1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/biasedLocking.hpp"
  67 #include "runtime/fieldDescriptor.inline.hpp"
  68 #include "runtime/flags/jvmFlagConstraintList.hpp"
  69 #include "runtime/flags/jvmFlagRangeList.hpp"
  70 #include "runtime/flags/jvmFlagWriteableList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.inline.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/statSampler.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/sweeper.hpp"
  94 #include "runtime/task.hpp"
  95 #include "runtime/thread.inline.hpp"
  96 #include "runtime/threadCritical.hpp"
  97 #include "runtime/threadSMR.inline.hpp"
  98 #include "runtime/threadStatisticalInfo.hpp"
  99 #include "runtime/timer.hpp"
 100 #include "runtime/timerTrace.hpp"
 101 #include "runtime/vframe.inline.hpp"
 102 #include "runtime/vframeArray.hpp"
 103 #include "runtime/vframe_hp.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "runtime/vmOperations.hpp"
 106 #include "runtime/vm_version.hpp"
 107 #include "services/attachListener.hpp"
 108 #include "services/management.hpp"
 109 #include "services/memTracker.hpp"
 110 #include "services/threadService.hpp"
 111 #include "utilities/align.hpp"
 112 #include "utilities/copy.hpp"
 113 #include "utilities/defaultStream.hpp"
 114 #include "utilities/dtrace.hpp"
 115 #include "utilities/events.inline.hpp"
 116 #include "utilities/macros.hpp"
 117 #include "utilities/preserveException.hpp"
 118 #include "utilities/singleWriterSynchronizer.hpp"
 119 #include "utilities/vmError.hpp"
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmci.hpp"
 122 #include "jvmci/jvmciEnv.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const size_t alignment = markWord::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_lgrp_id(-1);
 227   DEBUG_ONLY(clear_suspendible_thread();)
 228 
 229   // allocated data structures
 230   set_osthread(NULL);
 231   set_resource_area(new (mtThread)ResourceArea());
 232   DEBUG_ONLY(_current_resource_mark = NULL;)
 233   set_handle_area(new (mtThread) HandleArea(NULL));
 234   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 235   set_active_handles(NULL);
 236   set_free_handle_block(NULL);
 237   set_last_handle_mark(NULL);
 238   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 239 
 240   // Initial value of zero ==> never claimed.
 241   _threads_do_token = 0;
 242   _threads_hazard_ptr = NULL;
 243   _threads_list_ptr = NULL;
 244   _nested_threads_hazard_ptr_cnt = 0;
 245   _rcu_counter = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   NOT_PRODUCT(_no_safepoint_count = 0;)
 253   NOT_PRODUCT(_skip_gcalot = false;)
 254   _jvmti_env_iteration_count = 0;
 255   set_allocated_bytes(0);
 256   _vm_operation_started_count = 0;
 257   _vm_operation_completed_count = 0;
 258   _current_pending_monitor = NULL;
 259   _current_pending_monitor_is_from_java = true;
 260   _current_waiting_monitor = NULL;
 261   _num_nested_signal = 0;
 262   om_free_list = NULL;
 263   om_free_count = 0;
 264   om_free_provision = 32;
 265   om_in_use_list = NULL;
 266   om_in_use_count = 0;
 267 
 268 #ifdef ASSERT
 269   _visited_for_critical_count = false;
 270 #endif
 271 
 272   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 273                          Monitor::_safepoint_check_sometimes);
 274   _suspend_flags = 0;
 275 
 276   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 277   _hashStateX = os::random();
 278   _hashStateY = 842502087;
 279   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 280   _hashStateW = 273326509;
 281 
 282   _OnTrap   = 0;
 283   _Stalled  = 0;
 284   _TypeTag  = 0x2BAD;
 285 
 286   // Many of the following fields are effectively final - immutable
 287   // Note that nascent threads can't use the Native Monitor-Mutex
 288   // construct until the _MutexEvent is initialized ...
 289   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 290   // we might instead use a stack of ParkEvents that we could provision on-demand.
 291   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 292   // and ::Release()
 293   _ParkEvent   = ParkEvent::Allocate(this);
 294   _MuxEvent    = ParkEvent::Allocate(this);
 295 
 296 #ifdef CHECK_UNHANDLED_OOPS
 297   if (CheckUnhandledOops) {
 298     _unhandled_oops = new UnhandledOops(this);
 299   }
 300 #endif // CHECK_UNHANDLED_OOPS
 301 #ifdef ASSERT
 302   if (UseBiasedLocking) {
 303     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 304     assert(this == _real_malloc_address ||
 305            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 306            "bug in forced alignment of thread objects");
 307   }
 308 #endif // ASSERT
 309 
 310   // Notify the barrier set that a thread is being created. The initial
 311   // thread is created before the barrier set is available.  The call to
 312   // BarrierSet::on_thread_create() for this thread is therefore deferred
 313   // to BarrierSet::set_barrier_set().
 314   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 315   if (barrier_set != NULL) {
 316     barrier_set->on_thread_create(this);
 317   } else {
 318     // Only the main thread should be created before the barrier set
 319     // and that happens just before Thread::current is set. No other thread
 320     // can attach as the VM is not created yet, so they can't execute this code.
 321     // If the main thread creates other threads before the barrier set that is an error.
 322     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 323   }
 324 }
 325   
 326 bool JavaThread::is_ext_suspend_completed_with_lock(uint32_t *bits) {
 327   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 328   // Warning: is_ext_suspend_completed() may temporarily drop the
 329   // SR_lock to allow the thread to reach a stable thread state if
 330   // it is currently in a transient thread state.
 331   return is_ext_suspend_completed(false /* !called_by_wait */,
 332                                   SuspendRetryDelay, bits);
 333 }
 334   
 335 bool JavaThread::is_external_suspend_with_lock() const {
 336   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 337   return is_external_suspend();
 338 }
 339   bool JavaThread::handle_special_suspend_equivalent_condition() {
 340     assert(is_suspend_equivalent(),
 341            "should only be called in a suspend equivalence condition");
 342     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 343     bool ret = is_external_suspend();
 344     if (!ret) {
 345       // not about to self-suspend so clear suspend equivalence
 346       clear_suspend_equivalent();
 347     }
 348     // implied else:
 349     // We have a pending external suspend request so we leave the
 350     // suspend_equivalent flag set until java_suspend_self() sets
 351     // the ext_suspended flag and clears the suspend_equivalent
 352     // flag. This insures that wait_for_ext_suspend_completion()
 353     // will return consistent values.
 354     return ret;
 355   }
 356 
 357   // utility methods to see if we are doing some kind of suspension
 358   bool JavaThread::is_being_ext_suspended() const            {
 359     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 360     return is_ext_suspended() || is_external_suspend();
 361   }
 362 
 363 void Thread::initialize_thread_current() {
 364 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 365   assert(_thr_current == NULL, "Thread::current already initialized");
 366   _thr_current = this;
 367 #endif
 368   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 369   ThreadLocalStorage::set_thread(this);
 370   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 371 }
 372 
 373 void Thread::clear_thread_current() {
 374   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 375 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 376   _thr_current = NULL;
 377 #endif
 378   ThreadLocalStorage::set_thread(NULL);
 379 }
 380 
 381 void Thread::record_stack_base_and_size() {
 382   // Note: at this point, Thread object is not yet initialized. Do not rely on
 383   // any members being initialized. Do not rely on Thread::current() being set.
 384   // If possible, refrain from doing anything which may crash or assert since
 385   // quite probably those crash dumps will be useless.
 386   set_stack_base(os::current_stack_base());
 387   set_stack_size(os::current_stack_size());
 388 
 389 #ifdef SOLARIS
 390   if (os::is_primordial_thread()) {
 391     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 392   }
 393 #endif
 394 
 395   // Set stack limits after thread is initialized.
 396   if (is_Java_thread()) {
 397     ((JavaThread*) this)->set_stack_overflow_limit();
 398     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 399   }
 400 }
 401 
 402 #if INCLUDE_NMT
 403 void Thread::register_thread_stack_with_NMT() {
 404   MemTracker::record_thread_stack(stack_end(), stack_size());
 405 }
 406 #endif // INCLUDE_NMT
 407 
 408 void Thread::call_run() {
 409   DEBUG_ONLY(_run_state = CALL_RUN;)
 410 
 411   // At this point, Thread object should be fully initialized and
 412   // Thread::current() should be set.
 413 
 414   assert(Thread::current_or_null() != NULL, "current thread is unset");
 415   assert(Thread::current_or_null() == this, "current thread is wrong");
 416 
 417   // Perform common initialization actions
 418 
 419   register_thread_stack_with_NMT();
 420 
 421   JFR_ONLY(Jfr::on_thread_start(this);)
 422 
 423   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 424     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 425     os::current_thread_id(), p2i(stack_base() - stack_size()),
 426     p2i(stack_base()), stack_size()/1024);
 427 
 428   // Perform <ChildClass> initialization actions
 429   DEBUG_ONLY(_run_state = PRE_RUN;)
 430   this->pre_run();
 431 
 432   // Invoke <ChildClass>::run()
 433   DEBUG_ONLY(_run_state = RUN;)
 434   this->run();
 435   // Returned from <ChildClass>::run(). Thread finished.
 436 
 437   // Perform common tear-down actions
 438 
 439   assert(Thread::current_or_null() != NULL, "current thread is unset");
 440   assert(Thread::current_or_null() == this, "current thread is wrong");
 441 
 442   // Perform <ChildClass> tear-down actions
 443   DEBUG_ONLY(_run_state = POST_RUN;)
 444   this->post_run();
 445 
 446   // Note: at this point the thread object may already have deleted itself,
 447   // so from here on do not dereference *this*. Not all thread types currently
 448   // delete themselves when they terminate. But no thread should ever be deleted
 449   // asynchronously with respect to its termination - that is what _run_state can
 450   // be used to check.
 451 
 452   assert(Thread::current_or_null() == NULL, "current thread still present");
 453 }
 454 
 455 Thread::~Thread() {
 456 
 457   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 458   // get started due to errors etc. Any active thread should at least reach post_run
 459   // before it is deleted (usually in post_run()).
 460   assert(_run_state == PRE_CALL_RUN ||
 461          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 462          "_run_state=%d", (int)_run_state);
 463 
 464   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 465   // set might not be available if we encountered errors during bootstrapping.
 466   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 467   if (barrier_set != NULL) {
 468     barrier_set->on_thread_destroy(this);
 469   }
 470 
 471   // stack_base can be NULL if the thread is never started or exited before
 472   // record_stack_base_and_size called. Although, we would like to ensure
 473   // that all started threads do call record_stack_base_and_size(), there is
 474   // not proper way to enforce that.
 475 #if INCLUDE_NMT
 476   if (_stack_base != NULL) {
 477     MemTracker::release_thread_stack(stack_end(), stack_size());
 478 #ifdef ASSERT
 479     set_stack_base(NULL);
 480 #endif
 481   }
 482 #endif // INCLUDE_NMT
 483 
 484   // deallocate data structures
 485   delete resource_area();
 486   // since the handle marks are using the handle area, we have to deallocated the root
 487   // handle mark before deallocating the thread's handle area,
 488   assert(last_handle_mark() != NULL, "check we have an element");
 489   delete last_handle_mark();
 490   assert(last_handle_mark() == NULL, "check we have reached the end");
 491 
 492   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 493   // We NULL out the fields for good hygiene.
 494   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 495   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 496 
 497   delete handle_area();
 498   delete metadata_handles();
 499 
 500   // SR_handler uses this as a termination indicator -
 501   // needs to happen before os::free_thread()
 502   delete _SR_lock;
 503   _SR_lock = NULL;
 504 
 505   // osthread() can be NULL, if creation of thread failed.
 506   if (osthread() != NULL) os::free_thread(osthread());
 507 
 508   // Clear Thread::current if thread is deleting itself and it has not
 509   // already been done. This must be done before the memory is deallocated.
 510   // Needed to ensure JNI correctly detects non-attached threads.
 511   if (this == Thread::current_or_null()) {
 512     Thread::clear_thread_current();
 513   }
 514 
 515   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 516 }
 517 
 518 #ifdef ASSERT
 519 // A JavaThread is considered "dangling" if it is not the current
 520 // thread, has been added the Threads list, the system is not at a
 521 // safepoint and the Thread is not "protected".
 522 //
 523 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 524   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 525          !((JavaThread *) thread)->on_thread_list() ||
 526          SafepointSynchronize::is_at_safepoint() ||
 527          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 528          "possibility of dangling Thread pointer");
 529 }
 530 #endif
 531 
 532 ThreadPriority Thread::get_priority(const Thread* const thread) {
 533   ThreadPriority priority;
 534   // Can return an error!
 535   (void)os::get_priority(thread, priority);
 536   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 537   return priority;
 538 }
 539 
 540 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 541   debug_only(check_for_dangling_thread_pointer(thread);)
 542   // Can return an error!
 543   (void)os::set_priority(thread, priority);
 544 }
 545 
 546 
 547 void Thread::start(Thread* thread) {
 548   // Start is different from resume in that its safety is guaranteed by context or
 549   // being called from a Java method synchronized on the Thread object.
 550   if (!DisableStartThread) {
 551     if (thread->is_Java_thread()) {
 552       // Initialize the thread state to RUNNABLE before starting this thread.
 553       // Can not set it after the thread started because we do not know the
 554       // exact thread state at that time. It could be in MONITOR_WAIT or
 555       // in SLEEPING or some other state.
 556       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 557                                           java_lang_Thread::RUNNABLE);
 558     }
 559     os::start_thread(thread);
 560   }
 561 }
 562 
 563 // Enqueue a VM_Operation to do the job for us - sometime later
 564 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 565   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 566   VMThread::execute(vm_stop);
 567 }
 568 
 569 
 570 // Check if an external suspend request has completed (or has been
 571 // cancelled). Returns true if the thread is externally suspended and
 572 // false otherwise.
 573 //
 574 // The bits parameter returns information about the code path through
 575 // the routine. Useful for debugging:
 576 //
 577 // set in is_ext_suspend_completed():
 578 // 0x00000001 - routine was entered
 579 // 0x00000010 - routine return false at end
 580 // 0x00000100 - thread exited (return false)
 581 // 0x00000200 - suspend request cancelled (return false)
 582 // 0x00000400 - thread suspended (return true)
 583 // 0x00001000 - thread is in a suspend equivalent state (return true)
 584 // 0x00002000 - thread is native and walkable (return true)
 585 // 0x00004000 - thread is native_trans and walkable (needed retry)
 586 //
 587 // set in wait_for_ext_suspend_completion():
 588 // 0x00010000 - routine was entered
 589 // 0x00020000 - suspend request cancelled before loop (return false)
 590 // 0x00040000 - thread suspended before loop (return true)
 591 // 0x00080000 - suspend request cancelled in loop (return false)
 592 // 0x00100000 - thread suspended in loop (return true)
 593 // 0x00200000 - suspend not completed during retry loop (return false)
 594 
 595 // Helper class for tracing suspend wait debug bits.
 596 //
 597 // 0x00000100 indicates that the target thread exited before it could
 598 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 599 // 0x00080000 each indicate a cancelled suspend request so they don't
 600 // count as wait failures either.
 601 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 602 
 603 class TraceSuspendDebugBits : public StackObj {
 604  private:
 605   JavaThread * jt;
 606   bool         is_wait;
 607   bool         called_by_wait;  // meaningful when !is_wait
 608   uint32_t *   bits;
 609 
 610  public:
 611   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 612                         uint32_t *_bits) {
 613     jt             = _jt;
 614     is_wait        = _is_wait;
 615     called_by_wait = _called_by_wait;
 616     bits           = _bits;
 617   }
 618 
 619   ~TraceSuspendDebugBits() {
 620     if (!is_wait) {
 621 #if 1
 622       // By default, don't trace bits for is_ext_suspend_completed() calls.
 623       // That trace is very chatty.
 624       return;
 625 #else
 626       if (!called_by_wait) {
 627         // If tracing for is_ext_suspend_completed() is enabled, then only
 628         // trace calls to it from wait_for_ext_suspend_completion()
 629         return;
 630       }
 631 #endif
 632     }
 633 
 634     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 635       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 636         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 637         ResourceMark rm;
 638 
 639         tty->print_cr(
 640                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 641                       jt->get_thread_name(), *bits);
 642 
 643         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 644       }
 645     }
 646   }
 647 };
 648 #undef DEBUG_FALSE_BITS
 649 
 650 
 651 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 652                                           uint32_t *bits) {
 653   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 654 
 655   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 656   bool do_trans_retry;           // flag to force the retry
 657 
 658   *bits |= 0x00000001;
 659 
 660   do {
 661     do_trans_retry = false;
 662 
 663     if (is_exiting()) {
 664       // Thread is in the process of exiting. This is always checked
 665       // first to reduce the risk of dereferencing a freed JavaThread.
 666       *bits |= 0x00000100;
 667       return false;
 668     }
 669 
 670     if (!is_external_suspend()) {
 671       // Suspend request is cancelled. This is always checked before
 672       // is_ext_suspended() to reduce the risk of a rogue resume
 673       // confusing the thread that made the suspend request.
 674       *bits |= 0x00000200;
 675       return false;
 676     }
 677 
 678     if (is_ext_suspended()) {
 679       // thread is suspended
 680       *bits |= 0x00000400;
 681       return true;
 682     }
 683 
 684     // Now that we no longer do hard suspends of threads running
 685     // native code, the target thread can be changing thread state
 686     // while we are in this routine:
 687     //
 688     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 689     //
 690     // We save a copy of the thread state as observed at this moment
 691     // and make our decision about suspend completeness based on the
 692     // copy. This closes the race where the thread state is seen as
 693     // _thread_in_native_trans in the if-thread_blocked check, but is
 694     // seen as _thread_blocked in if-thread_in_native_trans check.
 695     JavaThreadState save_state = thread_state();
 696 
 697     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 698       // If the thread's state is _thread_blocked and this blocking
 699       // condition is known to be equivalent to a suspend, then we can
 700       // consider the thread to be externally suspended. This means that
 701       // the code that sets _thread_blocked has been modified to do
 702       // self-suspension if the blocking condition releases. We also
 703       // used to check for CONDVAR_WAIT here, but that is now covered by
 704       // the _thread_blocked with self-suspension check.
 705       //
 706       // Return true since we wouldn't be here unless there was still an
 707       // external suspend request.
 708       *bits |= 0x00001000;
 709       return true;
 710     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 711       // Threads running native code will self-suspend on native==>VM/Java
 712       // transitions. If its stack is walkable (should always be the case
 713       // unless this function is called before the actual java_suspend()
 714       // call), then the wait is done.
 715       *bits |= 0x00002000;
 716       return true;
 717     } else if (!called_by_wait && !did_trans_retry &&
 718                save_state == _thread_in_native_trans &&
 719                frame_anchor()->walkable()) {
 720       // The thread is transitioning from thread_in_native to another
 721       // thread state. check_safepoint_and_suspend_for_native_trans()
 722       // will force the thread to self-suspend. If it hasn't gotten
 723       // there yet we may have caught the thread in-between the native
 724       // code check above and the self-suspend. Lucky us. If we were
 725       // called by wait_for_ext_suspend_completion(), then it
 726       // will be doing the retries so we don't have to.
 727       //
 728       // Since we use the saved thread state in the if-statement above,
 729       // there is a chance that the thread has already transitioned to
 730       // _thread_blocked by the time we get here. In that case, we will
 731       // make a single unnecessary pass through the logic below. This
 732       // doesn't hurt anything since we still do the trans retry.
 733 
 734       *bits |= 0x00004000;
 735 
 736       // Once the thread leaves thread_in_native_trans for another
 737       // thread state, we break out of this retry loop. We shouldn't
 738       // need this flag to prevent us from getting back here, but
 739       // sometimes paranoia is good.
 740       did_trans_retry = true;
 741 
 742       // We wait for the thread to transition to a more usable state.
 743       for (int i = 1; i <= SuspendRetryCount; i++) {
 744         // We used to do an "os::yield_all(i)" call here with the intention
 745         // that yielding would increase on each retry. However, the parameter
 746         // is ignored on Linux which means the yield didn't scale up. Waiting
 747         // on the SR_lock below provides a much more predictable scale up for
 748         // the delay. It also provides a simple/direct point to check for any
 749         // safepoint requests from the VMThread
 750 
 751         // temporarily drops SR_lock while doing wait with safepoint check
 752         // (if we're a JavaThread - the WatcherThread can also call this)
 753         // and increase delay with each retry
 754         if (Thread::current()->is_Java_thread()) {
 755           SR_lock()->wait(i * delay);
 756         } else {
 757           SR_lock()->wait_without_safepoint_check(i * delay);
 758         }
 759 
 760         // check the actual thread state instead of what we saved above
 761         if (thread_state() != _thread_in_native_trans) {
 762           // the thread has transitioned to another thread state so
 763           // try all the checks (except this one) one more time.
 764           do_trans_retry = true;
 765           break;
 766         }
 767       } // end retry loop
 768 
 769 
 770     }
 771   } while (do_trans_retry);
 772 
 773   *bits |= 0x00000010;
 774   return false;
 775 }
 776 
 777 // Wait for an external suspend request to complete (or be cancelled).
 778 // Returns true if the thread is externally suspended and false otherwise.
 779 //
 780 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 781                                                  uint32_t *bits) {
 782   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 783                              false /* !called_by_wait */, bits);
 784 
 785   // local flag copies to minimize SR_lock hold time
 786   bool is_suspended;
 787   bool pending;
 788   uint32_t reset_bits;
 789 
 790   // set a marker so is_ext_suspend_completed() knows we are the caller
 791   *bits |= 0x00010000;
 792 
 793   // We use reset_bits to reinitialize the bits value at the top of
 794   // each retry loop. This allows the caller to make use of any
 795   // unused bits for their own marking purposes.
 796   reset_bits = *bits;
 797 
 798   {
 799     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 800     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 801                                             delay, bits);
 802     pending = is_external_suspend();
 803   }
 804   // must release SR_lock to allow suspension to complete
 805 
 806   if (!pending) {
 807     // A cancelled suspend request is the only false return from
 808     // is_ext_suspend_completed() that keeps us from entering the
 809     // retry loop.
 810     *bits |= 0x00020000;
 811     return false;
 812   }
 813 
 814   if (is_suspended) {
 815     *bits |= 0x00040000;
 816     return true;
 817   }
 818 
 819   for (int i = 1; i <= retries; i++) {
 820     *bits = reset_bits;  // reinit to only track last retry
 821 
 822     // We used to do an "os::yield_all(i)" call here with the intention
 823     // that yielding would increase on each retry. However, the parameter
 824     // is ignored on Linux which means the yield didn't scale up. Waiting
 825     // on the SR_lock below provides a much more predictable scale up for
 826     // the delay. It also provides a simple/direct point to check for any
 827     // safepoint requests from the VMThread
 828 
 829     {
 830       Thread* t = Thread::current();
 831       MonitorLocker ml(SR_lock(),
 832                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 833       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 834       // can also call this)  and increase delay with each retry
 835       ml.wait(i * delay);
 836 
 837       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 838                                               delay, bits);
 839 
 840       // It is possible for the external suspend request to be cancelled
 841       // (by a resume) before the actual suspend operation is completed.
 842       // Refresh our local copy to see if we still need to wait.
 843       pending = is_external_suspend();
 844     }
 845 
 846     if (!pending) {
 847       // A cancelled suspend request is the only false return from
 848       // is_ext_suspend_completed() that keeps us from staying in the
 849       // retry loop.
 850       *bits |= 0x00080000;
 851       return false;
 852     }
 853 
 854     if (is_suspended) {
 855       *bits |= 0x00100000;
 856       return true;
 857     }
 858   } // end retry loop
 859 
 860   // thread did not suspend after all our retries
 861   *bits |= 0x00200000;
 862   return false;
 863 }
 864 
 865 // Called from API entry points which perform stack walking. If the
 866 // associated JavaThread is the current thread, then wait_for_suspend
 867 // is not used. Otherwise, it determines if we should wait for the
 868 // "other" thread to complete external suspension. (NOTE: in future
 869 // releases the suspension mechanism should be reimplemented so this
 870 // is not necessary.)
 871 //
 872 bool
 873 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 874   if (this != JavaThread::current()) {
 875     // "other" threads require special handling.
 876     if (wait_for_suspend) {
 877       // We are allowed to wait for the external suspend to complete
 878       // so give the other thread a chance to get suspended.
 879       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 880                                            SuspendRetryDelay, bits)) {
 881         // Didn't make it so let the caller know.
 882         return false;
 883       }
 884     }
 885     // We aren't allowed to wait for the external suspend to complete
 886     // so if the other thread isn't externally suspended we need to
 887     // let the caller know.
 888     else if (!is_ext_suspend_completed_with_lock(bits)) {
 889       return false;
 890     }
 891   }
 892 
 893   return true;
 894 }
 895 
 896 // GC Support
 897 bool Thread::claim_par_threads_do(uintx claim_token) {
 898   uintx token = _threads_do_token;
 899   if (token != claim_token) {
 900     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 901     if (res == token) {
 902       return true;
 903     }
 904     guarantee(res == claim_token, "invariant");
 905   }
 906   return false;
 907 }
 908 
 909 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 910   active_handles()->oops_do(f);
 911   // Do oop for ThreadShadow
 912   f->do_oop((oop*)&_pending_exception);
 913   handle_area()->oops_do(f);
 914 
 915   // We scan thread local monitor lists here, and the remaining global
 916   // monitors in ObjectSynchronizer::oops_do().
 917   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 918 }
 919 
 920 void Thread::metadata_handles_do(void f(Metadata*)) {
 921   // Only walk the Handles in Thread.
 922   if (metadata_handles() != NULL) {
 923     for (int i = 0; i< metadata_handles()->length(); i++) {
 924       f(metadata_handles()->at(i));
 925     }
 926   }
 927 }
 928 
 929 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 930   // get_priority assumes osthread initialized
 931   if (osthread() != NULL) {
 932     int os_prio;
 933     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 934       st->print("os_prio=%d ", os_prio);
 935     }
 936 
 937     st->print("cpu=%.2fms ",
 938               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 939               );
 940     st->print("elapsed=%.2fs ",
 941               _statistical_info.getElapsedTime() / 1000.0
 942               );
 943     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 944       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 945       st->print("allocated=" SIZE_FORMAT "%s ",
 946                 byte_size_in_proper_unit(allocated_bytes),
 947                 proper_unit_for_byte_size(allocated_bytes)
 948                 );
 949       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 950     }
 951 
 952     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 953     osthread()->print_on(st);
 954   }
 955   ThreadsSMRSupport::print_info_on(this, st);
 956   st->print(" ");
 957   debug_only(if (WizardMode) print_owned_locks_on(st);)
 958 }
 959 
 960 void Thread::print() const { print_on(tty); }
 961 
 962 // Thread::print_on_error() is called by fatal error handler. Don't use
 963 // any lock or allocate memory.
 964 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 965   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 966 
 967   if (is_VM_thread())                 { st->print("VMThread"); }
 968   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 969   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 970   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 971   else                                { st->print("Thread"); }
 972 
 973   if (is_Named_thread()) {
 974     st->print(" \"%s\"", name());
 975   }
 976 
 977   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 978             p2i(stack_end()), p2i(stack_base()));
 979 
 980   if (osthread()) {
 981     st->print(" [id=%d]", osthread()->thread_id());
 982   }
 983 
 984   ThreadsSMRSupport::print_info_on(this, st);
 985 }
 986 
 987 void Thread::print_value_on(outputStream* st) const {
 988   if (is_Named_thread()) {
 989     st->print(" \"%s\" ", name());
 990   }
 991   st->print(INTPTR_FORMAT, p2i(this));   // print address
 992 }
 993 
 994 #ifdef ASSERT
 995 void Thread::print_owned_locks_on(outputStream* st) const {
 996   Mutex* cur = _owned_locks;
 997   if (cur == NULL) {
 998     st->print(" (no locks) ");
 999   } else {
1000     st->print_cr(" Locks owned:");
1001     while (cur) {
1002       cur->print_on(st);
1003       cur = cur->next();
1004     }
1005   }
1006 }
1007 
1008 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
1009 void Thread::check_possible_safepoint() {
1010   if (!is_Java_thread()) return;
1011 
1012   if (_no_safepoint_count > 0) {
1013     print_owned_locks();
1014     fatal("Possible safepoint reached by thread that does not allow it");
1015   }
1016 #ifdef CHECK_UNHANDLED_OOPS
1017   // Clear unhandled oops in JavaThreads so we get a crash right away.
1018   clear_unhandled_oops();
1019 #endif // CHECK_UNHANDLED_OOPS
1020 }
1021 
1022 void Thread::check_for_valid_safepoint_state() {
1023   if (!is_Java_thread()) return;
1024 
1025   // Check NoSafepointVerifier, which is implied by locks taken that can be
1026   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
1027   // are held.
1028   check_possible_safepoint();
1029 
1030   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
1031     fatal("LEAF method calling lock?");
1032   }
1033 
1034   if (GCALotAtAllSafepoints) {
1035     // We could enter a safepoint here and thus have a gc
1036     InterfaceSupport::check_gc_alot();
1037   }
1038 }
1039 #endif // ASSERT
1040 
1041 bool Thread::is_in_stack(address adr) const {
1042   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1043   address end = os::current_stack_pointer();
1044   // Allow non Java threads to call this without stack_base
1045   if (_stack_base == NULL) return true;
1046   if (stack_base() >= adr && adr >= end) return true;
1047 
1048   return false;
1049 }
1050 
1051 bool Thread::is_in_usable_stack(address adr) const {
1052   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1053   size_t usable_stack_size = _stack_size - stack_guard_size;
1054 
1055   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1056 }
1057 
1058 
1059 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1060 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1061 // used for compilation in the future. If that change is made, the need for these methods
1062 // should be revisited, and they should be removed if possible.
1063 
1064 bool Thread::is_lock_owned(address adr) const {
1065   return on_local_stack(adr);
1066 }
1067 
1068 bool Thread::set_as_starting_thread() {
1069   assert(_starting_thread == NULL, "already initialized: "
1070          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1071   // NOTE: this must be called inside the main thread.
1072   DEBUG_ONLY(_starting_thread = this;)
1073   return os::create_main_thread((JavaThread*)this);
1074 }
1075 
1076 static void initialize_class(Symbol* class_name, TRAPS) {
1077   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1078   InstanceKlass::cast(klass)->initialize(CHECK);
1079 }
1080 
1081 
1082 // Creates the initial ThreadGroup
1083 static Handle create_initial_thread_group(TRAPS) {
1084   Handle system_instance = JavaCalls::construct_new_instance(
1085                             SystemDictionary::ThreadGroup_klass(),
1086                             vmSymbols::void_method_signature(),
1087                             CHECK_NH);
1088   Universe::set_system_thread_group(system_instance());
1089 
1090   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1091   Handle main_instance = JavaCalls::construct_new_instance(
1092                             SystemDictionary::ThreadGroup_klass(),
1093                             vmSymbols::threadgroup_string_void_signature(),
1094                             system_instance,
1095                             string,
1096                             CHECK_NH);
1097   return main_instance;
1098 }
1099 
1100 // Creates the initial Thread
1101 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1102                                  TRAPS) {
1103   InstanceKlass* ik = SystemDictionary::Thread_klass();
1104   assert(ik->is_initialized(), "must be");
1105   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1106 
1107   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1108   // constructor calls Thread.current(), which must be set here for the
1109   // initial thread.
1110   java_lang_Thread::set_thread(thread_oop(), thread);
1111   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1112   thread->set_threadObj(thread_oop());
1113 
1114   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1115 
1116   JavaValue result(T_VOID);
1117   JavaCalls::call_special(&result, thread_oop,
1118                           ik,
1119                           vmSymbols::object_initializer_name(),
1120                           vmSymbols::threadgroup_string_void_signature(),
1121                           thread_group,
1122                           string,
1123                           CHECK_NULL);
1124   return thread_oop();
1125 }
1126 
1127 char java_runtime_name[128] = "";
1128 char java_runtime_version[128] = "";
1129 
1130 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1131 static const char* get_java_runtime_name(TRAPS) {
1132   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1133                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1134   fieldDescriptor fd;
1135   bool found = k != NULL &&
1136                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1137                                                         vmSymbols::string_signature(), &fd);
1138   if (found) {
1139     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1140     if (name_oop == NULL) {
1141       return NULL;
1142     }
1143     const char* name = java_lang_String::as_utf8_string(name_oop,
1144                                                         java_runtime_name,
1145                                                         sizeof(java_runtime_name));
1146     return name;
1147   } else {
1148     return NULL;
1149   }
1150 }
1151 
1152 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1153 static const char* get_java_runtime_version(TRAPS) {
1154   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1155                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1156   fieldDescriptor fd;
1157   bool found = k != NULL &&
1158                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1159                                                         vmSymbols::string_signature(), &fd);
1160   if (found) {
1161     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1162     if (name_oop == NULL) {
1163       return NULL;
1164     }
1165     const char* name = java_lang_String::as_utf8_string(name_oop,
1166                                                         java_runtime_version,
1167                                                         sizeof(java_runtime_version));
1168     return name;
1169   } else {
1170     return NULL;
1171   }
1172 }
1173 
1174 // General purpose hook into Java code, run once when the VM is initialized.
1175 // The Java library method itself may be changed independently from the VM.
1176 static void call_postVMInitHook(TRAPS) {
1177   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1178   if (klass != NULL) {
1179     JavaValue result(T_VOID);
1180     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1181                            vmSymbols::void_method_signature(),
1182                            CHECK);
1183   }
1184 }
1185 
1186 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1187                                     bool daemon, TRAPS) {
1188   assert(thread_group.not_null(), "thread group should be specified");
1189   assert(threadObj() == NULL, "should only create Java thread object once");
1190 
1191   InstanceKlass* ik = SystemDictionary::Thread_klass();
1192   assert(ik->is_initialized(), "must be");
1193   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1194 
1195   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1196   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1197   // constructor calls Thread.current(), which must be set here.
1198   java_lang_Thread::set_thread(thread_oop(), this);
1199   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1200   set_threadObj(thread_oop());
1201 
1202   JavaValue result(T_VOID);
1203   if (thread_name != NULL) {
1204     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1205     // Thread gets assigned specified name and null target
1206     JavaCalls::call_special(&result,
1207                             thread_oop,
1208                             ik,
1209                             vmSymbols::object_initializer_name(),
1210                             vmSymbols::threadgroup_string_void_signature(),
1211                             thread_group,
1212                             name,
1213                             THREAD);
1214   } else {
1215     // Thread gets assigned name "Thread-nnn" and null target
1216     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1217     JavaCalls::call_special(&result,
1218                             thread_oop,
1219                             ik,
1220                             vmSymbols::object_initializer_name(),
1221                             vmSymbols::threadgroup_runnable_void_signature(),
1222                             thread_group,
1223                             Handle(),
1224                             THREAD);
1225   }
1226 
1227 
1228   if (daemon) {
1229     java_lang_Thread::set_daemon(thread_oop());
1230   }
1231 
1232   if (HAS_PENDING_EXCEPTION) {
1233     return;
1234   }
1235 
1236   Klass* group =  SystemDictionary::ThreadGroup_klass();
1237   Handle threadObj(THREAD, this->threadObj());
1238 
1239   JavaCalls::call_special(&result,
1240                           thread_group,
1241                           group,
1242                           vmSymbols::add_method_name(),
1243                           vmSymbols::thread_void_signature(),
1244                           threadObj,          // Arg 1
1245                           THREAD);
1246 }
1247 
1248 // List of all NonJavaThreads and safe iteration over that list.
1249 
1250 class NonJavaThread::List {
1251 public:
1252   NonJavaThread* volatile _head;
1253   SingleWriterSynchronizer _protect;
1254 
1255   List() : _head(NULL), _protect() {}
1256 };
1257 
1258 NonJavaThread::List NonJavaThread::_the_list;
1259 
1260 NonJavaThread::Iterator::Iterator() :
1261   _protect_enter(_the_list._protect.enter()),
1262   _current(OrderAccess::load_acquire(&_the_list._head))
1263 {}
1264 
1265 NonJavaThread::Iterator::~Iterator() {
1266   _the_list._protect.exit(_protect_enter);
1267 }
1268 
1269 void NonJavaThread::Iterator::step() {
1270   assert(!end(), "precondition");
1271   _current = OrderAccess::load_acquire(&_current->_next);
1272 }
1273 
1274 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1275   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1276 }
1277 
1278 NonJavaThread::~NonJavaThread() { }
1279 
1280 void NonJavaThread::add_to_the_list() {
1281   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1282   // Initialize BarrierSet-related data before adding to list.
1283   BarrierSet::barrier_set()->on_thread_attach(this);
1284   OrderAccess::release_store(&_next, _the_list._head);
1285   OrderAccess::release_store(&_the_list._head, this);
1286 }
1287 
1288 void NonJavaThread::remove_from_the_list() {
1289   {
1290     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1291     // Cleanup BarrierSet-related data before removing from list.
1292     BarrierSet::barrier_set()->on_thread_detach(this);
1293     NonJavaThread* volatile* p = &_the_list._head;
1294     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1295       if (t == this) {
1296         *p = _next;
1297         break;
1298       }
1299     }
1300   }
1301   // Wait for any in-progress iterators.  Concurrent synchronize is not
1302   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1303   // from NJTList_lock in case an iteration attempts to lock it.
1304   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1305   _the_list._protect.synchronize();
1306   _next = NULL;                 // Safe to drop the link now.
1307 }
1308 
1309 void NonJavaThread::pre_run() {
1310   add_to_the_list();
1311 
1312   // This is slightly odd in that NamedThread is a subclass, but
1313   // in fact name() is defined in Thread
1314   assert(this->name() != NULL, "thread name was not set before it was started");
1315   this->set_native_thread_name(this->name());
1316 }
1317 
1318 void NonJavaThread::post_run() {
1319   JFR_ONLY(Jfr::on_thread_exit(this);)
1320   remove_from_the_list();
1321   // Ensure thread-local-storage is cleared before termination.
1322   Thread::clear_thread_current();
1323 }
1324 
1325 // NamedThread --  non-JavaThread subclasses with multiple
1326 // uniquely named instances should derive from this.
1327 NamedThread::NamedThread() :
1328   NonJavaThread(),
1329   _name(NULL),
1330   _processed_thread(NULL),
1331   _gc_id(GCId::undefined())
1332 {}
1333 
1334 NamedThread::~NamedThread() {
1335   FREE_C_HEAP_ARRAY(char, _name);
1336 }
1337 
1338 void NamedThread::set_name(const char* format, ...) {
1339   guarantee(_name == NULL, "Only get to set name once.");
1340   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1341   va_list ap;
1342   va_start(ap, format);
1343   jio_vsnprintf(_name, max_name_len, format, ap);
1344   va_end(ap);
1345 }
1346 
1347 void NamedThread::print_on(outputStream* st) const {
1348   st->print("\"%s\" ", name());
1349   Thread::print_on(st);
1350   st->cr();
1351 }
1352 
1353 
1354 // ======= WatcherThread ========
1355 
1356 // The watcher thread exists to simulate timer interrupts.  It should
1357 // be replaced by an abstraction over whatever native support for
1358 // timer interrupts exists on the platform.
1359 
1360 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1361 bool WatcherThread::_startable = false;
1362 volatile bool  WatcherThread::_should_terminate = false;
1363 
1364 WatcherThread::WatcherThread() : NonJavaThread() {
1365   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1366   if (os::create_thread(this, os::watcher_thread)) {
1367     _watcher_thread = this;
1368 
1369     // Set the watcher thread to the highest OS priority which should not be
1370     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1371     // is created. The only normal thread using this priority is the reference
1372     // handler thread, which runs for very short intervals only.
1373     // If the VMThread's priority is not lower than the WatcherThread profiling
1374     // will be inaccurate.
1375     os::set_priority(this, MaxPriority);
1376     if (!DisableStartThread) {
1377       os::start_thread(this);
1378     }
1379   }
1380 }
1381 
1382 int WatcherThread::sleep() const {
1383   // The WatcherThread does not participate in the safepoint protocol
1384   // for the PeriodicTask_lock because it is not a JavaThread.
1385   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1386 
1387   if (_should_terminate) {
1388     // check for termination before we do any housekeeping or wait
1389     return 0;  // we did not sleep.
1390   }
1391 
1392   // remaining will be zero if there are no tasks,
1393   // causing the WatcherThread to sleep until a task is
1394   // enrolled
1395   int remaining = PeriodicTask::time_to_wait();
1396   int time_slept = 0;
1397 
1398   // we expect this to timeout - we only ever get unparked when
1399   // we should terminate or when a new task has been enrolled
1400   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1401 
1402   jlong time_before_loop = os::javaTimeNanos();
1403 
1404   while (true) {
1405     bool timedout = ml.wait(remaining);
1406     jlong now = os::javaTimeNanos();
1407 
1408     if (remaining == 0) {
1409       // if we didn't have any tasks we could have waited for a long time
1410       // consider the time_slept zero and reset time_before_loop
1411       time_slept = 0;
1412       time_before_loop = now;
1413     } else {
1414       // need to recalculate since we might have new tasks in _tasks
1415       time_slept = (int) ((now - time_before_loop) / 1000000);
1416     }
1417 
1418     // Change to task list or spurious wakeup of some kind
1419     if (timedout || _should_terminate) {
1420       break;
1421     }
1422 
1423     remaining = PeriodicTask::time_to_wait();
1424     if (remaining == 0) {
1425       // Last task was just disenrolled so loop around and wait until
1426       // another task gets enrolled
1427       continue;
1428     }
1429 
1430     remaining -= time_slept;
1431     if (remaining <= 0) {
1432       break;
1433     }
1434   }
1435 
1436   return time_slept;
1437 }
1438 
1439 void WatcherThread::run() {
1440   assert(this == watcher_thread(), "just checking");
1441 
1442   this->set_active_handles(JNIHandleBlock::allocate_block());
1443   while (true) {
1444     assert(watcher_thread() == Thread::current(), "thread consistency check");
1445     assert(watcher_thread() == this, "thread consistency check");
1446 
1447     // Calculate how long it'll be until the next PeriodicTask work
1448     // should be done, and sleep that amount of time.
1449     int time_waited = sleep();
1450 
1451     if (VMError::is_error_reported()) {
1452       // A fatal error has happened, the error handler(VMError::report_and_die)
1453       // should abort JVM after creating an error log file. However in some
1454       // rare cases, the error handler itself might deadlock. Here periodically
1455       // check for error reporting timeouts, and if it happens, just proceed to
1456       // abort the VM.
1457 
1458       // This code is in WatcherThread because WatcherThread wakes up
1459       // periodically so the fatal error handler doesn't need to do anything;
1460       // also because the WatcherThread is less likely to crash than other
1461       // threads.
1462 
1463       for (;;) {
1464         // Note: we use naked sleep in this loop because we want to avoid using
1465         // any kind of VM infrastructure which may be broken at this point.
1466         if (VMError::check_timeout()) {
1467           // We hit error reporting timeout. Error reporting was interrupted and
1468           // will be wrapping things up now (closing files etc). Give it some more
1469           // time, then quit the VM.
1470           os::naked_short_sleep(200);
1471           // Print a message to stderr.
1472           fdStream err(defaultStream::output_fd());
1473           err.print_raw_cr("# [ timer expired, abort... ]");
1474           // skip atexit/vm_exit/vm_abort hooks
1475           os::die();
1476         }
1477 
1478         // Wait a second, then recheck for timeout.
1479         os::naked_short_sleep(999);
1480       }
1481     }
1482 
1483     if (_should_terminate) {
1484       // check for termination before posting the next tick
1485       break;
1486     }
1487 
1488     PeriodicTask::real_time_tick(time_waited);
1489   }
1490 
1491   // Signal that it is terminated
1492   {
1493     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1494     _watcher_thread = NULL;
1495     Terminator_lock->notify_all();
1496   }
1497 }
1498 
1499 void WatcherThread::start() {
1500   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1501 
1502   if (watcher_thread() == NULL && _startable) {
1503     _should_terminate = false;
1504     // Create the single instance of WatcherThread
1505     new WatcherThread();
1506   }
1507 }
1508 
1509 void WatcherThread::make_startable() {
1510   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1511   _startable = true;
1512 }
1513 
1514 void WatcherThread::stop() {
1515   {
1516     // Follow normal safepoint aware lock enter protocol since the
1517     // WatcherThread is stopped by another JavaThread.
1518     MutexLocker ml(PeriodicTask_lock);
1519     _should_terminate = true;
1520 
1521     WatcherThread* watcher = watcher_thread();
1522     if (watcher != NULL) {
1523       // unpark the WatcherThread so it can see that it should terminate
1524       watcher->unpark();
1525     }
1526   }
1527 
1528   MonitorLocker mu(Terminator_lock);
1529 
1530   while (watcher_thread() != NULL) {
1531     // This wait should make safepoint checks, wait without a timeout,
1532     // and wait as a suspend-equivalent condition.
1533     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1534   }
1535 }
1536 
1537 void WatcherThread::unpark() {
1538   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1539   PeriodicTask_lock->notify();
1540 }
1541 
1542 void WatcherThread::print_on(outputStream* st) const {
1543   st->print("\"%s\" ", name());
1544   Thread::print_on(st);
1545   st->cr();
1546 }
1547 
1548 // ======= JavaThread ========
1549 
1550 #if INCLUDE_JVMCI
1551 
1552 jlong* JavaThread::_jvmci_old_thread_counters;
1553 
1554 bool jvmci_counters_include(JavaThread* thread) {
1555   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1556 }
1557 
1558 void JavaThread::collect_counters(jlong* array, int length) {
1559   assert(length == JVMCICounterSize, "wrong value");
1560   for (int i = 0; i < length; i++) {
1561     array[i] = _jvmci_old_thread_counters[i];
1562   }
1563   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1564     if (jvmci_counters_include(tp)) {
1565       for (int i = 0; i < length; i++) {
1566         array[i] += tp->_jvmci_counters[i];
1567       }
1568     }
1569   }
1570 }
1571 
1572 // Attempt to enlarge the array for per thread counters.
1573 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1574   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1575   if (old_counters == NULL) {
1576     old_counters = new_counters;
1577     memset(old_counters, 0, sizeof(jlong) * new_size);
1578   } else {
1579     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1580       new_counters[i] = old_counters[i];
1581     }
1582     if (new_size > current_size) {
1583       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1584     }
1585     FREE_C_HEAP_ARRAY(jlong, old_counters);
1586   }
1587   return new_counters;
1588 }
1589 
1590 // Attempt to enlarge the array for per thread counters.
1591 void JavaThread::resize_counters(int current_size, int new_size) {
1592   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1593 }
1594 
1595 class VM_JVMCIResizeCounters : public VM_Operation {
1596  private:
1597   int _new_size;
1598 
1599  public:
1600   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1601   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1602   bool allow_nested_vm_operations() const        { return true; }
1603   void doit() {
1604     // Resize the old thread counters array
1605     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1606     JavaThread::_jvmci_old_thread_counters = new_counters;
1607 
1608     // Now resize each threads array
1609     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1610       tp->resize_counters(JVMCICounterSize, _new_size);
1611     }
1612     JVMCICounterSize = _new_size;
1613   }
1614 };
1615 
1616 void JavaThread::resize_all_jvmci_counters(int new_size) {
1617   VM_JVMCIResizeCounters op(new_size);
1618   VMThread::execute(&op);
1619 }
1620 
1621 #endif // INCLUDE_JVMCI
1622 
1623 // A JavaThread is a normal Java thread
1624 
1625 void JavaThread::initialize() {
1626   // Initialize fields
1627 
1628   set_saved_exception_pc(NULL);
1629   set_threadObj(NULL);
1630   _anchor.clear();
1631   set_entry_point(NULL);
1632   set_jni_functions(jni_functions());
1633   set_callee_target(NULL);
1634   set_vm_result(NULL);
1635   set_vm_result_2(NULL);
1636   set_vframe_array_head(NULL);
1637   set_vframe_array_last(NULL);
1638   set_deferred_locals(NULL);
1639   set_deopt_mark(NULL);
1640   set_deopt_compiled_method(NULL);
1641   set_monitor_chunks(NULL);
1642   _on_thread_list = false;
1643   set_thread_state(_thread_new);
1644   _terminated = _not_terminated;
1645   _array_for_gc = NULL;
1646   _suspend_equivalent = false;
1647   _in_deopt_handler = 0;
1648   _doing_unsafe_access = false;
1649   _stack_guard_state = stack_guard_unused;
1650 #if INCLUDE_JVMCI
1651   _pending_monitorenter = false;
1652   _pending_deoptimization = -1;
1653   _pending_failed_speculation = 0;
1654   _pending_transfer_to_interpreter = false;
1655   _in_retryable_allocation = false;
1656   _jvmci._alternate_call_target = NULL;
1657   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1658   _jvmci_counters = NULL;
1659   if (JVMCICounterSize > 0) {
1660     resize_counters(0, (int) JVMCICounterSize);
1661   }
1662 #endif // INCLUDE_JVMCI
1663   _reserved_stack_activation = NULL;  // stack base not known yet
1664   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1665   _exception_pc  = 0;
1666   _exception_handler_pc = 0;
1667   _is_method_handle_return = 0;
1668   _jvmti_thread_state= NULL;
1669   _should_post_on_exceptions_flag = JNI_FALSE;
1670   _interp_only_mode    = 0;
1671   _special_runtime_exit_condition = _no_async_condition;
1672   _pending_async_exception = NULL;
1673   _thread_stat = NULL;
1674   _thread_stat = new ThreadStatistics();
1675   _jni_active_critical = 0;
1676   _pending_jni_exception_check_fn = NULL;
1677   _do_not_unlock_if_synchronized = false;
1678   _cached_monitor_info = NULL;
1679   _parker = Parker::Allocate(this);
1680   _SleepEvent = ParkEvent::Allocate(this);
1681   // Setup safepoint state info for this thread
1682   ThreadSafepointState::create(this);
1683 
1684   debug_only(_java_call_counter = 0);
1685 
1686   // JVMTI PopFrame support
1687   _popframe_condition = popframe_inactive;
1688   _popframe_preserved_args = NULL;
1689   _popframe_preserved_args_size = 0;
1690   _frames_to_pop_failed_realloc = 0;
1691 
1692   if (SafepointMechanism::uses_thread_local_poll()) {
1693     SafepointMechanism::initialize_header(this);
1694   }
1695 
1696   _class_to_be_initialized = NULL;
1697 
1698   pd_initialize();
1699 }
1700 
1701 JavaThread::JavaThread(bool is_attaching_via_jni) :
1702                        Thread() {
1703   initialize();
1704   if (is_attaching_via_jni) {
1705     _jni_attach_state = _attaching_via_jni;
1706   } else {
1707     _jni_attach_state = _not_attaching_via_jni;
1708   }
1709   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1710 }
1711 
1712 
1713 // interrupt support
1714 
1715 void JavaThread::interrupt() {
1716   debug_only(check_for_dangling_thread_pointer(this);)
1717 
1718   if (!osthread()->interrupted()) {
1719     osthread()->set_interrupted(true);
1720     // More than one thread can get here with the same value of osthread,
1721     // resulting in multiple notifications.  We do, however, want the store
1722     // to interrupted() to be visible to other threads before we execute unpark().
1723     OrderAccess::fence();
1724 
1725     // For JavaThread::sleep. Historically we only unpark if changing to the interrupted
1726     // state, in contrast to the other events below. Not clear exactly why.
1727     _SleepEvent->unpark();
1728   }
1729 
1730   // For JSR166. Unpark even if interrupt status already was set.
1731   parker()->unpark();
1732 
1733   // For ObjectMonitor and JvmtiRawMonitor
1734   _ParkEvent->unpark();
1735 }
1736 
1737 
1738 bool JavaThread::is_interrupted(bool clear_interrupted) {
1739   debug_only(check_for_dangling_thread_pointer(this);)
1740   bool interrupted = osthread()->interrupted();
1741 
1742   // NOTE that since there is no "lock" around the interrupt and
1743   // is_interrupted operations, there is the possibility that the
1744   // interrupted flag (in osThread) will be "false" but that the
1745   // low-level events will be in the signaled state. This is
1746   // intentional. The effect of this is that Object.wait() and
1747   // LockSupport.park() will appear to have a spurious wakeup, which
1748   // is allowed and not harmful, and the possibility is so rare that
1749   // it is not worth the added complexity to add yet another lock.
1750   // For the sleep event an explicit reset is performed on entry
1751   // to JavaThread::sleep, so there is no early return. It has also been
1752   // recommended not to put the interrupted flag into the "event"
1753   // structure because it hides the issue.
1754   if (interrupted && clear_interrupted) {
1755     osthread()->set_interrupted(false);
1756     // consider thread->_SleepEvent->reset() ... optional optimization
1757   }
1758 
1759   return interrupted;
1760 }
1761 
1762 bool JavaThread::reguard_stack(address cur_sp) {
1763   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1764       && _stack_guard_state != stack_guard_reserved_disabled) {
1765     return true; // Stack already guarded or guard pages not needed.
1766   }
1767 
1768   if (register_stack_overflow()) {
1769     // For those architectures which have separate register and
1770     // memory stacks, we must check the register stack to see if
1771     // it has overflowed.
1772     return false;
1773   }
1774 
1775   // Java code never executes within the yellow zone: the latter is only
1776   // there to provoke an exception during stack banging.  If java code
1777   // is executing there, either StackShadowPages should be larger, or
1778   // some exception code in c1, c2 or the interpreter isn't unwinding
1779   // when it should.
1780   guarantee(cur_sp > stack_reserved_zone_base(),
1781             "not enough space to reguard - increase StackShadowPages");
1782   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1783     enable_stack_yellow_reserved_zone();
1784     if (reserved_stack_activation() != stack_base()) {
1785       set_reserved_stack_activation(stack_base());
1786     }
1787   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1788     set_reserved_stack_activation(stack_base());
1789     enable_stack_reserved_zone();
1790   }
1791   return true;
1792 }
1793 
1794 bool JavaThread::reguard_stack(void) {
1795   return reguard_stack(os::current_stack_pointer());
1796 }
1797 
1798 
1799 void JavaThread::block_if_vm_exited() {
1800   if (_terminated == _vm_exited) {
1801     // _vm_exited is set at safepoint, and Threads_lock is never released
1802     // we will block here forever.
1803     // Here we can be doing a jump from a safe state to an unsafe state without
1804     // proper transition, but it happens after the final safepoint has begun.
1805     set_thread_state(_thread_in_vm);
1806     Threads_lock->lock();
1807     ShouldNotReachHere();
1808   }
1809 }
1810 
1811 
1812 // Remove this ifdef when C1 is ported to the compiler interface.
1813 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1814 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1815 
1816 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1817                        Thread() {
1818   initialize();
1819   _jni_attach_state = _not_attaching_via_jni;
1820   set_entry_point(entry_point);
1821   // Create the native thread itself.
1822   // %note runtime_23
1823   os::ThreadType thr_type = os::java_thread;
1824   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1825                                                      os::java_thread;
1826   os::create_thread(this, thr_type, stack_sz);
1827   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1828   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1829   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1830   // the exception consists of creating the exception object & initializing it, initialization
1831   // will leave the VM via a JavaCall and then all locks must be unlocked).
1832   //
1833   // The thread is still suspended when we reach here. Thread must be explicit started
1834   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1835   // by calling Threads:add. The reason why this is not done here, is because the thread
1836   // object must be fully initialized (take a look at JVM_Start)
1837 }
1838 
1839 JavaThread::~JavaThread() {
1840 
1841   // JSR166 -- return the parker to the free list
1842   Parker::Release(_parker);
1843   _parker = NULL;
1844 
1845   // Return the sleep event to the free list
1846   ParkEvent::Release(_SleepEvent);
1847   _SleepEvent = NULL;
1848 
1849   // Free any remaining  previous UnrollBlock
1850   vframeArray* old_array = vframe_array_last();
1851 
1852   if (old_array != NULL) {
1853     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1854     old_array->set_unroll_block(NULL);
1855     delete old_info;
1856     delete old_array;
1857   }
1858 
1859   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1860   if (deferred != NULL) {
1861     // This can only happen if thread is destroyed before deoptimization occurs.
1862     assert(deferred->length() != 0, "empty array!");
1863     do {
1864       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1865       deferred->remove_at(0);
1866       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1867       delete dlv;
1868     } while (deferred->length() != 0);
1869     delete deferred;
1870   }
1871 
1872   // All Java related clean up happens in exit
1873   ThreadSafepointState::destroy(this);
1874   if (_thread_stat != NULL) delete _thread_stat;
1875 
1876 #if INCLUDE_JVMCI
1877   if (JVMCICounterSize > 0) {
1878     if (jvmci_counters_include(this)) {
1879       for (int i = 0; i < JVMCICounterSize; i++) {
1880         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1881       }
1882     }
1883     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1884   }
1885 #endif // INCLUDE_JVMCI
1886 }
1887 
1888 
1889 // First JavaThread specific code executed by a new Java thread.
1890 void JavaThread::pre_run() {
1891   // empty - see comments in run()
1892 }
1893 
1894 // The main routine called by a new Java thread. This isn't overridden
1895 // by subclasses, instead different subclasses define a different "entry_point"
1896 // which defines the actual logic for that kind of thread.
1897 void JavaThread::run() {
1898   // initialize thread-local alloc buffer related fields
1899   this->initialize_tlab();
1900 
1901   // Used to test validity of stack trace backs.
1902   // This can't be moved into pre_run() else we invalidate
1903   // the requirement that thread_main_inner is lower on
1904   // the stack. Consequently all the initialization logic
1905   // stays here in run() rather than pre_run().
1906   this->record_base_of_stack_pointer();
1907 
1908   this->create_stack_guard_pages();
1909 
1910   this->cache_global_variables();
1911 
1912   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1913   // in the VM. Change thread state from _thread_new to _thread_in_vm
1914   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1915   // Before a thread is on the threads list it is always safe, so after leaving the
1916   // _thread_new we should emit a instruction barrier. The distance to modified code
1917   // from here is probably far enough, but this is consistent and safe.
1918   OrderAccess::cross_modify_fence();
1919 
1920   assert(JavaThread::current() == this, "sanity check");
1921   assert(!Thread::current()->owns_locks(), "sanity check");
1922 
1923   DTRACE_THREAD_PROBE(start, this);
1924 
1925   // This operation might block. We call that after all safepoint checks for a new thread has
1926   // been completed.
1927   this->set_active_handles(JNIHandleBlock::allocate_block());
1928 
1929   if (JvmtiExport::should_post_thread_life()) {
1930     JvmtiExport::post_thread_start(this);
1931 
1932   }
1933 
1934   // We call another function to do the rest so we are sure that the stack addresses used
1935   // from there will be lower than the stack base just computed.
1936   thread_main_inner();
1937 }
1938 
1939 void JavaThread::thread_main_inner() {
1940   assert(JavaThread::current() == this, "sanity check");
1941   assert(this->threadObj() != NULL, "just checking");
1942 
1943   // Execute thread entry point unless this thread has a pending exception
1944   // or has been stopped before starting.
1945   // Note: Due to JVM_StopThread we can have pending exceptions already!
1946   if (!this->has_pending_exception() &&
1947       !java_lang_Thread::is_stillborn(this->threadObj())) {
1948     {
1949       ResourceMark rm(this);
1950       this->set_native_thread_name(this->get_thread_name());
1951     }
1952     HandleMark hm(this);
1953     this->entry_point()(this, this);
1954   }
1955 
1956   DTRACE_THREAD_PROBE(stop, this);
1957 
1958   // Cleanup is handled in post_run()
1959 }
1960 
1961 // Shared teardown for all JavaThreads
1962 void JavaThread::post_run() {
1963   this->exit(false);
1964   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1965   // for any shared tear-down.
1966   this->smr_delete();
1967 }
1968 
1969 static void ensure_join(JavaThread* thread) {
1970   // We do not need to grab the Threads_lock, since we are operating on ourself.
1971   Handle threadObj(thread, thread->threadObj());
1972   assert(threadObj.not_null(), "java thread object must exist");
1973   ObjectLocker lock(threadObj, thread);
1974   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1975   thread->clear_pending_exception();
1976   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1977   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1978   // Clear the native thread instance - this makes isAlive return false and allows the join()
1979   // to complete once we've done the notify_all below
1980   java_lang_Thread::set_thread(threadObj(), NULL);
1981   lock.notify_all(thread);
1982   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1983   thread->clear_pending_exception();
1984 }
1985 
1986 static bool is_daemon(oop threadObj) {
1987   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1988 }
1989 
1990 // For any new cleanup additions, please check to see if they need to be applied to
1991 // cleanup_failed_attach_current_thread as well.
1992 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1993   assert(this == JavaThread::current(), "thread consistency check");
1994 
1995   elapsedTimer _timer_exit_phase1;
1996   elapsedTimer _timer_exit_phase2;
1997   elapsedTimer _timer_exit_phase3;
1998   elapsedTimer _timer_exit_phase4;
1999 
2000   if (log_is_enabled(Debug, os, thread, timer)) {
2001     _timer_exit_phase1.start();
2002   }
2003 
2004   HandleMark hm(this);
2005   Handle uncaught_exception(this, this->pending_exception());
2006   this->clear_pending_exception();
2007   Handle threadObj(this, this->threadObj());
2008   assert(threadObj.not_null(), "Java thread object should be created");
2009 
2010   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2011   {
2012     EXCEPTION_MARK;
2013 
2014     CLEAR_PENDING_EXCEPTION;
2015   }
2016   if (!destroy_vm) {
2017     if (uncaught_exception.not_null()) {
2018       EXCEPTION_MARK;
2019       // Call method Thread.dispatchUncaughtException().
2020       Klass* thread_klass = SystemDictionary::Thread_klass();
2021       JavaValue result(T_VOID);
2022       JavaCalls::call_virtual(&result,
2023                               threadObj, thread_klass,
2024                               vmSymbols::dispatchUncaughtException_name(),
2025                               vmSymbols::throwable_void_signature(),
2026                               uncaught_exception,
2027                               THREAD);
2028       if (HAS_PENDING_EXCEPTION) {
2029         ResourceMark rm(this);
2030         jio_fprintf(defaultStream::error_stream(),
2031                     "\nException: %s thrown from the UncaughtExceptionHandler"
2032                     " in thread \"%s\"\n",
2033                     pending_exception()->klass()->external_name(),
2034                     get_thread_name());
2035         CLEAR_PENDING_EXCEPTION;
2036       }
2037     }
2038     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2039 
2040     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2041     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2042     // is deprecated anyhow.
2043     if (!is_Compiler_thread()) {
2044       int count = 3;
2045       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2046         EXCEPTION_MARK;
2047         JavaValue result(T_VOID);
2048         Klass* thread_klass = SystemDictionary::Thread_klass();
2049         JavaCalls::call_virtual(&result,
2050                                 threadObj, thread_klass,
2051                                 vmSymbols::exit_method_name(),
2052                                 vmSymbols::void_method_signature(),
2053                                 THREAD);
2054         CLEAR_PENDING_EXCEPTION;
2055       }
2056     }
2057     // notify JVMTI
2058     if (JvmtiExport::should_post_thread_life()) {
2059       JvmtiExport::post_thread_end(this);
2060     }
2061 
2062     // We have notified the agents that we are exiting, before we go on,
2063     // we must check for a pending external suspend request and honor it
2064     // in order to not surprise the thread that made the suspend request.
2065     while (true) {
2066       {
2067         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2068         if (!is_external_suspend()) {
2069           set_terminated(_thread_exiting);
2070           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2071           break;
2072         }
2073         // Implied else:
2074         // Things get a little tricky here. We have a pending external
2075         // suspend request, but we are holding the SR_lock so we
2076         // can't just self-suspend. So we temporarily drop the lock
2077         // and then self-suspend.
2078       }
2079 
2080       ThreadBlockInVM tbivm(this);
2081       java_suspend_self();
2082 
2083       // We're done with this suspend request, but we have to loop around
2084       // and check again. Eventually we will get SR_lock without a pending
2085       // external suspend request and will be able to mark ourselves as
2086       // exiting.
2087     }
2088     // no more external suspends are allowed at this point
2089   } else {
2090     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2091     // before_exit() has already posted JVMTI THREAD_END events
2092   }
2093 
2094   if (log_is_enabled(Debug, os, thread, timer)) {
2095     _timer_exit_phase1.stop();
2096     _timer_exit_phase2.start();
2097   }
2098 
2099   // Capture daemon status before the thread is marked as terminated.
2100   bool daemon = is_daemon(threadObj());
2101 
2102   // Notify waiters on thread object. This has to be done after exit() is called
2103   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2104   // group should have the destroyed bit set before waiters are notified).
2105   ensure_join(this);
2106   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2107 
2108   if (log_is_enabled(Debug, os, thread, timer)) {
2109     _timer_exit_phase2.stop();
2110     _timer_exit_phase3.start();
2111   }
2112   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2113   // held by this thread must be released. The spec does not distinguish
2114   // between JNI-acquired and regular Java monitors. We can only see
2115   // regular Java monitors here if monitor enter-exit matching is broken.
2116   //
2117   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2118   // ObjectSynchronizer::release_monitors_owned_by_thread().
2119   if (exit_type == jni_detach) {
2120     // Sanity check even though JNI DetachCurrentThread() would have
2121     // returned JNI_ERR if there was a Java frame. JavaThread exit
2122     // should be done executing Java code by the time we get here.
2123     assert(!this->has_last_Java_frame(),
2124            "should not have a Java frame when detaching or exiting");
2125     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2126     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2127   }
2128 
2129   // These things needs to be done while we are still a Java Thread. Make sure that thread
2130   // is in a consistent state, in case GC happens
2131   JFR_ONLY(Jfr::on_thread_exit(this);)
2132 
2133   if (active_handles() != NULL) {
2134     JNIHandleBlock* block = active_handles();
2135     set_active_handles(NULL);
2136     JNIHandleBlock::release_block(block);
2137   }
2138 
2139   if (free_handle_block() != NULL) {
2140     JNIHandleBlock* block = free_handle_block();
2141     set_free_handle_block(NULL);
2142     JNIHandleBlock::release_block(block);
2143   }
2144 
2145   // These have to be removed while this is still a valid thread.
2146   remove_stack_guard_pages();
2147 
2148   if (UseTLAB) {
2149     tlab().retire();
2150   }
2151 
2152   if (JvmtiEnv::environments_might_exist()) {
2153     JvmtiExport::cleanup_thread(this);
2154   }
2155 
2156   // We must flush any deferred card marks and other various GC barrier
2157   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2158   // before removing a thread from the list of active threads.
2159   BarrierSet::barrier_set()->on_thread_detach(this);
2160 
2161   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2162     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2163     os::current_thread_id());
2164 
2165   if (log_is_enabled(Debug, os, thread, timer)) {
2166     _timer_exit_phase3.stop();
2167     _timer_exit_phase4.start();
2168   }
2169   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2170   Threads::remove(this, daemon);
2171 
2172   if (log_is_enabled(Debug, os, thread, timer)) {
2173     _timer_exit_phase4.stop();
2174     ResourceMark rm(this);
2175     log_debug(os, thread, timer)("name='%s'"
2176                                  ", exit-phase1=" JLONG_FORMAT
2177                                  ", exit-phase2=" JLONG_FORMAT
2178                                  ", exit-phase3=" JLONG_FORMAT
2179                                  ", exit-phase4=" JLONG_FORMAT,
2180                                  get_thread_name(),
2181                                  _timer_exit_phase1.milliseconds(),
2182                                  _timer_exit_phase2.milliseconds(),
2183                                  _timer_exit_phase3.milliseconds(),
2184                                  _timer_exit_phase4.milliseconds());
2185   }
2186 }
2187 
2188 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2189   if (active_handles() != NULL) {
2190     JNIHandleBlock* block = active_handles();
2191     set_active_handles(NULL);
2192     JNIHandleBlock::release_block(block);
2193   }
2194 
2195   if (free_handle_block() != NULL) {
2196     JNIHandleBlock* block = free_handle_block();
2197     set_free_handle_block(NULL);
2198     JNIHandleBlock::release_block(block);
2199   }
2200 
2201   // These have to be removed while this is still a valid thread.
2202   remove_stack_guard_pages();
2203 
2204   if (UseTLAB) {
2205     tlab().retire();
2206   }
2207 
2208   BarrierSet::barrier_set()->on_thread_detach(this);
2209 
2210   Threads::remove(this, is_daemon);
2211   this->smr_delete();
2212 }
2213 
2214 JavaThread* JavaThread::active() {
2215   Thread* thread = Thread::current();
2216   if (thread->is_Java_thread()) {
2217     return (JavaThread*) thread;
2218   } else {
2219     assert(thread->is_VM_thread(), "this must be a vm thread");
2220     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2221     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2222     assert(ret->is_Java_thread(), "must be a Java thread");
2223     return ret;
2224   }
2225 }
2226 
2227 bool JavaThread::is_lock_owned(address adr) const {
2228   if (Thread::is_lock_owned(adr)) return true;
2229 
2230   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2231     if (chunk->contains(adr)) return true;
2232   }
2233 
2234   return false;
2235 }
2236 
2237 
2238 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2239   chunk->set_next(monitor_chunks());
2240   set_monitor_chunks(chunk);
2241 }
2242 
2243 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2244   guarantee(monitor_chunks() != NULL, "must be non empty");
2245   if (monitor_chunks() == chunk) {
2246     set_monitor_chunks(chunk->next());
2247   } else {
2248     MonitorChunk* prev = monitor_chunks();
2249     while (prev->next() != chunk) prev = prev->next();
2250     prev->set_next(chunk->next());
2251   }
2252 }
2253 
2254 // JVM support.
2255 
2256 // Note: this function shouldn't block if it's called in
2257 // _thread_in_native_trans state (such as from
2258 // check_special_condition_for_native_trans()).
2259 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2260 
2261   if (has_last_Java_frame() && has_async_condition()) {
2262     // If we are at a polling page safepoint (not a poll return)
2263     // then we must defer async exception because live registers
2264     // will be clobbered by the exception path. Poll return is
2265     // ok because the call we a returning from already collides
2266     // with exception handling registers and so there is no issue.
2267     // (The exception handling path kills call result registers but
2268     //  this is ok since the exception kills the result anyway).
2269 
2270     if (is_at_poll_safepoint()) {
2271       // if the code we are returning to has deoptimized we must defer
2272       // the exception otherwise live registers get clobbered on the
2273       // exception path before deoptimization is able to retrieve them.
2274       //
2275       RegisterMap map(this, false);
2276       frame caller_fr = last_frame().sender(&map);
2277       assert(caller_fr.is_compiled_frame(), "what?");
2278       if (caller_fr.is_deoptimized_frame()) {
2279         log_info(exceptions)("deferred async exception at compiled safepoint");
2280         return;
2281       }
2282     }
2283   }
2284 
2285   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2286   if (condition == _no_async_condition) {
2287     // Conditions have changed since has_special_runtime_exit_condition()
2288     // was called:
2289     // - if we were here only because of an external suspend request,
2290     //   then that was taken care of above (or cancelled) so we are done
2291     // - if we were here because of another async request, then it has
2292     //   been cleared between the has_special_runtime_exit_condition()
2293     //   and now so again we are done
2294     return;
2295   }
2296 
2297   // Check for pending async. exception
2298   if (_pending_async_exception != NULL) {
2299     // Only overwrite an already pending exception, if it is not a threadDeath.
2300     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2301 
2302       // We cannot call Exceptions::_throw(...) here because we cannot block
2303       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2304 
2305       LogTarget(Info, exceptions) lt;
2306       if (lt.is_enabled()) {
2307         ResourceMark rm;
2308         LogStream ls(lt);
2309         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2310           if (has_last_Java_frame()) {
2311             frame f = last_frame();
2312            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2313           }
2314         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2315       }
2316       _pending_async_exception = NULL;
2317       clear_has_async_exception();
2318     }
2319   }
2320 
2321   if (check_unsafe_error &&
2322       condition == _async_unsafe_access_error && !has_pending_exception()) {
2323     condition = _no_async_condition;  // done
2324     switch (thread_state()) {
2325     case _thread_in_vm: {
2326       JavaThread* THREAD = this;
2327       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2328     }
2329     case _thread_in_native: {
2330       ThreadInVMfromNative tiv(this);
2331       JavaThread* THREAD = this;
2332       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2333     }
2334     case _thread_in_Java: {
2335       ThreadInVMfromJava tiv(this);
2336       JavaThread* THREAD = this;
2337       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2338     }
2339     default:
2340       ShouldNotReachHere();
2341     }
2342   }
2343 
2344   assert(condition == _no_async_condition || has_pending_exception() ||
2345          (!check_unsafe_error && condition == _async_unsafe_access_error),
2346          "must have handled the async condition, if no exception");
2347 }
2348 
2349 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2350 
2351   // Check for pending external suspend.
2352   if (is_external_suspend_with_lock()) {
2353     frame_anchor()->make_walkable(this);
2354     java_suspend_self_with_safepoint_check();
2355   }
2356 
2357   // We might be here for reasons in addition to the self-suspend request
2358   // so check for other async requests.
2359   if (check_asyncs) {
2360     check_and_handle_async_exceptions();
2361   }
2362 
2363   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2364 }
2365 
2366 void JavaThread::send_thread_stop(oop java_throwable)  {
2367   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2368   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2369   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2370 
2371   // Do not throw asynchronous exceptions against the compiler thread
2372   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2373   if (!can_call_java()) return;
2374 
2375   {
2376     // Actually throw the Throwable against the target Thread - however
2377     // only if there is no thread death exception installed already.
2378     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2379       // If the topmost frame is a runtime stub, then we are calling into
2380       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2381       // must deoptimize the caller before continuing, as the compiled  exception handler table
2382       // may not be valid
2383       if (has_last_Java_frame()) {
2384         frame f = last_frame();
2385         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2386           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2387           RegisterMap reg_map(this, UseBiasedLocking);
2388           frame compiled_frame = f.sender(&reg_map);
2389           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2390             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2391           }
2392         }
2393       }
2394 
2395       // Set async. pending exception in thread.
2396       set_pending_async_exception(java_throwable);
2397 
2398       if (log_is_enabled(Info, exceptions)) {
2399          ResourceMark rm;
2400         log_info(exceptions)("Pending Async. exception installed of type: %s",
2401                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2402       }
2403       // for AbortVMOnException flag
2404       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2405     }
2406   }
2407 
2408 
2409   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2410   this->interrupt();
2411 }
2412 
2413 // External suspension mechanism.
2414 //
2415 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2416 // to any VM_locks and it is at a transition
2417 // Self-suspension will happen on the transition out of the vm.
2418 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2419 //
2420 // Guarantees on return:
2421 //   + Target thread will not execute any new bytecode (that's why we need to
2422 //     force a safepoint)
2423 //   + Target thread will not enter any new monitors
2424 //
2425 void JavaThread::java_suspend() {
2426   ThreadsListHandle tlh;
2427   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2428     return;
2429   }
2430 
2431   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2432     if (!is_external_suspend()) {
2433       // a racing resume has cancelled us; bail out now
2434       return;
2435     }
2436 
2437     // suspend is done
2438     uint32_t debug_bits = 0;
2439     // Warning: is_ext_suspend_completed() may temporarily drop the
2440     // SR_lock to allow the thread to reach a stable thread state if
2441     // it is currently in a transient thread state.
2442     if (is_ext_suspend_completed(false /* !called_by_wait */,
2443                                  SuspendRetryDelay, &debug_bits)) {
2444       return;
2445     }
2446   }
2447 
2448   if (Thread::current() == this) {
2449     // Safely self-suspend.
2450     // If we don't do this explicitly it will implicitly happen
2451     // before we transition back to Java, and on some other thread-state
2452     // transition paths, but not as we exit a JVM TI SuspendThread call.
2453     // As SuspendThread(current) must not return (until resumed) we must
2454     // self-suspend here.
2455     ThreadBlockInVM tbivm(this);
2456     java_suspend_self();
2457   } else {
2458     VM_ThreadSuspend vm_suspend;
2459     VMThread::execute(&vm_suspend);
2460   }
2461 }
2462 
2463 // Part II of external suspension.
2464 // A JavaThread self suspends when it detects a pending external suspend
2465 // request. This is usually on transitions. It is also done in places
2466 // where continuing to the next transition would surprise the caller,
2467 // e.g., monitor entry.
2468 //
2469 // Returns the number of times that the thread self-suspended.
2470 //
2471 // Note: DO NOT call java_suspend_self() when you just want to block current
2472 //       thread. java_suspend_self() is the second stage of cooperative
2473 //       suspension for external suspend requests and should only be used
2474 //       to complete an external suspend request.
2475 //
2476 int JavaThread::java_suspend_self() {
2477   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2478   int ret = 0;
2479 
2480   // we are in the process of exiting so don't suspend
2481   if (is_exiting()) {
2482     clear_external_suspend();
2483     return ret;
2484   }
2485 
2486   assert(_anchor.walkable() ||
2487          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2488          "must have walkable stack");
2489 
2490   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2491 
2492   assert(!this->is_ext_suspended(),
2493          "a thread trying to self-suspend should not already be suspended");
2494 
2495   if (this->is_suspend_equivalent()) {
2496     // If we are self-suspending as a result of the lifting of a
2497     // suspend equivalent condition, then the suspend_equivalent
2498     // flag is not cleared until we set the ext_suspended flag so
2499     // that wait_for_ext_suspend_completion() returns consistent
2500     // results.
2501     this->clear_suspend_equivalent();
2502   }
2503 
2504   // A racing resume may have cancelled us before we grabbed SR_lock
2505   // above. Or another external suspend request could be waiting for us
2506   // by the time we return from SR_lock()->wait(). The thread
2507   // that requested the suspension may already be trying to walk our
2508   // stack and if we return now, we can change the stack out from under
2509   // it. This would be a "bad thing (TM)" and cause the stack walker
2510   // to crash. We stay self-suspended until there are no more pending
2511   // external suspend requests.
2512   while (is_external_suspend()) {
2513     ret++;
2514     this->set_ext_suspended();
2515 
2516     // _ext_suspended flag is cleared by java_resume()
2517     while (is_ext_suspended()) {
2518       ml.wait();
2519     }
2520   }
2521   return ret;
2522 }
2523 
2524 // Helper routine to set up the correct thread state before calling java_suspend_self.
2525 // This is called when regular thread-state transition helpers can't be used because
2526 // we can be in various states, in particular _thread_in_native_trans.
2527 // Because this thread is external suspended the safepoint code will count it as at
2528 // a safepoint, regardless of what its actual current thread-state is. But
2529 // is_ext_suspend_completed() may be waiting to see a thread transition from
2530 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2531 // to _thread_blocked. The problem with setting thread state directly is that a
2532 // safepoint could happen just after java_suspend_self() returns after being resumed,
2533 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2534 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2535 // However, not all initial-states are allowed when performing a safepoint check, as we
2536 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2537 // only _thread_in_native is possible when executing this code (based on our two callers).
2538 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2539 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2540 // and so we don't need the explicit safepoint check.
2541 
2542 void JavaThread::java_suspend_self_with_safepoint_check() {
2543   assert(this == Thread::current(), "invariant");
2544   JavaThreadState state = thread_state();
2545   set_thread_state(_thread_blocked);
2546   java_suspend_self();
2547   set_thread_state_fence(state);
2548   // Since we are not using a regular thread-state transition helper here,
2549   // we must manually emit the instruction barrier after leaving a safe state.
2550   OrderAccess::cross_modify_fence();
2551   if (state != _thread_in_native) {
2552     SafepointMechanism::block_if_requested(this);
2553   }
2554 }
2555 
2556 #ifdef ASSERT
2557 // Verify the JavaThread has not yet been published in the Threads::list, and
2558 // hence doesn't need protection from concurrent access at this stage.
2559 void JavaThread::verify_not_published() {
2560   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2561   // since an unpublished JavaThread doesn't participate in the
2562   // Thread-SMR protocol for keeping a ThreadsList alive.
2563   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2564 }
2565 #endif
2566 
2567 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2568 // progress or when _suspend_flags is non-zero.
2569 // Current thread needs to self-suspend if there is a suspend request and/or
2570 // block if a safepoint is in progress.
2571 // Async exception ISN'T checked.
2572 // Note only the ThreadInVMfromNative transition can call this function
2573 // directly and when thread state is _thread_in_native_trans
2574 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2575   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2576 
2577   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2578 
2579   if (thread->is_external_suspend()) {
2580     thread->java_suspend_self_with_safepoint_check();
2581   } else {
2582     SafepointMechanism::block_if_requested(thread);
2583   }
2584 
2585   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2586 }
2587 
2588 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2589 // progress or when _suspend_flags is non-zero.
2590 // Current thread needs to self-suspend if there is a suspend request and/or
2591 // block if a safepoint is in progress.
2592 // Also check for pending async exception (not including unsafe access error).
2593 // Note only the native==>VM/Java barriers can call this function and when
2594 // thread state is _thread_in_native_trans.
2595 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2596   check_safepoint_and_suspend_for_native_trans(thread);
2597 
2598   if (thread->has_async_exception()) {
2599     // We are in _thread_in_native_trans state, don't handle unsafe
2600     // access error since that may block.
2601     thread->check_and_handle_async_exceptions(false);
2602   }
2603 }
2604 
2605 // This is a variant of the normal
2606 // check_special_condition_for_native_trans with slightly different
2607 // semantics for use by critical native wrappers.  It does all the
2608 // normal checks but also performs the transition back into
2609 // thread_in_Java state.  This is required so that critical natives
2610 // can potentially block and perform a GC if they are the last thread
2611 // exiting the GCLocker.
2612 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2613   check_special_condition_for_native_trans(thread);
2614 
2615   // Finish the transition
2616   thread->set_thread_state(_thread_in_Java);
2617 
2618   if (thread->do_critical_native_unlock()) {
2619     ThreadInVMfromJavaNoAsyncException tiv(thread);
2620     GCLocker::unlock_critical(thread);
2621     thread->clear_critical_native_unlock();
2622   }
2623 }
2624 
2625 // We need to guarantee the Threads_lock here, since resumes are not
2626 // allowed during safepoint synchronization
2627 // Can only resume from an external suspension
2628 void JavaThread::java_resume() {
2629   assert_locked_or_safepoint(Threads_lock);
2630 
2631   // Sanity check: thread is gone, has started exiting or the thread
2632   // was not externally suspended.
2633   ThreadsListHandle tlh;
2634   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2635     return;
2636   }
2637 
2638   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2639 
2640   clear_external_suspend();
2641 
2642   if (is_ext_suspended()) {
2643     clear_ext_suspended();
2644     SR_lock()->notify_all();
2645   }
2646 }
2647 
2648 size_t JavaThread::_stack_red_zone_size = 0;
2649 size_t JavaThread::_stack_yellow_zone_size = 0;
2650 size_t JavaThread::_stack_reserved_zone_size = 0;
2651 size_t JavaThread::_stack_shadow_zone_size = 0;
2652 
2653 void JavaThread::create_stack_guard_pages() {
2654   if (!os::uses_stack_guard_pages() ||
2655       _stack_guard_state != stack_guard_unused ||
2656       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2657       log_info(os, thread)("Stack guard page creation for thread "
2658                            UINTX_FORMAT " disabled", os::current_thread_id());
2659     return;
2660   }
2661   address low_addr = stack_end();
2662   size_t len = stack_guard_zone_size();
2663 
2664   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2665   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2666 
2667   int must_commit = os::must_commit_stack_guard_pages();
2668   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2669 
2670   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2671     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2672     return;
2673   }
2674 
2675   if (os::guard_memory((char *) low_addr, len)) {
2676     _stack_guard_state = stack_guard_enabled;
2677   } else {
2678     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2679       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2680     if (os::uncommit_memory((char *) low_addr, len)) {
2681       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2682     }
2683     return;
2684   }
2685 
2686   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2687     PTR_FORMAT "-" PTR_FORMAT ".",
2688     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2689 }
2690 
2691 void JavaThread::remove_stack_guard_pages() {
2692   assert(Thread::current() == this, "from different thread");
2693   if (_stack_guard_state == stack_guard_unused) return;
2694   address low_addr = stack_end();
2695   size_t len = stack_guard_zone_size();
2696 
2697   if (os::must_commit_stack_guard_pages()) {
2698     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2699       _stack_guard_state = stack_guard_unused;
2700     } else {
2701       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2702         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2703       return;
2704     }
2705   } else {
2706     if (_stack_guard_state == stack_guard_unused) return;
2707     if (os::unguard_memory((char *) low_addr, len)) {
2708       _stack_guard_state = stack_guard_unused;
2709     } else {
2710       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2711         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2712       return;
2713     }
2714   }
2715 
2716   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2717     PTR_FORMAT "-" PTR_FORMAT ".",
2718     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2719 }
2720 
2721 void JavaThread::enable_stack_reserved_zone() {
2722   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2723 
2724   // The base notation is from the stack's point of view, growing downward.
2725   // We need to adjust it to work correctly with guard_memory()
2726   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2727 
2728   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2729   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2730 
2731   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2732     _stack_guard_state = stack_guard_enabled;
2733   } else {
2734     warning("Attempt to guard stack reserved zone failed.");
2735   }
2736   enable_register_stack_guard();
2737 }
2738 
2739 void JavaThread::disable_stack_reserved_zone() {
2740   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2741 
2742   // Simply return if called for a thread that does not use guard pages.
2743   if (_stack_guard_state != stack_guard_enabled) return;
2744 
2745   // The base notation is from the stack's point of view, growing downward.
2746   // We need to adjust it to work correctly with guard_memory()
2747   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2748 
2749   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2750     _stack_guard_state = stack_guard_reserved_disabled;
2751   } else {
2752     warning("Attempt to unguard stack reserved zone failed.");
2753   }
2754   disable_register_stack_guard();
2755 }
2756 
2757 void JavaThread::enable_stack_yellow_reserved_zone() {
2758   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2759   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2760 
2761   // The base notation is from the stacks point of view, growing downward.
2762   // We need to adjust it to work correctly with guard_memory()
2763   address base = stack_red_zone_base();
2764 
2765   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2766   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2767 
2768   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2769     _stack_guard_state = stack_guard_enabled;
2770   } else {
2771     warning("Attempt to guard stack yellow zone failed.");
2772   }
2773   enable_register_stack_guard();
2774 }
2775 
2776 void JavaThread::disable_stack_yellow_reserved_zone() {
2777   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2778   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2779 
2780   // Simply return if called for a thread that does not use guard pages.
2781   if (_stack_guard_state == stack_guard_unused) return;
2782 
2783   // The base notation is from the stacks point of view, growing downward.
2784   // We need to adjust it to work correctly with guard_memory()
2785   address base = stack_red_zone_base();
2786 
2787   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2788     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2789   } else {
2790     warning("Attempt to unguard stack yellow zone failed.");
2791   }
2792   disable_register_stack_guard();
2793 }
2794 
2795 void JavaThread::enable_stack_red_zone() {
2796   // The base notation is from the stacks point of view, growing downward.
2797   // We need to adjust it to work correctly with guard_memory()
2798   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2799   address base = stack_red_zone_base() - stack_red_zone_size();
2800 
2801   guarantee(base < stack_base(), "Error calculating stack red zone");
2802   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2803 
2804   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2805     warning("Attempt to guard stack red zone failed.");
2806   }
2807 }
2808 
2809 void JavaThread::disable_stack_red_zone() {
2810   // The base notation is from the stacks point of view, growing downward.
2811   // We need to adjust it to work correctly with guard_memory()
2812   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2813   address base = stack_red_zone_base() - stack_red_zone_size();
2814   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2815     warning("Attempt to unguard stack red zone failed.");
2816   }
2817 }
2818 
2819 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2820   // ignore is there is no stack
2821   if (!has_last_Java_frame()) return;
2822   // traverse the stack frames. Starts from top frame.
2823   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2824     frame* fr = fst.current();
2825     f(fr, fst.register_map());
2826   }
2827 }
2828 
2829 
2830 #ifndef PRODUCT
2831 // Deoptimization
2832 // Function for testing deoptimization
2833 void JavaThread::deoptimize() {
2834   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2835   StackFrameStream fst(this, UseBiasedLocking);
2836   bool deopt = false;           // Dump stack only if a deopt actually happens.
2837   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2838   // Iterate over all frames in the thread and deoptimize
2839   for (; !fst.is_done(); fst.next()) {
2840     if (fst.current()->can_be_deoptimized()) {
2841 
2842       if (only_at) {
2843         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2844         // consists of comma or carriage return separated numbers so
2845         // search for the current bci in that string.
2846         address pc = fst.current()->pc();
2847         nmethod* nm =  (nmethod*) fst.current()->cb();
2848         ScopeDesc* sd = nm->scope_desc_at(pc);
2849         char buffer[8];
2850         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2851         size_t len = strlen(buffer);
2852         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2853         while (found != NULL) {
2854           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2855               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2856             // Check that the bci found is bracketed by terminators.
2857             break;
2858           }
2859           found = strstr(found + 1, buffer);
2860         }
2861         if (!found) {
2862           continue;
2863         }
2864       }
2865 
2866       if (DebugDeoptimization && !deopt) {
2867         deopt = true; // One-time only print before deopt
2868         tty->print_cr("[BEFORE Deoptimization]");
2869         trace_frames();
2870         trace_stack();
2871       }
2872       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2873     }
2874   }
2875 
2876   if (DebugDeoptimization && deopt) {
2877     tty->print_cr("[AFTER Deoptimization]");
2878     trace_frames();
2879   }
2880 }
2881 
2882 
2883 // Make zombies
2884 void JavaThread::make_zombies() {
2885   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2886     if (fst.current()->can_be_deoptimized()) {
2887       // it is a Java nmethod
2888       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2889       nm->make_not_entrant();
2890     }
2891   }
2892 }
2893 #endif // PRODUCT
2894 
2895 
2896 void JavaThread::deoptimize_marked_methods() {
2897   if (!has_last_Java_frame()) return;
2898   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2899   StackFrameStream fst(this, UseBiasedLocking);
2900   for (; !fst.is_done(); fst.next()) {
2901     if (fst.current()->should_be_deoptimized()) {
2902       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2903     }
2904   }
2905 }
2906 
2907 // If the caller is a NamedThread, then remember, in the current scope,
2908 // the given JavaThread in its _processed_thread field.
2909 class RememberProcessedThread: public StackObj {
2910   NamedThread* _cur_thr;
2911  public:
2912   RememberProcessedThread(JavaThread* jthr) {
2913     Thread* thread = Thread::current();
2914     if (thread->is_Named_thread()) {
2915       _cur_thr = (NamedThread *)thread;
2916       _cur_thr->set_processed_thread(jthr);
2917     } else {
2918       _cur_thr = NULL;
2919     }
2920   }
2921 
2922   ~RememberProcessedThread() {
2923     if (_cur_thr) {
2924       _cur_thr->set_processed_thread(NULL);
2925     }
2926   }
2927 };
2928 
2929 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2930   // Verify that the deferred card marks have been flushed.
2931   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2932 
2933   // Traverse the GCHandles
2934   Thread::oops_do(f, cf);
2935 
2936   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2937          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2938 
2939   if (has_last_Java_frame()) {
2940     // Record JavaThread to GC thread
2941     RememberProcessedThread rpt(this);
2942 
2943     // traverse the registered growable array
2944     if (_array_for_gc != NULL) {
2945       for (int index = 0; index < _array_for_gc->length(); index++) {
2946         f->do_oop(_array_for_gc->adr_at(index));
2947       }
2948     }
2949 
2950     // Traverse the monitor chunks
2951     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2952       chunk->oops_do(f);
2953     }
2954 
2955     // Traverse the execution stack
2956     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2957       fst.current()->oops_do(f, cf, fst.register_map());
2958     }
2959   }
2960 
2961   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2962   // If we have deferred set_locals there might be oops waiting to be
2963   // written
2964   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2965   if (list != NULL) {
2966     for (int i = 0; i < list->length(); i++) {
2967       list->at(i)->oops_do(f);
2968     }
2969   }
2970 
2971   // Traverse instance variables at the end since the GC may be moving things
2972   // around using this function
2973   f->do_oop((oop*) &_threadObj);
2974   f->do_oop((oop*) &_vm_result);
2975   f->do_oop((oop*) &_exception_oop);
2976   f->do_oop((oop*) &_pending_async_exception);
2977 
2978   if (jvmti_thread_state() != NULL) {
2979     jvmti_thread_state()->oops_do(f);
2980   }
2981 }
2982 
2983 #ifdef ASSERT
2984 void JavaThread::verify_states_for_handshake() {
2985   // This checks that the thread has a correct frame state during a handshake.
2986   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2987          (has_last_Java_frame() && java_call_counter() > 0),
2988          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2989          has_last_Java_frame(), java_call_counter());
2990 }
2991 #endif
2992 
2993 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2994   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2995          (has_last_Java_frame() && java_call_counter() > 0),
2996          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2997          has_last_Java_frame(), java_call_counter());
2998 
2999   if (has_last_Java_frame()) {
3000     // Traverse the execution stack
3001     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3002       fst.current()->nmethods_do(cf);
3003     }
3004   }
3005 }
3006 
3007 void JavaThread::metadata_do(MetadataClosure* f) {
3008   if (has_last_Java_frame()) {
3009     // Traverse the execution stack to call f() on the methods in the stack
3010     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3011       fst.current()->metadata_do(f);
3012     }
3013   } else if (is_Compiler_thread()) {
3014     // need to walk ciMetadata in current compile tasks to keep alive.
3015     CompilerThread* ct = (CompilerThread*)this;
3016     if (ct->env() != NULL) {
3017       ct->env()->metadata_do(f);
3018     }
3019     CompileTask* task = ct->task();
3020     if (task != NULL) {
3021       task->metadata_do(f);
3022     }
3023   }
3024 }
3025 
3026 // Printing
3027 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3028   switch (_thread_state) {
3029   case _thread_uninitialized:     return "_thread_uninitialized";
3030   case _thread_new:               return "_thread_new";
3031   case _thread_new_trans:         return "_thread_new_trans";
3032   case _thread_in_native:         return "_thread_in_native";
3033   case _thread_in_native_trans:   return "_thread_in_native_trans";
3034   case _thread_in_vm:             return "_thread_in_vm";
3035   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3036   case _thread_in_Java:           return "_thread_in_Java";
3037   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3038   case _thread_blocked:           return "_thread_blocked";
3039   case _thread_blocked_trans:     return "_thread_blocked_trans";
3040   default:                        return "unknown thread state";
3041   }
3042 }
3043 
3044 #ifndef PRODUCT
3045 void JavaThread::print_thread_state_on(outputStream *st) const {
3046   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3047 };
3048 #endif // PRODUCT
3049 
3050 // Called by Threads::print() for VM_PrintThreads operation
3051 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3052   st->print_raw("\"");
3053   st->print_raw(get_thread_name());
3054   st->print_raw("\" ");
3055   oop thread_oop = threadObj();
3056   if (thread_oop != NULL) {
3057     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3058     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3059     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3060   }
3061   Thread::print_on(st, print_extended_info);
3062   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3063   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3064   if (thread_oop != NULL) {
3065     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3066   }
3067 #ifndef PRODUCT
3068   _safepoint_state->print_on(st);
3069 #endif // PRODUCT
3070   if (is_Compiler_thread()) {
3071     CompileTask *task = ((CompilerThread*)this)->task();
3072     if (task != NULL) {
3073       st->print("   Compiling: ");
3074       task->print(st, NULL, true, false);
3075     } else {
3076       st->print("   No compile task");
3077     }
3078     st->cr();
3079   }
3080 }
3081 
3082 void JavaThread::print() const { print_on(tty); }
3083 
3084 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3085   st->print("%s", get_thread_name_string(buf, buflen));
3086 }
3087 
3088 // Called by fatal error handler. The difference between this and
3089 // JavaThread::print() is that we can't grab lock or allocate memory.
3090 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3091   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3092   oop thread_obj = threadObj();
3093   if (thread_obj != NULL) {
3094     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3095   }
3096   st->print(" [");
3097   st->print("%s", _get_thread_state_name(_thread_state));
3098   if (osthread()) {
3099     st->print(", id=%d", osthread()->thread_id());
3100   }
3101   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3102             p2i(stack_end()), p2i(stack_base()));
3103   st->print("]");
3104 
3105   ThreadsSMRSupport::print_info_on(this, st);
3106   return;
3107 }
3108 
3109 // Verification
3110 
3111 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3112 
3113 void JavaThread::verify() {
3114   // Verify oops in the thread.
3115   oops_do(&VerifyOopClosure::verify_oop, NULL);
3116 
3117   // Verify the stack frames.
3118   frames_do(frame_verify);
3119 }
3120 
3121 // CR 6300358 (sub-CR 2137150)
3122 // Most callers of this method assume that it can't return NULL but a
3123 // thread may not have a name whilst it is in the process of attaching to
3124 // the VM - see CR 6412693, and there are places where a JavaThread can be
3125 // seen prior to having it's threadObj set (eg JNI attaching threads and
3126 // if vm exit occurs during initialization). These cases can all be accounted
3127 // for such that this method never returns NULL.
3128 const char* JavaThread::get_thread_name() const {
3129 #ifdef ASSERT
3130   // early safepoints can hit while current thread does not yet have TLS
3131   if (!SafepointSynchronize::is_at_safepoint()) {
3132     Thread *cur = Thread::current();
3133     if (!(cur->is_Java_thread() && cur == this)) {
3134       // Current JavaThreads are allowed to get their own name without
3135       // the Threads_lock.
3136       assert_locked_or_safepoint(Threads_lock);
3137     }
3138   }
3139 #endif // ASSERT
3140   return get_thread_name_string();
3141 }
3142 
3143 // Returns a non-NULL representation of this thread's name, or a suitable
3144 // descriptive string if there is no set name
3145 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3146   const char* name_str;
3147   oop thread_obj = threadObj();
3148   if (thread_obj != NULL) {
3149     oop name = java_lang_Thread::name(thread_obj);
3150     if (name != NULL) {
3151       if (buf == NULL) {
3152         name_str = java_lang_String::as_utf8_string(name);
3153       } else {
3154         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3155       }
3156     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3157       name_str = "<no-name - thread is attaching>";
3158     } else {
3159       name_str = Thread::name();
3160     }
3161   } else {
3162     name_str = Thread::name();
3163   }
3164   assert(name_str != NULL, "unexpected NULL thread name");
3165   return name_str;
3166 }
3167 
3168 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3169 
3170   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3171   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3172   // Link Java Thread object <-> C++ Thread
3173 
3174   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3175   // and put it into a new Handle.  The Handle "thread_oop" can then
3176   // be used to pass the C++ thread object to other methods.
3177 
3178   // Set the Java level thread object (jthread) field of the
3179   // new thread (a JavaThread *) to C++ thread object using the
3180   // "thread_oop" handle.
3181 
3182   // Set the thread field (a JavaThread *) of the
3183   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3184 
3185   Handle thread_oop(Thread::current(),
3186                     JNIHandles::resolve_non_null(jni_thread));
3187   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3188          "must be initialized");
3189   set_threadObj(thread_oop());
3190   java_lang_Thread::set_thread(thread_oop(), this);
3191 
3192   if (prio == NoPriority) {
3193     prio = java_lang_Thread::priority(thread_oop());
3194     assert(prio != NoPriority, "A valid priority should be present");
3195   }
3196 
3197   // Push the Java priority down to the native thread; needs Threads_lock
3198   Thread::set_priority(this, prio);
3199 
3200   // Add the new thread to the Threads list and set it in motion.
3201   // We must have threads lock in order to call Threads::add.
3202   // It is crucial that we do not block before the thread is
3203   // added to the Threads list for if a GC happens, then the java_thread oop
3204   // will not be visited by GC.
3205   Threads::add(this);
3206 }
3207 
3208 oop JavaThread::current_park_blocker() {
3209   // Support for JSR-166 locks
3210   oop thread_oop = threadObj();
3211   if (thread_oop != NULL) {
3212     return java_lang_Thread::park_blocker(thread_oop);
3213   }
3214   return NULL;
3215 }
3216 
3217 
3218 void JavaThread::print_stack_on(outputStream* st) {
3219   if (!has_last_Java_frame()) return;
3220   ResourceMark rm;
3221   HandleMark   hm;
3222 
3223   RegisterMap reg_map(this);
3224   vframe* start_vf = last_java_vframe(&reg_map);
3225   int count = 0;
3226   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3227     if (f->is_java_frame()) {
3228       javaVFrame* jvf = javaVFrame::cast(f);
3229       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3230 
3231       // Print out lock information
3232       if (JavaMonitorsInStackTrace) {
3233         jvf->print_lock_info_on(st, count);
3234       }
3235     } else {
3236       // Ignore non-Java frames
3237     }
3238 
3239     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3240     count++;
3241     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3242   }
3243 }
3244 
3245 
3246 // JVMTI PopFrame support
3247 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3248   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3249   if (in_bytes(size_in_bytes) != 0) {
3250     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3251     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3252     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3253   }
3254 }
3255 
3256 void* JavaThread::popframe_preserved_args() {
3257   return _popframe_preserved_args;
3258 }
3259 
3260 ByteSize JavaThread::popframe_preserved_args_size() {
3261   return in_ByteSize(_popframe_preserved_args_size);
3262 }
3263 
3264 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3265   int sz = in_bytes(popframe_preserved_args_size());
3266   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3267   return in_WordSize(sz / wordSize);
3268 }
3269 
3270 void JavaThread::popframe_free_preserved_args() {
3271   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3272   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3273   _popframe_preserved_args = NULL;
3274   _popframe_preserved_args_size = 0;
3275 }
3276 
3277 #ifndef PRODUCT
3278 
3279 void JavaThread::trace_frames() {
3280   tty->print_cr("[Describe stack]");
3281   int frame_no = 1;
3282   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3283     tty->print("  %d. ", frame_no++);
3284     fst.current()->print_value_on(tty, this);
3285     tty->cr();
3286   }
3287 }
3288 
3289 class PrintAndVerifyOopClosure: public OopClosure {
3290  protected:
3291   template <class T> inline void do_oop_work(T* p) {
3292     oop obj = RawAccess<>::oop_load(p);
3293     if (obj == NULL) return;
3294     tty->print(INTPTR_FORMAT ": ", p2i(p));
3295     if (oopDesc::is_oop_or_null(obj)) {
3296       if (obj->is_objArray()) {
3297         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3298       } else {
3299         obj->print();
3300       }
3301     } else {
3302       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3303     }
3304     tty->cr();
3305   }
3306  public:
3307   virtual void do_oop(oop* p) { do_oop_work(p); }
3308   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3309 };
3310 
3311 #ifdef ASSERT
3312 // Print or validate the layout of stack frames
3313 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3314   ResourceMark rm;
3315   PRESERVE_EXCEPTION_MARK;
3316   FrameValues values;
3317   int frame_no = 0;
3318   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3319     fst.current()->describe(values, ++frame_no);
3320     if (depth == frame_no) break;
3321   }
3322   if (validate_only) {
3323     values.validate();
3324   } else {
3325     tty->print_cr("[Describe stack layout]");
3326     values.print(this);
3327   }
3328 }
3329 #endif
3330 
3331 void JavaThread::trace_stack_from(vframe* start_vf) {
3332   ResourceMark rm;
3333   int vframe_no = 1;
3334   for (vframe* f = start_vf; f; f = f->sender()) {
3335     if (f->is_java_frame()) {
3336       javaVFrame::cast(f)->print_activation(vframe_no++);
3337     } else {
3338       f->print();
3339     }
3340     if (vframe_no > StackPrintLimit) {
3341       tty->print_cr("...<more frames>...");
3342       return;
3343     }
3344   }
3345 }
3346 
3347 
3348 void JavaThread::trace_stack() {
3349   if (!has_last_Java_frame()) return;
3350   ResourceMark rm;
3351   HandleMark   hm;
3352   RegisterMap reg_map(this);
3353   trace_stack_from(last_java_vframe(&reg_map));
3354 }
3355 
3356 
3357 #endif // PRODUCT
3358 
3359 
3360 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3361   assert(reg_map != NULL, "a map must be given");
3362   frame f = last_frame();
3363   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3364     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3365   }
3366   return NULL;
3367 }
3368 
3369 
3370 Klass* JavaThread::security_get_caller_class(int depth) {
3371   vframeStream vfst(this);
3372   vfst.security_get_caller_frame(depth);
3373   if (!vfst.at_end()) {
3374     return vfst.method()->method_holder();
3375   }
3376   return NULL;
3377 }
3378 
3379 // java.lang.Thread.sleep support
3380 // Returns true if sleep time elapsed as expected, and false
3381 // if the thread was interrupted.
3382 bool JavaThread::sleep(jlong millis) {
3383   assert(this == Thread::current(),  "thread consistency check");
3384 
3385   ParkEvent * const slp = this->_SleepEvent;
3386   // Because there can be races with thread interruption sending an unpark()
3387   // to the event, we explicitly reset it here to avoid an immediate return.
3388   // The actual interrupt state will be checked before we park().
3389   slp->reset();
3390   // Thread interruption establishes a happens-before ordering in the
3391   // Java Memory Model, so we need to ensure we synchronize with the
3392   // interrupt state.
3393   OrderAccess::fence();
3394 
3395   jlong prevtime = os::javaTimeNanos();
3396 
3397   for (;;) {
3398     // interruption has precedence over timing out
3399     if (this->is_interrupted(true)) {
3400       return false;
3401     }
3402 
3403     if (millis <= 0) {
3404       return true;
3405     }
3406 
3407     {
3408       ThreadBlockInVM tbivm(this);
3409       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3410 
3411       this->set_suspend_equivalent();
3412       // cleared by handle_special_suspend_equivalent_condition() or
3413       // java_suspend_self() via check_and_wait_while_suspended()
3414 
3415       slp->park(millis);
3416 
3417       // were we externally suspended while we were waiting?
3418       this->check_and_wait_while_suspended();
3419     }
3420 
3421     // Update elapsed time tracking
3422     jlong newtime = os::javaTimeNanos();
3423     if (newtime - prevtime < 0) {
3424       // time moving backwards, should only happen if no monotonic clock
3425       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3426       assert(!os::supports_monotonic_clock(),
3427              "unexpected time moving backwards detected in JavaThread::sleep()");
3428     } else {
3429       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3430     }
3431     prevtime = newtime;
3432   }
3433 }
3434 
3435 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3436   assert(thread->is_Compiler_thread(), "must be compiler thread");
3437   CompileBroker::compiler_thread_loop();
3438 }
3439 
3440 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3441   NMethodSweeper::sweeper_loop();
3442 }
3443 
3444 // Create a CompilerThread
3445 CompilerThread::CompilerThread(CompileQueue* queue,
3446                                CompilerCounters* counters)
3447                                : JavaThread(&compiler_thread_entry) {
3448   _env   = NULL;
3449   _log   = NULL;
3450   _task  = NULL;
3451   _queue = queue;
3452   _counters = counters;
3453   _buffer_blob = NULL;
3454   _compiler = NULL;
3455 
3456   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3457   resource_area()->bias_to(mtCompiler);
3458 
3459 #ifndef PRODUCT
3460   _ideal_graph_printer = NULL;
3461 #endif
3462 }
3463 
3464 CompilerThread::~CompilerThread() {
3465   // Delete objects which were allocated on heap.
3466   delete _counters;
3467 }
3468 
3469 bool CompilerThread::can_call_java() const {
3470   return _compiler != NULL && _compiler->is_jvmci();
3471 }
3472 
3473 // Create sweeper thread
3474 CodeCacheSweeperThread::CodeCacheSweeperThread()
3475 : JavaThread(&sweeper_thread_entry) {
3476   _scanned_compiled_method = NULL;
3477 }
3478 
3479 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3480   JavaThread::oops_do(f, cf);
3481   if (_scanned_compiled_method != NULL && cf != NULL) {
3482     // Safepoints can occur when the sweeper is scanning an nmethod so
3483     // process it here to make sure it isn't unloaded in the middle of
3484     // a scan.
3485     cf->do_code_blob(_scanned_compiled_method);
3486   }
3487 }
3488 
3489 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3490   JavaThread::nmethods_do(cf);
3491   if (_scanned_compiled_method != NULL && cf != NULL) {
3492     // Safepoints can occur when the sweeper is scanning an nmethod so
3493     // process it here to make sure it isn't unloaded in the middle of
3494     // a scan.
3495     cf->do_code_blob(_scanned_compiled_method);
3496   }
3497 }
3498 
3499 
3500 // ======= Threads ========
3501 
3502 // The Threads class links together all active threads, and provides
3503 // operations over all threads. It is protected by the Threads_lock,
3504 // which is also used in other global contexts like safepointing.
3505 // ThreadsListHandles are used to safely perform operations on one
3506 // or more threads without the risk of the thread exiting during the
3507 // operation.
3508 //
3509 // Note: The Threads_lock is currently more widely used than we
3510 // would like. We are actively migrating Threads_lock uses to other
3511 // mechanisms in order to reduce Threads_lock contention.
3512 
3513 int         Threads::_number_of_threads = 0;
3514 int         Threads::_number_of_non_daemon_threads = 0;
3515 int         Threads::_return_code = 0;
3516 uintx       Threads::_thread_claim_token = 1; // Never zero.
3517 size_t      JavaThread::_stack_size_at_create = 0;
3518 
3519 #ifdef ASSERT
3520 bool        Threads::_vm_complete = false;
3521 #endif
3522 
3523 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3524   Prefetch::read((void*)addr, prefetch_interval);
3525   return *addr;
3526 }
3527 
3528 // Possibly the ugliest for loop the world has seen. C++ does not allow
3529 // multiple types in the declaration section of the for loop. In this case
3530 // we are only dealing with pointers and hence can cast them. It looks ugly
3531 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3532 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3533     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3534              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3535              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3536              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3537              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3538          MACRO_current_p != MACRO_end;                                                                                    \
3539          MACRO_current_p++,                                                                                               \
3540              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3541 
3542 // All JavaThreads
3543 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3544 
3545 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3546 void Threads::non_java_threads_do(ThreadClosure* tc) {
3547   NoSafepointVerifier nsv;
3548   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3549     tc->do_thread(njti.current());
3550   }
3551 }
3552 
3553 // All JavaThreads
3554 void Threads::java_threads_do(ThreadClosure* tc) {
3555   assert_locked_or_safepoint(Threads_lock);
3556   // ALL_JAVA_THREADS iterates through all JavaThreads.
3557   ALL_JAVA_THREADS(p) {
3558     tc->do_thread(p);
3559   }
3560 }
3561 
3562 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3563   assert_locked_or_safepoint(Threads_lock);
3564   java_threads_do(tc);
3565   tc->do_thread(VMThread::vm_thread());
3566 }
3567 
3568 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3569 void Threads::threads_do(ThreadClosure* tc) {
3570   assert_locked_or_safepoint(Threads_lock);
3571   java_threads_do(tc);
3572   non_java_threads_do(tc);
3573 }
3574 
3575 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3576   uintx claim_token = Threads::thread_claim_token();
3577   ALL_JAVA_THREADS(p) {
3578     if (p->claim_threads_do(is_par, claim_token)) {
3579       tc->do_thread(p);
3580     }
3581   }
3582   VMThread* vmt = VMThread::vm_thread();
3583   if (vmt->claim_threads_do(is_par, claim_token)) {
3584     tc->do_thread(vmt);
3585   }
3586 }
3587 
3588 // The system initialization in the library has three phases.
3589 //
3590 // Phase 1: java.lang.System class initialization
3591 //     java.lang.System is a primordial class loaded and initialized
3592 //     by the VM early during startup.  java.lang.System.<clinit>
3593 //     only does registerNatives and keeps the rest of the class
3594 //     initialization work later until thread initialization completes.
3595 //
3596 //     System.initPhase1 initializes the system properties, the static
3597 //     fields in, out, and err. Set up java signal handlers, OS-specific
3598 //     system settings, and thread group of the main thread.
3599 static void call_initPhase1(TRAPS) {
3600   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3601   JavaValue result(T_VOID);
3602   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3603                                          vmSymbols::void_method_signature(), CHECK);
3604 }
3605 
3606 // Phase 2. Module system initialization
3607 //     This will initialize the module system.  Only java.base classes
3608 //     can be loaded until phase 2 completes.
3609 //
3610 //     Call System.initPhase2 after the compiler initialization and jsr292
3611 //     classes get initialized because module initialization runs a lot of java
3612 //     code, that for performance reasons, should be compiled.  Also, this will
3613 //     enable the startup code to use lambda and other language features in this
3614 //     phase and onward.
3615 //
3616 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3617 static void call_initPhase2(TRAPS) {
3618   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3619 
3620   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3621 
3622   JavaValue result(T_INT);
3623   JavaCallArguments args;
3624   args.push_int(DisplayVMOutputToStderr);
3625   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3626   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3627                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3628   if (result.get_jint() != JNI_OK) {
3629     vm_exit_during_initialization(); // no message or exception
3630   }
3631 
3632   universe_post_module_init();
3633 }
3634 
3635 // Phase 3. final setup - set security manager, system class loader and TCCL
3636 //
3637 //     This will instantiate and set the security manager, set the system class
3638 //     loader as well as the thread context class loader.  The security manager
3639 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3640 //     other modules or the application's classpath.
3641 static void call_initPhase3(TRAPS) {
3642   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3643   JavaValue result(T_VOID);
3644   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3645                                          vmSymbols::void_method_signature(), CHECK);
3646 }
3647 
3648 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3649   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3650 
3651   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3652     create_vm_init_libraries();
3653   }
3654 
3655   initialize_class(vmSymbols::java_lang_String(), CHECK);
3656 
3657   // Inject CompactStrings value after the static initializers for String ran.
3658   java_lang_String::set_compact_strings(CompactStrings);
3659 
3660   // Initialize java_lang.System (needed before creating the thread)
3661   initialize_class(vmSymbols::java_lang_System(), CHECK);
3662   // The VM creates & returns objects of this class. Make sure it's initialized.
3663   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3664   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3665   Handle thread_group = create_initial_thread_group(CHECK);
3666   Universe::set_main_thread_group(thread_group());
3667   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3668   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3669   main_thread->set_threadObj(thread_object);
3670 
3671   // Set thread status to running since main thread has
3672   // been started and running.
3673   java_lang_Thread::set_thread_status(thread_object,
3674                                       java_lang_Thread::RUNNABLE);
3675 
3676   // The VM creates objects of this class.
3677   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3678 
3679 #ifdef ASSERT
3680   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3681   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3682 #endif
3683 
3684   // initialize the hardware-specific constants needed by Unsafe
3685   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3686   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3687 
3688   // The VM preresolves methods to these classes. Make sure that they get initialized
3689   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3690   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3691 
3692   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3693   call_initPhase1(CHECK);
3694 
3695   // get the Java runtime name after java.lang.System is initialized
3696   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3697   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3698 
3699   // an instance of OutOfMemory exception has been allocated earlier
3700   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3701   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3702   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3703   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3704   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3705   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3706   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3707   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3708 
3709   // Eager box cache initialization only if AOT is on and any library is loaded.
3710   AOTLoader::initialize_box_caches(CHECK);
3711 }
3712 
3713 void Threads::initialize_jsr292_core_classes(TRAPS) {
3714   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3715 
3716   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3717   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3718   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3719   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3720 }
3721 
3722 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3723   extern void JDK_Version_init();
3724 
3725   // Preinitialize version info.
3726   VM_Version::early_initialize();
3727 
3728   // Check version
3729   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3730 
3731   // Initialize library-based TLS
3732   ThreadLocalStorage::init();
3733 
3734   // Initialize the output stream module
3735   ostream_init();
3736 
3737   // Process java launcher properties.
3738   Arguments::process_sun_java_launcher_properties(args);
3739 
3740   // Initialize the os module
3741   os::init();
3742 
3743   // Record VM creation timing statistics
3744   TraceVmCreationTime create_vm_timer;
3745   create_vm_timer.start();
3746 
3747   // Initialize system properties.
3748   Arguments::init_system_properties();
3749 
3750   // So that JDK version can be used as a discriminator when parsing arguments
3751   JDK_Version_init();
3752 
3753   // Update/Initialize System properties after JDK version number is known
3754   Arguments::init_version_specific_system_properties();
3755 
3756   // Make sure to initialize log configuration *before* parsing arguments
3757   LogConfiguration::initialize(create_vm_timer.begin_time());
3758 
3759   // Parse arguments
3760   // Note: this internally calls os::init_container_support()
3761   jint parse_result = Arguments::parse(args);
3762   if (parse_result != JNI_OK) return parse_result;
3763 
3764   os::init_before_ergo();
3765 
3766   jint ergo_result = Arguments::apply_ergo();
3767   if (ergo_result != JNI_OK) return ergo_result;
3768 
3769   // Final check of all ranges after ergonomics which may change values.
3770   if (!JVMFlagRangeList::check_ranges()) {
3771     return JNI_EINVAL;
3772   }
3773 
3774   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3775   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3776   if (!constraint_result) {
3777     return JNI_EINVAL;
3778   }
3779 
3780   JVMFlagWriteableList::mark_startup();
3781 
3782   if (PauseAtStartup) {
3783     os::pause();
3784   }
3785 
3786   HOTSPOT_VM_INIT_BEGIN();
3787 
3788   // Timing (must come after argument parsing)
3789   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3790 
3791   // Initialize the os module after parsing the args
3792   jint os_init_2_result = os::init_2();
3793   if (os_init_2_result != JNI_OK) return os_init_2_result;
3794 
3795 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3796   // Initialize assert poison page mechanism.
3797   if (ShowRegistersOnAssert) {
3798     initialize_assert_poison();
3799   }
3800 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3801 
3802   SafepointMechanism::initialize();
3803 
3804   jint adjust_after_os_result = Arguments::adjust_after_os();
3805   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3806 
3807   // Initialize output stream logging
3808   ostream_init_log();
3809 
3810   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3811   // Must be before create_vm_init_agents()
3812   if (Arguments::init_libraries_at_startup()) {
3813     convert_vm_init_libraries_to_agents();
3814   }
3815 
3816   // Launch -agentlib/-agentpath and converted -Xrun agents
3817   if (Arguments::init_agents_at_startup()) {
3818     create_vm_init_agents();
3819   }
3820 
3821   // Initialize Threads state
3822   _number_of_threads = 0;
3823   _number_of_non_daemon_threads = 0;
3824 
3825   // Initialize global data structures and create system classes in heap
3826   vm_init_globals();
3827 
3828 #if INCLUDE_JVMCI
3829   if (JVMCICounterSize > 0) {
3830     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3831     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3832   } else {
3833     JavaThread::_jvmci_old_thread_counters = NULL;
3834   }
3835 #endif // INCLUDE_JVMCI
3836 
3837   // Attach the main thread to this os thread
3838   JavaThread* main_thread = new JavaThread();
3839   main_thread->set_thread_state(_thread_in_vm);
3840   main_thread->initialize_thread_current();
3841   // must do this before set_active_handles
3842   main_thread->record_stack_base_and_size();
3843   main_thread->register_thread_stack_with_NMT();
3844   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3845 
3846   if (!main_thread->set_as_starting_thread()) {
3847     vm_shutdown_during_initialization(
3848                                       "Failed necessary internal allocation. Out of swap space");
3849     main_thread->smr_delete();
3850     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3851     return JNI_ENOMEM;
3852   }
3853 
3854   // Enable guard page *after* os::create_main_thread(), otherwise it would
3855   // crash Linux VM, see notes in os_linux.cpp.
3856   main_thread->create_stack_guard_pages();
3857 
3858   // Initialize Java-Level synchronization subsystem
3859   ObjectMonitor::Initialize();
3860 
3861   // Initialize global modules
3862   jint status = init_globals();
3863   if (status != JNI_OK) {
3864     main_thread->smr_delete();
3865     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3866     return status;
3867   }
3868 
3869   JFR_ONLY(Jfr::on_vm_init();)
3870 
3871   // Should be done after the heap is fully created
3872   main_thread->cache_global_variables();
3873 
3874   HandleMark hm;
3875 
3876   { MutexLocker mu(Threads_lock);
3877     Threads::add(main_thread);
3878   }
3879 
3880   // Any JVMTI raw monitors entered in onload will transition into
3881   // real raw monitor. VM is setup enough here for raw monitor enter.
3882   JvmtiExport::transition_pending_onload_raw_monitors();
3883 
3884   // Create the VMThread
3885   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3886 
3887   VMThread::create();
3888     Thread* vmthread = VMThread::vm_thread();
3889 
3890     if (!os::create_thread(vmthread, os::vm_thread)) {
3891       vm_exit_during_initialization("Cannot create VM thread. "
3892                                     "Out of system resources.");
3893     }
3894 
3895     // Wait for the VM thread to become ready, and VMThread::run to initialize
3896     // Monitors can have spurious returns, must always check another state flag
3897     {
3898       MonitorLocker ml(Notify_lock);
3899       os::start_thread(vmthread);
3900       while (vmthread->active_handles() == NULL) {
3901         ml.wait();
3902       }
3903     }
3904   }
3905 
3906   assert(Universe::is_fully_initialized(), "not initialized");
3907   if (VerifyDuringStartup) {
3908     // Make sure we're starting with a clean slate.
3909     VM_Verify verify_op;
3910     VMThread::execute(&verify_op);
3911   }
3912 
3913   // We need this to update the java.vm.info property in case any flags used
3914   // to initially define it have been changed. This is needed for both CDS and
3915   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3916   // is initially computed. See Abstract_VM_Version::vm_info_string().
3917   // This update must happen before we initialize the java classes, but
3918   // after any initialization logic that might modify the flags.
3919   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3920 
3921   Thread* THREAD = Thread::current();
3922 
3923   // Always call even when there are not JVMTI environments yet, since environments
3924   // may be attached late and JVMTI must track phases of VM execution
3925   JvmtiExport::enter_early_start_phase();
3926 
3927   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3928   JvmtiExport::post_early_vm_start();
3929 
3930   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3931 
3932   quicken_jni_functions();
3933 
3934   // No more stub generation allowed after that point.
3935   StubCodeDesc::freeze();
3936 
3937   // Set flag that basic initialization has completed. Used by exceptions and various
3938   // debug stuff, that does not work until all basic classes have been initialized.
3939   set_init_completed();
3940 
3941   LogConfiguration::post_initialize();
3942   Metaspace::post_initialize();
3943 
3944   HOTSPOT_VM_INIT_END();
3945 
3946   // record VM initialization completion time
3947 #if INCLUDE_MANAGEMENT
3948   Management::record_vm_init_completed();
3949 #endif // INCLUDE_MANAGEMENT
3950 
3951   // Signal Dispatcher needs to be started before VMInit event is posted
3952   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3953 
3954   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3955   if (!DisableAttachMechanism) {
3956     AttachListener::vm_start();
3957     if (StartAttachListener || AttachListener::init_at_startup()) {
3958       AttachListener::init();
3959     }
3960   }
3961 
3962   // Launch -Xrun agents
3963   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3964   // back-end can launch with -Xdebug -Xrunjdwp.
3965   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3966     create_vm_init_libraries();
3967   }
3968 
3969   if (CleanChunkPoolAsync) {
3970     Chunk::start_chunk_pool_cleaner_task();
3971   }
3972 
3973 
3974   // initialize compiler(s)
3975 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3976 #if INCLUDE_JVMCI
3977   bool force_JVMCI_intialization = false;
3978   if (EnableJVMCI) {
3979     // Initialize JVMCI eagerly when it is explicitly requested.
3980     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3981     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3982 
3983     if (!force_JVMCI_intialization) {
3984       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3985       // compilations via JVMCI will not actually block until JVMCI is initialized.
3986       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3987     }
3988   }
3989 #endif
3990   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3991   // Postpone completion of compiler initialization to after JVMCI
3992   // is initialized to avoid timeouts of blocking compilations.
3993   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3994     CompileBroker::compilation_init_phase2();
3995   }
3996 #endif
3997 
3998   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3999   // It is done after compilers are initialized, because otherwise compilations of
4000   // signature polymorphic MH intrinsics can be missed
4001   // (see SystemDictionary::find_method_handle_intrinsic).
4002   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4003 
4004   // This will initialize the module system.  Only java.base classes can be
4005   // loaded until phase 2 completes
4006   call_initPhase2(CHECK_JNI_ERR);
4007 
4008   // Always call even when there are not JVMTI environments yet, since environments
4009   // may be attached late and JVMTI must track phases of VM execution
4010   JvmtiExport::enter_start_phase();
4011 
4012   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4013   JvmtiExport::post_vm_start();
4014 
4015   // Final system initialization including security manager and system class loader
4016   call_initPhase3(CHECK_JNI_ERR);
4017 
4018   // cache the system and platform class loaders
4019   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4020 
4021 #if INCLUDE_CDS
4022   // capture the module path info from the ModuleEntryTable
4023   ClassLoader::initialize_module_path(THREAD);
4024 #endif
4025 
4026 #if INCLUDE_JVMCI
4027   if (force_JVMCI_intialization) {
4028     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4029     CompileBroker::compilation_init_phase2();
4030   }
4031 #endif
4032 
4033   // Always call even when there are not JVMTI environments yet, since environments
4034   // may be attached late and JVMTI must track phases of VM execution
4035   JvmtiExport::enter_live_phase();
4036 
4037   // Make perfmemory accessible
4038   PerfMemory::set_accessible(true);
4039 
4040   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4041   JvmtiExport::post_vm_initialized();
4042 
4043   JFR_ONLY(Jfr::on_vm_start();)
4044 
4045 #if INCLUDE_MANAGEMENT
4046   Management::initialize(THREAD);
4047 
4048   if (HAS_PENDING_EXCEPTION) {
4049     // management agent fails to start possibly due to
4050     // configuration problem and is responsible for printing
4051     // stack trace if appropriate. Simply exit VM.
4052     vm_exit(1);
4053   }
4054 #endif // INCLUDE_MANAGEMENT
4055 
4056   if (MemProfiling)                   MemProfiler::engage();
4057   StatSampler::engage();
4058   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4059 
4060   BiasedLocking::init();
4061 
4062 #if INCLUDE_RTM_OPT
4063   RTMLockingCounters::init();
4064 #endif
4065 
4066   call_postVMInitHook(THREAD);
4067   // The Java side of PostVMInitHook.run must deal with all
4068   // exceptions and provide means of diagnosis.
4069   if (HAS_PENDING_EXCEPTION) {
4070     CLEAR_PENDING_EXCEPTION;
4071   }
4072 
4073   {
4074     MutexLocker ml(PeriodicTask_lock);
4075     // Make sure the WatcherThread can be started by WatcherThread::start()
4076     // or by dynamic enrollment.
4077     WatcherThread::make_startable();
4078     // Start up the WatcherThread if there are any periodic tasks
4079     // NOTE:  All PeriodicTasks should be registered by now. If they
4080     //   aren't, late joiners might appear to start slowly (we might
4081     //   take a while to process their first tick).
4082     if (PeriodicTask::num_tasks() > 0) {
4083       WatcherThread::start();
4084     }
4085   }
4086 
4087   create_vm_timer.end();
4088 #ifdef ASSERT
4089   _vm_complete = true;
4090 #endif
4091 
4092   if (DumpSharedSpaces) {
4093     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4094     ShouldNotReachHere();
4095   }
4096 
4097   return JNI_OK;
4098 }
4099 
4100 // type for the Agent_OnLoad and JVM_OnLoad entry points
4101 extern "C" {
4102   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4103 }
4104 // Find a command line agent library and return its entry point for
4105 //         -agentlib:  -agentpath:   -Xrun
4106 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4107 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4108                                     const char *on_load_symbols[],
4109                                     size_t num_symbol_entries) {
4110   OnLoadEntry_t on_load_entry = NULL;
4111   void *library = NULL;
4112 
4113   if (!agent->valid()) {
4114     char buffer[JVM_MAXPATHLEN];
4115     char ebuf[1024] = "";
4116     const char *name = agent->name();
4117     const char *msg = "Could not find agent library ";
4118 
4119     // First check to see if agent is statically linked into executable
4120     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4121       library = agent->os_lib();
4122     } else if (agent->is_absolute_path()) {
4123       library = os::dll_load(name, ebuf, sizeof ebuf);
4124       if (library == NULL) {
4125         const char *sub_msg = " in absolute path, with error: ";
4126         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4127         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4128         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4129         // If we can't find the agent, exit.
4130         vm_exit_during_initialization(buf, NULL);
4131         FREE_C_HEAP_ARRAY(char, buf);
4132       }
4133     } else {
4134       // Try to load the agent from the standard dll directory
4135       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4136                              name)) {
4137         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4138       }
4139       if (library == NULL) { // Try the library path directory.
4140         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4141           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4142         }
4143         if (library == NULL) {
4144           const char *sub_msg = " on the library path, with error: ";
4145           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4146 
4147           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4148                        strlen(ebuf) + strlen(sub_msg2) + 1;
4149           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4150           if (!agent->is_instrument_lib()) {
4151             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4152           } else {
4153             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4154           }
4155           // If we can't find the agent, exit.
4156           vm_exit_during_initialization(buf, NULL);
4157           FREE_C_HEAP_ARRAY(char, buf);
4158         }
4159       }
4160     }
4161     agent->set_os_lib(library);
4162     agent->set_valid();
4163   }
4164 
4165   // Find the OnLoad function.
4166   on_load_entry =
4167     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4168                                                           false,
4169                                                           on_load_symbols,
4170                                                           num_symbol_entries));
4171   return on_load_entry;
4172 }
4173 
4174 // Find the JVM_OnLoad entry point
4175 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4176   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4177   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4178 }
4179 
4180 // Find the Agent_OnLoad entry point
4181 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4182   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4183   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4184 }
4185 
4186 // For backwards compatibility with -Xrun
4187 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4188 // treated like -agentpath:
4189 // Must be called before agent libraries are created
4190 void Threads::convert_vm_init_libraries_to_agents() {
4191   AgentLibrary* agent;
4192   AgentLibrary* next;
4193 
4194   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4195     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4196     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4197 
4198     // If there is an JVM_OnLoad function it will get called later,
4199     // otherwise see if there is an Agent_OnLoad
4200     if (on_load_entry == NULL) {
4201       on_load_entry = lookup_agent_on_load(agent);
4202       if (on_load_entry != NULL) {
4203         // switch it to the agent list -- so that Agent_OnLoad will be called,
4204         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4205         Arguments::convert_library_to_agent(agent);
4206       } else {
4207         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4208       }
4209     }
4210   }
4211 }
4212 
4213 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4214 // Invokes Agent_OnLoad
4215 // Called very early -- before JavaThreads exist
4216 void Threads::create_vm_init_agents() {
4217   extern struct JavaVM_ main_vm;
4218   AgentLibrary* agent;
4219 
4220   JvmtiExport::enter_onload_phase();
4221 
4222   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4223     // CDS dumping does not support native JVMTI agent.
4224     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4225     if (DumpSharedSpaces || DynamicDumpSharedSpaces) {
4226       if(!agent->is_instrument_lib()) {
4227         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4228       } else if (!AllowArchivingWithJavaAgent) {
4229         vm_exit_during_cds_dumping(
4230           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4231       }
4232     }
4233 
4234     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4235 
4236     if (on_load_entry != NULL) {
4237       // Invoke the Agent_OnLoad function
4238       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4239       if (err != JNI_OK) {
4240         vm_exit_during_initialization("agent library failed to init", agent->name());
4241       }
4242     } else {
4243       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4244     }
4245   }
4246 
4247   JvmtiExport::enter_primordial_phase();
4248 }
4249 
4250 extern "C" {
4251   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4252 }
4253 
4254 void Threads::shutdown_vm_agents() {
4255   // Send any Agent_OnUnload notifications
4256   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4257   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4258   extern struct JavaVM_ main_vm;
4259   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4260 
4261     // Find the Agent_OnUnload function.
4262     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4263                                                    os::find_agent_function(agent,
4264                                                    false,
4265                                                    on_unload_symbols,
4266                                                    num_symbol_entries));
4267 
4268     // Invoke the Agent_OnUnload function
4269     if (unload_entry != NULL) {
4270       JavaThread* thread = JavaThread::current();
4271       ThreadToNativeFromVM ttn(thread);
4272       HandleMark hm(thread);
4273       (*unload_entry)(&main_vm);
4274     }
4275   }
4276 }
4277 
4278 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4279 // Invokes JVM_OnLoad
4280 void Threads::create_vm_init_libraries() {
4281   extern struct JavaVM_ main_vm;
4282   AgentLibrary* agent;
4283 
4284   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4285     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4286 
4287     if (on_load_entry != NULL) {
4288       // Invoke the JVM_OnLoad function
4289       JavaThread* thread = JavaThread::current();
4290       ThreadToNativeFromVM ttn(thread);
4291       HandleMark hm(thread);
4292       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4293       if (err != JNI_OK) {
4294         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4295       }
4296     } else {
4297       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4298     }
4299   }
4300 }
4301 
4302 
4303 // Last thread running calls java.lang.Shutdown.shutdown()
4304 void JavaThread::invoke_shutdown_hooks() {
4305   HandleMark hm(this);
4306 
4307   // We could get here with a pending exception, if so clear it now.
4308   if (this->has_pending_exception()) {
4309     this->clear_pending_exception();
4310   }
4311 
4312   EXCEPTION_MARK;
4313   Klass* shutdown_klass =
4314     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4315                                       THREAD);
4316   if (shutdown_klass != NULL) {
4317     // SystemDictionary::resolve_or_null will return null if there was
4318     // an exception.  If we cannot load the Shutdown class, just don't
4319     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4320     // won't be run.  Note that if a shutdown hook was registered,
4321     // the Shutdown class would have already been loaded
4322     // (Runtime.addShutdownHook will load it).
4323     JavaValue result(T_VOID);
4324     JavaCalls::call_static(&result,
4325                            shutdown_klass,
4326                            vmSymbols::shutdown_name(),
4327                            vmSymbols::void_method_signature(),
4328                            THREAD);
4329   }
4330   CLEAR_PENDING_EXCEPTION;
4331 }
4332 
4333 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4334 // the program falls off the end of main(). Another VM exit path is through
4335 // vm_exit() when the program calls System.exit() to return a value or when
4336 // there is a serious error in VM. The two shutdown paths are not exactly
4337 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4338 // and VM_Exit op at VM level.
4339 //
4340 // Shutdown sequence:
4341 //   + Shutdown native memory tracking if it is on
4342 //   + Wait until we are the last non-daemon thread to execute
4343 //     <-- every thing is still working at this moment -->
4344 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4345 //        shutdown hooks
4346 //   + Call before_exit(), prepare for VM exit
4347 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4348 //        currently the only user of this mechanism is File.deleteOnExit())
4349 //      > stop StatSampler, watcher thread, CMS threads,
4350 //        post thread end and vm death events to JVMTI,
4351 //        stop signal thread
4352 //   + Call JavaThread::exit(), it will:
4353 //      > release JNI handle blocks, remove stack guard pages
4354 //      > remove this thread from Threads list
4355 //     <-- no more Java code from this thread after this point -->
4356 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4357 //     the compiler threads at safepoint
4358 //     <-- do not use anything that could get blocked by Safepoint -->
4359 //   + Disable tracing at JNI/JVM barriers
4360 //   + Set _vm_exited flag for threads that are still running native code
4361 //   + Call exit_globals()
4362 //      > deletes tty
4363 //      > deletes PerfMemory resources
4364 //   + Delete this thread
4365 //   + Return to caller
4366 
4367 bool Threads::destroy_vm() {
4368   JavaThread* thread = JavaThread::current();
4369 
4370 #ifdef ASSERT
4371   _vm_complete = false;
4372 #endif
4373   // Wait until we are the last non-daemon thread to execute
4374   { MonitorLocker nu(Threads_lock);
4375     while (Threads::number_of_non_daemon_threads() > 1)
4376       // This wait should make safepoint checks, wait without a timeout,
4377       // and wait as a suspend-equivalent condition.
4378       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4379   }
4380 
4381   EventShutdown e;
4382   if (e.should_commit()) {
4383     e.set_reason("No remaining non-daemon Java threads");
4384     e.commit();
4385   }
4386 
4387   // Hang forever on exit if we are reporting an error.
4388   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4389     os::infinite_sleep();
4390   }
4391   os::wait_for_keypress_at_exit();
4392 
4393   // run Java level shutdown hooks
4394   thread->invoke_shutdown_hooks();
4395 
4396   before_exit(thread);
4397 
4398   thread->exit(true);
4399 
4400   // Stop VM thread.
4401   {
4402     // 4945125 The vm thread comes to a safepoint during exit.
4403     // GC vm_operations can get caught at the safepoint, and the
4404     // heap is unparseable if they are caught. Grab the Heap_lock
4405     // to prevent this. The GC vm_operations will not be able to
4406     // queue until after the vm thread is dead. After this point,
4407     // we'll never emerge out of the safepoint before the VM exits.
4408 
4409     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4410 
4411     VMThread::wait_for_vm_thread_exit();
4412     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4413     VMThread::destroy();
4414   }
4415 
4416   // Now, all Java threads are gone except daemon threads. Daemon threads
4417   // running Java code or in VM are stopped by the Safepoint. However,
4418   // daemon threads executing native code are still running.  But they
4419   // will be stopped at native=>Java/VM barriers. Note that we can't
4420   // simply kill or suspend them, as it is inherently deadlock-prone.
4421 
4422   VM_Exit::set_vm_exited();
4423 
4424   // Clean up ideal graph printers after the VMThread has started
4425   // the final safepoint which will block all the Compiler threads.
4426   // Note that this Thread has already logically exited so the
4427   // clean_up() function's use of a JavaThreadIteratorWithHandle
4428   // would be a problem except set_vm_exited() has remembered the
4429   // shutdown thread which is granted a policy exception.
4430 #if defined(COMPILER2) && !defined(PRODUCT)
4431   IdealGraphPrinter::clean_up();
4432 #endif
4433 
4434   notify_vm_shutdown();
4435 
4436   // exit_globals() will delete tty
4437   exit_globals();
4438 
4439   // We are after VM_Exit::set_vm_exited() so we can't call
4440   // thread->smr_delete() or we will block on the Threads_lock.
4441   // Deleting the shutdown thread here is safe because another
4442   // JavaThread cannot have an active ThreadsListHandle for
4443   // this JavaThread.
4444   delete thread;
4445 
4446 #if INCLUDE_JVMCI
4447   if (JVMCICounterSize > 0) {
4448     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4449   }
4450 #endif
4451 
4452   LogConfiguration::finalize();
4453 
4454   return true;
4455 }
4456 
4457 
4458 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4459   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4460   return is_supported_jni_version(version);
4461 }
4462 
4463 
4464 jboolean Threads::is_supported_jni_version(jint version) {
4465   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4466   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4467   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4468   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4469   if (version == JNI_VERSION_9) return JNI_TRUE;
4470   if (version == JNI_VERSION_10) return JNI_TRUE;
4471   return JNI_FALSE;
4472 }
4473 
4474 
4475 void Threads::add(JavaThread* p, bool force_daemon) {
4476   // The threads lock must be owned at this point
4477   assert(Threads_lock->owned_by_self(), "must have threads lock");
4478 
4479   BarrierSet::barrier_set()->on_thread_attach(p);
4480 
4481   // Once a JavaThread is added to the Threads list, smr_delete() has
4482   // to be used to delete it. Otherwise we can just delete it directly.
4483   p->set_on_thread_list();
4484 
4485   _number_of_threads++;
4486   oop threadObj = p->threadObj();
4487   bool daemon = true;
4488   // Bootstrapping problem: threadObj can be null for initial
4489   // JavaThread (or for threads attached via JNI)
4490   if ((!force_daemon) && !is_daemon((threadObj))) {
4491     _number_of_non_daemon_threads++;
4492     daemon = false;
4493   }
4494 
4495   ThreadService::add_thread(p, daemon);
4496 
4497   // Maintain fast thread list
4498   ThreadsSMRSupport::add_thread(p);
4499 
4500   // Possible GC point.
4501   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4502 }
4503 
4504 void Threads::remove(JavaThread* p, bool is_daemon) {
4505 
4506   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4507   ObjectSynchronizer::om_flush(p);
4508 
4509   // Extra scope needed for Thread_lock, so we can check
4510   // that we do not remove thread without safepoint code notice
4511   { MonitorLocker ml(Threads_lock);
4512 
4513     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4514 
4515     // Maintain fast thread list
4516     ThreadsSMRSupport::remove_thread(p);
4517 
4518     _number_of_threads--;
4519     if (!is_daemon) {
4520       _number_of_non_daemon_threads--;
4521 
4522       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4523       // on destroy_vm will wake up.
4524       if (number_of_non_daemon_threads() == 1) {
4525         ml.notify_all();
4526       }
4527     }
4528     ThreadService::remove_thread(p, is_daemon);
4529 
4530     // Make sure that safepoint code disregard this thread. This is needed since
4531     // the thread might mess around with locks after this point. This can cause it
4532     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4533     // of this thread since it is removed from the queue.
4534     p->set_terminated_value();
4535   } // unlock Threads_lock
4536 
4537   // Since Events::log uses a lock, we grab it outside the Threads_lock
4538   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4539 }
4540 
4541 // Operations on the Threads list for GC.  These are not explicitly locked,
4542 // but the garbage collector must provide a safe context for them to run.
4543 // In particular, these things should never be called when the Threads_lock
4544 // is held by some other thread. (Note: the Safepoint abstraction also
4545 // uses the Threads_lock to guarantee this property. It also makes sure that
4546 // all threads gets blocked when exiting or starting).
4547 
4548 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4549   ALL_JAVA_THREADS(p) {
4550     p->oops_do(f, cf);
4551   }
4552   VMThread::vm_thread()->oops_do(f, cf);
4553 }
4554 
4555 void Threads::change_thread_claim_token() {
4556   if (++_thread_claim_token == 0) {
4557     // On overflow of the token counter, there is a risk of future
4558     // collisions between a new global token value and a stale token
4559     // for a thread, because not all iterations visit all threads.
4560     // (Though it's pretty much a theoretical concern for non-trivial
4561     // token counter sizes.)  To deal with the possibility, reset all
4562     // the thread tokens to zero on global token overflow.
4563     struct ResetClaims : public ThreadClosure {
4564       virtual void do_thread(Thread* t) {
4565         t->claim_threads_do(false, 0);
4566       }
4567     } reset_claims;
4568     Threads::threads_do(&reset_claims);
4569     // On overflow, update the global token to non-zero, to
4570     // avoid the special "never claimed" initial thread value.
4571     _thread_claim_token = 1;
4572   }
4573 }
4574 
4575 #ifdef ASSERT
4576 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4577   const uintx token = t->threads_do_token();
4578   assert(token == expected,
4579          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4580          UINTX_FORMAT, kind, p2i(t), token, expected);
4581 }
4582 
4583 void Threads::assert_all_threads_claimed() {
4584   ALL_JAVA_THREADS(p) {
4585     assert_thread_claimed("Thread", p, _thread_claim_token);
4586   }
4587   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4588 }
4589 #endif // ASSERT
4590 
4591 class ParallelOopsDoThreadClosure : public ThreadClosure {
4592 private:
4593   OopClosure* _f;
4594   CodeBlobClosure* _cf;
4595 public:
4596   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4597   void do_thread(Thread* t) {
4598     t->oops_do(_f, _cf);
4599   }
4600 };
4601 
4602 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4603   ParallelOopsDoThreadClosure tc(f, cf);
4604   possibly_parallel_threads_do(is_par, &tc);
4605 }
4606 
4607 void Threads::nmethods_do(CodeBlobClosure* cf) {
4608   ALL_JAVA_THREADS(p) {
4609     // This is used by the code cache sweeper to mark nmethods that are active
4610     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4611     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4612     if(!p->is_Code_cache_sweeper_thread()) {
4613       p->nmethods_do(cf);
4614     }
4615   }
4616 }
4617 
4618 void Threads::metadata_do(MetadataClosure* f) {
4619   ALL_JAVA_THREADS(p) {
4620     p->metadata_do(f);
4621   }
4622 }
4623 
4624 class ThreadHandlesClosure : public ThreadClosure {
4625   void (*_f)(Metadata*);
4626  public:
4627   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4628   virtual void do_thread(Thread* thread) {
4629     thread->metadata_handles_do(_f);
4630   }
4631 };
4632 
4633 void Threads::metadata_handles_do(void f(Metadata*)) {
4634   // Only walk the Handles in Thread.
4635   ThreadHandlesClosure handles_closure(f);
4636   threads_do(&handles_closure);
4637 }
4638 
4639 // Get count Java threads that are waiting to enter the specified monitor.
4640 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4641                                                          int count,
4642                                                          address monitor) {
4643   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4644 
4645   int i = 0;
4646   DO_JAVA_THREADS(t_list, p) {
4647     if (!p->can_call_java()) continue;
4648 
4649     address pending = (address)p->current_pending_monitor();
4650     if (pending == monitor) {             // found a match
4651       if (i < count) result->append(p);   // save the first count matches
4652       i++;
4653     }
4654   }
4655 
4656   return result;
4657 }
4658 
4659 
4660 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4661                                                       address owner) {
4662   // NULL owner means not locked so we can skip the search
4663   if (owner == NULL) return NULL;
4664 
4665   DO_JAVA_THREADS(t_list, p) {
4666     // first, see if owner is the address of a Java thread
4667     if (owner == (address)p) return p;
4668   }
4669 
4670   // Cannot assert on lack of success here since this function may be
4671   // used by code that is trying to report useful problem information
4672   // like deadlock detection.
4673   if (UseHeavyMonitors) return NULL;
4674 
4675   // If we didn't find a matching Java thread and we didn't force use of
4676   // heavyweight monitors, then the owner is the stack address of the
4677   // Lock Word in the owning Java thread's stack.
4678   //
4679   JavaThread* the_owner = NULL;
4680   DO_JAVA_THREADS(t_list, q) {
4681     if (q->is_lock_owned(owner)) {
4682       the_owner = q;
4683       break;
4684     }
4685   }
4686 
4687   // cannot assert on lack of success here; see above comment
4688   return the_owner;
4689 }
4690 
4691 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4692 void Threads::print_on(outputStream* st, bool print_stacks,
4693                        bool internal_format, bool print_concurrent_locks,
4694                        bool print_extended_info) {
4695   char buf[32];
4696   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4697 
4698   st->print_cr("Full thread dump %s (%s %s):",
4699                VM_Version::vm_name(),
4700                VM_Version::vm_release(),
4701                VM_Version::vm_info_string());
4702   st->cr();
4703 
4704 #if INCLUDE_SERVICES
4705   // Dump concurrent locks
4706   ConcurrentLocksDump concurrent_locks;
4707   if (print_concurrent_locks) {
4708     concurrent_locks.dump_at_safepoint();
4709   }
4710 #endif // INCLUDE_SERVICES
4711 
4712   ThreadsSMRSupport::print_info_on(st);
4713   st->cr();
4714 
4715   ALL_JAVA_THREADS(p) {
4716     ResourceMark rm;
4717     p->print_on(st, print_extended_info);
4718     if (print_stacks) {
4719       if (internal_format) {
4720         p->trace_stack();
4721       } else {
4722         p->print_stack_on(st);
4723       }
4724     }
4725     st->cr();
4726 #if INCLUDE_SERVICES
4727     if (print_concurrent_locks) {
4728       concurrent_locks.print_locks_on(p, st);
4729     }
4730 #endif // INCLUDE_SERVICES
4731   }
4732 
4733   VMThread::vm_thread()->print_on(st);
4734   st->cr();
4735   Universe::heap()->print_gc_threads_on(st);
4736   WatcherThread* wt = WatcherThread::watcher_thread();
4737   if (wt != NULL) {
4738     wt->print_on(st);
4739     st->cr();
4740   }
4741 
4742   st->flush();
4743 }
4744 
4745 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4746                              int buflen, bool* found_current) {
4747   if (this_thread != NULL) {
4748     bool is_current = (current == this_thread);
4749     *found_current = *found_current || is_current;
4750     st->print("%s", is_current ? "=>" : "  ");
4751 
4752     st->print(PTR_FORMAT, p2i(this_thread));
4753     st->print(" ");
4754     this_thread->print_on_error(st, buf, buflen);
4755     st->cr();
4756   }
4757 }
4758 
4759 class PrintOnErrorClosure : public ThreadClosure {
4760   outputStream* _st;
4761   Thread* _current;
4762   char* _buf;
4763   int _buflen;
4764   bool* _found_current;
4765  public:
4766   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4767                       int buflen, bool* found_current) :
4768    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4769 
4770   virtual void do_thread(Thread* thread) {
4771     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4772   }
4773 };
4774 
4775 // Threads::print_on_error() is called by fatal error handler. It's possible
4776 // that VM is not at safepoint and/or current thread is inside signal handler.
4777 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4778 // memory (even in resource area), it might deadlock the error handler.
4779 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4780                              int buflen) {
4781   ThreadsSMRSupport::print_info_on(st);
4782   st->cr();
4783 
4784   bool found_current = false;
4785   st->print_cr("Java Threads: ( => current thread )");
4786   ALL_JAVA_THREADS(thread) {
4787     print_on_error(thread, st, current, buf, buflen, &found_current);
4788   }
4789   st->cr();
4790 
4791   st->print_cr("Other Threads:");
4792   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4793   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4794 
4795   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4796   Universe::heap()->gc_threads_do(&print_closure);
4797 
4798   if (!found_current) {
4799     st->cr();
4800     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4801     current->print_on_error(st, buf, buflen);
4802     st->cr();
4803   }
4804   st->cr();
4805 
4806   st->print_cr("Threads with active compile tasks:");
4807   print_threads_compiling(st, buf, buflen);
4808 }
4809 
4810 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4811   ALL_JAVA_THREADS(thread) {
4812     if (thread->is_Compiler_thread()) {
4813       CompilerThread* ct = (CompilerThread*) thread;
4814 
4815       // Keep task in local variable for NULL check.
4816       // ct->_task might be set to NULL by concurring compiler thread
4817       // because it completed the compilation. The task is never freed,
4818       // though, just returned to a free list.
4819       CompileTask* task = ct->task();
4820       if (task != NULL) {
4821         thread->print_name_on_error(st, buf, buflen);
4822         st->print("  ");
4823         task->print(st, NULL, short_form, true);
4824       }
4825     }
4826   }
4827 }
4828 
4829 
4830 // Internal SpinLock and Mutex
4831 // Based on ParkEvent
4832 
4833 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4834 //
4835 // We employ SpinLocks _only for low-contention, fixed-length
4836 // short-duration critical sections where we're concerned
4837 // about native mutex_t or HotSpot Mutex:: latency.
4838 // The mux construct provides a spin-then-block mutual exclusion
4839 // mechanism.
4840 //
4841 // Testing has shown that contention on the ListLock guarding gFreeList
4842 // is common.  If we implement ListLock as a simple SpinLock it's common
4843 // for the JVM to devolve to yielding with little progress.  This is true
4844 // despite the fact that the critical sections protected by ListLock are
4845 // extremely short.
4846 //
4847 // TODO-FIXME: ListLock should be of type SpinLock.
4848 // We should make this a 1st-class type, integrated into the lock
4849 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4850 // should have sufficient padding to avoid false-sharing and excessive
4851 // cache-coherency traffic.
4852 
4853 
4854 typedef volatile int SpinLockT;
4855 
4856 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4857   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4858     return;   // normal fast-path return
4859   }
4860 
4861   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4862   int ctr = 0;
4863   int Yields = 0;
4864   for (;;) {
4865     while (*adr != 0) {
4866       ++ctr;
4867       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4868         if (Yields > 5) {
4869           os::naked_short_sleep(1);
4870         } else {
4871           os::naked_yield();
4872           ++Yields;
4873         }
4874       } else {
4875         SpinPause();
4876       }
4877     }
4878     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4879   }
4880 }
4881 
4882 void Thread::SpinRelease(volatile int * adr) {
4883   assert(*adr != 0, "invariant");
4884   OrderAccess::fence();      // guarantee at least release consistency.
4885   // Roach-motel semantics.
4886   // It's safe if subsequent LDs and STs float "up" into the critical section,
4887   // but prior LDs and STs within the critical section can't be allowed
4888   // to reorder or float past the ST that releases the lock.
4889   // Loads and stores in the critical section - which appear in program
4890   // order before the store that releases the lock - must also appear
4891   // before the store that releases the lock in memory visibility order.
4892   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4893   // the ST of 0 into the lock-word which releases the lock, so fence
4894   // more than covers this on all platforms.
4895   *adr = 0;
4896 }
4897 
4898 // muxAcquire and muxRelease:
4899 //
4900 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4901 //    The LSB of the word is set IFF the lock is held.
4902 //    The remainder of the word points to the head of a singly-linked list
4903 //    of threads blocked on the lock.
4904 //
4905 // *  The current implementation of muxAcquire-muxRelease uses its own
4906 //    dedicated Thread._MuxEvent instance.  If we're interested in
4907 //    minimizing the peak number of extant ParkEvent instances then
4908 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4909 //    as certain invariants were satisfied.  Specifically, care would need
4910 //    to be taken with regards to consuming unpark() "permits".
4911 //    A safe rule of thumb is that a thread would never call muxAcquire()
4912 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4913 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4914 //    consume an unpark() permit intended for monitorenter, for instance.
4915 //    One way around this would be to widen the restricted-range semaphore
4916 //    implemented in park().  Another alternative would be to provide
4917 //    multiple instances of the PlatformEvent() for each thread.  One
4918 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4919 //
4920 // *  Usage:
4921 //    -- Only as leaf locks
4922 //    -- for short-term locking only as muxAcquire does not perform
4923 //       thread state transitions.
4924 //
4925 // Alternatives:
4926 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4927 //    but with parking or spin-then-park instead of pure spinning.
4928 // *  Use Taura-Oyama-Yonenzawa locks.
4929 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4930 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4931 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4932 //    acquiring threads use timers (ParkTimed) to detect and recover from
4933 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4934 //    boundaries by using placement-new.
4935 // *  Augment MCS with advisory back-link fields maintained with CAS().
4936 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4937 //    The validity of the backlinks must be ratified before we trust the value.
4938 //    If the backlinks are invalid the exiting thread must back-track through the
4939 //    the forward links, which are always trustworthy.
4940 // *  Add a successor indication.  The LockWord is currently encoded as
4941 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4942 //    to provide the usual futile-wakeup optimization.
4943 //    See RTStt for details.
4944 //
4945 
4946 
4947 const intptr_t LOCKBIT = 1;
4948 
4949 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4950   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4951   if (w == 0) return;
4952   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4953     return;
4954   }
4955 
4956   ParkEvent * const Self = Thread::current()->_MuxEvent;
4957   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4958   for (;;) {
4959     int its = (os::is_MP() ? 100 : 0) + 1;
4960 
4961     // Optional spin phase: spin-then-park strategy
4962     while (--its >= 0) {
4963       w = *Lock;
4964       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4965         return;
4966       }
4967     }
4968 
4969     Self->reset();
4970     Self->OnList = intptr_t(Lock);
4971     // The following fence() isn't _strictly necessary as the subsequent
4972     // CAS() both serializes execution and ratifies the fetched *Lock value.
4973     OrderAccess::fence();
4974     for (;;) {
4975       w = *Lock;
4976       if ((w & LOCKBIT) == 0) {
4977         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4978           Self->OnList = 0;   // hygiene - allows stronger asserts
4979           return;
4980         }
4981         continue;      // Interference -- *Lock changed -- Just retry
4982       }
4983       assert(w & LOCKBIT, "invariant");
4984       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4985       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4986     }
4987 
4988     while (Self->OnList != 0) {
4989       Self->park();
4990     }
4991   }
4992 }
4993 
4994 // Release() must extract a successor from the list and then wake that thread.
4995 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4996 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4997 // Release() would :
4998 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4999 // (B) Extract a successor from the private list "in-hand"
5000 // (C) attempt to CAS() the residual back into *Lock over null.
5001 //     If there were any newly arrived threads and the CAS() would fail.
5002 //     In that case Release() would detach the RATs, re-merge the list in-hand
5003 //     with the RATs and repeat as needed.  Alternately, Release() might
5004 //     detach and extract a successor, but then pass the residual list to the wakee.
5005 //     The wakee would be responsible for reattaching and remerging before it
5006 //     competed for the lock.
5007 //
5008 // Both "pop" and DMR are immune from ABA corruption -- there can be
5009 // multiple concurrent pushers, but only one popper or detacher.
5010 // This implementation pops from the head of the list.  This is unfair,
5011 // but tends to provide excellent throughput as hot threads remain hot.
5012 // (We wake recently run threads first).
5013 //
5014 // All paths through muxRelease() will execute a CAS.
5015 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5016 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5017 // executed within the critical section are complete and globally visible before the
5018 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5019 void Thread::muxRelease(volatile intptr_t * Lock)  {
5020   for (;;) {
5021     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5022     assert(w & LOCKBIT, "invariant");
5023     if (w == LOCKBIT) return;
5024     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5025     assert(List != NULL, "invariant");
5026     assert(List->OnList == intptr_t(Lock), "invariant");
5027     ParkEvent * const nxt = List->ListNext;
5028     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5029 
5030     // The following CAS() releases the lock and pops the head element.
5031     // The CAS() also ratifies the previously fetched lock-word value.
5032     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5033       continue;
5034     }
5035     List->OnList = 0;
5036     OrderAccess::fence();
5037     List->unpark();
5038     return;
5039   }
5040 }
5041 
5042 
5043 void Threads::verify() {
5044   ALL_JAVA_THREADS(p) {
5045     p->verify();
5046   }
5047   VMThread* thread = VMThread::vm_thread();
5048   if (thread != NULL) thread->verify();
5049 }