1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/biasedLocking.hpp"
  67 #include "runtime/fieldDescriptor.inline.hpp"
  68 #include "runtime/flags/jvmFlagConstraintList.hpp"
  69 #include "runtime/flags/jvmFlagRangeList.hpp"
  70 #include "runtime/flags/jvmFlagWriteableList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/statSampler.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/sweeper.hpp"
  94 #include "runtime/task.hpp"
  95 #include "runtime/thread.inline.hpp"
  96 #include "runtime/threadCritical.hpp"
  97 #include "runtime/threadSMR.inline.hpp"
  98 #include "runtime/threadStatisticalInfo.hpp"
  99 #include "runtime/timer.hpp"
 100 #include "runtime/timerTrace.hpp"
 101 #include "runtime/vframe.inline.hpp"
 102 #include "runtime/vframeArray.hpp"
 103 #include "runtime/vframe_hp.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "runtime/vmOperations.hpp"
 106 #include "runtime/vm_version.hpp"
 107 #include "services/attachListener.hpp"
 108 #include "services/management.hpp"
 109 #include "services/memTracker.hpp"
 110 #include "services/threadService.hpp"
 111 #include "utilities/align.hpp"
 112 #include "utilities/copy.hpp"
 113 #include "utilities/defaultStream.hpp"
 114 #include "utilities/dtrace.hpp"
 115 #include "utilities/events.hpp"
 116 #include "utilities/macros.hpp"
 117 #include "utilities/preserveException.hpp"
 118 #include "utilities/singleWriterSynchronizer.hpp"
 119 #include "utilities/vmError.hpp"
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmci.hpp"
 122 #include "jvmci/jvmciEnv.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const size_t alignment = markWord::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_lgrp_id(-1);
 227   DEBUG_ONLY(clear_suspendible_thread();)
 228 
 229   // allocated data structures
 230   set_osthread(NULL);
 231   set_resource_area(new (mtThread)ResourceArea());
 232   DEBUG_ONLY(_current_resource_mark = NULL;)
 233   set_handle_area(new (mtThread) HandleArea(NULL));
 234   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 235   set_active_handles(NULL);
 236   set_free_handle_block(NULL);
 237   set_last_handle_mark(NULL);
 238   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 239 
 240   // Initial value of zero ==> never claimed.
 241   _threads_do_token = 0;
 242   _threads_hazard_ptr = NULL;
 243   _threads_list_ptr = NULL;
 244   _nested_threads_hazard_ptr_cnt = 0;
 245   _rcu_counter = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   NOT_PRODUCT(_no_safepoint_count = 0;)
 253   NOT_PRODUCT(_skip_gcalot = false;)
 254   _jvmti_env_iteration_count = 0;
 255   set_allocated_bytes(0);
 256   _vm_operation_started_count = 0;
 257   _vm_operation_completed_count = 0;
 258   _current_pending_monitor = NULL;
 259   _current_pending_monitor_is_from_java = true;
 260   _current_waiting_monitor = NULL;
 261   _num_nested_signal = 0;
 262   om_free_list = NULL;
 263   om_free_count = 0;
 264   om_free_provision = 32;
 265   om_in_use_list = NULL;
 266   om_in_use_count = 0;
 267 
 268 #ifdef ASSERT
 269   _visited_for_critical_count = false;
 270 #endif
 271 
 272   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 273                          Monitor::_safepoint_check_sometimes);
 274   _suspend_flags = 0;
 275 
 276   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 277   _hashStateX = os::random();
 278   _hashStateY = 842502087;
 279   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 280   _hashStateW = 273326509;
 281 
 282   _OnTrap   = 0;
 283   _Stalled  = 0;
 284   _TypeTag  = 0x2BAD;
 285 
 286   // Many of the following fields are effectively final - immutable
 287   // Note that nascent threads can't use the Native Monitor-Mutex
 288   // construct until the _MutexEvent is initialized ...
 289   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 290   // we might instead use a stack of ParkEvents that we could provision on-demand.
 291   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 292   // and ::Release()
 293   _ParkEvent   = ParkEvent::Allocate(this);
 294   _MuxEvent    = ParkEvent::Allocate(this);
 295 
 296 #ifdef CHECK_UNHANDLED_OOPS
 297   if (CheckUnhandledOops) {
 298     _unhandled_oops = new UnhandledOops(this);
 299   }
 300 #endif // CHECK_UNHANDLED_OOPS
 301 #ifdef ASSERT
 302   if (UseBiasedLocking) {
 303     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 304     assert(this == _real_malloc_address ||
 305            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 306            "bug in forced alignment of thread objects");
 307   }
 308 #endif // ASSERT
 309 
 310   // Notify the barrier set that a thread is being created. The initial
 311   // thread is created before the barrier set is available.  The call to
 312   // BarrierSet::on_thread_create() for this thread is therefore deferred
 313   // to BarrierSet::set_barrier_set().
 314   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 315   if (barrier_set != NULL) {
 316     barrier_set->on_thread_create(this);
 317   } else {
 318     // Only the main thread should be created before the barrier set
 319     // and that happens just before Thread::current is set. No other thread
 320     // can attach as the VM is not created yet, so they can't execute this code.
 321     // If the main thread creates other threads before the barrier set that is an error.
 322     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 323   }
 324 }
 325 
 326 void Thread::initialize_thread_current() {
 327 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 328   assert(_thr_current == NULL, "Thread::current already initialized");
 329   _thr_current = this;
 330 #endif
 331   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 332   ThreadLocalStorage::set_thread(this);
 333   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 334 }
 335 
 336 void Thread::clear_thread_current() {
 337   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 338 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 339   _thr_current = NULL;
 340 #endif
 341   ThreadLocalStorage::set_thread(NULL);
 342 }
 343 
 344 void Thread::record_stack_base_and_size() {
 345   // Note: at this point, Thread object is not yet initialized. Do not rely on
 346   // any members being initialized. Do not rely on Thread::current() being set.
 347   // If possible, refrain from doing anything which may crash or assert since
 348   // quite probably those crash dumps will be useless.
 349   set_stack_base(os::current_stack_base());
 350   set_stack_size(os::current_stack_size());
 351 
 352 #ifdef SOLARIS
 353   if (os::is_primordial_thread()) {
 354     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 355   }
 356 #endif
 357 
 358   // Set stack limits after thread is initialized.
 359   if (is_Java_thread()) {
 360     ((JavaThread*) this)->set_stack_overflow_limit();
 361     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 362   }
 363 }
 364 
 365 #if INCLUDE_NMT
 366 void Thread::register_thread_stack_with_NMT() {
 367   MemTracker::record_thread_stack(stack_end(), stack_size());
 368 }
 369 #endif // INCLUDE_NMT
 370 
 371 void Thread::call_run() {
 372   DEBUG_ONLY(_run_state = CALL_RUN;)
 373 
 374   // At this point, Thread object should be fully initialized and
 375   // Thread::current() should be set.
 376 
 377   assert(Thread::current_or_null() != NULL, "current thread is unset");
 378   assert(Thread::current_or_null() == this, "current thread is wrong");
 379 
 380   // Perform common initialization actions
 381 
 382   register_thread_stack_with_NMT();
 383 
 384   JFR_ONLY(Jfr::on_thread_start(this);)
 385 
 386   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 387     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 388     os::current_thread_id(), p2i(stack_base() - stack_size()),
 389     p2i(stack_base()), stack_size()/1024);
 390 
 391   // Perform <ChildClass> initialization actions
 392   DEBUG_ONLY(_run_state = PRE_RUN;)
 393   this->pre_run();
 394 
 395   // Invoke <ChildClass>::run()
 396   DEBUG_ONLY(_run_state = RUN;)
 397   this->run();
 398   // Returned from <ChildClass>::run(). Thread finished.
 399 
 400   // Perform common tear-down actions
 401 
 402   assert(Thread::current_or_null() != NULL, "current thread is unset");
 403   assert(Thread::current_or_null() == this, "current thread is wrong");
 404 
 405   // Perform <ChildClass> tear-down actions
 406   DEBUG_ONLY(_run_state = POST_RUN;)
 407   this->post_run();
 408 
 409   // Note: at this point the thread object may already have deleted itself,
 410   // so from here on do not dereference *this*. Not all thread types currently
 411   // delete themselves when they terminate. But no thread should ever be deleted
 412   // asynchronously with respect to its termination - that is what _run_state can
 413   // be used to check.
 414 
 415   assert(Thread::current_or_null() == NULL, "current thread still present");
 416 }
 417 
 418 Thread::~Thread() {
 419 
 420   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 421   // get started due to errors etc. Any active thread should at least reach post_run
 422   // before it is deleted (usually in post_run()).
 423   assert(_run_state == PRE_CALL_RUN ||
 424          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 425          "_run_state=%d", (int)_run_state);
 426 
 427   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 428   // set might not be available if we encountered errors during bootstrapping.
 429   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 430   if (barrier_set != NULL) {
 431     barrier_set->on_thread_destroy(this);
 432   }
 433 
 434   // stack_base can be NULL if the thread is never started or exited before
 435   // record_stack_base_and_size called. Although, we would like to ensure
 436   // that all started threads do call record_stack_base_and_size(), there is
 437   // not proper way to enforce that.
 438 #if INCLUDE_NMT
 439   if (_stack_base != NULL) {
 440     MemTracker::release_thread_stack(stack_end(), stack_size());
 441 #ifdef ASSERT
 442     set_stack_base(NULL);
 443 #endif
 444   }
 445 #endif // INCLUDE_NMT
 446 
 447   // deallocate data structures
 448   delete resource_area();
 449   // since the handle marks are using the handle area, we have to deallocated the root
 450   // handle mark before deallocating the thread's handle area,
 451   assert(last_handle_mark() != NULL, "check we have an element");
 452   delete last_handle_mark();
 453   assert(last_handle_mark() == NULL, "check we have reached the end");
 454 
 455   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 456   // We NULL out the fields for good hygiene.
 457   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 458   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 459 
 460   delete handle_area();
 461   delete metadata_handles();
 462 
 463   // SR_handler uses this as a termination indicator -
 464   // needs to happen before os::free_thread()
 465   delete _SR_lock;
 466   _SR_lock = NULL;
 467 
 468   // osthread() can be NULL, if creation of thread failed.
 469   if (osthread() != NULL) os::free_thread(osthread());
 470 
 471   // Clear Thread::current if thread is deleting itself and it has not
 472   // already been done. This must be done before the memory is deallocated.
 473   // Needed to ensure JNI correctly detects non-attached threads.
 474   if (this == Thread::current_or_null()) {
 475     Thread::clear_thread_current();
 476   }
 477 
 478   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 479 }
 480 
 481 #ifdef ASSERT
 482 // A JavaThread is considered "dangling" if it is not the current
 483 // thread, has been added the Threads list, the system is not at a
 484 // safepoint and the Thread is not "protected".
 485 //
 486 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 487   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 488          !((JavaThread *) thread)->on_thread_list() ||
 489          SafepointSynchronize::is_at_safepoint() ||
 490          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 491          "possibility of dangling Thread pointer");
 492 }
 493 #endif
 494 
 495 ThreadPriority Thread::get_priority(const Thread* const thread) {
 496   ThreadPriority priority;
 497   // Can return an error!
 498   (void)os::get_priority(thread, priority);
 499   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 500   return priority;
 501 }
 502 
 503 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 504   debug_only(check_for_dangling_thread_pointer(thread);)
 505   // Can return an error!
 506   (void)os::set_priority(thread, priority);
 507 }
 508 
 509 
 510 void Thread::start(Thread* thread) {
 511   // Start is different from resume in that its safety is guaranteed by context or
 512   // being called from a Java method synchronized on the Thread object.
 513   if (!DisableStartThread) {
 514     if (thread->is_Java_thread()) {
 515       // Initialize the thread state to RUNNABLE before starting this thread.
 516       // Can not set it after the thread started because we do not know the
 517       // exact thread state at that time. It could be in MONITOR_WAIT or
 518       // in SLEEPING or some other state.
 519       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 520                                           java_lang_Thread::RUNNABLE);
 521     }
 522     os::start_thread(thread);
 523   }
 524 }
 525 
 526 // Enqueue a VM_Operation to do the job for us - sometime later
 527 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 528   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 529   VMThread::execute(vm_stop);
 530 }
 531 
 532 
 533 // Check if an external suspend request has completed (or has been
 534 // cancelled). Returns true if the thread is externally suspended and
 535 // false otherwise.
 536 //
 537 // The bits parameter returns information about the code path through
 538 // the routine. Useful for debugging:
 539 //
 540 // set in is_ext_suspend_completed():
 541 // 0x00000001 - routine was entered
 542 // 0x00000010 - routine return false at end
 543 // 0x00000100 - thread exited (return false)
 544 // 0x00000200 - suspend request cancelled (return false)
 545 // 0x00000400 - thread suspended (return true)
 546 // 0x00001000 - thread is in a suspend equivalent state (return true)
 547 // 0x00002000 - thread is native and walkable (return true)
 548 // 0x00004000 - thread is native_trans and walkable (needed retry)
 549 //
 550 // set in wait_for_ext_suspend_completion():
 551 // 0x00010000 - routine was entered
 552 // 0x00020000 - suspend request cancelled before loop (return false)
 553 // 0x00040000 - thread suspended before loop (return true)
 554 // 0x00080000 - suspend request cancelled in loop (return false)
 555 // 0x00100000 - thread suspended in loop (return true)
 556 // 0x00200000 - suspend not completed during retry loop (return false)
 557 
 558 // Helper class for tracing suspend wait debug bits.
 559 //
 560 // 0x00000100 indicates that the target thread exited before it could
 561 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 562 // 0x00080000 each indicate a cancelled suspend request so they don't
 563 // count as wait failures either.
 564 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 565 
 566 class TraceSuspendDebugBits : public StackObj {
 567  private:
 568   JavaThread * jt;
 569   bool         is_wait;
 570   bool         called_by_wait;  // meaningful when !is_wait
 571   uint32_t *   bits;
 572 
 573  public:
 574   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 575                         uint32_t *_bits) {
 576     jt             = _jt;
 577     is_wait        = _is_wait;
 578     called_by_wait = _called_by_wait;
 579     bits           = _bits;
 580   }
 581 
 582   ~TraceSuspendDebugBits() {
 583     if (!is_wait) {
 584 #if 1
 585       // By default, don't trace bits for is_ext_suspend_completed() calls.
 586       // That trace is very chatty.
 587       return;
 588 #else
 589       if (!called_by_wait) {
 590         // If tracing for is_ext_suspend_completed() is enabled, then only
 591         // trace calls to it from wait_for_ext_suspend_completion()
 592         return;
 593       }
 594 #endif
 595     }
 596 
 597     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 598       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 599         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 600         ResourceMark rm;
 601 
 602         tty->print_cr(
 603                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 604                       jt->get_thread_name(), *bits);
 605 
 606         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 607       }
 608     }
 609   }
 610 };
 611 #undef DEBUG_FALSE_BITS
 612 
 613 
 614 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 615                                           uint32_t *bits) {
 616   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 617 
 618   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 619   bool do_trans_retry;           // flag to force the retry
 620 
 621   *bits |= 0x00000001;
 622 
 623   do {
 624     do_trans_retry = false;
 625 
 626     if (is_exiting()) {
 627       // Thread is in the process of exiting. This is always checked
 628       // first to reduce the risk of dereferencing a freed JavaThread.
 629       *bits |= 0x00000100;
 630       return false;
 631     }
 632 
 633     if (!is_external_suspend()) {
 634       // Suspend request is cancelled. This is always checked before
 635       // is_ext_suspended() to reduce the risk of a rogue resume
 636       // confusing the thread that made the suspend request.
 637       *bits |= 0x00000200;
 638       return false;
 639     }
 640 
 641     if (is_ext_suspended()) {
 642       // thread is suspended
 643       *bits |= 0x00000400;
 644       return true;
 645     }
 646 
 647     // Now that we no longer do hard suspends of threads running
 648     // native code, the target thread can be changing thread state
 649     // while we are in this routine:
 650     //
 651     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 652     //
 653     // We save a copy of the thread state as observed at this moment
 654     // and make our decision about suspend completeness based on the
 655     // copy. This closes the race where the thread state is seen as
 656     // _thread_in_native_trans in the if-thread_blocked check, but is
 657     // seen as _thread_blocked in if-thread_in_native_trans check.
 658     JavaThreadState save_state = thread_state();
 659 
 660     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 661       // If the thread's state is _thread_blocked and this blocking
 662       // condition is known to be equivalent to a suspend, then we can
 663       // consider the thread to be externally suspended. This means that
 664       // the code that sets _thread_blocked has been modified to do
 665       // self-suspension if the blocking condition releases. We also
 666       // used to check for CONDVAR_WAIT here, but that is now covered by
 667       // the _thread_blocked with self-suspension check.
 668       //
 669       // Return true since we wouldn't be here unless there was still an
 670       // external suspend request.
 671       *bits |= 0x00001000;
 672       return true;
 673     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 674       // Threads running native code will self-suspend on native==>VM/Java
 675       // transitions. If its stack is walkable (should always be the case
 676       // unless this function is called before the actual java_suspend()
 677       // call), then the wait is done.
 678       *bits |= 0x00002000;
 679       return true;
 680     } else if (!called_by_wait && !did_trans_retry &&
 681                save_state == _thread_in_native_trans &&
 682                frame_anchor()->walkable()) {
 683       // The thread is transitioning from thread_in_native to another
 684       // thread state. check_safepoint_and_suspend_for_native_trans()
 685       // will force the thread to self-suspend. If it hasn't gotten
 686       // there yet we may have caught the thread in-between the native
 687       // code check above and the self-suspend. Lucky us. If we were
 688       // called by wait_for_ext_suspend_completion(), then it
 689       // will be doing the retries so we don't have to.
 690       //
 691       // Since we use the saved thread state in the if-statement above,
 692       // there is a chance that the thread has already transitioned to
 693       // _thread_blocked by the time we get here. In that case, we will
 694       // make a single unnecessary pass through the logic below. This
 695       // doesn't hurt anything since we still do the trans retry.
 696 
 697       *bits |= 0x00004000;
 698 
 699       // Once the thread leaves thread_in_native_trans for another
 700       // thread state, we break out of this retry loop. We shouldn't
 701       // need this flag to prevent us from getting back here, but
 702       // sometimes paranoia is good.
 703       did_trans_retry = true;
 704 
 705       // We wait for the thread to transition to a more usable state.
 706       for (int i = 1; i <= SuspendRetryCount; i++) {
 707         // We used to do an "os::yield_all(i)" call here with the intention
 708         // that yielding would increase on each retry. However, the parameter
 709         // is ignored on Linux which means the yield didn't scale up. Waiting
 710         // on the SR_lock below provides a much more predictable scale up for
 711         // the delay. It also provides a simple/direct point to check for any
 712         // safepoint requests from the VMThread
 713 
 714         // temporarily drops SR_lock while doing wait with safepoint check
 715         // (if we're a JavaThread - the WatcherThread can also call this)
 716         // and increase delay with each retry
 717         if (Thread::current()->is_Java_thread()) {
 718           SR_lock()->wait(i * delay);
 719         } else {
 720           SR_lock()->wait_without_safepoint_check(i * delay);
 721         }
 722 
 723         // check the actual thread state instead of what we saved above
 724         if (thread_state() != _thread_in_native_trans) {
 725           // the thread has transitioned to another thread state so
 726           // try all the checks (except this one) one more time.
 727           do_trans_retry = true;
 728           break;
 729         }
 730       } // end retry loop
 731 
 732 
 733     }
 734   } while (do_trans_retry);
 735 
 736   *bits |= 0x00000010;
 737   return false;
 738 }
 739 
 740 // Wait for an external suspend request to complete (or be cancelled).
 741 // Returns true if the thread is externally suspended and false otherwise.
 742 //
 743 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 744                                                  uint32_t *bits) {
 745   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 746                              false /* !called_by_wait */, bits);
 747 
 748   // local flag copies to minimize SR_lock hold time
 749   bool is_suspended;
 750   bool pending;
 751   uint32_t reset_bits;
 752 
 753   // set a marker so is_ext_suspend_completed() knows we are the caller
 754   *bits |= 0x00010000;
 755 
 756   // We use reset_bits to reinitialize the bits value at the top of
 757   // each retry loop. This allows the caller to make use of any
 758   // unused bits for their own marking purposes.
 759   reset_bits = *bits;
 760 
 761   {
 762     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 763     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 764                                             delay, bits);
 765     pending = is_external_suspend();
 766   }
 767   // must release SR_lock to allow suspension to complete
 768 
 769   if (!pending) {
 770     // A cancelled suspend request is the only false return from
 771     // is_ext_suspend_completed() that keeps us from entering the
 772     // retry loop.
 773     *bits |= 0x00020000;
 774     return false;
 775   }
 776 
 777   if (is_suspended) {
 778     *bits |= 0x00040000;
 779     return true;
 780   }
 781 
 782   for (int i = 1; i <= retries; i++) {
 783     *bits = reset_bits;  // reinit to only track last retry
 784 
 785     // We used to do an "os::yield_all(i)" call here with the intention
 786     // that yielding would increase on each retry. However, the parameter
 787     // is ignored on Linux which means the yield didn't scale up. Waiting
 788     // on the SR_lock below provides a much more predictable scale up for
 789     // the delay. It also provides a simple/direct point to check for any
 790     // safepoint requests from the VMThread
 791 
 792     {
 793       Thread* t = Thread::current();
 794       MonitorLocker ml(SR_lock(),
 795                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 796       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 797       // can also call this)  and increase delay with each retry
 798       ml.wait(i * delay);
 799 
 800       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 801                                               delay, bits);
 802 
 803       // It is possible for the external suspend request to be cancelled
 804       // (by a resume) before the actual suspend operation is completed.
 805       // Refresh our local copy to see if we still need to wait.
 806       pending = is_external_suspend();
 807     }
 808 
 809     if (!pending) {
 810       // A cancelled suspend request is the only false return from
 811       // is_ext_suspend_completed() that keeps us from staying in the
 812       // retry loop.
 813       *bits |= 0x00080000;
 814       return false;
 815     }
 816 
 817     if (is_suspended) {
 818       *bits |= 0x00100000;
 819       return true;
 820     }
 821   } // end retry loop
 822 
 823   // thread did not suspend after all our retries
 824   *bits |= 0x00200000;
 825   return false;
 826 }
 827 
 828 // Called from API entry points which perform stack walking. If the
 829 // associated JavaThread is the current thread, then wait_for_suspend
 830 // is not used. Otherwise, it determines if we should wait for the
 831 // "other" thread to complete external suspension. (NOTE: in future
 832 // releases the suspension mechanism should be reimplemented so this
 833 // is not necessary.)
 834 //
 835 bool
 836 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 837   if (this != JavaThread::current()) {
 838     // "other" threads require special handling.
 839     if (wait_for_suspend) {
 840       // We are allowed to wait for the external suspend to complete
 841       // so give the other thread a chance to get suspended.
 842       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 843                                            SuspendRetryDelay, bits)) {
 844         // Didn't make it so let the caller know.
 845         return false;
 846       }
 847     }
 848     // We aren't allowed to wait for the external suspend to complete
 849     // so if the other thread isn't externally suspended we need to
 850     // let the caller know.
 851     else if (!is_ext_suspend_completed_with_lock(bits)) {
 852       return false;
 853     }
 854   }
 855 
 856   return true;
 857 }
 858 
 859 // GC Support
 860 bool Thread::claim_par_threads_do(uintx claim_token) {
 861   uintx token = _threads_do_token;
 862   if (token != claim_token) {
 863     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 864     if (res == token) {
 865       return true;
 866     }
 867     guarantee(res == claim_token, "invariant");
 868   }
 869   return false;
 870 }
 871 
 872 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 873   active_handles()->oops_do(f);
 874   // Do oop for ThreadShadow
 875   f->do_oop((oop*)&_pending_exception);
 876   handle_area()->oops_do(f);
 877 
 878   // We scan thread local monitor lists here, and the remaining global
 879   // monitors in ObjectSynchronizer::oops_do().
 880   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 881 }
 882 
 883 void Thread::metadata_handles_do(void f(Metadata*)) {
 884   // Only walk the Handles in Thread.
 885   if (metadata_handles() != NULL) {
 886     for (int i = 0; i< metadata_handles()->length(); i++) {
 887       f(metadata_handles()->at(i));
 888     }
 889   }
 890 }
 891 
 892 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 893   // get_priority assumes osthread initialized
 894   if (osthread() != NULL) {
 895     int os_prio;
 896     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 897       st->print("os_prio=%d ", os_prio);
 898     }
 899 
 900     st->print("cpu=%.2fms ",
 901               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 902               );
 903     st->print("elapsed=%.2fs ",
 904               _statistical_info.getElapsedTime() / 1000.0
 905               );
 906     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 907       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 908       st->print("allocated=" SIZE_FORMAT "%s ",
 909                 byte_size_in_proper_unit(allocated_bytes),
 910                 proper_unit_for_byte_size(allocated_bytes)
 911                 );
 912       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 913     }
 914 
 915     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 916     osthread()->print_on(st);
 917   }
 918   ThreadsSMRSupport::print_info_on(this, st);
 919   st->print(" ");
 920   debug_only(if (WizardMode) print_owned_locks_on(st);)
 921 }
 922 
 923 void Thread::print() const { print_on(tty); }
 924 
 925 // Thread::print_on_error() is called by fatal error handler. Don't use
 926 // any lock or allocate memory.
 927 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 928   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 929 
 930   if (is_VM_thread())                 { st->print("VMThread"); }
 931   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 932   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 933   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 934   else                                { st->print("Thread"); }
 935 
 936   if (is_Named_thread()) {
 937     st->print(" \"%s\"", name());
 938   }
 939 
 940   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 941             p2i(stack_end()), p2i(stack_base()));
 942 
 943   if (osthread()) {
 944     st->print(" [id=%d]", osthread()->thread_id());
 945   }
 946 
 947   ThreadsSMRSupport::print_info_on(this, st);
 948 }
 949 
 950 void Thread::print_value_on(outputStream* st) const {
 951   if (is_Named_thread()) {
 952     st->print(" \"%s\" ", name());
 953   }
 954   st->print(INTPTR_FORMAT, p2i(this));   // print address
 955 }
 956 
 957 #ifdef ASSERT
 958 void Thread::print_owned_locks_on(outputStream* st) const {
 959   Mutex* cur = _owned_locks;
 960   if (cur == NULL) {
 961     st->print(" (no locks) ");
 962   } else {
 963     st->print_cr(" Locks owned:");
 964     while (cur) {
 965       cur->print_on(st);
 966       cur = cur->next();
 967     }
 968   }
 969 }
 970 
 971 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 972 void Thread::check_possible_safepoint() {
 973   if (!is_Java_thread()) return;
 974 
 975   if (_no_safepoint_count > 0) {
 976     print_owned_locks();
 977     fatal("Possible safepoint reached by thread that does not allow it");
 978   }
 979 #ifdef CHECK_UNHANDLED_OOPS
 980   // Clear unhandled oops in JavaThreads so we get a crash right away.
 981   clear_unhandled_oops();
 982 #endif // CHECK_UNHANDLED_OOPS
 983 }
 984 
 985 void Thread::check_for_valid_safepoint_state() {
 986   if (!is_Java_thread()) return;
 987 
 988   // Check NoSafepointVerifier, which is implied by locks taken that can be
 989   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
 990   // are held.
 991   check_possible_safepoint();
 992 
 993   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
 994     fatal("LEAF method calling lock?");
 995   }
 996 
 997   if (GCALotAtAllSafepoints) {
 998     // We could enter a safepoint here and thus have a gc
 999     InterfaceSupport::check_gc_alot();
1000   }
1001 }
1002 #endif // ASSERT
1003 
1004 bool Thread::is_in_stack(address adr) const {
1005   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1006   address end = os::current_stack_pointer();
1007   // Allow non Java threads to call this without stack_base
1008   if (_stack_base == NULL) return true;
1009   if (stack_base() >= adr && adr >= end) return true;
1010 
1011   return false;
1012 }
1013 
1014 bool Thread::is_in_usable_stack(address adr) const {
1015   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1016   size_t usable_stack_size = _stack_size - stack_guard_size;
1017 
1018   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1019 }
1020 
1021 
1022 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1023 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1024 // used for compilation in the future. If that change is made, the need for these methods
1025 // should be revisited, and they should be removed if possible.
1026 
1027 bool Thread::is_lock_owned(address adr) const {
1028   return on_local_stack(adr);
1029 }
1030 
1031 bool Thread::set_as_starting_thread() {
1032   assert(_starting_thread == NULL, "already initialized: "
1033          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1034   // NOTE: this must be called inside the main thread.
1035   DEBUG_ONLY(_starting_thread = this;)
1036   return os::create_main_thread((JavaThread*)this);
1037 }
1038 
1039 static void initialize_class(Symbol* class_name, TRAPS) {
1040   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1041   InstanceKlass::cast(klass)->initialize(CHECK);
1042 }
1043 
1044 
1045 // Creates the initial ThreadGroup
1046 static Handle create_initial_thread_group(TRAPS) {
1047   Handle system_instance = JavaCalls::construct_new_instance(
1048                             SystemDictionary::ThreadGroup_klass(),
1049                             vmSymbols::void_method_signature(),
1050                             CHECK_NH);
1051   Universe::set_system_thread_group(system_instance());
1052 
1053   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1054   Handle main_instance = JavaCalls::construct_new_instance(
1055                             SystemDictionary::ThreadGroup_klass(),
1056                             vmSymbols::threadgroup_string_void_signature(),
1057                             system_instance,
1058                             string,
1059                             CHECK_NH);
1060   return main_instance;
1061 }
1062 
1063 // Creates the initial Thread
1064 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1065                                  TRAPS) {
1066   InstanceKlass* ik = SystemDictionary::Thread_klass();
1067   assert(ik->is_initialized(), "must be");
1068   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1069 
1070   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1071   // constructor calls Thread.current(), which must be set here for the
1072   // initial thread.
1073   java_lang_Thread::set_thread(thread_oop(), thread);
1074   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1075   thread->set_threadObj(thread_oop());
1076 
1077   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1078 
1079   JavaValue result(T_VOID);
1080   JavaCalls::call_special(&result, thread_oop,
1081                           ik,
1082                           vmSymbols::object_initializer_name(),
1083                           vmSymbols::threadgroup_string_void_signature(),
1084                           thread_group,
1085                           string,
1086                           CHECK_NULL);
1087   return thread_oop();
1088 }
1089 
1090 char java_runtime_name[128] = "";
1091 char java_runtime_version[128] = "";
1092 
1093 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1094 static const char* get_java_runtime_name(TRAPS) {
1095   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1096                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1097   fieldDescriptor fd;
1098   bool found = k != NULL &&
1099                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1100                                                         vmSymbols::string_signature(), &fd);
1101   if (found) {
1102     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1103     if (name_oop == NULL) {
1104       return NULL;
1105     }
1106     const char* name = java_lang_String::as_utf8_string(name_oop,
1107                                                         java_runtime_name,
1108                                                         sizeof(java_runtime_name));
1109     return name;
1110   } else {
1111     return NULL;
1112   }
1113 }
1114 
1115 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1116 static const char* get_java_runtime_version(TRAPS) {
1117   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1118                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1119   fieldDescriptor fd;
1120   bool found = k != NULL &&
1121                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1122                                                         vmSymbols::string_signature(), &fd);
1123   if (found) {
1124     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1125     if (name_oop == NULL) {
1126       return NULL;
1127     }
1128     const char* name = java_lang_String::as_utf8_string(name_oop,
1129                                                         java_runtime_version,
1130                                                         sizeof(java_runtime_version));
1131     return name;
1132   } else {
1133     return NULL;
1134   }
1135 }
1136 
1137 // General purpose hook into Java code, run once when the VM is initialized.
1138 // The Java library method itself may be changed independently from the VM.
1139 static void call_postVMInitHook(TRAPS) {
1140   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1141   if (klass != NULL) {
1142     JavaValue result(T_VOID);
1143     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1144                            vmSymbols::void_method_signature(),
1145                            CHECK);
1146   }
1147 }
1148 
1149 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1150                                     bool daemon, TRAPS) {
1151   assert(thread_group.not_null(), "thread group should be specified");
1152   assert(threadObj() == NULL, "should only create Java thread object once");
1153 
1154   InstanceKlass* ik = SystemDictionary::Thread_klass();
1155   assert(ik->is_initialized(), "must be");
1156   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1157 
1158   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1159   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1160   // constructor calls Thread.current(), which must be set here.
1161   java_lang_Thread::set_thread(thread_oop(), this);
1162   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1163   set_threadObj(thread_oop());
1164 
1165   JavaValue result(T_VOID);
1166   if (thread_name != NULL) {
1167     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1168     // Thread gets assigned specified name and null target
1169     JavaCalls::call_special(&result,
1170                             thread_oop,
1171                             ik,
1172                             vmSymbols::object_initializer_name(),
1173                             vmSymbols::threadgroup_string_void_signature(),
1174                             thread_group,
1175                             name,
1176                             THREAD);
1177   } else {
1178     // Thread gets assigned name "Thread-nnn" and null target
1179     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1180     JavaCalls::call_special(&result,
1181                             thread_oop,
1182                             ik,
1183                             vmSymbols::object_initializer_name(),
1184                             vmSymbols::threadgroup_runnable_void_signature(),
1185                             thread_group,
1186                             Handle(),
1187                             THREAD);
1188   }
1189 
1190 
1191   if (daemon) {
1192     java_lang_Thread::set_daemon(thread_oop());
1193   }
1194 
1195   if (HAS_PENDING_EXCEPTION) {
1196     return;
1197   }
1198 
1199   Klass* group =  SystemDictionary::ThreadGroup_klass();
1200   Handle threadObj(THREAD, this->threadObj());
1201 
1202   JavaCalls::call_special(&result,
1203                           thread_group,
1204                           group,
1205                           vmSymbols::add_method_name(),
1206                           vmSymbols::thread_void_signature(),
1207                           threadObj,          // Arg 1
1208                           THREAD);
1209 }
1210 
1211 // List of all NonJavaThreads and safe iteration over that list.
1212 
1213 class NonJavaThread::List {
1214 public:
1215   NonJavaThread* volatile _head;
1216   SingleWriterSynchronizer _protect;
1217 
1218   List() : _head(NULL), _protect() {}
1219 };
1220 
1221 NonJavaThread::List NonJavaThread::_the_list;
1222 
1223 NonJavaThread::Iterator::Iterator() :
1224   _protect_enter(_the_list._protect.enter()),
1225   _current(OrderAccess::load_acquire(&_the_list._head))
1226 {}
1227 
1228 NonJavaThread::Iterator::~Iterator() {
1229   _the_list._protect.exit(_protect_enter);
1230 }
1231 
1232 void NonJavaThread::Iterator::step() {
1233   assert(!end(), "precondition");
1234   _current = OrderAccess::load_acquire(&_current->_next);
1235 }
1236 
1237 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1238   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1239 }
1240 
1241 NonJavaThread::~NonJavaThread() { }
1242 
1243 void NonJavaThread::add_to_the_list() {
1244   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1245   // Initialize BarrierSet-related data before adding to list.
1246   BarrierSet::barrier_set()->on_thread_attach(this);
1247   OrderAccess::release_store(&_next, _the_list._head);
1248   OrderAccess::release_store(&_the_list._head, this);
1249 }
1250 
1251 void NonJavaThread::remove_from_the_list() {
1252   {
1253     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1254     // Cleanup BarrierSet-related data before removing from list.
1255     BarrierSet::barrier_set()->on_thread_detach(this);
1256     NonJavaThread* volatile* p = &_the_list._head;
1257     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1258       if (t == this) {
1259         *p = _next;
1260         break;
1261       }
1262     }
1263   }
1264   // Wait for any in-progress iterators.  Concurrent synchronize is not
1265   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1266   // from NJTList_lock in case an iteration attempts to lock it.
1267   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1268   _the_list._protect.synchronize();
1269   _next = NULL;                 // Safe to drop the link now.
1270 }
1271 
1272 void NonJavaThread::pre_run() {
1273   add_to_the_list();
1274 
1275   // This is slightly odd in that NamedThread is a subclass, but
1276   // in fact name() is defined in Thread
1277   assert(this->name() != NULL, "thread name was not set before it was started");
1278   this->set_native_thread_name(this->name());
1279 }
1280 
1281 void NonJavaThread::post_run() {
1282   JFR_ONLY(Jfr::on_thread_exit(this);)
1283   remove_from_the_list();
1284   // Ensure thread-local-storage is cleared before termination.
1285   Thread::clear_thread_current();
1286 }
1287 
1288 // NamedThread --  non-JavaThread subclasses with multiple
1289 // uniquely named instances should derive from this.
1290 NamedThread::NamedThread() :
1291   NonJavaThread(),
1292   _name(NULL),
1293   _processed_thread(NULL),
1294   _gc_id(GCId::undefined())
1295 {}
1296 
1297 NamedThread::~NamedThread() {
1298   FREE_C_HEAP_ARRAY(char, _name);
1299 }
1300 
1301 void NamedThread::set_name(const char* format, ...) {
1302   guarantee(_name == NULL, "Only get to set name once.");
1303   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1304   va_list ap;
1305   va_start(ap, format);
1306   jio_vsnprintf(_name, max_name_len, format, ap);
1307   va_end(ap);
1308 }
1309 
1310 void NamedThread::print_on(outputStream* st) const {
1311   st->print("\"%s\" ", name());
1312   Thread::print_on(st);
1313   st->cr();
1314 }
1315 
1316 
1317 // ======= WatcherThread ========
1318 
1319 // The watcher thread exists to simulate timer interrupts.  It should
1320 // be replaced by an abstraction over whatever native support for
1321 // timer interrupts exists on the platform.
1322 
1323 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1324 bool WatcherThread::_startable = false;
1325 volatile bool  WatcherThread::_should_terminate = false;
1326 
1327 WatcherThread::WatcherThread() : NonJavaThread() {
1328   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1329   if (os::create_thread(this, os::watcher_thread)) {
1330     _watcher_thread = this;
1331 
1332     // Set the watcher thread to the highest OS priority which should not be
1333     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1334     // is created. The only normal thread using this priority is the reference
1335     // handler thread, which runs for very short intervals only.
1336     // If the VMThread's priority is not lower than the WatcherThread profiling
1337     // will be inaccurate.
1338     os::set_priority(this, MaxPriority);
1339     if (!DisableStartThread) {
1340       os::start_thread(this);
1341     }
1342   }
1343 }
1344 
1345 int WatcherThread::sleep() const {
1346   // The WatcherThread does not participate in the safepoint protocol
1347   // for the PeriodicTask_lock because it is not a JavaThread.
1348   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1349 
1350   if (_should_terminate) {
1351     // check for termination before we do any housekeeping or wait
1352     return 0;  // we did not sleep.
1353   }
1354 
1355   // remaining will be zero if there are no tasks,
1356   // causing the WatcherThread to sleep until a task is
1357   // enrolled
1358   int remaining = PeriodicTask::time_to_wait();
1359   int time_slept = 0;
1360 
1361   // we expect this to timeout - we only ever get unparked when
1362   // we should terminate or when a new task has been enrolled
1363   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1364 
1365   jlong time_before_loop = os::javaTimeNanos();
1366 
1367   while (true) {
1368     bool timedout = ml.wait(remaining);
1369     jlong now = os::javaTimeNanos();
1370 
1371     if (remaining == 0) {
1372       // if we didn't have any tasks we could have waited for a long time
1373       // consider the time_slept zero and reset time_before_loop
1374       time_slept = 0;
1375       time_before_loop = now;
1376     } else {
1377       // need to recalculate since we might have new tasks in _tasks
1378       time_slept = (int) ((now - time_before_loop) / 1000000);
1379     }
1380 
1381     // Change to task list or spurious wakeup of some kind
1382     if (timedout || _should_terminate) {
1383       break;
1384     }
1385 
1386     remaining = PeriodicTask::time_to_wait();
1387     if (remaining == 0) {
1388       // Last task was just disenrolled so loop around and wait until
1389       // another task gets enrolled
1390       continue;
1391     }
1392 
1393     remaining -= time_slept;
1394     if (remaining <= 0) {
1395       break;
1396     }
1397   }
1398 
1399   return time_slept;
1400 }
1401 
1402 void WatcherThread::run() {
1403   assert(this == watcher_thread(), "just checking");
1404 
1405   this->set_active_handles(JNIHandleBlock::allocate_block());
1406   while (true) {
1407     assert(watcher_thread() == Thread::current(), "thread consistency check");
1408     assert(watcher_thread() == this, "thread consistency check");
1409 
1410     // Calculate how long it'll be until the next PeriodicTask work
1411     // should be done, and sleep that amount of time.
1412     int time_waited = sleep();
1413 
1414     if (VMError::is_error_reported()) {
1415       // A fatal error has happened, the error handler(VMError::report_and_die)
1416       // should abort JVM after creating an error log file. However in some
1417       // rare cases, the error handler itself might deadlock. Here periodically
1418       // check for error reporting timeouts, and if it happens, just proceed to
1419       // abort the VM.
1420 
1421       // This code is in WatcherThread because WatcherThread wakes up
1422       // periodically so the fatal error handler doesn't need to do anything;
1423       // also because the WatcherThread is less likely to crash than other
1424       // threads.
1425 
1426       for (;;) {
1427         // Note: we use naked sleep in this loop because we want to avoid using
1428         // any kind of VM infrastructure which may be broken at this point.
1429         if (VMError::check_timeout()) {
1430           // We hit error reporting timeout. Error reporting was interrupted and
1431           // will be wrapping things up now (closing files etc). Give it some more
1432           // time, then quit the VM.
1433           os::naked_short_sleep(200);
1434           // Print a message to stderr.
1435           fdStream err(defaultStream::output_fd());
1436           err.print_raw_cr("# [ timer expired, abort... ]");
1437           // skip atexit/vm_exit/vm_abort hooks
1438           os::die();
1439         }
1440 
1441         // Wait a second, then recheck for timeout.
1442         os::naked_short_sleep(999);
1443       }
1444     }
1445 
1446     if (_should_terminate) {
1447       // check for termination before posting the next tick
1448       break;
1449     }
1450 
1451     PeriodicTask::real_time_tick(time_waited);
1452   }
1453 
1454   // Signal that it is terminated
1455   {
1456     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1457     _watcher_thread = NULL;
1458     Terminator_lock->notify_all();
1459   }
1460 }
1461 
1462 void WatcherThread::start() {
1463   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1464 
1465   if (watcher_thread() == NULL && _startable) {
1466     _should_terminate = false;
1467     // Create the single instance of WatcherThread
1468     new WatcherThread();
1469   }
1470 }
1471 
1472 void WatcherThread::make_startable() {
1473   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1474   _startable = true;
1475 }
1476 
1477 void WatcherThread::stop() {
1478   {
1479     // Follow normal safepoint aware lock enter protocol since the
1480     // WatcherThread is stopped by another JavaThread.
1481     MutexLocker ml(PeriodicTask_lock);
1482     _should_terminate = true;
1483 
1484     WatcherThread* watcher = watcher_thread();
1485     if (watcher != NULL) {
1486       // unpark the WatcherThread so it can see that it should terminate
1487       watcher->unpark();
1488     }
1489   }
1490 
1491   MonitorLocker mu(Terminator_lock);
1492 
1493   while (watcher_thread() != NULL) {
1494     // This wait should make safepoint checks, wait without a timeout,
1495     // and wait as a suspend-equivalent condition.
1496     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1497   }
1498 }
1499 
1500 void WatcherThread::unpark() {
1501   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1502   PeriodicTask_lock->notify();
1503 }
1504 
1505 void WatcherThread::print_on(outputStream* st) const {
1506   st->print("\"%s\" ", name());
1507   Thread::print_on(st);
1508   st->cr();
1509 }
1510 
1511 // ======= JavaThread ========
1512 
1513 #if INCLUDE_JVMCI
1514 
1515 jlong* JavaThread::_jvmci_old_thread_counters;
1516 
1517 bool jvmci_counters_include(JavaThread* thread) {
1518   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1519 }
1520 
1521 void JavaThread::collect_counters(jlong* array, int length) {
1522   assert(length == JVMCICounterSize, "wrong value");
1523   for (int i = 0; i < length; i++) {
1524     array[i] = _jvmci_old_thread_counters[i];
1525   }
1526   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1527     if (jvmci_counters_include(tp)) {
1528       for (int i = 0; i < length; i++) {
1529         array[i] += tp->_jvmci_counters[i];
1530       }
1531     }
1532   }
1533 }
1534 
1535 // Attempt to enlarge the array for per thread counters.
1536 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1537   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1538   if (old_counters == NULL) {
1539     old_counters = new_counters;
1540     memset(old_counters, 0, sizeof(jlong) * new_size);
1541   } else {
1542     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1543       new_counters[i] = old_counters[i];
1544     }
1545     if (new_size > current_size) {
1546       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1547     }
1548     FREE_C_HEAP_ARRAY(jlong, old_counters);
1549   }
1550   return new_counters;
1551 }
1552 
1553 // Attempt to enlarge the array for per thread counters.
1554 void JavaThread::resize_counters(int current_size, int new_size) {
1555   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1556 }
1557 
1558 class VM_JVMCIResizeCounters : public VM_Operation {
1559  private:
1560   int _new_size;
1561 
1562  public:
1563   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1564   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1565   bool allow_nested_vm_operations() const        { return true; }
1566   void doit() {
1567     // Resize the old thread counters array
1568     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1569     JavaThread::_jvmci_old_thread_counters = new_counters;
1570 
1571     // Now resize each threads array
1572     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1573       tp->resize_counters(JVMCICounterSize, _new_size);
1574     }
1575     JVMCICounterSize = _new_size;
1576   }
1577 };
1578 
1579 void JavaThread::resize_all_jvmci_counters(int new_size) {
1580   VM_JVMCIResizeCounters op(new_size);
1581   VMThread::execute(&op);
1582 }
1583 
1584 #endif // INCLUDE_JVMCI
1585 
1586 // A JavaThread is a normal Java thread
1587 
1588 void JavaThread::initialize() {
1589   // Initialize fields
1590 
1591   set_saved_exception_pc(NULL);
1592   set_threadObj(NULL);
1593   _anchor.clear();
1594   set_entry_point(NULL);
1595   set_jni_functions(jni_functions());
1596   set_callee_target(NULL);
1597   set_vm_result(NULL);
1598   set_vm_result_2(NULL);
1599   set_vframe_array_head(NULL);
1600   set_vframe_array_last(NULL);
1601   set_deferred_locals(NULL);
1602   set_deopt_mark(NULL);
1603   set_deopt_compiled_method(NULL);
1604   set_monitor_chunks(NULL);
1605   _on_thread_list = false;
1606   set_thread_state(_thread_new);
1607   _terminated = _not_terminated;
1608   _array_for_gc = NULL;
1609   _suspend_equivalent = false;
1610   _in_deopt_handler = 0;
1611   _doing_unsafe_access = false;
1612   _stack_guard_state = stack_guard_unused;
1613 #if INCLUDE_JVMCI
1614   _pending_monitorenter = false;
1615   _pending_deoptimization = -1;
1616   _pending_failed_speculation = 0;
1617   _pending_transfer_to_interpreter = false;
1618   _in_retryable_allocation = false;
1619   _jvmci._alternate_call_target = NULL;
1620   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1621   _jvmci_counters = NULL;
1622   if (JVMCICounterSize > 0) {
1623     resize_counters(0, (int) JVMCICounterSize);
1624   }
1625 #endif // INCLUDE_JVMCI
1626   _reserved_stack_activation = NULL;  // stack base not known yet
1627   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1628   _exception_pc  = 0;
1629   _exception_handler_pc = 0;
1630   _is_method_handle_return = 0;
1631   _jvmti_thread_state= NULL;
1632   _should_post_on_exceptions_flag = JNI_FALSE;
1633   _interp_only_mode    = 0;
1634   _special_runtime_exit_condition = _no_async_condition;
1635   _pending_async_exception = NULL;
1636   _thread_stat = NULL;
1637   _thread_stat = new ThreadStatistics();
1638   _jni_active_critical = 0;
1639   _pending_jni_exception_check_fn = NULL;
1640   _do_not_unlock_if_synchronized = false;
1641   _cached_monitor_info = NULL;
1642   _parker = Parker::Allocate(this);
1643   _SleepEvent = ParkEvent::Allocate(this);
1644   // Setup safepoint state info for this thread
1645   ThreadSafepointState::create(this);
1646 
1647   debug_only(_java_call_counter = 0);
1648 
1649   // JVMTI PopFrame support
1650   _popframe_condition = popframe_inactive;
1651   _popframe_preserved_args = NULL;
1652   _popframe_preserved_args_size = 0;
1653   _frames_to_pop_failed_realloc = 0;
1654 
1655   if (SafepointMechanism::uses_thread_local_poll()) {
1656     SafepointMechanism::initialize_header(this);
1657   }
1658 
1659   _class_to_be_initialized = NULL;
1660 
1661   pd_initialize();
1662 }
1663 
1664 JavaThread::JavaThread(bool is_attaching_via_jni) :
1665                        Thread() {
1666   initialize();
1667   if (is_attaching_via_jni) {
1668     _jni_attach_state = _attaching_via_jni;
1669   } else {
1670     _jni_attach_state = _not_attaching_via_jni;
1671   }
1672   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1673 }
1674 
1675 
1676 // interrupt support
1677 
1678 void JavaThread::interrupt() {
1679   debug_only(check_for_dangling_thread_pointer(this);)
1680 
1681   if (!osthread()->interrupted()) {
1682     osthread()->set_interrupted(true);
1683     // More than one thread can get here with the same value of osthread,
1684     // resulting in multiple notifications.  We do, however, want the store
1685     // to interrupted() to be visible to other threads before we execute unpark().
1686     OrderAccess::fence();
1687 
1688     // For JavaThread::sleep. Historically we only unpark if changing to the interrupted
1689     // state, in contrast to the other events below. Not clear exactly why.
1690     _SleepEvent->unpark();
1691   }
1692 
1693   // For JSR166. Unpark even if interrupt status already was set.
1694   parker()->unpark();
1695 
1696   // For ObjectMonitor and JvmtiRawMonitor
1697   _ParkEvent->unpark();
1698 }
1699 
1700 
1701 bool JavaThread::is_interrupted(bool clear_interrupted) {
1702   debug_only(check_for_dangling_thread_pointer(this);)
1703   bool interrupted = osthread()->interrupted();
1704 
1705   // NOTE that since there is no "lock" around the interrupt and
1706   // is_interrupted operations, there is the possibility that the
1707   // interrupted flag (in osThread) will be "false" but that the
1708   // low-level events will be in the signaled state. This is
1709   // intentional. The effect of this is that Object.wait() and
1710   // LockSupport.park() will appear to have a spurious wakeup, which
1711   // is allowed and not harmful, and the possibility is so rare that
1712   // it is not worth the added complexity to add yet another lock.
1713   // For the sleep event an explicit reset is performed on entry
1714   // to JavaThread::sleep, so there is no early return. It has also been
1715   // recommended not to put the interrupted flag into the "event"
1716   // structure because it hides the issue.
1717   if (interrupted && clear_interrupted) {
1718     osthread()->set_interrupted(false);
1719     // consider thread->_SleepEvent->reset() ... optional optimization
1720   }
1721 
1722   return interrupted;
1723 }
1724 
1725 bool JavaThread::reguard_stack(address cur_sp) {
1726   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1727       && _stack_guard_state != stack_guard_reserved_disabled) {
1728     return true; // Stack already guarded or guard pages not needed.
1729   }
1730 
1731   if (register_stack_overflow()) {
1732     // For those architectures which have separate register and
1733     // memory stacks, we must check the register stack to see if
1734     // it has overflowed.
1735     return false;
1736   }
1737 
1738   // Java code never executes within the yellow zone: the latter is only
1739   // there to provoke an exception during stack banging.  If java code
1740   // is executing there, either StackShadowPages should be larger, or
1741   // some exception code in c1, c2 or the interpreter isn't unwinding
1742   // when it should.
1743   guarantee(cur_sp > stack_reserved_zone_base(),
1744             "not enough space to reguard - increase StackShadowPages");
1745   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1746     enable_stack_yellow_reserved_zone();
1747     if (reserved_stack_activation() != stack_base()) {
1748       set_reserved_stack_activation(stack_base());
1749     }
1750   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1751     set_reserved_stack_activation(stack_base());
1752     enable_stack_reserved_zone();
1753   }
1754   return true;
1755 }
1756 
1757 bool JavaThread::reguard_stack(void) {
1758   return reguard_stack(os::current_stack_pointer());
1759 }
1760 
1761 
1762 void JavaThread::block_if_vm_exited() {
1763   if (_terminated == _vm_exited) {
1764     // _vm_exited is set at safepoint, and Threads_lock is never released
1765     // we will block here forever.
1766     // Here we can be doing a jump from a safe state to an unsafe state without
1767     // proper transition, but it happens after the final safepoint has begun.
1768     set_thread_state(_thread_in_vm);
1769     Threads_lock->lock();
1770     ShouldNotReachHere();
1771   }
1772 }
1773 
1774 
1775 // Remove this ifdef when C1 is ported to the compiler interface.
1776 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1777 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1778 
1779 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1780                        Thread() {
1781   initialize();
1782   _jni_attach_state = _not_attaching_via_jni;
1783   set_entry_point(entry_point);
1784   // Create the native thread itself.
1785   // %note runtime_23
1786   os::ThreadType thr_type = os::java_thread;
1787   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1788                                                      os::java_thread;
1789   os::create_thread(this, thr_type, stack_sz);
1790   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1791   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1792   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1793   // the exception consists of creating the exception object & initializing it, initialization
1794   // will leave the VM via a JavaCall and then all locks must be unlocked).
1795   //
1796   // The thread is still suspended when we reach here. Thread must be explicit started
1797   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1798   // by calling Threads:add. The reason why this is not done here, is because the thread
1799   // object must be fully initialized (take a look at JVM_Start)
1800 }
1801 
1802 JavaThread::~JavaThread() {
1803 
1804   // JSR166 -- return the parker to the free list
1805   Parker::Release(_parker);
1806   _parker = NULL;
1807 
1808   // Return the sleep event to the free list
1809   ParkEvent::Release(_SleepEvent);
1810   _SleepEvent = NULL;
1811 
1812   // Free any remaining  previous UnrollBlock
1813   vframeArray* old_array = vframe_array_last();
1814 
1815   if (old_array != NULL) {
1816     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1817     old_array->set_unroll_block(NULL);
1818     delete old_info;
1819     delete old_array;
1820   }
1821 
1822   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1823   if (deferred != NULL) {
1824     // This can only happen if thread is destroyed before deoptimization occurs.
1825     assert(deferred->length() != 0, "empty array!");
1826     do {
1827       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1828       deferred->remove_at(0);
1829       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1830       delete dlv;
1831     } while (deferred->length() != 0);
1832     delete deferred;
1833   }
1834 
1835   // All Java related clean up happens in exit
1836   ThreadSafepointState::destroy(this);
1837   if (_thread_stat != NULL) delete _thread_stat;
1838 
1839 #if INCLUDE_JVMCI
1840   if (JVMCICounterSize > 0) {
1841     if (jvmci_counters_include(this)) {
1842       for (int i = 0; i < JVMCICounterSize; i++) {
1843         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1844       }
1845     }
1846     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1847   }
1848 #endif // INCLUDE_JVMCI
1849 }
1850 
1851 
1852 // First JavaThread specific code executed by a new Java thread.
1853 void JavaThread::pre_run() {
1854   // empty - see comments in run()
1855 }
1856 
1857 // The main routine called by a new Java thread. This isn't overridden
1858 // by subclasses, instead different subclasses define a different "entry_point"
1859 // which defines the actual logic for that kind of thread.
1860 void JavaThread::run() {
1861   // initialize thread-local alloc buffer related fields
1862   this->initialize_tlab();
1863 
1864   // Used to test validity of stack trace backs.
1865   // This can't be moved into pre_run() else we invalidate
1866   // the requirement that thread_main_inner is lower on
1867   // the stack. Consequently all the initialization logic
1868   // stays here in run() rather than pre_run().
1869   this->record_base_of_stack_pointer();
1870 
1871   this->create_stack_guard_pages();
1872 
1873   this->cache_global_variables();
1874 
1875   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1876   // in the VM. Change thread state from _thread_new to _thread_in_vm
1877   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1878   // Before a thread is on the threads list it is always safe, so after leaving the
1879   // _thread_new we should emit a instruction barrier. The distance to modified code
1880   // from here is probably far enough, but this is consistent and safe.
1881   OrderAccess::cross_modify_fence();
1882 
1883   assert(JavaThread::current() == this, "sanity check");
1884   assert(!Thread::current()->owns_locks(), "sanity check");
1885 
1886   DTRACE_THREAD_PROBE(start, this);
1887 
1888   // This operation might block. We call that after all safepoint checks for a new thread has
1889   // been completed.
1890   this->set_active_handles(JNIHandleBlock::allocate_block());
1891 
1892   if (JvmtiExport::should_post_thread_life()) {
1893     JvmtiExport::post_thread_start(this);
1894 
1895   }
1896 
1897   // We call another function to do the rest so we are sure that the stack addresses used
1898   // from there will be lower than the stack base just computed.
1899   thread_main_inner();
1900 }
1901 
1902 void JavaThread::thread_main_inner() {
1903   assert(JavaThread::current() == this, "sanity check");
1904   assert(this->threadObj() != NULL, "just checking");
1905 
1906   // Execute thread entry point unless this thread has a pending exception
1907   // or has been stopped before starting.
1908   // Note: Due to JVM_StopThread we can have pending exceptions already!
1909   if (!this->has_pending_exception() &&
1910       !java_lang_Thread::is_stillborn(this->threadObj())) {
1911     {
1912       ResourceMark rm(this);
1913       this->set_native_thread_name(this->get_thread_name());
1914     }
1915     HandleMark hm(this);
1916     this->entry_point()(this, this);
1917   }
1918 
1919   DTRACE_THREAD_PROBE(stop, this);
1920 
1921   // Cleanup is handled in post_run()
1922 }
1923 
1924 // Shared teardown for all JavaThreads
1925 void JavaThread::post_run() {
1926   this->exit(false);
1927   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1928   // for any shared tear-down.
1929   this->smr_delete();
1930 }
1931 
1932 static void ensure_join(JavaThread* thread) {
1933   // We do not need to grab the Threads_lock, since we are operating on ourself.
1934   Handle threadObj(thread, thread->threadObj());
1935   assert(threadObj.not_null(), "java thread object must exist");
1936   ObjectLocker lock(threadObj, thread);
1937   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1938   thread->clear_pending_exception();
1939   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1940   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1941   // Clear the native thread instance - this makes isAlive return false and allows the join()
1942   // to complete once we've done the notify_all below
1943   java_lang_Thread::set_thread(threadObj(), NULL);
1944   lock.notify_all(thread);
1945   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1946   thread->clear_pending_exception();
1947 }
1948 
1949 static bool is_daemon(oop threadObj) {
1950   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1951 }
1952 
1953 // For any new cleanup additions, please check to see if they need to be applied to
1954 // cleanup_failed_attach_current_thread as well.
1955 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1956   assert(this == JavaThread::current(), "thread consistency check");
1957 
1958   elapsedTimer _timer_exit_phase1;
1959   elapsedTimer _timer_exit_phase2;
1960   elapsedTimer _timer_exit_phase3;
1961   elapsedTimer _timer_exit_phase4;
1962 
1963   if (log_is_enabled(Debug, os, thread, timer)) {
1964     _timer_exit_phase1.start();
1965   }
1966 
1967   HandleMark hm(this);
1968   Handle uncaught_exception(this, this->pending_exception());
1969   this->clear_pending_exception();
1970   Handle threadObj(this, this->threadObj());
1971   assert(threadObj.not_null(), "Java thread object should be created");
1972 
1973   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1974   {
1975     EXCEPTION_MARK;
1976 
1977     CLEAR_PENDING_EXCEPTION;
1978   }
1979   if (!destroy_vm) {
1980     if (uncaught_exception.not_null()) {
1981       EXCEPTION_MARK;
1982       // Call method Thread.dispatchUncaughtException().
1983       Klass* thread_klass = SystemDictionary::Thread_klass();
1984       JavaValue result(T_VOID);
1985       JavaCalls::call_virtual(&result,
1986                               threadObj, thread_klass,
1987                               vmSymbols::dispatchUncaughtException_name(),
1988                               vmSymbols::throwable_void_signature(),
1989                               uncaught_exception,
1990                               THREAD);
1991       if (HAS_PENDING_EXCEPTION) {
1992         ResourceMark rm(this);
1993         jio_fprintf(defaultStream::error_stream(),
1994                     "\nException: %s thrown from the UncaughtExceptionHandler"
1995                     " in thread \"%s\"\n",
1996                     pending_exception()->klass()->external_name(),
1997                     get_thread_name());
1998         CLEAR_PENDING_EXCEPTION;
1999       }
2000     }
2001     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2002 
2003     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2004     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2005     // is deprecated anyhow.
2006     if (!is_Compiler_thread()) {
2007       int count = 3;
2008       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2009         EXCEPTION_MARK;
2010         JavaValue result(T_VOID);
2011         Klass* thread_klass = SystemDictionary::Thread_klass();
2012         JavaCalls::call_virtual(&result,
2013                                 threadObj, thread_klass,
2014                                 vmSymbols::exit_method_name(),
2015                                 vmSymbols::void_method_signature(),
2016                                 THREAD);
2017         CLEAR_PENDING_EXCEPTION;
2018       }
2019     }
2020     // notify JVMTI
2021     if (JvmtiExport::should_post_thread_life()) {
2022       JvmtiExport::post_thread_end(this);
2023     }
2024 
2025     // We have notified the agents that we are exiting, before we go on,
2026     // we must check for a pending external suspend request and honor it
2027     // in order to not surprise the thread that made the suspend request.
2028     while (true) {
2029       {
2030         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2031         if (!is_external_suspend()) {
2032           set_terminated(_thread_exiting);
2033           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2034           break;
2035         }
2036         // Implied else:
2037         // Things get a little tricky here. We have a pending external
2038         // suspend request, but we are holding the SR_lock so we
2039         // can't just self-suspend. So we temporarily drop the lock
2040         // and then self-suspend.
2041       }
2042 
2043       ThreadBlockInVM tbivm(this);
2044       java_suspend_self();
2045 
2046       // We're done with this suspend request, but we have to loop around
2047       // and check again. Eventually we will get SR_lock without a pending
2048       // external suspend request and will be able to mark ourselves as
2049       // exiting.
2050     }
2051     // no more external suspends are allowed at this point
2052   } else {
2053     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2054     // before_exit() has already posted JVMTI THREAD_END events
2055   }
2056 
2057   if (log_is_enabled(Debug, os, thread, timer)) {
2058     _timer_exit_phase1.stop();
2059     _timer_exit_phase2.start();
2060   }
2061 
2062   // Capture daemon status before the thread is marked as terminated.
2063   bool daemon = is_daemon(threadObj());
2064 
2065   // Notify waiters on thread object. This has to be done after exit() is called
2066   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2067   // group should have the destroyed bit set before waiters are notified).
2068   ensure_join(this);
2069   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2070 
2071   if (log_is_enabled(Debug, os, thread, timer)) {
2072     _timer_exit_phase2.stop();
2073     _timer_exit_phase3.start();
2074   }
2075   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2076   // held by this thread must be released. The spec does not distinguish
2077   // between JNI-acquired and regular Java monitors. We can only see
2078   // regular Java monitors here if monitor enter-exit matching is broken.
2079   //
2080   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2081   // ObjectSynchronizer::release_monitors_owned_by_thread().
2082   if (exit_type == jni_detach) {
2083     // Sanity check even though JNI DetachCurrentThread() would have
2084     // returned JNI_ERR if there was a Java frame. JavaThread exit
2085     // should be done executing Java code by the time we get here.
2086     assert(!this->has_last_Java_frame(),
2087            "should not have a Java frame when detaching or exiting");
2088     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2089     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2090   }
2091 
2092   // These things needs to be done while we are still a Java Thread. Make sure that thread
2093   // is in a consistent state, in case GC happens
2094   JFR_ONLY(Jfr::on_thread_exit(this);)
2095 
2096   if (active_handles() != NULL) {
2097     JNIHandleBlock* block = active_handles();
2098     set_active_handles(NULL);
2099     JNIHandleBlock::release_block(block);
2100   }
2101 
2102   if (free_handle_block() != NULL) {
2103     JNIHandleBlock* block = free_handle_block();
2104     set_free_handle_block(NULL);
2105     JNIHandleBlock::release_block(block);
2106   }
2107 
2108   // These have to be removed while this is still a valid thread.
2109   remove_stack_guard_pages();
2110 
2111   if (UseTLAB) {
2112     tlab().retire();
2113   }
2114 
2115   if (JvmtiEnv::environments_might_exist()) {
2116     JvmtiExport::cleanup_thread(this);
2117   }
2118 
2119   // We must flush any deferred card marks and other various GC barrier
2120   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2121   // before removing a thread from the list of active threads.
2122   BarrierSet::barrier_set()->on_thread_detach(this);
2123 
2124   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2125     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2126     os::current_thread_id());
2127 
2128   if (log_is_enabled(Debug, os, thread, timer)) {
2129     _timer_exit_phase3.stop();
2130     _timer_exit_phase4.start();
2131   }
2132   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2133   Threads::remove(this, daemon);
2134 
2135   if (log_is_enabled(Debug, os, thread, timer)) {
2136     _timer_exit_phase4.stop();
2137     ResourceMark rm(this);
2138     log_debug(os, thread, timer)("name='%s'"
2139                                  ", exit-phase1=" JLONG_FORMAT
2140                                  ", exit-phase2=" JLONG_FORMAT
2141                                  ", exit-phase3=" JLONG_FORMAT
2142                                  ", exit-phase4=" JLONG_FORMAT,
2143                                  get_thread_name(),
2144                                  _timer_exit_phase1.milliseconds(),
2145                                  _timer_exit_phase2.milliseconds(),
2146                                  _timer_exit_phase3.milliseconds(),
2147                                  _timer_exit_phase4.milliseconds());
2148   }
2149 }
2150 
2151 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2152   if (active_handles() != NULL) {
2153     JNIHandleBlock* block = active_handles();
2154     set_active_handles(NULL);
2155     JNIHandleBlock::release_block(block);
2156   }
2157 
2158   if (free_handle_block() != NULL) {
2159     JNIHandleBlock* block = free_handle_block();
2160     set_free_handle_block(NULL);
2161     JNIHandleBlock::release_block(block);
2162   }
2163 
2164   // These have to be removed while this is still a valid thread.
2165   remove_stack_guard_pages();
2166 
2167   if (UseTLAB) {
2168     tlab().retire();
2169   }
2170 
2171   BarrierSet::barrier_set()->on_thread_detach(this);
2172 
2173   Threads::remove(this, is_daemon);
2174   this->smr_delete();
2175 }
2176 
2177 JavaThread* JavaThread::active() {
2178   Thread* thread = Thread::current();
2179   if (thread->is_Java_thread()) {
2180     return (JavaThread*) thread;
2181   } else {
2182     assert(thread->is_VM_thread(), "this must be a vm thread");
2183     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2184     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2185     assert(ret->is_Java_thread(), "must be a Java thread");
2186     return ret;
2187   }
2188 }
2189 
2190 bool JavaThread::is_lock_owned(address adr) const {
2191   if (Thread::is_lock_owned(adr)) return true;
2192 
2193   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2194     if (chunk->contains(adr)) return true;
2195   }
2196 
2197   return false;
2198 }
2199 
2200 
2201 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2202   chunk->set_next(monitor_chunks());
2203   set_monitor_chunks(chunk);
2204 }
2205 
2206 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2207   guarantee(monitor_chunks() != NULL, "must be non empty");
2208   if (monitor_chunks() == chunk) {
2209     set_monitor_chunks(chunk->next());
2210   } else {
2211     MonitorChunk* prev = monitor_chunks();
2212     while (prev->next() != chunk) prev = prev->next();
2213     prev->set_next(chunk->next());
2214   }
2215 }
2216 
2217 // JVM support.
2218 
2219 // Note: this function shouldn't block if it's called in
2220 // _thread_in_native_trans state (such as from
2221 // check_special_condition_for_native_trans()).
2222 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2223 
2224   if (has_last_Java_frame() && has_async_condition()) {
2225     // If we are at a polling page safepoint (not a poll return)
2226     // then we must defer async exception because live registers
2227     // will be clobbered by the exception path. Poll return is
2228     // ok because the call we a returning from already collides
2229     // with exception handling registers and so there is no issue.
2230     // (The exception handling path kills call result registers but
2231     //  this is ok since the exception kills the result anyway).
2232 
2233     if (is_at_poll_safepoint()) {
2234       // if the code we are returning to has deoptimized we must defer
2235       // the exception otherwise live registers get clobbered on the
2236       // exception path before deoptimization is able to retrieve them.
2237       //
2238       RegisterMap map(this, false);
2239       frame caller_fr = last_frame().sender(&map);
2240       assert(caller_fr.is_compiled_frame(), "what?");
2241       if (caller_fr.is_deoptimized_frame()) {
2242         log_info(exceptions)("deferred async exception at compiled safepoint");
2243         return;
2244       }
2245     }
2246   }
2247 
2248   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2249   if (condition == _no_async_condition) {
2250     // Conditions have changed since has_special_runtime_exit_condition()
2251     // was called:
2252     // - if we were here only because of an external suspend request,
2253     //   then that was taken care of above (or cancelled) so we are done
2254     // - if we were here because of another async request, then it has
2255     //   been cleared between the has_special_runtime_exit_condition()
2256     //   and now so again we are done
2257     return;
2258   }
2259 
2260   // Check for pending async. exception
2261   if (_pending_async_exception != NULL) {
2262     // Only overwrite an already pending exception, if it is not a threadDeath.
2263     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2264 
2265       // We cannot call Exceptions::_throw(...) here because we cannot block
2266       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2267 
2268       LogTarget(Info, exceptions) lt;
2269       if (lt.is_enabled()) {
2270         ResourceMark rm;
2271         LogStream ls(lt);
2272         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2273           if (has_last_Java_frame()) {
2274             frame f = last_frame();
2275            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2276           }
2277         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2278       }
2279       _pending_async_exception = NULL;
2280       clear_has_async_exception();
2281     }
2282   }
2283 
2284   if (check_unsafe_error &&
2285       condition == _async_unsafe_access_error && !has_pending_exception()) {
2286     condition = _no_async_condition;  // done
2287     switch (thread_state()) {
2288     case _thread_in_vm: {
2289       JavaThread* THREAD = this;
2290       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2291     }
2292     case _thread_in_native: {
2293       ThreadInVMfromNative tiv(this);
2294       JavaThread* THREAD = this;
2295       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2296     }
2297     case _thread_in_Java: {
2298       ThreadInVMfromJava tiv(this);
2299       JavaThread* THREAD = this;
2300       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2301     }
2302     default:
2303       ShouldNotReachHere();
2304     }
2305   }
2306 
2307   assert(condition == _no_async_condition || has_pending_exception() ||
2308          (!check_unsafe_error && condition == _async_unsafe_access_error),
2309          "must have handled the async condition, if no exception");
2310 }
2311 
2312 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2313 
2314   // Check for pending external suspend.
2315   if (is_external_suspend_with_lock()) {
2316     frame_anchor()->make_walkable(this);
2317     java_suspend_self_with_safepoint_check();
2318   }
2319 
2320   // We might be here for reasons in addition to the self-suspend request
2321   // so check for other async requests.
2322   if (check_asyncs) {
2323     check_and_handle_async_exceptions();
2324   }
2325 
2326   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2327 }
2328 
2329 void JavaThread::send_thread_stop(oop java_throwable)  {
2330   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2331   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2332   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2333 
2334   // Do not throw asynchronous exceptions against the compiler thread
2335   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2336   if (!can_call_java()) return;
2337 
2338   {
2339     // Actually throw the Throwable against the target Thread - however
2340     // only if there is no thread death exception installed already.
2341     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2342       // If the topmost frame is a runtime stub, then we are calling into
2343       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2344       // must deoptimize the caller before continuing, as the compiled  exception handler table
2345       // may not be valid
2346       if (has_last_Java_frame()) {
2347         frame f = last_frame();
2348         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2349           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2350           RegisterMap reg_map(this, UseBiasedLocking);
2351           frame compiled_frame = f.sender(&reg_map);
2352           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2353             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2354           }
2355         }
2356       }
2357 
2358       // Set async. pending exception in thread.
2359       set_pending_async_exception(java_throwable);
2360 
2361       if (log_is_enabled(Info, exceptions)) {
2362          ResourceMark rm;
2363         log_info(exceptions)("Pending Async. exception installed of type: %s",
2364                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2365       }
2366       // for AbortVMOnException flag
2367       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2368     }
2369   }
2370 
2371 
2372   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2373   this->interrupt();
2374 }
2375 
2376 // External suspension mechanism.
2377 //
2378 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2379 // to any VM_locks and it is at a transition
2380 // Self-suspension will happen on the transition out of the vm.
2381 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2382 //
2383 // Guarantees on return:
2384 //   + Target thread will not execute any new bytecode (that's why we need to
2385 //     force a safepoint)
2386 //   + Target thread will not enter any new monitors
2387 //
2388 void JavaThread::java_suspend() {
2389   ThreadsListHandle tlh;
2390   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2391     return;
2392   }
2393 
2394   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2395     if (!is_external_suspend()) {
2396       // a racing resume has cancelled us; bail out now
2397       return;
2398     }
2399 
2400     // suspend is done
2401     uint32_t debug_bits = 0;
2402     // Warning: is_ext_suspend_completed() may temporarily drop the
2403     // SR_lock to allow the thread to reach a stable thread state if
2404     // it is currently in a transient thread state.
2405     if (is_ext_suspend_completed(false /* !called_by_wait */,
2406                                  SuspendRetryDelay, &debug_bits)) {
2407       return;
2408     }
2409   }
2410 
2411   if (Thread::current() == this) {
2412     // Safely self-suspend.
2413     // If we don't do this explicitly it will implicitly happen
2414     // before we transition back to Java, and on some other thread-state
2415     // transition paths, but not as we exit a JVM TI SuspendThread call.
2416     // As SuspendThread(current) must not return (until resumed) we must
2417     // self-suspend here.
2418     ThreadBlockInVM tbivm(this);
2419     java_suspend_self();
2420   } else {
2421     VM_ThreadSuspend vm_suspend;
2422     VMThread::execute(&vm_suspend);
2423   }
2424 }
2425 
2426 // Part II of external suspension.
2427 // A JavaThread self suspends when it detects a pending external suspend
2428 // request. This is usually on transitions. It is also done in places
2429 // where continuing to the next transition would surprise the caller,
2430 // e.g., monitor entry.
2431 //
2432 // Returns the number of times that the thread self-suspended.
2433 //
2434 // Note: DO NOT call java_suspend_self() when you just want to block current
2435 //       thread. java_suspend_self() is the second stage of cooperative
2436 //       suspension for external suspend requests and should only be used
2437 //       to complete an external suspend request.
2438 //
2439 int JavaThread::java_suspend_self() {
2440   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2441   int ret = 0;
2442 
2443   // we are in the process of exiting so don't suspend
2444   if (is_exiting()) {
2445     clear_external_suspend();
2446     return ret;
2447   }
2448 
2449   assert(_anchor.walkable() ||
2450          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2451          "must have walkable stack");
2452 
2453   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2454 
2455   assert(!this->is_ext_suspended(),
2456          "a thread trying to self-suspend should not already be suspended");
2457 
2458   if (this->is_suspend_equivalent()) {
2459     // If we are self-suspending as a result of the lifting of a
2460     // suspend equivalent condition, then the suspend_equivalent
2461     // flag is not cleared until we set the ext_suspended flag so
2462     // that wait_for_ext_suspend_completion() returns consistent
2463     // results.
2464     this->clear_suspend_equivalent();
2465   }
2466 
2467   // A racing resume may have cancelled us before we grabbed SR_lock
2468   // above. Or another external suspend request could be waiting for us
2469   // by the time we return from SR_lock()->wait(). The thread
2470   // that requested the suspension may already be trying to walk our
2471   // stack and if we return now, we can change the stack out from under
2472   // it. This would be a "bad thing (TM)" and cause the stack walker
2473   // to crash. We stay self-suspended until there are no more pending
2474   // external suspend requests.
2475   while (is_external_suspend()) {
2476     ret++;
2477     this->set_ext_suspended();
2478 
2479     // _ext_suspended flag is cleared by java_resume()
2480     while (is_ext_suspended()) {
2481       ml.wait();
2482     }
2483   }
2484   return ret;
2485 }
2486 
2487 // Helper routine to set up the correct thread state before calling java_suspend_self.
2488 // This is called when regular thread-state transition helpers can't be used because
2489 // we can be in various states, in particular _thread_in_native_trans.
2490 // Because this thread is external suspended the safepoint code will count it as at
2491 // a safepoint, regardless of what its actual current thread-state is. But
2492 // is_ext_suspend_completed() may be waiting to see a thread transition from
2493 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2494 // to _thread_blocked. The problem with setting thread state directly is that a
2495 // safepoint could happen just after java_suspend_self() returns after being resumed,
2496 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2497 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2498 // However, not all initial-states are allowed when performing a safepoint check, as we
2499 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2500 // only _thread_in_native is possible when executing this code (based on our two callers).
2501 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2502 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2503 // and so we don't need the explicit safepoint check.
2504 
2505 void JavaThread::java_suspend_self_with_safepoint_check() {
2506   assert(this == Thread::current(), "invariant");
2507   JavaThreadState state = thread_state();
2508   set_thread_state(_thread_blocked);
2509   java_suspend_self();
2510   set_thread_state_fence(state);
2511   // Since we are not using a regular thread-state transition helper here,
2512   // we must manually emit the instruction barrier after leaving a safe state.
2513   OrderAccess::cross_modify_fence();
2514   if (state != _thread_in_native) {
2515     SafepointMechanism::block_if_requested(this);
2516   }
2517 }
2518 
2519 #ifdef ASSERT
2520 // Verify the JavaThread has not yet been published in the Threads::list, and
2521 // hence doesn't need protection from concurrent access at this stage.
2522 void JavaThread::verify_not_published() {
2523   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2524   // since an unpublished JavaThread doesn't participate in the
2525   // Thread-SMR protocol for keeping a ThreadsList alive.
2526   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2527 }
2528 #endif
2529 
2530 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2531 // progress or when _suspend_flags is non-zero.
2532 // Current thread needs to self-suspend if there is a suspend request and/or
2533 // block if a safepoint is in progress.
2534 // Async exception ISN'T checked.
2535 // Note only the ThreadInVMfromNative transition can call this function
2536 // directly and when thread state is _thread_in_native_trans
2537 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2538   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2539 
2540   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2541 
2542   if (thread->is_external_suspend()) {
2543     thread->java_suspend_self_with_safepoint_check();
2544   } else {
2545     SafepointMechanism::block_if_requested(thread);
2546   }
2547 
2548   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2549 }
2550 
2551 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2552 // progress or when _suspend_flags is non-zero.
2553 // Current thread needs to self-suspend if there is a suspend request and/or
2554 // block if a safepoint is in progress.
2555 // Also check for pending async exception (not including unsafe access error).
2556 // Note only the native==>VM/Java barriers can call this function and when
2557 // thread state is _thread_in_native_trans.
2558 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2559   check_safepoint_and_suspend_for_native_trans(thread);
2560 
2561   if (thread->has_async_exception()) {
2562     // We are in _thread_in_native_trans state, don't handle unsafe
2563     // access error since that may block.
2564     thread->check_and_handle_async_exceptions(false);
2565   }
2566 }
2567 
2568 // This is a variant of the normal
2569 // check_special_condition_for_native_trans with slightly different
2570 // semantics for use by critical native wrappers.  It does all the
2571 // normal checks but also performs the transition back into
2572 // thread_in_Java state.  This is required so that critical natives
2573 // can potentially block and perform a GC if they are the last thread
2574 // exiting the GCLocker.
2575 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2576   check_special_condition_for_native_trans(thread);
2577 
2578   // Finish the transition
2579   thread->set_thread_state(_thread_in_Java);
2580 
2581   if (thread->do_critical_native_unlock()) {
2582     ThreadInVMfromJavaNoAsyncException tiv(thread);
2583     GCLocker::unlock_critical(thread);
2584     thread->clear_critical_native_unlock();
2585   }
2586 }
2587 
2588 // We need to guarantee the Threads_lock here, since resumes are not
2589 // allowed during safepoint synchronization
2590 // Can only resume from an external suspension
2591 void JavaThread::java_resume() {
2592   assert_locked_or_safepoint(Threads_lock);
2593 
2594   // Sanity check: thread is gone, has started exiting or the thread
2595   // was not externally suspended.
2596   ThreadsListHandle tlh;
2597   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2598     return;
2599   }
2600 
2601   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2602 
2603   clear_external_suspend();
2604 
2605   if (is_ext_suspended()) {
2606     clear_ext_suspended();
2607     SR_lock()->notify_all();
2608   }
2609 }
2610 
2611 size_t JavaThread::_stack_red_zone_size = 0;
2612 size_t JavaThread::_stack_yellow_zone_size = 0;
2613 size_t JavaThread::_stack_reserved_zone_size = 0;
2614 size_t JavaThread::_stack_shadow_zone_size = 0;
2615 
2616 void JavaThread::create_stack_guard_pages() {
2617   if (!os::uses_stack_guard_pages() ||
2618       _stack_guard_state != stack_guard_unused ||
2619       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2620       log_info(os, thread)("Stack guard page creation for thread "
2621                            UINTX_FORMAT " disabled", os::current_thread_id());
2622     return;
2623   }
2624   address low_addr = stack_end();
2625   size_t len = stack_guard_zone_size();
2626 
2627   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2628   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2629 
2630   int must_commit = os::must_commit_stack_guard_pages();
2631   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2632 
2633   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2634     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2635     return;
2636   }
2637 
2638   if (os::guard_memory((char *) low_addr, len)) {
2639     _stack_guard_state = stack_guard_enabled;
2640   } else {
2641     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2642       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2643     if (os::uncommit_memory((char *) low_addr, len)) {
2644       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2645     }
2646     return;
2647   }
2648 
2649   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2650     PTR_FORMAT "-" PTR_FORMAT ".",
2651     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2652 }
2653 
2654 void JavaThread::remove_stack_guard_pages() {
2655   assert(Thread::current() == this, "from different thread");
2656   if (_stack_guard_state == stack_guard_unused) return;
2657   address low_addr = stack_end();
2658   size_t len = stack_guard_zone_size();
2659 
2660   if (os::must_commit_stack_guard_pages()) {
2661     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2662       _stack_guard_state = stack_guard_unused;
2663     } else {
2664       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2665         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2666       return;
2667     }
2668   } else {
2669     if (_stack_guard_state == stack_guard_unused) return;
2670     if (os::unguard_memory((char *) low_addr, len)) {
2671       _stack_guard_state = stack_guard_unused;
2672     } else {
2673       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2674         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2675       return;
2676     }
2677   }
2678 
2679   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2680     PTR_FORMAT "-" PTR_FORMAT ".",
2681     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2682 }
2683 
2684 void JavaThread::enable_stack_reserved_zone() {
2685   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2686 
2687   // The base notation is from the stack's point of view, growing downward.
2688   // We need to adjust it to work correctly with guard_memory()
2689   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2690 
2691   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2692   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2693 
2694   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2695     _stack_guard_state = stack_guard_enabled;
2696   } else {
2697     warning("Attempt to guard stack reserved zone failed.");
2698   }
2699   enable_register_stack_guard();
2700 }
2701 
2702 void JavaThread::disable_stack_reserved_zone() {
2703   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2704 
2705   // Simply return if called for a thread that does not use guard pages.
2706   if (_stack_guard_state != stack_guard_enabled) return;
2707 
2708   // The base notation is from the stack's point of view, growing downward.
2709   // We need to adjust it to work correctly with guard_memory()
2710   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2711 
2712   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2713     _stack_guard_state = stack_guard_reserved_disabled;
2714   } else {
2715     warning("Attempt to unguard stack reserved zone failed.");
2716   }
2717   disable_register_stack_guard();
2718 }
2719 
2720 void JavaThread::enable_stack_yellow_reserved_zone() {
2721   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2722   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2723 
2724   // The base notation is from the stacks point of view, growing downward.
2725   // We need to adjust it to work correctly with guard_memory()
2726   address base = stack_red_zone_base();
2727 
2728   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2729   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2730 
2731   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2732     _stack_guard_state = stack_guard_enabled;
2733   } else {
2734     warning("Attempt to guard stack yellow zone failed.");
2735   }
2736   enable_register_stack_guard();
2737 }
2738 
2739 void JavaThread::disable_stack_yellow_reserved_zone() {
2740   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2741   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2742 
2743   // Simply return if called for a thread that does not use guard pages.
2744   if (_stack_guard_state == stack_guard_unused) return;
2745 
2746   // The base notation is from the stacks point of view, growing downward.
2747   // We need to adjust it to work correctly with guard_memory()
2748   address base = stack_red_zone_base();
2749 
2750   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2751     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2752   } else {
2753     warning("Attempt to unguard stack yellow zone failed.");
2754   }
2755   disable_register_stack_guard();
2756 }
2757 
2758 void JavaThread::enable_stack_red_zone() {
2759   // The base notation is from the stacks point of view, growing downward.
2760   // We need to adjust it to work correctly with guard_memory()
2761   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2762   address base = stack_red_zone_base() - stack_red_zone_size();
2763 
2764   guarantee(base < stack_base(), "Error calculating stack red zone");
2765   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2766 
2767   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2768     warning("Attempt to guard stack red zone failed.");
2769   }
2770 }
2771 
2772 void JavaThread::disable_stack_red_zone() {
2773   // The base notation is from the stacks point of view, growing downward.
2774   // We need to adjust it to work correctly with guard_memory()
2775   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2776   address base = stack_red_zone_base() - stack_red_zone_size();
2777   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2778     warning("Attempt to unguard stack red zone failed.");
2779   }
2780 }
2781 
2782 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2783   // ignore is there is no stack
2784   if (!has_last_Java_frame()) return;
2785   // traverse the stack frames. Starts from top frame.
2786   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2787     frame* fr = fst.current();
2788     f(fr, fst.register_map());
2789   }
2790 }
2791 
2792 
2793 #ifndef PRODUCT
2794 // Deoptimization
2795 // Function for testing deoptimization
2796 void JavaThread::deoptimize() {
2797   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2798   StackFrameStream fst(this, UseBiasedLocking);
2799   bool deopt = false;           // Dump stack only if a deopt actually happens.
2800   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2801   // Iterate over all frames in the thread and deoptimize
2802   for (; !fst.is_done(); fst.next()) {
2803     if (fst.current()->can_be_deoptimized()) {
2804 
2805       if (only_at) {
2806         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2807         // consists of comma or carriage return separated numbers so
2808         // search for the current bci in that string.
2809         address pc = fst.current()->pc();
2810         nmethod* nm =  (nmethod*) fst.current()->cb();
2811         ScopeDesc* sd = nm->scope_desc_at(pc);
2812         char buffer[8];
2813         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2814         size_t len = strlen(buffer);
2815         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2816         while (found != NULL) {
2817           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2818               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2819             // Check that the bci found is bracketed by terminators.
2820             break;
2821           }
2822           found = strstr(found + 1, buffer);
2823         }
2824         if (!found) {
2825           continue;
2826         }
2827       }
2828 
2829       if (DebugDeoptimization && !deopt) {
2830         deopt = true; // One-time only print before deopt
2831         tty->print_cr("[BEFORE Deoptimization]");
2832         trace_frames();
2833         trace_stack();
2834       }
2835       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2836     }
2837   }
2838 
2839   if (DebugDeoptimization && deopt) {
2840     tty->print_cr("[AFTER Deoptimization]");
2841     trace_frames();
2842   }
2843 }
2844 
2845 
2846 // Make zombies
2847 void JavaThread::make_zombies() {
2848   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2849     if (fst.current()->can_be_deoptimized()) {
2850       // it is a Java nmethod
2851       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2852       nm->make_not_entrant();
2853     }
2854   }
2855 }
2856 #endif // PRODUCT
2857 
2858 
2859 void JavaThread::deoptimize_marked_methods() {
2860   if (!has_last_Java_frame()) return;
2861   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2862   StackFrameStream fst(this, UseBiasedLocking);
2863   for (; !fst.is_done(); fst.next()) {
2864     if (fst.current()->should_be_deoptimized()) {
2865       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2866     }
2867   }
2868 }
2869 
2870 // If the caller is a NamedThread, then remember, in the current scope,
2871 // the given JavaThread in its _processed_thread field.
2872 class RememberProcessedThread: public StackObj {
2873   NamedThread* _cur_thr;
2874  public:
2875   RememberProcessedThread(JavaThread* jthr) {
2876     Thread* thread = Thread::current();
2877     if (thread->is_Named_thread()) {
2878       _cur_thr = (NamedThread *)thread;
2879       _cur_thr->set_processed_thread(jthr);
2880     } else {
2881       _cur_thr = NULL;
2882     }
2883   }
2884 
2885   ~RememberProcessedThread() {
2886     if (_cur_thr) {
2887       _cur_thr->set_processed_thread(NULL);
2888     }
2889   }
2890 };
2891 
2892 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2893   // Verify that the deferred card marks have been flushed.
2894   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2895 
2896   // Traverse the GCHandles
2897   Thread::oops_do(f, cf);
2898 
2899   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2900          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2901 
2902   if (has_last_Java_frame()) {
2903     // Record JavaThread to GC thread
2904     RememberProcessedThread rpt(this);
2905 
2906     // traverse the registered growable array
2907     if (_array_for_gc != NULL) {
2908       for (int index = 0; index < _array_for_gc->length(); index++) {
2909         f->do_oop(_array_for_gc->adr_at(index));
2910       }
2911     }
2912 
2913     // Traverse the monitor chunks
2914     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2915       chunk->oops_do(f);
2916     }
2917 
2918     // Traverse the execution stack
2919     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2920       fst.current()->oops_do(f, cf, fst.register_map());
2921     }
2922   }
2923 
2924   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2925   // If we have deferred set_locals there might be oops waiting to be
2926   // written
2927   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2928   if (list != NULL) {
2929     for (int i = 0; i < list->length(); i++) {
2930       list->at(i)->oops_do(f);
2931     }
2932   }
2933 
2934   // Traverse instance variables at the end since the GC may be moving things
2935   // around using this function
2936   f->do_oop((oop*) &_threadObj);
2937   f->do_oop((oop*) &_vm_result);
2938   f->do_oop((oop*) &_exception_oop);
2939   f->do_oop((oop*) &_pending_async_exception);
2940 
2941   if (jvmti_thread_state() != NULL) {
2942     jvmti_thread_state()->oops_do(f);
2943   }
2944 }
2945 
2946 #ifdef ASSERT
2947 void JavaThread::verify_states_for_handshake() {
2948   // This checks that the thread has a correct frame state during a handshake.
2949   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2950          (has_last_Java_frame() && java_call_counter() > 0),
2951          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2952          has_last_Java_frame(), java_call_counter());
2953 }
2954 #endif
2955 
2956 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2957   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2958          (has_last_Java_frame() && java_call_counter() > 0),
2959          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2960          has_last_Java_frame(), java_call_counter());
2961 
2962   if (has_last_Java_frame()) {
2963     // Traverse the execution stack
2964     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2965       fst.current()->nmethods_do(cf);
2966     }
2967   }
2968 }
2969 
2970 void JavaThread::metadata_do(MetadataClosure* f) {
2971   if (has_last_Java_frame()) {
2972     // Traverse the execution stack to call f() on the methods in the stack
2973     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2974       fst.current()->metadata_do(f);
2975     }
2976   } else if (is_Compiler_thread()) {
2977     // need to walk ciMetadata in current compile tasks to keep alive.
2978     CompilerThread* ct = (CompilerThread*)this;
2979     if (ct->env() != NULL) {
2980       ct->env()->metadata_do(f);
2981     }
2982     CompileTask* task = ct->task();
2983     if (task != NULL) {
2984       task->metadata_do(f);
2985     }
2986   }
2987 }
2988 
2989 // Printing
2990 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2991   switch (_thread_state) {
2992   case _thread_uninitialized:     return "_thread_uninitialized";
2993   case _thread_new:               return "_thread_new";
2994   case _thread_new_trans:         return "_thread_new_trans";
2995   case _thread_in_native:         return "_thread_in_native";
2996   case _thread_in_native_trans:   return "_thread_in_native_trans";
2997   case _thread_in_vm:             return "_thread_in_vm";
2998   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2999   case _thread_in_Java:           return "_thread_in_Java";
3000   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3001   case _thread_blocked:           return "_thread_blocked";
3002   case _thread_blocked_trans:     return "_thread_blocked_trans";
3003   default:                        return "unknown thread state";
3004   }
3005 }
3006 
3007 #ifndef PRODUCT
3008 void JavaThread::print_thread_state_on(outputStream *st) const {
3009   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3010 };
3011 #endif // PRODUCT
3012 
3013 // Called by Threads::print() for VM_PrintThreads operation
3014 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3015   st->print_raw("\"");
3016   st->print_raw(get_thread_name());
3017   st->print_raw("\" ");
3018   oop thread_oop = threadObj();
3019   if (thread_oop != NULL) {
3020     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3021     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3022     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3023   }
3024   Thread::print_on(st, print_extended_info);
3025   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3026   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3027   if (thread_oop != NULL) {
3028     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3029   }
3030 #ifndef PRODUCT
3031   _safepoint_state->print_on(st);
3032 #endif // PRODUCT
3033   if (is_Compiler_thread()) {
3034     CompileTask *task = ((CompilerThread*)this)->task();
3035     if (task != NULL) {
3036       st->print("   Compiling: ");
3037       task->print(st, NULL, true, false);
3038     } else {
3039       st->print("   No compile task");
3040     }
3041     st->cr();
3042   }
3043 }
3044 
3045 void JavaThread::print() const { print_on(tty); }
3046 
3047 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3048   st->print("%s", get_thread_name_string(buf, buflen));
3049 }
3050 
3051 // Called by fatal error handler. The difference between this and
3052 // JavaThread::print() is that we can't grab lock or allocate memory.
3053 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3054   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3055   oop thread_obj = threadObj();
3056   if (thread_obj != NULL) {
3057     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3058   }
3059   st->print(" [");
3060   st->print("%s", _get_thread_state_name(_thread_state));
3061   if (osthread()) {
3062     st->print(", id=%d", osthread()->thread_id());
3063   }
3064   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3065             p2i(stack_end()), p2i(stack_base()));
3066   st->print("]");
3067 
3068   ThreadsSMRSupport::print_info_on(this, st);
3069   return;
3070 }
3071 
3072 // Verification
3073 
3074 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3075 
3076 void JavaThread::verify() {
3077   // Verify oops in the thread.
3078   oops_do(&VerifyOopClosure::verify_oop, NULL);
3079 
3080   // Verify the stack frames.
3081   frames_do(frame_verify);
3082 }
3083 
3084 // CR 6300358 (sub-CR 2137150)
3085 // Most callers of this method assume that it can't return NULL but a
3086 // thread may not have a name whilst it is in the process of attaching to
3087 // the VM - see CR 6412693, and there are places where a JavaThread can be
3088 // seen prior to having it's threadObj set (eg JNI attaching threads and
3089 // if vm exit occurs during initialization). These cases can all be accounted
3090 // for such that this method never returns NULL.
3091 const char* JavaThread::get_thread_name() const {
3092 #ifdef ASSERT
3093   // early safepoints can hit while current thread does not yet have TLS
3094   if (!SafepointSynchronize::is_at_safepoint()) {
3095     Thread *cur = Thread::current();
3096     if (!(cur->is_Java_thread() && cur == this)) {
3097       // Current JavaThreads are allowed to get their own name without
3098       // the Threads_lock.
3099       assert_locked_or_safepoint(Threads_lock);
3100     }
3101   }
3102 #endif // ASSERT
3103   return get_thread_name_string();
3104 }
3105 
3106 // Returns a non-NULL representation of this thread's name, or a suitable
3107 // descriptive string if there is no set name
3108 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3109   const char* name_str;
3110   oop thread_obj = threadObj();
3111   if (thread_obj != NULL) {
3112     oop name = java_lang_Thread::name(thread_obj);
3113     if (name != NULL) {
3114       if (buf == NULL) {
3115         name_str = java_lang_String::as_utf8_string(name);
3116       } else {
3117         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3118       }
3119     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3120       name_str = "<no-name - thread is attaching>";
3121     } else {
3122       name_str = Thread::name();
3123     }
3124   } else {
3125     name_str = Thread::name();
3126   }
3127   assert(name_str != NULL, "unexpected NULL thread name");
3128   return name_str;
3129 }
3130 
3131 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3132 
3133   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3134   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3135   // Link Java Thread object <-> C++ Thread
3136 
3137   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3138   // and put it into a new Handle.  The Handle "thread_oop" can then
3139   // be used to pass the C++ thread object to other methods.
3140 
3141   // Set the Java level thread object (jthread) field of the
3142   // new thread (a JavaThread *) to C++ thread object using the
3143   // "thread_oop" handle.
3144 
3145   // Set the thread field (a JavaThread *) of the
3146   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3147 
3148   Handle thread_oop(Thread::current(),
3149                     JNIHandles::resolve_non_null(jni_thread));
3150   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3151          "must be initialized");
3152   set_threadObj(thread_oop());
3153   java_lang_Thread::set_thread(thread_oop(), this);
3154 
3155   if (prio == NoPriority) {
3156     prio = java_lang_Thread::priority(thread_oop());
3157     assert(prio != NoPriority, "A valid priority should be present");
3158   }
3159 
3160   // Push the Java priority down to the native thread; needs Threads_lock
3161   Thread::set_priority(this, prio);
3162 
3163   // Add the new thread to the Threads list and set it in motion.
3164   // We must have threads lock in order to call Threads::add.
3165   // It is crucial that we do not block before the thread is
3166   // added to the Threads list for if a GC happens, then the java_thread oop
3167   // will not be visited by GC.
3168   Threads::add(this);
3169 }
3170 
3171 oop JavaThread::current_park_blocker() {
3172   // Support for JSR-166 locks
3173   oop thread_oop = threadObj();
3174   if (thread_oop != NULL) {
3175     return java_lang_Thread::park_blocker(thread_oop);
3176   }
3177   return NULL;
3178 }
3179 
3180 
3181 void JavaThread::print_stack_on(outputStream* st) {
3182   if (!has_last_Java_frame()) return;
3183   ResourceMark rm;
3184   HandleMark   hm;
3185 
3186   RegisterMap reg_map(this);
3187   vframe* start_vf = last_java_vframe(&reg_map);
3188   int count = 0;
3189   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3190     if (f->is_java_frame()) {
3191       javaVFrame* jvf = javaVFrame::cast(f);
3192       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3193 
3194       // Print out lock information
3195       if (JavaMonitorsInStackTrace) {
3196         jvf->print_lock_info_on(st, count);
3197       }
3198     } else {
3199       // Ignore non-Java frames
3200     }
3201 
3202     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3203     count++;
3204     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3205   }
3206 }
3207 
3208 
3209 // JVMTI PopFrame support
3210 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3211   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3212   if (in_bytes(size_in_bytes) != 0) {
3213     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3214     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3215     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3216   }
3217 }
3218 
3219 void* JavaThread::popframe_preserved_args() {
3220   return _popframe_preserved_args;
3221 }
3222 
3223 ByteSize JavaThread::popframe_preserved_args_size() {
3224   return in_ByteSize(_popframe_preserved_args_size);
3225 }
3226 
3227 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3228   int sz = in_bytes(popframe_preserved_args_size());
3229   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3230   return in_WordSize(sz / wordSize);
3231 }
3232 
3233 void JavaThread::popframe_free_preserved_args() {
3234   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3235   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3236   _popframe_preserved_args = NULL;
3237   _popframe_preserved_args_size = 0;
3238 }
3239 
3240 #ifndef PRODUCT
3241 
3242 void JavaThread::trace_frames() {
3243   tty->print_cr("[Describe stack]");
3244   int frame_no = 1;
3245   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3246     tty->print("  %d. ", frame_no++);
3247     fst.current()->print_value_on(tty, this);
3248     tty->cr();
3249   }
3250 }
3251 
3252 class PrintAndVerifyOopClosure: public OopClosure {
3253  protected:
3254   template <class T> inline void do_oop_work(T* p) {
3255     oop obj = RawAccess<>::oop_load(p);
3256     if (obj == NULL) return;
3257     tty->print(INTPTR_FORMAT ": ", p2i(p));
3258     if (oopDesc::is_oop_or_null(obj)) {
3259       if (obj->is_objArray()) {
3260         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3261       } else {
3262         obj->print();
3263       }
3264     } else {
3265       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3266     }
3267     tty->cr();
3268   }
3269  public:
3270   virtual void do_oop(oop* p) { do_oop_work(p); }
3271   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3272 };
3273 
3274 #ifdef ASSERT
3275 // Print or validate the layout of stack frames
3276 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3277   ResourceMark rm;
3278   PRESERVE_EXCEPTION_MARK;
3279   FrameValues values;
3280   int frame_no = 0;
3281   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3282     fst.current()->describe(values, ++frame_no);
3283     if (depth == frame_no) break;
3284   }
3285   if (validate_only) {
3286     values.validate();
3287   } else {
3288     tty->print_cr("[Describe stack layout]");
3289     values.print(this);
3290   }
3291 }
3292 #endif
3293 
3294 void JavaThread::trace_stack_from(vframe* start_vf) {
3295   ResourceMark rm;
3296   int vframe_no = 1;
3297   for (vframe* f = start_vf; f; f = f->sender()) {
3298     if (f->is_java_frame()) {
3299       javaVFrame::cast(f)->print_activation(vframe_no++);
3300     } else {
3301       f->print();
3302     }
3303     if (vframe_no > StackPrintLimit) {
3304       tty->print_cr("...<more frames>...");
3305       return;
3306     }
3307   }
3308 }
3309 
3310 
3311 void JavaThread::trace_stack() {
3312   if (!has_last_Java_frame()) return;
3313   ResourceMark rm;
3314   HandleMark   hm;
3315   RegisterMap reg_map(this);
3316   trace_stack_from(last_java_vframe(&reg_map));
3317 }
3318 
3319 
3320 #endif // PRODUCT
3321 
3322 
3323 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3324   assert(reg_map != NULL, "a map must be given");
3325   frame f = last_frame();
3326   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3327     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3328   }
3329   return NULL;
3330 }
3331 
3332 
3333 Klass* JavaThread::security_get_caller_class(int depth) {
3334   vframeStream vfst(this);
3335   vfst.security_get_caller_frame(depth);
3336   if (!vfst.at_end()) {
3337     return vfst.method()->method_holder();
3338   }
3339   return NULL;
3340 }
3341 
3342 // java.lang.Thread.sleep support
3343 // Returns true if sleep time elapsed as expected, and false
3344 // if the thread was interrupted.
3345 bool JavaThread::sleep(jlong millis) {
3346   assert(this == Thread::current(),  "thread consistency check");
3347 
3348   ParkEvent * const slp = this->_SleepEvent;
3349   // Because there can be races with thread interruption sending an unpark()
3350   // to the event, we explicitly reset it here to avoid an immediate return.
3351   // The actual interrupt state will be checked before we park().
3352   slp->reset();
3353   // Thread interruption establishes a happens-before ordering in the
3354   // Java Memory Model, so we need to ensure we synchronize with the
3355   // interrupt state.
3356   OrderAccess::fence();
3357 
3358   jlong prevtime = os::javaTimeNanos();
3359 
3360   for (;;) {
3361     // interruption has precedence over timing out
3362     if (this->is_interrupted(true)) {
3363       return false;
3364     }
3365 
3366     if (millis <= 0) {
3367       return true;
3368     }
3369 
3370     {
3371       ThreadBlockInVM tbivm(this);
3372       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3373 
3374       this->set_suspend_equivalent();
3375       // cleared by handle_special_suspend_equivalent_condition() or
3376       // java_suspend_self() via check_and_wait_while_suspended()
3377 
3378       slp->park(millis);
3379 
3380       // were we externally suspended while we were waiting?
3381       this->check_and_wait_while_suspended();
3382     }
3383 
3384     // Update elapsed time tracking
3385     jlong newtime = os::javaTimeNanos();
3386     if (newtime - prevtime < 0) {
3387       // time moving backwards, should only happen if no monotonic clock
3388       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3389       assert(!os::supports_monotonic_clock(),
3390              "unexpected time moving backwards detected in JavaThread::sleep()");
3391     } else {
3392       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3393     }
3394     prevtime = newtime;
3395   }
3396 }
3397 
3398 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3399   assert(thread->is_Compiler_thread(), "must be compiler thread");
3400   CompileBroker::compiler_thread_loop();
3401 }
3402 
3403 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3404   NMethodSweeper::sweeper_loop();
3405 }
3406 
3407 // Create a CompilerThread
3408 CompilerThread::CompilerThread(CompileQueue* queue,
3409                                CompilerCounters* counters)
3410                                : JavaThread(&compiler_thread_entry) {
3411   _env   = NULL;
3412   _log   = NULL;
3413   _task  = NULL;
3414   _queue = queue;
3415   _counters = counters;
3416   _buffer_blob = NULL;
3417   _compiler = NULL;
3418 
3419   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3420   resource_area()->bias_to(mtCompiler);
3421 
3422 #ifndef PRODUCT
3423   _ideal_graph_printer = NULL;
3424 #endif
3425 }
3426 
3427 CompilerThread::~CompilerThread() {
3428   // Delete objects which were allocated on heap.
3429   delete _counters;
3430 }
3431 
3432 bool CompilerThread::can_call_java() const {
3433   return _compiler != NULL && _compiler->is_jvmci();
3434 }
3435 
3436 // Create sweeper thread
3437 CodeCacheSweeperThread::CodeCacheSweeperThread()
3438 : JavaThread(&sweeper_thread_entry) {
3439   _scanned_compiled_method = NULL;
3440 }
3441 
3442 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3443   JavaThread::oops_do(f, cf);
3444   if (_scanned_compiled_method != NULL && cf != NULL) {
3445     // Safepoints can occur when the sweeper is scanning an nmethod so
3446     // process it here to make sure it isn't unloaded in the middle of
3447     // a scan.
3448     cf->do_code_blob(_scanned_compiled_method);
3449   }
3450 }
3451 
3452 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3453   JavaThread::nmethods_do(cf);
3454   if (_scanned_compiled_method != NULL && cf != NULL) {
3455     // Safepoints can occur when the sweeper is scanning an nmethod so
3456     // process it here to make sure it isn't unloaded in the middle of
3457     // a scan.
3458     cf->do_code_blob(_scanned_compiled_method);
3459   }
3460 }
3461 
3462 
3463 // ======= Threads ========
3464 
3465 // The Threads class links together all active threads, and provides
3466 // operations over all threads. It is protected by the Threads_lock,
3467 // which is also used in other global contexts like safepointing.
3468 // ThreadsListHandles are used to safely perform operations on one
3469 // or more threads without the risk of the thread exiting during the
3470 // operation.
3471 //
3472 // Note: The Threads_lock is currently more widely used than we
3473 // would like. We are actively migrating Threads_lock uses to other
3474 // mechanisms in order to reduce Threads_lock contention.
3475 
3476 int         Threads::_number_of_threads = 0;
3477 int         Threads::_number_of_non_daemon_threads = 0;
3478 int         Threads::_return_code = 0;
3479 uintx       Threads::_thread_claim_token = 1; // Never zero.
3480 size_t      JavaThread::_stack_size_at_create = 0;
3481 
3482 #ifdef ASSERT
3483 bool        Threads::_vm_complete = false;
3484 #endif
3485 
3486 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3487   Prefetch::read((void*)addr, prefetch_interval);
3488   return *addr;
3489 }
3490 
3491 // Possibly the ugliest for loop the world has seen. C++ does not allow
3492 // multiple types in the declaration section of the for loop. In this case
3493 // we are only dealing with pointers and hence can cast them. It looks ugly
3494 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3495 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3496     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3497              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3498              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3499              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3500              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3501          MACRO_current_p != MACRO_end;                                                                                    \
3502          MACRO_current_p++,                                                                                               \
3503              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3504 
3505 // All JavaThreads
3506 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3507 
3508 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3509 void Threads::non_java_threads_do(ThreadClosure* tc) {
3510   NoSafepointVerifier nsv;
3511   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3512     tc->do_thread(njti.current());
3513   }
3514 }
3515 
3516 // All JavaThreads
3517 void Threads::java_threads_do(ThreadClosure* tc) {
3518   assert_locked_or_safepoint(Threads_lock);
3519   // ALL_JAVA_THREADS iterates through all JavaThreads.
3520   ALL_JAVA_THREADS(p) {
3521     tc->do_thread(p);
3522   }
3523 }
3524 
3525 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3526   assert_locked_or_safepoint(Threads_lock);
3527   java_threads_do(tc);
3528   tc->do_thread(VMThread::vm_thread());
3529 }
3530 
3531 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3532 void Threads::threads_do(ThreadClosure* tc) {
3533   assert_locked_or_safepoint(Threads_lock);
3534   java_threads_do(tc);
3535   non_java_threads_do(tc);
3536 }
3537 
3538 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3539   uintx claim_token = Threads::thread_claim_token();
3540   ALL_JAVA_THREADS(p) {
3541     if (p->claim_threads_do(is_par, claim_token)) {
3542       tc->do_thread(p);
3543     }
3544   }
3545   VMThread* vmt = VMThread::vm_thread();
3546   if (vmt->claim_threads_do(is_par, claim_token)) {
3547     tc->do_thread(vmt);
3548   }
3549 }
3550 
3551 // The system initialization in the library has three phases.
3552 //
3553 // Phase 1: java.lang.System class initialization
3554 //     java.lang.System is a primordial class loaded and initialized
3555 //     by the VM early during startup.  java.lang.System.<clinit>
3556 //     only does registerNatives and keeps the rest of the class
3557 //     initialization work later until thread initialization completes.
3558 //
3559 //     System.initPhase1 initializes the system properties, the static
3560 //     fields in, out, and err. Set up java signal handlers, OS-specific
3561 //     system settings, and thread group of the main thread.
3562 static void call_initPhase1(TRAPS) {
3563   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3564   JavaValue result(T_VOID);
3565   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3566                                          vmSymbols::void_method_signature(), CHECK);
3567 }
3568 
3569 // Phase 2. Module system initialization
3570 //     This will initialize the module system.  Only java.base classes
3571 //     can be loaded until phase 2 completes.
3572 //
3573 //     Call System.initPhase2 after the compiler initialization and jsr292
3574 //     classes get initialized because module initialization runs a lot of java
3575 //     code, that for performance reasons, should be compiled.  Also, this will
3576 //     enable the startup code to use lambda and other language features in this
3577 //     phase and onward.
3578 //
3579 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3580 static void call_initPhase2(TRAPS) {
3581   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3582 
3583   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3584 
3585   JavaValue result(T_INT);
3586   JavaCallArguments args;
3587   args.push_int(DisplayVMOutputToStderr);
3588   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3589   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3590                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3591   if (result.get_jint() != JNI_OK) {
3592     vm_exit_during_initialization(); // no message or exception
3593   }
3594 
3595   universe_post_module_init();
3596 }
3597 
3598 // Phase 3. final setup - set security manager, system class loader and TCCL
3599 //
3600 //     This will instantiate and set the security manager, set the system class
3601 //     loader as well as the thread context class loader.  The security manager
3602 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3603 //     other modules or the application's classpath.
3604 static void call_initPhase3(TRAPS) {
3605   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3606   JavaValue result(T_VOID);
3607   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3608                                          vmSymbols::void_method_signature(), CHECK);
3609 }
3610 
3611 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3612   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3613 
3614   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3615     create_vm_init_libraries();
3616   }
3617 
3618   initialize_class(vmSymbols::java_lang_String(), CHECK);
3619 
3620   // Inject CompactStrings value after the static initializers for String ran.
3621   java_lang_String::set_compact_strings(CompactStrings);
3622 
3623   // Initialize java_lang.System (needed before creating the thread)
3624   initialize_class(vmSymbols::java_lang_System(), CHECK);
3625   // The VM creates & returns objects of this class. Make sure it's initialized.
3626   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3627   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3628   Handle thread_group = create_initial_thread_group(CHECK);
3629   Universe::set_main_thread_group(thread_group());
3630   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3631   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3632   main_thread->set_threadObj(thread_object);
3633 
3634   // Set thread status to running since main thread has
3635   // been started and running.
3636   java_lang_Thread::set_thread_status(thread_object,
3637                                       java_lang_Thread::RUNNABLE);
3638 
3639   // The VM creates objects of this class.
3640   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3641 
3642 #ifdef ASSERT
3643   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3644   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3645 #endif
3646 
3647   // initialize the hardware-specific constants needed by Unsafe
3648   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3649   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3650 
3651   // The VM preresolves methods to these classes. Make sure that they get initialized
3652   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3653   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3654 
3655   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3656   call_initPhase1(CHECK);
3657 
3658   // get the Java runtime name after java.lang.System is initialized
3659   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3660   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3661 
3662   // an instance of OutOfMemory exception has been allocated earlier
3663   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3664   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3665   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3666   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3667   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3668   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3669   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3670   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3671 
3672   // Eager box cache initialization only if AOT is on and any library is loaded.
3673   AOTLoader::initialize_box_caches(CHECK);
3674 }
3675 
3676 void Threads::initialize_jsr292_core_classes(TRAPS) {
3677   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3678 
3679   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3680   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3681   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3682   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3683 }
3684 
3685 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3686   extern void JDK_Version_init();
3687 
3688   // Preinitialize version info.
3689   VM_Version::early_initialize();
3690 
3691   // Check version
3692   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3693 
3694   // Initialize library-based TLS
3695   ThreadLocalStorage::init();
3696 
3697   // Initialize the output stream module
3698   ostream_init();
3699 
3700   // Process java launcher properties.
3701   Arguments::process_sun_java_launcher_properties(args);
3702 
3703   // Initialize the os module
3704   os::init();
3705 
3706   // Record VM creation timing statistics
3707   TraceVmCreationTime create_vm_timer;
3708   create_vm_timer.start();
3709 
3710   // Initialize system properties.
3711   Arguments::init_system_properties();
3712 
3713   // So that JDK version can be used as a discriminator when parsing arguments
3714   JDK_Version_init();
3715 
3716   // Update/Initialize System properties after JDK version number is known
3717   Arguments::init_version_specific_system_properties();
3718 
3719   // Make sure to initialize log configuration *before* parsing arguments
3720   LogConfiguration::initialize(create_vm_timer.begin_time());
3721 
3722   // Parse arguments
3723   // Note: this internally calls os::init_container_support()
3724   jint parse_result = Arguments::parse(args);
3725   if (parse_result != JNI_OK) return parse_result;
3726 
3727   os::init_before_ergo();
3728 
3729   jint ergo_result = Arguments::apply_ergo();
3730   if (ergo_result != JNI_OK) return ergo_result;
3731 
3732   // Final check of all ranges after ergonomics which may change values.
3733   if (!JVMFlagRangeList::check_ranges()) {
3734     return JNI_EINVAL;
3735   }
3736 
3737   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3738   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3739   if (!constraint_result) {
3740     return JNI_EINVAL;
3741   }
3742 
3743   JVMFlagWriteableList::mark_startup();
3744 
3745   if (PauseAtStartup) {
3746     os::pause();
3747   }
3748 
3749   HOTSPOT_VM_INIT_BEGIN();
3750 
3751   // Timing (must come after argument parsing)
3752   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3753 
3754   // Initialize the os module after parsing the args
3755   jint os_init_2_result = os::init_2();
3756   if (os_init_2_result != JNI_OK) return os_init_2_result;
3757 
3758 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3759   // Initialize assert poison page mechanism.
3760   if (ShowRegistersOnAssert) {
3761     initialize_assert_poison();
3762   }
3763 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3764 
3765   SafepointMechanism::initialize();
3766 
3767   jint adjust_after_os_result = Arguments::adjust_after_os();
3768   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3769 
3770   // Initialize output stream logging
3771   ostream_init_log();
3772 
3773   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3774   // Must be before create_vm_init_agents()
3775   if (Arguments::init_libraries_at_startup()) {
3776     convert_vm_init_libraries_to_agents();
3777   }
3778 
3779   // Launch -agentlib/-agentpath and converted -Xrun agents
3780   if (Arguments::init_agents_at_startup()) {
3781     create_vm_init_agents();
3782   }
3783 
3784   // Initialize Threads state
3785   _number_of_threads = 0;
3786   _number_of_non_daemon_threads = 0;
3787 
3788   // Initialize global data structures and create system classes in heap
3789   vm_init_globals();
3790 
3791 #if INCLUDE_JVMCI
3792   if (JVMCICounterSize > 0) {
3793     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3794     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3795   } else {
3796     JavaThread::_jvmci_old_thread_counters = NULL;
3797   }
3798 #endif // INCLUDE_JVMCI
3799 
3800   // Attach the main thread to this os thread
3801   JavaThread* main_thread = new JavaThread();
3802   main_thread->set_thread_state(_thread_in_vm);
3803   main_thread->initialize_thread_current();
3804   // must do this before set_active_handles
3805   main_thread->record_stack_base_and_size();
3806   main_thread->register_thread_stack_with_NMT();
3807   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3808 
3809   if (!main_thread->set_as_starting_thread()) {
3810     vm_shutdown_during_initialization(
3811                                       "Failed necessary internal allocation. Out of swap space");
3812     main_thread->smr_delete();
3813     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3814     return JNI_ENOMEM;
3815   }
3816 
3817   // Enable guard page *after* os::create_main_thread(), otherwise it would
3818   // crash Linux VM, see notes in os_linux.cpp.
3819   main_thread->create_stack_guard_pages();
3820 
3821   // Initialize Java-Level synchronization subsystem
3822   ObjectMonitor::Initialize();
3823 
3824   // Initialize global modules
3825   jint status = init_globals();
3826   if (status != JNI_OK) {
3827     main_thread->smr_delete();
3828     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3829     return status;
3830   }
3831 
3832   JFR_ONLY(Jfr::on_vm_init();)
3833 
3834   // Should be done after the heap is fully created
3835   main_thread->cache_global_variables();
3836 
3837   HandleMark hm;
3838 
3839   { MutexLocker mu(Threads_lock);
3840     Threads::add(main_thread);
3841   }
3842 
3843   // Any JVMTI raw monitors entered in onload will transition into
3844   // real raw monitor. VM is setup enough here for raw monitor enter.
3845   JvmtiExport::transition_pending_onload_raw_monitors();
3846 
3847   // Create the VMThread
3848   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3849 
3850   VMThread::create();
3851     Thread* vmthread = VMThread::vm_thread();
3852 
3853     if (!os::create_thread(vmthread, os::vm_thread)) {
3854       vm_exit_during_initialization("Cannot create VM thread. "
3855                                     "Out of system resources.");
3856     }
3857 
3858     // Wait for the VM thread to become ready, and VMThread::run to initialize
3859     // Monitors can have spurious returns, must always check another state flag
3860     {
3861       MonitorLocker ml(Notify_lock);
3862       os::start_thread(vmthread);
3863       while (vmthread->active_handles() == NULL) {
3864         ml.wait();
3865       }
3866     }
3867   }
3868 
3869   assert(Universe::is_fully_initialized(), "not initialized");
3870   if (VerifyDuringStartup) {
3871     // Make sure we're starting with a clean slate.
3872     VM_Verify verify_op;
3873     VMThread::execute(&verify_op);
3874   }
3875 
3876   // We need this to update the java.vm.info property in case any flags used
3877   // to initially define it have been changed. This is needed for both CDS and
3878   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3879   // is initially computed. See Abstract_VM_Version::vm_info_string().
3880   // This update must happen before we initialize the java classes, but
3881   // after any initialization logic that might modify the flags.
3882   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3883 
3884   Thread* THREAD = Thread::current();
3885 
3886   // Always call even when there are not JVMTI environments yet, since environments
3887   // may be attached late and JVMTI must track phases of VM execution
3888   JvmtiExport::enter_early_start_phase();
3889 
3890   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3891   JvmtiExport::post_early_vm_start();
3892 
3893   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3894 
3895   quicken_jni_functions();
3896 
3897   // No more stub generation allowed after that point.
3898   StubCodeDesc::freeze();
3899 
3900   // Set flag that basic initialization has completed. Used by exceptions and various
3901   // debug stuff, that does not work until all basic classes have been initialized.
3902   set_init_completed();
3903 
3904   LogConfiguration::post_initialize();
3905   Metaspace::post_initialize();
3906 
3907   HOTSPOT_VM_INIT_END();
3908 
3909   // record VM initialization completion time
3910 #if INCLUDE_MANAGEMENT
3911   Management::record_vm_init_completed();
3912 #endif // INCLUDE_MANAGEMENT
3913 
3914   // Signal Dispatcher needs to be started before VMInit event is posted
3915   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3916 
3917   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3918   if (!DisableAttachMechanism) {
3919     AttachListener::vm_start();
3920     if (StartAttachListener || AttachListener::init_at_startup()) {
3921       AttachListener::init();
3922     }
3923   }
3924 
3925   // Launch -Xrun agents
3926   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3927   // back-end can launch with -Xdebug -Xrunjdwp.
3928   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3929     create_vm_init_libraries();
3930   }
3931 
3932   if (CleanChunkPoolAsync) {
3933     Chunk::start_chunk_pool_cleaner_task();
3934   }
3935 
3936 
3937   // initialize compiler(s)
3938 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3939 #if INCLUDE_JVMCI
3940   bool force_JVMCI_intialization = false;
3941   if (EnableJVMCI) {
3942     // Initialize JVMCI eagerly when it is explicitly requested.
3943     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3944     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3945 
3946     if (!force_JVMCI_intialization) {
3947       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3948       // compilations via JVMCI will not actually block until JVMCI is initialized.
3949       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3950     }
3951   }
3952 #endif
3953   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3954   // Postpone completion of compiler initialization to after JVMCI
3955   // is initialized to avoid timeouts of blocking compilations.
3956   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3957     CompileBroker::compilation_init_phase2();
3958   }
3959 #endif
3960 
3961   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3962   // It is done after compilers are initialized, because otherwise compilations of
3963   // signature polymorphic MH intrinsics can be missed
3964   // (see SystemDictionary::find_method_handle_intrinsic).
3965   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3966 
3967   // This will initialize the module system.  Only java.base classes can be
3968   // loaded until phase 2 completes
3969   call_initPhase2(CHECK_JNI_ERR);
3970 
3971   // Always call even when there are not JVMTI environments yet, since environments
3972   // may be attached late and JVMTI must track phases of VM execution
3973   JvmtiExport::enter_start_phase();
3974 
3975   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3976   JvmtiExport::post_vm_start();
3977 
3978   // Final system initialization including security manager and system class loader
3979   call_initPhase3(CHECK_JNI_ERR);
3980 
3981   // cache the system and platform class loaders
3982   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3983 
3984 #if INCLUDE_CDS
3985   // capture the module path info from the ModuleEntryTable
3986   ClassLoader::initialize_module_path(THREAD);
3987 #endif
3988 
3989 #if INCLUDE_JVMCI
3990   if (force_JVMCI_intialization) {
3991     JVMCI::initialize_compiler(CHECK_JNI_ERR);
3992     CompileBroker::compilation_init_phase2();
3993   }
3994 #endif
3995 
3996   // Always call even when there are not JVMTI environments yet, since environments
3997   // may be attached late and JVMTI must track phases of VM execution
3998   JvmtiExport::enter_live_phase();
3999 
4000   // Make perfmemory accessible
4001   PerfMemory::set_accessible(true);
4002 
4003   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4004   JvmtiExport::post_vm_initialized();
4005 
4006   JFR_ONLY(Jfr::on_vm_start();)
4007 
4008 #if INCLUDE_MANAGEMENT
4009   Management::initialize(THREAD);
4010 
4011   if (HAS_PENDING_EXCEPTION) {
4012     // management agent fails to start possibly due to
4013     // configuration problem and is responsible for printing
4014     // stack trace if appropriate. Simply exit VM.
4015     vm_exit(1);
4016   }
4017 #endif // INCLUDE_MANAGEMENT
4018 
4019   if (MemProfiling)                   MemProfiler::engage();
4020   StatSampler::engage();
4021   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4022 
4023   BiasedLocking::init();
4024 
4025 #if INCLUDE_RTM_OPT
4026   RTMLockingCounters::init();
4027 #endif
4028 
4029   call_postVMInitHook(THREAD);
4030   // The Java side of PostVMInitHook.run must deal with all
4031   // exceptions and provide means of diagnosis.
4032   if (HAS_PENDING_EXCEPTION) {
4033     CLEAR_PENDING_EXCEPTION;
4034   }
4035 
4036   {
4037     MutexLocker ml(PeriodicTask_lock);
4038     // Make sure the WatcherThread can be started by WatcherThread::start()
4039     // or by dynamic enrollment.
4040     WatcherThread::make_startable();
4041     // Start up the WatcherThread if there are any periodic tasks
4042     // NOTE:  All PeriodicTasks should be registered by now. If they
4043     //   aren't, late joiners might appear to start slowly (we might
4044     //   take a while to process their first tick).
4045     if (PeriodicTask::num_tasks() > 0) {
4046       WatcherThread::start();
4047     }
4048   }
4049 
4050   create_vm_timer.end();
4051 #ifdef ASSERT
4052   _vm_complete = true;
4053 #endif
4054 
4055   if (DumpSharedSpaces) {
4056     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4057     ShouldNotReachHere();
4058   }
4059 
4060   return JNI_OK;
4061 }
4062 
4063 // type for the Agent_OnLoad and JVM_OnLoad entry points
4064 extern "C" {
4065   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4066 }
4067 // Find a command line agent library and return its entry point for
4068 //         -agentlib:  -agentpath:   -Xrun
4069 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4070 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4071                                     const char *on_load_symbols[],
4072                                     size_t num_symbol_entries) {
4073   OnLoadEntry_t on_load_entry = NULL;
4074   void *library = NULL;
4075 
4076   if (!agent->valid()) {
4077     char buffer[JVM_MAXPATHLEN];
4078     char ebuf[1024] = "";
4079     const char *name = agent->name();
4080     const char *msg = "Could not find agent library ";
4081 
4082     // First check to see if agent is statically linked into executable
4083     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4084       library = agent->os_lib();
4085     } else if (agent->is_absolute_path()) {
4086       library = os::dll_load(name, ebuf, sizeof ebuf);
4087       if (library == NULL) {
4088         const char *sub_msg = " in absolute path, with error: ";
4089         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4090         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4091         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4092         // If we can't find the agent, exit.
4093         vm_exit_during_initialization(buf, NULL);
4094         FREE_C_HEAP_ARRAY(char, buf);
4095       }
4096     } else {
4097       // Try to load the agent from the standard dll directory
4098       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4099                              name)) {
4100         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4101       }
4102       if (library == NULL) { // Try the library path directory.
4103         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4104           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4105         }
4106         if (library == NULL) {
4107           const char *sub_msg = " on the library path, with error: ";
4108           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4109 
4110           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4111                        strlen(ebuf) + strlen(sub_msg2) + 1;
4112           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4113           if (!agent->is_instrument_lib()) {
4114             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4115           } else {
4116             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4117           }
4118           // If we can't find the agent, exit.
4119           vm_exit_during_initialization(buf, NULL);
4120           FREE_C_HEAP_ARRAY(char, buf);
4121         }
4122       }
4123     }
4124     agent->set_os_lib(library);
4125     agent->set_valid();
4126   }
4127 
4128   // Find the OnLoad function.
4129   on_load_entry =
4130     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4131                                                           false,
4132                                                           on_load_symbols,
4133                                                           num_symbol_entries));
4134   return on_load_entry;
4135 }
4136 
4137 // Find the JVM_OnLoad entry point
4138 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4139   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4140   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4141 }
4142 
4143 // Find the Agent_OnLoad entry point
4144 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4145   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4146   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4147 }
4148 
4149 // For backwards compatibility with -Xrun
4150 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4151 // treated like -agentpath:
4152 // Must be called before agent libraries are created
4153 void Threads::convert_vm_init_libraries_to_agents() {
4154   AgentLibrary* agent;
4155   AgentLibrary* next;
4156 
4157   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4158     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4159     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4160 
4161     // If there is an JVM_OnLoad function it will get called later,
4162     // otherwise see if there is an Agent_OnLoad
4163     if (on_load_entry == NULL) {
4164       on_load_entry = lookup_agent_on_load(agent);
4165       if (on_load_entry != NULL) {
4166         // switch it to the agent list -- so that Agent_OnLoad will be called,
4167         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4168         Arguments::convert_library_to_agent(agent);
4169       } else {
4170         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4171       }
4172     }
4173   }
4174 }
4175 
4176 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4177 // Invokes Agent_OnLoad
4178 // Called very early -- before JavaThreads exist
4179 void Threads::create_vm_init_agents() {
4180   extern struct JavaVM_ main_vm;
4181   AgentLibrary* agent;
4182 
4183   JvmtiExport::enter_onload_phase();
4184 
4185   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4186     // CDS dumping does not support native JVMTI agent.
4187     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4188     if (DumpSharedSpaces || DynamicDumpSharedSpaces) {
4189       if(!agent->is_instrument_lib()) {
4190         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4191       } else if (!AllowArchivingWithJavaAgent) {
4192         vm_exit_during_cds_dumping(
4193           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4194       }
4195     }
4196 
4197     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4198 
4199     if (on_load_entry != NULL) {
4200       // Invoke the Agent_OnLoad function
4201       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4202       if (err != JNI_OK) {
4203         vm_exit_during_initialization("agent library failed to init", agent->name());
4204       }
4205     } else {
4206       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4207     }
4208   }
4209 
4210   JvmtiExport::enter_primordial_phase();
4211 }
4212 
4213 extern "C" {
4214   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4215 }
4216 
4217 void Threads::shutdown_vm_agents() {
4218   // Send any Agent_OnUnload notifications
4219   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4220   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4221   extern struct JavaVM_ main_vm;
4222   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4223 
4224     // Find the Agent_OnUnload function.
4225     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4226                                                    os::find_agent_function(agent,
4227                                                    false,
4228                                                    on_unload_symbols,
4229                                                    num_symbol_entries));
4230 
4231     // Invoke the Agent_OnUnload function
4232     if (unload_entry != NULL) {
4233       JavaThread* thread = JavaThread::current();
4234       ThreadToNativeFromVM ttn(thread);
4235       HandleMark hm(thread);
4236       (*unload_entry)(&main_vm);
4237     }
4238   }
4239 }
4240 
4241 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4242 // Invokes JVM_OnLoad
4243 void Threads::create_vm_init_libraries() {
4244   extern struct JavaVM_ main_vm;
4245   AgentLibrary* agent;
4246 
4247   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4248     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4249 
4250     if (on_load_entry != NULL) {
4251       // Invoke the JVM_OnLoad function
4252       JavaThread* thread = JavaThread::current();
4253       ThreadToNativeFromVM ttn(thread);
4254       HandleMark hm(thread);
4255       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4256       if (err != JNI_OK) {
4257         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4258       }
4259     } else {
4260       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4261     }
4262   }
4263 }
4264 
4265 
4266 // Last thread running calls java.lang.Shutdown.shutdown()
4267 void JavaThread::invoke_shutdown_hooks() {
4268   HandleMark hm(this);
4269 
4270   // We could get here with a pending exception, if so clear it now.
4271   if (this->has_pending_exception()) {
4272     this->clear_pending_exception();
4273   }
4274 
4275   EXCEPTION_MARK;
4276   Klass* shutdown_klass =
4277     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4278                                       THREAD);
4279   if (shutdown_klass != NULL) {
4280     // SystemDictionary::resolve_or_null will return null if there was
4281     // an exception.  If we cannot load the Shutdown class, just don't
4282     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4283     // won't be run.  Note that if a shutdown hook was registered,
4284     // the Shutdown class would have already been loaded
4285     // (Runtime.addShutdownHook will load it).
4286     JavaValue result(T_VOID);
4287     JavaCalls::call_static(&result,
4288                            shutdown_klass,
4289                            vmSymbols::shutdown_name(),
4290                            vmSymbols::void_method_signature(),
4291                            THREAD);
4292   }
4293   CLEAR_PENDING_EXCEPTION;
4294 }
4295 
4296 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4297 // the program falls off the end of main(). Another VM exit path is through
4298 // vm_exit() when the program calls System.exit() to return a value or when
4299 // there is a serious error in VM. The two shutdown paths are not exactly
4300 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4301 // and VM_Exit op at VM level.
4302 //
4303 // Shutdown sequence:
4304 //   + Shutdown native memory tracking if it is on
4305 //   + Wait until we are the last non-daemon thread to execute
4306 //     <-- every thing is still working at this moment -->
4307 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4308 //        shutdown hooks
4309 //   + Call before_exit(), prepare for VM exit
4310 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4311 //        currently the only user of this mechanism is File.deleteOnExit())
4312 //      > stop StatSampler, watcher thread, CMS threads,
4313 //        post thread end and vm death events to JVMTI,
4314 //        stop signal thread
4315 //   + Call JavaThread::exit(), it will:
4316 //      > release JNI handle blocks, remove stack guard pages
4317 //      > remove this thread from Threads list
4318 //     <-- no more Java code from this thread after this point -->
4319 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4320 //     the compiler threads at safepoint
4321 //     <-- do not use anything that could get blocked by Safepoint -->
4322 //   + Disable tracing at JNI/JVM barriers
4323 //   + Set _vm_exited flag for threads that are still running native code
4324 //   + Call exit_globals()
4325 //      > deletes tty
4326 //      > deletes PerfMemory resources
4327 //   + Delete this thread
4328 //   + Return to caller
4329 
4330 bool Threads::destroy_vm() {
4331   JavaThread* thread = JavaThread::current();
4332 
4333 #ifdef ASSERT
4334   _vm_complete = false;
4335 #endif
4336   // Wait until we are the last non-daemon thread to execute
4337   { MonitorLocker nu(Threads_lock);
4338     while (Threads::number_of_non_daemon_threads() > 1)
4339       // This wait should make safepoint checks, wait without a timeout,
4340       // and wait as a suspend-equivalent condition.
4341       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4342   }
4343 
4344   EventShutdown e;
4345   if (e.should_commit()) {
4346     e.set_reason("No remaining non-daemon Java threads");
4347     e.commit();
4348   }
4349 
4350   // Hang forever on exit if we are reporting an error.
4351   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4352     os::infinite_sleep();
4353   }
4354   os::wait_for_keypress_at_exit();
4355 
4356   // run Java level shutdown hooks
4357   thread->invoke_shutdown_hooks();
4358 
4359   before_exit(thread);
4360 
4361   thread->exit(true);
4362 
4363   // Stop VM thread.
4364   {
4365     // 4945125 The vm thread comes to a safepoint during exit.
4366     // GC vm_operations can get caught at the safepoint, and the
4367     // heap is unparseable if they are caught. Grab the Heap_lock
4368     // to prevent this. The GC vm_operations will not be able to
4369     // queue until after the vm thread is dead. After this point,
4370     // we'll never emerge out of the safepoint before the VM exits.
4371 
4372     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4373 
4374     VMThread::wait_for_vm_thread_exit();
4375     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4376     VMThread::destroy();
4377   }
4378 
4379   // Now, all Java threads are gone except daemon threads. Daemon threads
4380   // running Java code or in VM are stopped by the Safepoint. However,
4381   // daemon threads executing native code are still running.  But they
4382   // will be stopped at native=>Java/VM barriers. Note that we can't
4383   // simply kill or suspend them, as it is inherently deadlock-prone.
4384 
4385   VM_Exit::set_vm_exited();
4386 
4387   // Clean up ideal graph printers after the VMThread has started
4388   // the final safepoint which will block all the Compiler threads.
4389   // Note that this Thread has already logically exited so the
4390   // clean_up() function's use of a JavaThreadIteratorWithHandle
4391   // would be a problem except set_vm_exited() has remembered the
4392   // shutdown thread which is granted a policy exception.
4393 #if defined(COMPILER2) && !defined(PRODUCT)
4394   IdealGraphPrinter::clean_up();
4395 #endif
4396 
4397   notify_vm_shutdown();
4398 
4399   // exit_globals() will delete tty
4400   exit_globals();
4401 
4402   // We are after VM_Exit::set_vm_exited() so we can't call
4403   // thread->smr_delete() or we will block on the Threads_lock.
4404   // Deleting the shutdown thread here is safe because another
4405   // JavaThread cannot have an active ThreadsListHandle for
4406   // this JavaThread.
4407   delete thread;
4408 
4409 #if INCLUDE_JVMCI
4410   if (JVMCICounterSize > 0) {
4411     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4412   }
4413 #endif
4414 
4415   LogConfiguration::finalize();
4416 
4417   return true;
4418 }
4419 
4420 
4421 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4422   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4423   return is_supported_jni_version(version);
4424 }
4425 
4426 
4427 jboolean Threads::is_supported_jni_version(jint version) {
4428   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4429   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4430   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4431   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4432   if (version == JNI_VERSION_9) return JNI_TRUE;
4433   if (version == JNI_VERSION_10) return JNI_TRUE;
4434   return JNI_FALSE;
4435 }
4436 
4437 
4438 void Threads::add(JavaThread* p, bool force_daemon) {
4439   // The threads lock must be owned at this point
4440   assert(Threads_lock->owned_by_self(), "must have threads lock");
4441 
4442   BarrierSet::barrier_set()->on_thread_attach(p);
4443 
4444   // Once a JavaThread is added to the Threads list, smr_delete() has
4445   // to be used to delete it. Otherwise we can just delete it directly.
4446   p->set_on_thread_list();
4447 
4448   _number_of_threads++;
4449   oop threadObj = p->threadObj();
4450   bool daemon = true;
4451   // Bootstrapping problem: threadObj can be null for initial
4452   // JavaThread (or for threads attached via JNI)
4453   if ((!force_daemon) && !is_daemon((threadObj))) {
4454     _number_of_non_daemon_threads++;
4455     daemon = false;
4456   }
4457 
4458   ThreadService::add_thread(p, daemon);
4459 
4460   // Maintain fast thread list
4461   ThreadsSMRSupport::add_thread(p);
4462 
4463   // Possible GC point.
4464   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4465 }
4466 
4467 void Threads::remove(JavaThread* p, bool is_daemon) {
4468 
4469   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4470   ObjectSynchronizer::om_flush(p);
4471 
4472   // Extra scope needed for Thread_lock, so we can check
4473   // that we do not remove thread without safepoint code notice
4474   { MonitorLocker ml(Threads_lock);
4475 
4476     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4477 
4478     // Maintain fast thread list
4479     ThreadsSMRSupport::remove_thread(p);
4480 
4481     _number_of_threads--;
4482     if (!is_daemon) {
4483       _number_of_non_daemon_threads--;
4484 
4485       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4486       // on destroy_vm will wake up.
4487       if (number_of_non_daemon_threads() == 1) {
4488         ml.notify_all();
4489       }
4490     }
4491     ThreadService::remove_thread(p, is_daemon);
4492 
4493     // Make sure that safepoint code disregard this thread. This is needed since
4494     // the thread might mess around with locks after this point. This can cause it
4495     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4496     // of this thread since it is removed from the queue.
4497     p->set_terminated_value();
4498   } // unlock Threads_lock
4499 
4500   // Since Events::log uses a lock, we grab it outside the Threads_lock
4501   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4502 }
4503 
4504 // Operations on the Threads list for GC.  These are not explicitly locked,
4505 // but the garbage collector must provide a safe context for them to run.
4506 // In particular, these things should never be called when the Threads_lock
4507 // is held by some other thread. (Note: the Safepoint abstraction also
4508 // uses the Threads_lock to guarantee this property. It also makes sure that
4509 // all threads gets blocked when exiting or starting).
4510 
4511 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4512   ALL_JAVA_THREADS(p) {
4513     p->oops_do(f, cf);
4514   }
4515   VMThread::vm_thread()->oops_do(f, cf);
4516 }
4517 
4518 void Threads::change_thread_claim_token() {
4519   if (++_thread_claim_token == 0) {
4520     // On overflow of the token counter, there is a risk of future
4521     // collisions between a new global token value and a stale token
4522     // for a thread, because not all iterations visit all threads.
4523     // (Though it's pretty much a theoretical concern for non-trivial
4524     // token counter sizes.)  To deal with the possibility, reset all
4525     // the thread tokens to zero on global token overflow.
4526     struct ResetClaims : public ThreadClosure {
4527       virtual void do_thread(Thread* t) {
4528         t->claim_threads_do(false, 0);
4529       }
4530     } reset_claims;
4531     Threads::threads_do(&reset_claims);
4532     // On overflow, update the global token to non-zero, to
4533     // avoid the special "never claimed" initial thread value.
4534     _thread_claim_token = 1;
4535   }
4536 }
4537 
4538 #ifdef ASSERT
4539 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4540   const uintx token = t->threads_do_token();
4541   assert(token == expected,
4542          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4543          UINTX_FORMAT, kind, p2i(t), token, expected);
4544 }
4545 
4546 void Threads::assert_all_threads_claimed() {
4547   ALL_JAVA_THREADS(p) {
4548     assert_thread_claimed("Thread", p, _thread_claim_token);
4549   }
4550   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4551 }
4552 #endif // ASSERT
4553 
4554 class ParallelOopsDoThreadClosure : public ThreadClosure {
4555 private:
4556   OopClosure* _f;
4557   CodeBlobClosure* _cf;
4558 public:
4559   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4560   void do_thread(Thread* t) {
4561     t->oops_do(_f, _cf);
4562   }
4563 };
4564 
4565 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4566   ParallelOopsDoThreadClosure tc(f, cf);
4567   possibly_parallel_threads_do(is_par, &tc);
4568 }
4569 
4570 void Threads::nmethods_do(CodeBlobClosure* cf) {
4571   ALL_JAVA_THREADS(p) {
4572     // This is used by the code cache sweeper to mark nmethods that are active
4573     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4574     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4575     if(!p->is_Code_cache_sweeper_thread()) {
4576       p->nmethods_do(cf);
4577     }
4578   }
4579 }
4580 
4581 void Threads::metadata_do(MetadataClosure* f) {
4582   ALL_JAVA_THREADS(p) {
4583     p->metadata_do(f);
4584   }
4585 }
4586 
4587 class ThreadHandlesClosure : public ThreadClosure {
4588   void (*_f)(Metadata*);
4589  public:
4590   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4591   virtual void do_thread(Thread* thread) {
4592     thread->metadata_handles_do(_f);
4593   }
4594 };
4595 
4596 void Threads::metadata_handles_do(void f(Metadata*)) {
4597   // Only walk the Handles in Thread.
4598   ThreadHandlesClosure handles_closure(f);
4599   threads_do(&handles_closure);
4600 }
4601 
4602 // Get count Java threads that are waiting to enter the specified monitor.
4603 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4604                                                          int count,
4605                                                          address monitor) {
4606   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4607 
4608   int i = 0;
4609   DO_JAVA_THREADS(t_list, p) {
4610     if (!p->can_call_java()) continue;
4611 
4612     address pending = (address)p->current_pending_monitor();
4613     if (pending == monitor) {             // found a match
4614       if (i < count) result->append(p);   // save the first count matches
4615       i++;
4616     }
4617   }
4618 
4619   return result;
4620 }
4621 
4622 
4623 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4624                                                       address owner) {
4625   // NULL owner means not locked so we can skip the search
4626   if (owner == NULL) return NULL;
4627 
4628   DO_JAVA_THREADS(t_list, p) {
4629     // first, see if owner is the address of a Java thread
4630     if (owner == (address)p) return p;
4631   }
4632 
4633   // Cannot assert on lack of success here since this function may be
4634   // used by code that is trying to report useful problem information
4635   // like deadlock detection.
4636   if (UseHeavyMonitors) return NULL;
4637 
4638   // If we didn't find a matching Java thread and we didn't force use of
4639   // heavyweight monitors, then the owner is the stack address of the
4640   // Lock Word in the owning Java thread's stack.
4641   //
4642   JavaThread* the_owner = NULL;
4643   DO_JAVA_THREADS(t_list, q) {
4644     if (q->is_lock_owned(owner)) {
4645       the_owner = q;
4646       break;
4647     }
4648   }
4649 
4650   // cannot assert on lack of success here; see above comment
4651   return the_owner;
4652 }
4653 
4654 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4655 void Threads::print_on(outputStream* st, bool print_stacks,
4656                        bool internal_format, bool print_concurrent_locks,
4657                        bool print_extended_info) {
4658   char buf[32];
4659   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4660 
4661   st->print_cr("Full thread dump %s (%s %s):",
4662                VM_Version::vm_name(),
4663                VM_Version::vm_release(),
4664                VM_Version::vm_info_string());
4665   st->cr();
4666 
4667 #if INCLUDE_SERVICES
4668   // Dump concurrent locks
4669   ConcurrentLocksDump concurrent_locks;
4670   if (print_concurrent_locks) {
4671     concurrent_locks.dump_at_safepoint();
4672   }
4673 #endif // INCLUDE_SERVICES
4674 
4675   ThreadsSMRSupport::print_info_on(st);
4676   st->cr();
4677 
4678   ALL_JAVA_THREADS(p) {
4679     ResourceMark rm;
4680     p->print_on(st, print_extended_info);
4681     if (print_stacks) {
4682       if (internal_format) {
4683         p->trace_stack();
4684       } else {
4685         p->print_stack_on(st);
4686       }
4687     }
4688     st->cr();
4689 #if INCLUDE_SERVICES
4690     if (print_concurrent_locks) {
4691       concurrent_locks.print_locks_on(p, st);
4692     }
4693 #endif // INCLUDE_SERVICES
4694   }
4695 
4696   VMThread::vm_thread()->print_on(st);
4697   st->cr();
4698   Universe::heap()->print_gc_threads_on(st);
4699   WatcherThread* wt = WatcherThread::watcher_thread();
4700   if (wt != NULL) {
4701     wt->print_on(st);
4702     st->cr();
4703   }
4704 
4705   st->flush();
4706 }
4707 
4708 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4709                              int buflen, bool* found_current) {
4710   if (this_thread != NULL) {
4711     bool is_current = (current == this_thread);
4712     *found_current = *found_current || is_current;
4713     st->print("%s", is_current ? "=>" : "  ");
4714 
4715     st->print(PTR_FORMAT, p2i(this_thread));
4716     st->print(" ");
4717     this_thread->print_on_error(st, buf, buflen);
4718     st->cr();
4719   }
4720 }
4721 
4722 class PrintOnErrorClosure : public ThreadClosure {
4723   outputStream* _st;
4724   Thread* _current;
4725   char* _buf;
4726   int _buflen;
4727   bool* _found_current;
4728  public:
4729   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4730                       int buflen, bool* found_current) :
4731    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4732 
4733   virtual void do_thread(Thread* thread) {
4734     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4735   }
4736 };
4737 
4738 // Threads::print_on_error() is called by fatal error handler. It's possible
4739 // that VM is not at safepoint and/or current thread is inside signal handler.
4740 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4741 // memory (even in resource area), it might deadlock the error handler.
4742 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4743                              int buflen) {
4744   ThreadsSMRSupport::print_info_on(st);
4745   st->cr();
4746 
4747   bool found_current = false;
4748   st->print_cr("Java Threads: ( => current thread )");
4749   ALL_JAVA_THREADS(thread) {
4750     print_on_error(thread, st, current, buf, buflen, &found_current);
4751   }
4752   st->cr();
4753 
4754   st->print_cr("Other Threads:");
4755   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4756   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4757 
4758   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4759   Universe::heap()->gc_threads_do(&print_closure);
4760 
4761   if (!found_current) {
4762     st->cr();
4763     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4764     current->print_on_error(st, buf, buflen);
4765     st->cr();
4766   }
4767   st->cr();
4768 
4769   st->print_cr("Threads with active compile tasks:");
4770   print_threads_compiling(st, buf, buflen);
4771 }
4772 
4773 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4774   ALL_JAVA_THREADS(thread) {
4775     if (thread->is_Compiler_thread()) {
4776       CompilerThread* ct = (CompilerThread*) thread;
4777 
4778       // Keep task in local variable for NULL check.
4779       // ct->_task might be set to NULL by concurring compiler thread
4780       // because it completed the compilation. The task is never freed,
4781       // though, just returned to a free list.
4782       CompileTask* task = ct->task();
4783       if (task != NULL) {
4784         thread->print_name_on_error(st, buf, buflen);
4785         st->print("  ");
4786         task->print(st, NULL, short_form, true);
4787       }
4788     }
4789   }
4790 }
4791 
4792 
4793 // Internal SpinLock and Mutex
4794 // Based on ParkEvent
4795 
4796 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4797 //
4798 // We employ SpinLocks _only for low-contention, fixed-length
4799 // short-duration critical sections where we're concerned
4800 // about native mutex_t or HotSpot Mutex:: latency.
4801 // The mux construct provides a spin-then-block mutual exclusion
4802 // mechanism.
4803 //
4804 // Testing has shown that contention on the ListLock guarding gFreeList
4805 // is common.  If we implement ListLock as a simple SpinLock it's common
4806 // for the JVM to devolve to yielding with little progress.  This is true
4807 // despite the fact that the critical sections protected by ListLock are
4808 // extremely short.
4809 //
4810 // TODO-FIXME: ListLock should be of type SpinLock.
4811 // We should make this a 1st-class type, integrated into the lock
4812 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4813 // should have sufficient padding to avoid false-sharing and excessive
4814 // cache-coherency traffic.
4815 
4816 
4817 typedef volatile int SpinLockT;
4818 
4819 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4820   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4821     return;   // normal fast-path return
4822   }
4823 
4824   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4825   int ctr = 0;
4826   int Yields = 0;
4827   for (;;) {
4828     while (*adr != 0) {
4829       ++ctr;
4830       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4831         if (Yields > 5) {
4832           os::naked_short_sleep(1);
4833         } else {
4834           os::naked_yield();
4835           ++Yields;
4836         }
4837       } else {
4838         SpinPause();
4839       }
4840     }
4841     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4842   }
4843 }
4844 
4845 void Thread::SpinRelease(volatile int * adr) {
4846   assert(*adr != 0, "invariant");
4847   OrderAccess::fence();      // guarantee at least release consistency.
4848   // Roach-motel semantics.
4849   // It's safe if subsequent LDs and STs float "up" into the critical section,
4850   // but prior LDs and STs within the critical section can't be allowed
4851   // to reorder or float past the ST that releases the lock.
4852   // Loads and stores in the critical section - which appear in program
4853   // order before the store that releases the lock - must also appear
4854   // before the store that releases the lock in memory visibility order.
4855   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4856   // the ST of 0 into the lock-word which releases the lock, so fence
4857   // more than covers this on all platforms.
4858   *adr = 0;
4859 }
4860 
4861 // muxAcquire and muxRelease:
4862 //
4863 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4864 //    The LSB of the word is set IFF the lock is held.
4865 //    The remainder of the word points to the head of a singly-linked list
4866 //    of threads blocked on the lock.
4867 //
4868 // *  The current implementation of muxAcquire-muxRelease uses its own
4869 //    dedicated Thread._MuxEvent instance.  If we're interested in
4870 //    minimizing the peak number of extant ParkEvent instances then
4871 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4872 //    as certain invariants were satisfied.  Specifically, care would need
4873 //    to be taken with regards to consuming unpark() "permits".
4874 //    A safe rule of thumb is that a thread would never call muxAcquire()
4875 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4876 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4877 //    consume an unpark() permit intended for monitorenter, for instance.
4878 //    One way around this would be to widen the restricted-range semaphore
4879 //    implemented in park().  Another alternative would be to provide
4880 //    multiple instances of the PlatformEvent() for each thread.  One
4881 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4882 //
4883 // *  Usage:
4884 //    -- Only as leaf locks
4885 //    -- for short-term locking only as muxAcquire does not perform
4886 //       thread state transitions.
4887 //
4888 // Alternatives:
4889 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4890 //    but with parking or spin-then-park instead of pure spinning.
4891 // *  Use Taura-Oyama-Yonenzawa locks.
4892 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4893 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4894 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4895 //    acquiring threads use timers (ParkTimed) to detect and recover from
4896 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4897 //    boundaries by using placement-new.
4898 // *  Augment MCS with advisory back-link fields maintained with CAS().
4899 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4900 //    The validity of the backlinks must be ratified before we trust the value.
4901 //    If the backlinks are invalid the exiting thread must back-track through the
4902 //    the forward links, which are always trustworthy.
4903 // *  Add a successor indication.  The LockWord is currently encoded as
4904 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4905 //    to provide the usual futile-wakeup optimization.
4906 //    See RTStt for details.
4907 //
4908 
4909 
4910 const intptr_t LOCKBIT = 1;
4911 
4912 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4913   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4914   if (w == 0) return;
4915   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4916     return;
4917   }
4918 
4919   ParkEvent * const Self = Thread::current()->_MuxEvent;
4920   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4921   for (;;) {
4922     int its = (os::is_MP() ? 100 : 0) + 1;
4923 
4924     // Optional spin phase: spin-then-park strategy
4925     while (--its >= 0) {
4926       w = *Lock;
4927       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4928         return;
4929       }
4930     }
4931 
4932     Self->reset();
4933     Self->OnList = intptr_t(Lock);
4934     // The following fence() isn't _strictly necessary as the subsequent
4935     // CAS() both serializes execution and ratifies the fetched *Lock value.
4936     OrderAccess::fence();
4937     for (;;) {
4938       w = *Lock;
4939       if ((w & LOCKBIT) == 0) {
4940         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4941           Self->OnList = 0;   // hygiene - allows stronger asserts
4942           return;
4943         }
4944         continue;      // Interference -- *Lock changed -- Just retry
4945       }
4946       assert(w & LOCKBIT, "invariant");
4947       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4948       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4949     }
4950 
4951     while (Self->OnList != 0) {
4952       Self->park();
4953     }
4954   }
4955 }
4956 
4957 // Release() must extract a successor from the list and then wake that thread.
4958 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4959 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4960 // Release() would :
4961 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4962 // (B) Extract a successor from the private list "in-hand"
4963 // (C) attempt to CAS() the residual back into *Lock over null.
4964 //     If there were any newly arrived threads and the CAS() would fail.
4965 //     In that case Release() would detach the RATs, re-merge the list in-hand
4966 //     with the RATs and repeat as needed.  Alternately, Release() might
4967 //     detach and extract a successor, but then pass the residual list to the wakee.
4968 //     The wakee would be responsible for reattaching and remerging before it
4969 //     competed for the lock.
4970 //
4971 // Both "pop" and DMR are immune from ABA corruption -- there can be
4972 // multiple concurrent pushers, but only one popper or detacher.
4973 // This implementation pops from the head of the list.  This is unfair,
4974 // but tends to provide excellent throughput as hot threads remain hot.
4975 // (We wake recently run threads first).
4976 //
4977 // All paths through muxRelease() will execute a CAS.
4978 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4979 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4980 // executed within the critical section are complete and globally visible before the
4981 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4982 void Thread::muxRelease(volatile intptr_t * Lock)  {
4983   for (;;) {
4984     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
4985     assert(w & LOCKBIT, "invariant");
4986     if (w == LOCKBIT) return;
4987     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4988     assert(List != NULL, "invariant");
4989     assert(List->OnList == intptr_t(Lock), "invariant");
4990     ParkEvent * const nxt = List->ListNext;
4991     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4992 
4993     // The following CAS() releases the lock and pops the head element.
4994     // The CAS() also ratifies the previously fetched lock-word value.
4995     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
4996       continue;
4997     }
4998     List->OnList = 0;
4999     OrderAccess::fence();
5000     List->unpark();
5001     return;
5002   }
5003 }
5004 
5005 
5006 void Threads::verify() {
5007   ALL_JAVA_THREADS(p) {
5008     p->verify();
5009   }
5010   VMThread* thread = VMThread::vm_thread();
5011   if (thread != NULL) thread->verify();
5012 }