL)
1775             xtty->print(" unresolved='1'");
1776         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1777           class_name = constants->symbol_at(unloaded_class_index);
1778         }
1779         if (xtty != NULL)
1780           xtty->name(class_name);
1781       }
1782       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1783         // Dump the relevant MDO state.
1784         // This is the deopt count for the current reason, any previous
1785         // reasons or recompiles seen at this point.
1786         int dcnt = trap_mdo->trap_count(reason);
1787         if (dcnt != 0)
1788           xtty->print(" count='%d'", dcnt);
1789         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1790         int dos = (pdata == NULL)? 0: pdata->trap_state();
1791         if (dos != 0) {
1792           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1793           if (trap_state_is_recompiled(dos)) {
1794             int recnt2 = trap_mdo->overflow_recompile_count();
1795             if (recnt2 != 0)
1796               xtty->print(" recompiles2='%d'", recnt2);
1797           }
1798         }
1799       }
1800       if (xtty != NULL) {
1801         xtty->stamp();
1802         xtty->end_head();
1803       }
1804       if (TraceDeoptimization) {  // make noise on the tty
1805         tty->print("Uncommon trap occurred in");
1806         nm->method()->print_short_name(tty);
1807         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1808 #if INCLUDE_JVMCI
1809         if (nm->is_nmethod()) {
1810           const char* installed_code_name = nm->as_nmethod()->jvmci_name();
1811           if (installed_code_name != NULL) {
1812             tty->print(" (JVMCI: installed code name=%s) ", installed_code_name);
1813           }
1814         }
1815 #endif
1816         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1817                    p2i(fr.pc()),
1818                    os::current_thread_id(),
1819                    trap_reason_name(reason),
1820                    trap_action_name(action),
1821                    unloaded_class_index
1822 #if INCLUDE_JVMCI
1823                    , debug_id
1824 #endif
1825                    );
1826         if (class_name != NULL) {
1827           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1828           class_name->print_symbol_on(tty);
1829         }
1830         tty->cr();
1831       }
1832       if (xtty != NULL) {
1833         // Log the precise location of the trap.
1834         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1835           xtty->begin_elem("jvms bci='%d'", sd->bci());
1836           xtty->method(sd->method());
1837           xtty->end_elem();
1838           if (sd->is_top())  break;
1839         }
1840         xtty->tail("uncommon_trap");
1841       }
1842     }
1843     // (End diagnostic printout.)
1844 
1845     // Load class if necessary
1846     if (unloaded_class_index >= 0) {
1847       constantPoolHandle constants(THREAD, trap_method->constants());
1848       load_class_by_index(constants, unloaded_class_index);
1849     }
1850 
1851     // Flush the nmethod if necessary and desirable.
1852     //
1853     // We need to avoid situations where we are re-flushing the nmethod
1854     // because of a hot deoptimization site.  Repeated flushes at the same
1855     // point need to be detected by the compiler and avoided.  If the compiler
1856     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1857     // module must take measures to avoid an infinite cycle of recompilation
1858     // and deoptimization.  There are several such measures:
1859     //
1860     //   1. If a recompilation is ordered a second time at some site X
1861     //   and for the same reason R, the action is adjusted to 'reinterpret',
1862     //   to give the interpreter time to exercise the method more thoroughly.
1863     //   If this happens, the method's overflow_recompile_count is incremented.
1864     //
1865     //   2. If the compiler fails to reduce the deoptimization rate, then
1866     //   the method's overflow_recompile_count will begin to exceed the set
1867     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1868     //   is adjusted to 'make_not_compilable', and the method is abandoned
1869     //   to the interpreter.  This is a performance hit for hot methods,
1870     //   but is better than a disastrous infinite cycle of recompilations.
1871     //   (Actually, only the method containing the site X is abandoned.)
1872     //
1873     //   3. In parallel with the previous measures, if the total number of
1874     //   recompilations of a method exceeds the much larger set limit
1875     //   PerMethodRecompilationCutoff, the method is abandoned.
1876     //   This should only happen if the method is very large and has
1877     //   many "lukewarm" deoptimizations.  The code which enforces this
1878     //   limit is elsewhere (class nmethod, class Method).
1879     //
1880     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1881     // to recompile at each bytecode independently of the per-BCI cutoff.
1882     //
1883     // The decision to update code is up to the compiler, and is encoded
1884     // in the Action_xxx code.  If the compiler requests Action_none
1885     // no trap state is changed, no compiled code is changed, and the
1886     // computation suffers along in the interpreter.
1887     //
1888     // The other action codes specify various tactics for decompilation
1889     // and recompilation.  Action_maybe_recompile is the loosest, and
1890     // allows the compiled code to stay around until enough traps are seen,
1891     // and until the compiler gets around to recompiling the trapping method.
1892     //
1893     // The other actions cause immediate removal of the present code.
1894 
1895     // Traps caused by injected profile shouldn't pollute trap counts.
1896     bool injected_profile_trap = trap_method->has_injected_profile() &&
1897                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1898 
1899     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1900     bool make_not_entrant = false;
1901     bool make_not_compilable = false;
1902     bool reprofile = false;
1903     switch (action) {
1904     case Action_none:
1905       // Keep the old code.
1906       update_trap_state = false;
1907       break;
1908     case Action_maybe_recompile:
1909       // Do not need to invalidate the present code, but we can
1910       // initiate another
1911       // Start compiler without (necessarily) invalidating the nmethod.
1912       // The system will tolerate the old code, but new code should be
1913       // generated when possible.
1914       break;
1915     case Action_reinterpret:
1916       // Go back into the interpreter for a while, and then consider
1917       // recompiling form scratch.
1918       make_not_entrant = true;
1919       // Reset invocation counter for outer most method.
1920       // This will allow the interpreter to exercise the bytecodes
1921       // for a while before recompiling.
1922       // By contrast, Action_make_not_entrant is immediate.
1923       //
1924       // Note that the compiler will track null_check, null_assert,
1925       // range_check, and class_check events and log them as if they
1926       // had been traps taken from compiled code.  This will update
1927       // the MDO trap history so that the next compilation will
1928       // properly detect hot trap sites.
1929       reprofile = true;
1930       break;
1931     case Action_make_not_entrant:
1932       // Request immediate recompilation, and get rid of the old code.
1933       // Make them not entrant, so next time they are called they get
1934       // recompiled.  Unloaded classes are loaded now so recompile before next
1935       // time they are called.  Same for uninitialized.  The interpreter will
1936       // link the missing class, if any.
1937       make_not_entrant = true;
1938       break;
1939     case Action_make_not_compilable:
1940       // Give up on compiling this method at all.
1941       make_not_entrant = true;
1942       make_not_compilable = true;
1943       break;
1944     default:
1945       ShouldNotReachHere();
1946     }
1947 
1948     // Setting +ProfileTraps fixes the following, on all platforms:
1949     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1950     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1951     // recompile relies on a MethodData* to record heroic opt failures.
1952 
1953     // Whether the interpreter is producing MDO data or not, we also need
1954     // to use the MDO to detect hot deoptimization points and control
1955     // aggressive optimization.
1956     bool inc_recompile_count = false;
1957     ProfileData* pdata = NULL;
1958     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1959       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1960       uint this_trap_count = 0;
1961       bool maybe_prior_trap = false;
1962       bool maybe_prior_recompile = false;
1963       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1964 #if INCLUDE_JVMCI
1965                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1966 #endif
1967                                    nm->method(),
1968                                    //outputs:
1969                                    this_trap_count,
1970                                    maybe_prior_trap,
1971                                    maybe_prior_recompile);
1972       // Because the interpreter also counts null, div0, range, and class
1973       // checks, these traps from compiled code are double-counted.
1974       // This is harmless; it just means that the PerXTrapLimit values
1975       // are in effect a little smaller than they look.
1976 
1977       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1978       if (per_bc_reason != Reason_none) {
1979         // Now take action based on the partially known per-BCI history.
1980         if (maybe_prior_trap
1981             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1982           // If there are too many traps at this BCI, force a recompile.
1983           // This will allow the compiler to see the limit overflow, and
1984           // take corrective action, if possible.  The compiler generally
1985           // does not use the exact PerBytecodeTrapLimit value, but instead
1986           // changes its tactics if it sees any traps at all.  This provides
1987           // a little hysteresis, delaying a recompile until a trap happens
1988           // several times.
1989           //
1990           // Actually, since there is only one bit of counter per BCI,
1991           // the possible per-BCI counts are {0,1,(per-method count)}.
1992           // This produces accurate results if in fact there is only
1993           // one hot trap site, but begins to get fuzzy if there are
1994           // many sites.  For example, if there are ten sites each
1995           // trapping two or more times, they each get the blame for
1996           // all of their traps.
1997           make_not_entrant = true;
1998         }
1999 
2000         // Detect repeated recompilation at the same BCI, and enforce a limit.
2001         if (make_not_entrant && maybe_prior_recompile) {
2002           // More than one recompile at this point.
2003           inc_recompile_count = maybe_prior_trap;
2004         }
2005       } else {
2006         // For reasons which are not recorded per-bytecode, we simply
2007         // force recompiles unconditionally.
2008         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2009         make_not_entrant = true;
2010       }
2011 
2012       // Go back to the compiler if there are too many traps in this method.
2013       if (this_trap_count >= per_method_trap_limit(reason)) {
2014         // If there are too many traps in this method, force a recompile.
2015         // This will allow the compiler to see the limit overflow, and
2016         // take corrective action, if possible.
2017         // (This condition is an unlikely backstop only, because the
2018         // PerBytecodeTrapLimit is more likely to take effect first,
2019         // if it is applicable.)
2020         make_not_entrant = true;
2021       }
2022 
2023       // Here's more hysteresis:  If there has been a recompile at
2024       // this trap point already, run the method in the interpreter
2025       // for a while to exercise it more thoroughly.
2026       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2027         reprofile = true;
2028       }
2029     }
2030 
2031     // Take requested actions on the method:
2032 
2033     // Recompile
2034     if (make_not_entrant) {
2035       if (!nm->make_not_entrant()) {
2036         return; // the call did not change nmethod's state
2037       }
2038 
2039       if (pdata != NULL) {
2040         // Record the recompilation event, if any.
2041         int tstate0 = pdata->trap_state();
2042         int tstate1 = trap_state_set_recompiled(tstate0, true);
2043         if (tstate1 != tstate0)
2044           pdata->set_trap_state(tstate1);
2045       }
2046 
2047 #if INCLUDE_RTM_OPT
2048       // Restart collecting RTM locking abort statistic if the method
2049       // is recompiled for a reason other than RTM state change.
2050       // Assume that in new recompiled code the statistic could be different,
2051       // for example, due to different inlining.
2052       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
2053           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
2054         trap_mdo->atomic_set_rtm_state(ProfileRTM);
2055       }
2056 #endif
2057       // For code aging we count traps separately here, using make_not_entrant()
2058       // as a guard against simultaneous deopts in multiple threads.
2059       if (reason == Reason_tenured && trap_mdo != NULL) {
2060         trap_mdo->inc_tenure_traps();
2061       }
2062     }
2063 
2064     if (inc_recompile_count) {
2065       trap_mdo->inc_overflow_recompile_count();
2066       if ((uint)trap_mdo->overflow_recompile_count() >
2067           (uint)PerBytecodeRecompilationCutoff) {
2068         // Give up on the method containing the bad BCI.
2069         if (trap_method() == nm->method()) {
2070           make_not_compilable = true;
2071         } else {
2072           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2073           // But give grace to the enclosing nm->method().
2074         }
2075       }
2076     }
2077 
2078     // Reprofile
2079     if (reprofile) {
2080       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
2081     }
2082 
2083     // Give up compiling
2084     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2085       assert(make_not_entrant, "consistent");
2086       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2087     }
2088 
2089   } // Free marked resources
2090 
2091 }
2092 JRT_END
2093 
2094 ProfileData*
2095 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2096                                          int trap_bci,
2097                                          Deoptimization::DeoptReason reason,
2098                                          bool update_total_trap_count,
2099 #if INCLUDE_JVMCI
2100                                          bool is_osr,
2101 #endif
2102                                          Method* compiled_method,
2103                                          //outputs:
2104                                          uint& ret_this_trap_count,
2105                                          bool& ret_maybe_prior_trap,
2106                                          bool& ret_maybe_prior_recompile) {
2107   bool maybe_prior_trap = false;
2108   bool maybe_prior_recompile = false;
2109   uint this_trap_count = 0;
2110   if (update_total_trap_count) {
2111     uint idx = reason;
2112 #if INCLUDE_JVMCI
2113     if (is_osr) {
2114       idx += Reason_LIMIT;
2115     }
2116 #endif
2117     uint prior_trap_count = trap_mdo->trap_count(idx);
2118     this_trap_count  = trap_mdo->inc_trap_count(idx);
2119 
2120     // If the runtime cannot find a place to store trap history,
2121     // it is estimated based on the general condition of the method.
2122     // If the method has ever been recompiled, or has ever incurred
2123     // a trap with the present reason , then this BCI is assumed
2124     // (pessimistically) to be the culprit.
2125     maybe_prior_trap      = (prior_trap_count != 0);
2126     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2127   }
2128   ProfileData* pdata = NULL;
2129 
2130 
2131   // For reasons which are recorded per bytecode, we check per-BCI data.
2132   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2133   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2134   if (per_bc_reason != Reason_none) {
2135     // Find the profile data for this BCI.  If there isn't one,
2136     // try to allocate one from the MDO's set of spares.
2137     // This will let us detect a repeated trap at this point.
2138     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2139 
2140     if (pdata != NULL) {
2141       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2142         if (LogCompilation && xtty != NULL) {
2143           ttyLocker ttyl;
2144           // no more room for speculative traps in this MDO
2145           xtty->elem("speculative_traps_oom");
2146         }
2147       }
2148       // Query the trap state of this profile datum.
2149       int tstate0 = pdata->trap_state();
2150       if (!trap_state_has_reason(tstate0, per_bc_reason))
2151         maybe_prior_trap = false;
2152       if (!trap_state_is_recompiled(tstate0))
2153         maybe_prior_recompile = false;
2154 
2155       // Update the trap state of this profile datum.
2156       int tstate1 = tstate0;
2157       // Record the reason.
2158       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2159       // Store the updated state on the MDO, for next time.
2160       if (tstate1 != tstate0)
2161         pdata->set_trap_state(tstate1);
2162     } else {
2163       if (LogCompilation && xtty != NULL) {
2164         ttyLocker ttyl;
2165         // Missing MDP?  Leave a small complaint in the log.
2166         xtty->elem("missing_mdp bci='%d'", trap_bci);
2167       }
2168     }
2169   }
2170 
2171   // Return results:
2172   ret_this_trap_count = this_trap_count;
2173   ret_maybe_prior_trap = maybe_prior_trap;
2174   ret_maybe_prior_recompile = maybe_prior_recompile;
2175   return pdata;
2176 }
2177 
2178 void
2179 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2180   ResourceMark rm;
2181   // Ignored outputs:
2182   uint ignore_this_trap_count;
2183   bool ignore_maybe_prior_trap;
2184   bool ignore_maybe_prior_recompile;
2185   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2186   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2187   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2188   query_update_method_data(trap_mdo, trap_bci,
2189                            (DeoptReason)reason,
2190                            update_total_counts,
2191 #if INCLUDE_JVMCI
2192                            false,
2193 #endif
2194                            NULL,
2195                            ignore_this_trap_count,
2196                            ignore_maybe_prior_trap,
2197                            ignore_maybe_prior_recompile);
2198 }
2199 
2200 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2201   if (TraceDeoptimization) {
2202     tty->print("Uncommon trap ");
2203   }
2204   // Still in Java no safepoints
2205   {
2206     // This enters VM and may safepoint
2207     uncommon_trap_inner(thread, trap_request);
2208   }
2209   return fetch_unroll_info_helper(thread, exec_mode);
2210 }
2211 
2212 // Local derived constants.
2213 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2214 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2215 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2216 
2217 //---------------------------trap_state_reason---------------------------------
2218 Deoptimization::DeoptReason
2219 Deoptimization::trap_state_reason(int trap_state) {
2220   // This assert provides the link between the width of DataLayout::trap_bits
2221   // and the encoding of "recorded" reasons.  It ensures there are enough
2222   // bits to store all needed reasons in the per-BCI MDO profile.
2223   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2224   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2225   trap_state -= recompile_bit;
2226   if (trap_state == DS_REASON_MASK) {
2227     return Reason_many;
2228   } else {
2229     assert((int)Reason_none == 0, "state=0 => Reason_none");
2230     return (DeoptReason)trap_state;
2231   }
2232 }
2233 //-------------------------trap_state_has_reason-------------------------------
2234 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2235   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2236   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2237   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2238   trap_state -= recompile_bit;
2239   if (trap_state == DS_REASON_MASK) {
2240     return -1;  // true, unspecifically (bottom of state lattice)
2241   } else if (trap_state == reason) {
2242     return 1;   // true, definitely
2243   } else if (trap_state == 0) {
2244     return 0;   // false, definitely (top of state lattice)
2245   } else {
2246     return 0;   // false, definitely
2247   }
2248 }
2249 //-------------------------trap_state_add_reason-------------------------------
2250 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2251   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2252   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2253   trap_state -= recompile_bit;
2254   if (trap_state == DS_REASON_MASK) {
2255     return trap_state + recompile_bit;     // already at state lattice bottom
2256   } else if (trap_state == reason) {
2257     return trap_state + recompile_bit;     // the condition is already true
2258   } else if (trap_state == 0) {
2259     return reason + recompile_bit;          // no condition has yet been true
2260   } else {
2261     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2262   }
2263 }
2264 //-----------------------trap_state_is_recompiled------------------------------
2265 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2266   return (trap_state & DS_RECOMPILE_BIT) != 0;
2267 }
2268 //-----------------------trap_state_set_recompiled-----------------------------
2269 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2270   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2271   else    return trap_state & ~DS_RECOMPILE_BIT;
2272 }
2273 //---------------------------format_trap_state---------------------------------
2274 // This is used for debugging and diagnostics, including LogFile output.
2275 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2276                                               int trap_state) {
2277   assert(buflen > 0, "sanity");
2278   DeoptReason reason      = trap_state_reason(trap_state);
2279   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2280   // Re-encode the state from its decoded components.
2281   int decoded_state = 0;
2282   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2283     decoded_state = trap_state_add_reason(decoded_state, reason);
2284   if (recomp_flag)
2285     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2286   // If the state re-encodes properly, format it symbolically.
2287   // Because this routine is used for debugging and diagnostics,
2288   // be robust even if the state is a strange value.
2289   size_t len;
2290   if (decoded_state != trap_state) {
2291     // Random buggy state that doesn't decode??
2292     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2293   } else {
2294     len = jio_snprintf(buf, buflen, "%s%s",
2295                        trap_reason_name(reason),
2296                        recomp_flag ? " recompiled" : "");
2297   }
2298   return buf;
2299 }
2300 
2301 
2302 //--------------------------------statics--------------------------------------
2303 const char* Deoptimization::_trap_reason_name[] = {
2304   // Note:  Keep this in sync. with enum DeoptReason.
2305   "none",
2306   "null_check",
2307   "null_assert" JVMCI_ONLY("_or_unreached0"),
2308   "range_check",
2309   "class_check",
2310   "array_check",
2311   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2312   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2313   "profile_predicate",
2314   "unloaded",
2315   "uninitialized",
2316   "initialized",
2317   "unreached",
2318   "unhandled",
2319   "constraint",
2320   "div0_check",
2321   "age",
2322   "predicate",
2323   "loop_limit_check",
2324   "speculate_class_check",
2325   "speculate_null_check",
2326   "speculate_null_assert",
2327   "rtm_state_change",
2328   "unstable_if",
2329   "unstable_fused_if",
2330 #if INCLUDE_JVMCI
2331   "aliasing",
2332   "transfer_to_interpreter",
2333   "not_compiled_exception_handler",
2334   "unresolved",
2335   "jsr_mismatch",
2336 #endif
2337   "tenured"
2338 };
2339 const char* Deoptimization::_trap_action_name[] = {
2340   // Note:  Keep this in sync. with enum DeoptAction.
2341   "none",
2342   "maybe_recompile",
2343   "reinterpret",
2344   "make_not_entrant",
2345   "make_not_compilable"
2346 };
2347 
2348 const char* Deoptimization::trap_reason_name(int reason) {
2349   // Check that every reason has a name
2350   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2351 
2352   if (reason == Reason_many)  return "many";
2353   if ((uint)reason < Reason_LIMIT)
2354     return _trap_reason_name[reason];
2355   static char buf[20];
2356   sprintf(buf, "reason%d", reason);
2357   return buf;
2358 }
2359 const char* Deoptimization::trap_action_name(int action) {
2360   // Check that every action has a name
2361   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2362 
2363   if ((uint)action < Action_LIMIT)
2364     return _trap_action_name[action];
2365   static char buf[20];
2366   sprintf(buf, "action%d", action);
2367   return buf;
2368 }
2369 
2370 // This is used for debugging and diagnostics, including LogFile output.
2371 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2372                                                 int trap_request) {
2373   jint unloaded_class_index = trap_request_index(trap_request);
2374   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2375   const char* action = trap_action_name(trap_request_action(trap_request));
2376 #if INCLUDE_JVMCI
2377   int debug_id = trap_request_debug_id(trap_request);
2378 #endif
2379   size_t len;
2380   if (unloaded_class_index < 0) {
2381     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2382                        reason, action
2383 #if INCLUDE_JVMCI
2384                        ,debug_id
2385 #endif
2386                        );
2387   } else {
2388     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2389                        reason, action, unloaded_class_index
2390 #if INCLUDE_JVMCI
2391                        ,debug_id
2392 #endif
2393                        );
2394   }
2395   return buf;
2396 }
2397 
2398 juint Deoptimization::_deoptimization_hist
2399         [Deoptimization::Reason_LIMIT]
2400     [1 + Deoptimization::Action_LIMIT]
2401         [Deoptimization::BC_CASE_LIMIT]
2402   = {0};
2403 
2404 enum {
2405   LSB_BITS = 8,
2406   LSB_MASK = right_n_bits(LSB_BITS)
2407 };
2408 
2409 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2410                                        Bytecodes::Code bc) {
2411   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2412   assert(action >= 0 && action < Action_LIMIT, "oob");
2413   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2414   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2415   juint* cases = _deoptimization_hist[reason][1+action];
2416   juint* bc_counter_addr = NULL;
2417   juint  bc_counter      = 0;
2418   // Look for an unused counter, or an exact match to this BC.
2419   if (bc != Bytecodes::_illegal) {
2420     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2421       juint* counter_addr = &cases[bc_case];
2422       juint  counter = *counter_addr;
2423       if ((counter == 0 && bc_counter_addr == NULL)
2424           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2425         // this counter is either free or is already devoted to this BC
2426         bc_counter_addr = counter_addr;
2427         bc_counter = counter | bc;
2428       }
2429     }
2430   }
2431   if (bc_counter_addr == NULL) {
2432     // Overflow, or no given bytecode.
2433     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2434     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2435   }
2436   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2437 }
2438 
2439 jint Deoptimization::total_deoptimization_count() {
2440   return _deoptimization_hist[Reason_none][0][0];
2441 }
2442 
2443 void Deoptimization::print_statistics() {
2444   juint total = total_deoptimization_count();
2445   juint account = total;
2446   if (total != 0) {
2447     ttyLocker ttyl;
2448     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2449     tty->print_cr("Deoptimization traps recorded:");
2450     #define PRINT_STAT_LINE(name, r) \
2451       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2452     PRINT_STAT_LINE("total", total);
2453     // For each non-zero entry in the histogram, print the reason,
2454     // the action, and (if specifically known) the type of bytecode.
2455     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2456       for (int action = 0; action < Action_LIMIT; action++) {
2457         juint* cases = _deoptimization_hist[reason][1+action];
2458         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2459           juint counter = cases[bc_case];
2460           if (counter != 0) {
2461             char name[1*K];
2462             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2463             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2464               bc = Bytecodes::_illegal;
2465             sprintf(name, "%s/%s/%s",
2466                     trap_reason_name(reason),
2467                     trap_action_name(action),
2468                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2469             juint r = counter >> LSB_BITS;
2470             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2471             account -= r;
2472           }
2473         }
2474       }
2475     }
2476     if (account != 0) {
2477       PRINT_STAT_LINE("unaccounted", account);
2478     }
2479     #undef PRINT_STAT_LINE
2480     if (xtty != NULL)  xtty->tail("statistics");
2481   }
2482 }
2483 #else // COMPILER2_OR_JVMCI
2484 
2485 
2486 // Stubs for C1 only system.
2487 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2488   return false;
2489 }
2490 
2491 const char* Deoptimization::trap_reason_name(int reason) {
2492   return "unknown";
2493 }
2494 
2495 void Deoptimization::print_statistics() {
2496   // no output
2497 }
2498 
2499 void
2500 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2501   // no udpate
2502 }
2503 
2504 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2505   return 0;
2506 }
2507 
2508 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2509                                        Bytecodes::Code bc) {
2510   // no update
2511 }
2512 
2513 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2514                                               int trap_state) {
2515   jio_snprintf(buf, buflen, "#%d", trap_state);
2516   return buf;
2517 }
2518 
2519 #endif // COMPILER2_OR_JVMCI