1 /*
   2  * Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/bytecodeAssembler.hpp"
  27 #include "classfile/defaultMethods.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "logging/log.hpp"
  31 #include "logging/logStream.hpp"
  32 #include "memory/allocation.hpp"
  33 #include "memory/metadataFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "runtime/handles.inline.hpp"
  36 #include "runtime/signature.hpp"
  37 #include "runtime/thread.hpp"
  38 #include "oops/instanceKlass.hpp"
  39 #include "oops/klass.hpp"
  40 #include "oops/method.hpp"
  41 #include "utilities/accessFlags.hpp"
  42 #include "utilities/exceptions.hpp"
  43 #include "utilities/ostream.hpp"
  44 #include "utilities/pair.hpp"
  45 #include "utilities/resourceHash.hpp"
  46 
  47 typedef enum { QUALIFIED, DISQUALIFIED } QualifiedState;
  48 
  49 // Because we use an iterative algorithm when iterating over the type
  50 // hierarchy, we can't use traditional scoped objects which automatically do
  51 // cleanup in the destructor when the scope is exited.  PseudoScope (and
  52 // PseudoScopeMark) provides a similar functionality, but for when you want a
  53 // scoped object in non-stack memory (such as in resource memory, as we do
  54 // here).  You've just got to remember to call 'destroy()' on the scope when
  55 // leaving it (and marks have to be explicitly added).
  56 class PseudoScopeMark : public ResourceObj {
  57  public:
  58   virtual void destroy() = 0;
  59 };
  60 
  61 class PseudoScope : public ResourceObj {
  62  private:
  63   GrowableArray<PseudoScopeMark*> _marks;
  64  public:
  65 
  66   static PseudoScope* cast(void* data) {
  67     return static_cast<PseudoScope*>(data);
  68   }
  69 
  70   void add_mark(PseudoScopeMark* psm) {
  71    _marks.append(psm);
  72   }
  73 
  74   void destroy() {
  75     for (int i = 0; i < _marks.length(); ++i) {
  76       _marks.at(i)->destroy();
  77     }
  78   }
  79 };
  80 
  81 static void print_slot(outputStream* str, Symbol* name, Symbol* signature) {
  82   str->print("%s%s", name->as_C_string(), signature->as_C_string());
  83 }
  84 
  85 static void print_method(outputStream* str, Method* mo, bool with_class=true) {
  86   if (with_class) {
  87     str->print("%s.", mo->klass_name()->as_C_string());
  88   }
  89   print_slot(str, mo->name(), mo->signature());
  90 }
  91 
  92 /**
  93  * Perform a depth-first iteration over the class hierarchy, applying
  94  * algorithmic logic as it goes.
  95  *
  96  * This class is one half of the inheritance hierarchy analysis mechanism.
  97  * It is meant to be used in conjunction with another class, the algorithm,
  98  * which is indicated by the ALGO template parameter.  This class can be
  99  * paired with any algorithm class that provides the required methods.
 100  *
 101  * This class contains all the mechanics for iterating over the class hierarchy
 102  * starting at a particular root, without recursing (thus limiting stack growth
 103  * from this point).  It visits each superclass (if present) and superinterface
 104  * in a depth-first manner, with callbacks to the ALGO class as each class is
 105  * encountered (visit()), The algorithm can cut-off further exploration of a
 106  * particular branch by returning 'false' from a visit() call.
 107  *
 108  * The ALGO class, must provide a visit() method, which each of which will be
 109  * called once for each node in the inheritance tree during the iteration.  In
 110  * addition, it can provide a memory block via new_node_data(InstanceKlass*),
 111  * which it can use for node-specific storage (and access via the
 112  * current_data() and data_at_depth(int) methods).
 113  *
 114  * Bare minimum needed to be an ALGO class:
 115  * class Algo : public HierarchyVisitor<Algo> {
 116  *   void* new_node_data(InstanceKlass* cls) { return NULL; }
 117  *   void free_node_data(void* data) { return; }
 118  *   bool visit() { return true; }
 119  * };
 120  */
 121 template <class ALGO>
 122 class HierarchyVisitor : StackObj {
 123  private:
 124 
 125   class Node : public ResourceObj {
 126    public:
 127     InstanceKlass* _class;
 128     bool _super_was_visited;
 129     int _interface_index;
 130     void* _algorithm_data;
 131 
 132     Node(InstanceKlass* cls, void* data, bool visit_super)
 133         : _class(cls), _super_was_visited(!visit_super),
 134           _interface_index(0), _algorithm_data(data) {}
 135 
 136     int number_of_interfaces() { return _class->local_interfaces()->length(); }
 137     int interface_index() { return _interface_index; }
 138     void set_super_visited() { _super_was_visited = true; }
 139     void increment_visited_interface() { ++_interface_index; }
 140     void set_all_interfaces_visited() {
 141       _interface_index = number_of_interfaces();
 142     }
 143     bool has_visited_super() { return _super_was_visited; }
 144     bool has_visited_all_interfaces() {
 145       return interface_index() >= number_of_interfaces();
 146     }
 147     InstanceKlass* interface_at(int index) {
 148       return InstanceKlass::cast(_class->local_interfaces()->at(index));
 149     }
 150     InstanceKlass* next_super() { return _class->java_super(); }
 151     InstanceKlass* next_interface() {
 152       return interface_at(interface_index());
 153     }
 154   };
 155 
 156   bool _visited_object;
 157   GrowableArray<Node*> _path;
 158 
 159   Node* current_top() const { return _path.top(); }
 160   bool has_more_nodes() const { return !_path.is_empty(); }
 161   void push(InstanceKlass* cls, void* data) {
 162     assert(cls != NULL, "Requires a valid instance class");
 163     Node* node = new Node(cls, data, has_super(cls));
 164     if (cls == SystemDictionary::Object_klass()) {
 165       _visited_object = true;
 166     }
 167     _path.push(node);
 168   }
 169   void pop() { _path.pop(); }
 170 
 171   void reset_iteration() {
 172     _path.clear();
 173   }
 174 
 175   // This code used to skip interface classes because their only
 176   // superclass was j.l.Object which would be also covered by class
 177   // superclass hierarchy walks. Now that the starting point can be
 178   // an interface, we must ensure we catch j.l.Object as the super.
 179   bool has_super(InstanceKlass* cls) {
 180     return cls->super() != NULL && (!_visited_object || !cls->is_interface());
 181   }
 182 
 183   Node* node_at_depth(int i) const {
 184     return (i >= _path.length()) ? NULL : _path.at(_path.length() - i - 1);
 185   }
 186 
 187  protected:
 188 
 189   // Accessors available to the algorithm
 190   int current_depth() const { return _path.length() - 1; }
 191 
 192   InstanceKlass* class_at_depth(int i) {
 193     Node* n = node_at_depth(i);
 194     return n == NULL ? NULL : n->_class;
 195   }
 196   InstanceKlass* current_class() { return class_at_depth(0); }
 197 
 198   void* data_at_depth(int i) {
 199     Node* n = node_at_depth(i);
 200     return n == NULL ? NULL : n->_algorithm_data;
 201   }
 202   void* current_data() { return data_at_depth(0); }
 203 
 204  public:
 205 
 206   void run(InstanceKlass* root) {
 207     ALGO* algo = static_cast<ALGO*>(this);
 208 
 209     reset_iteration();
 210 
 211     void* algo_data = algo->new_node_data(root);
 212     push(root, algo_data);
 213     bool top_needs_visit = true;
 214 
 215     do {
 216       Node* top = current_top();
 217       if (top_needs_visit) {
 218         if (algo->visit() == false) {
 219           // algorithm does not want to continue along this path.  Arrange
 220           // it so that this state is immediately popped off the stack
 221           top->set_super_visited();
 222           top->set_all_interfaces_visited();
 223         }
 224         top_needs_visit = false;
 225       }
 226 
 227       if (top->has_visited_super() && top->has_visited_all_interfaces()) {
 228         algo->free_node_data(top->_algorithm_data);
 229         pop();
 230       } else {
 231         InstanceKlass* next = NULL;
 232         if (top->has_visited_super() == false) {
 233           next = top->next_super();
 234           top->set_super_visited();
 235         } else {
 236           next = top->next_interface();
 237           top->increment_visited_interface();
 238         }
 239         assert(next != NULL, "Otherwise we shouldn't be here");
 240         algo_data = algo->new_node_data(next);
 241         push(next, algo_data);
 242         top_needs_visit = true;
 243       }
 244     } while (has_more_nodes());
 245   }
 246 };
 247 
 248 class PrintHierarchy : public HierarchyVisitor<PrintHierarchy> {
 249  private:
 250    outputStream* _st;
 251  public:
 252   bool visit() {
 253     InstanceKlass* cls = current_class();
 254     streamIndentor si(_st, current_depth() * 2);
 255     _st->indent().print_cr("%s", cls->name()->as_C_string());
 256     return true;
 257   }
 258 
 259   void* new_node_data(InstanceKlass* cls) { return NULL; }
 260   void free_node_data(void* data) { return; }
 261 
 262   PrintHierarchy(outputStream* st = tty) : _st(st) {}
 263 };
 264 
 265 // Used to register InstanceKlass objects and all related metadata structures
 266 // (Methods, ConstantPools) as "in-use" by the current thread so that they can't
 267 // be deallocated by class redefinition while we're using them.  The classes are
 268 // de-registered when this goes out of scope.
 269 //
 270 // Once a class is registered, we need not bother with methodHandles or
 271 // constantPoolHandles for it's associated metadata.
 272 class KeepAliveRegistrar : public StackObj {
 273  private:
 274   Thread* _thread;
 275   GrowableArray<ConstantPool*> _keep_alive;
 276 
 277  public:
 278   KeepAliveRegistrar(Thread* thread) : _thread(thread), _keep_alive(20) {
 279     assert(thread == Thread::current(), "Must be current thread");
 280   }
 281 
 282   ~KeepAliveRegistrar() {
 283     for (int i = _keep_alive.length() - 1; i >= 0; --i) {
 284       ConstantPool* cp = _keep_alive.at(i);
 285       int idx = _thread->metadata_handles()->find_from_end(cp);
 286       assert(idx > 0, "Must be in the list");
 287       _thread->metadata_handles()->remove_at(idx);
 288     }
 289   }
 290 
 291   // Register a class as 'in-use' by the thread.  It's fine to register a class
 292   // multiple times (though perhaps inefficient)
 293   void register_class(InstanceKlass* ik) {
 294     ConstantPool* cp = ik->constants();
 295     _keep_alive.push(cp);
 296     _thread->metadata_handles()->push(cp);
 297   }
 298 };
 299 
 300 class KeepAliveVisitor : public HierarchyVisitor<KeepAliveVisitor> {
 301  private:
 302   KeepAliveRegistrar* _registrar;
 303 
 304  public:
 305   KeepAliveVisitor(KeepAliveRegistrar* registrar) : _registrar(registrar) {}
 306 
 307   void* new_node_data(InstanceKlass* cls) { return NULL; }
 308   void free_node_data(void* data) { return; }
 309 
 310   bool visit() {
 311     _registrar->register_class(current_class());
 312     return true;
 313   }
 314 };
 315 
 316 
 317 // A method family contains a set of all methods that implement a single
 318 // erased method. As members of the set are collected while walking over the
 319 // hierarchy, they are tagged with a qualification state.  The qualification
 320 // state for an erased method is set to disqualified if there exists a path
 321 // from the root of hierarchy to the method that contains an interleaving
 322 // erased method defined in an interface.
 323 
 324 class MethodFamily : public ResourceObj {
 325  private:
 326 
 327   GrowableArray<Pair<Method*,QualifiedState> > _members;
 328   ResourceHashtable<Method*, int> _member_index;
 329 
 330   Method* _selected_target;  // Filled in later, if a unique target exists
 331   Symbol* _exception_message; // If no unique target is found
 332   Symbol* _exception_name;    // If no unique target is found
 333 
 334   bool contains_method(Method* method) {
 335     int* lookup = _member_index.get(method);
 336     return lookup != NULL;
 337   }
 338 
 339   void add_method(Method* method, QualifiedState state) {
 340     Pair<Method*,QualifiedState> entry(method, state);
 341     _member_index.put(method, _members.length());
 342     _members.append(entry);
 343   }
 344 
 345   void disqualify_method(Method* method) {
 346     int* index = _member_index.get(method);
 347     guarantee(index != NULL && *index >= 0 && *index < _members.length(), "bad index");
 348     _members.at(*index).second = DISQUALIFIED;
 349   }
 350 
 351   Symbol* generate_no_defaults_message(TRAPS) const;
 352   Symbol* generate_method_message(Symbol *klass_name, Method* method, TRAPS) const;
 353   Symbol* generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const;
 354 
 355  public:
 356 
 357   MethodFamily()
 358       : _selected_target(NULL), _exception_message(NULL), _exception_name(NULL) {}
 359 
 360   void set_target_if_empty(Method* m) {
 361     if (_selected_target == NULL && !m->is_overpass()) {
 362       _selected_target = m;
 363     }
 364   }
 365 
 366   void record_qualified_method(Method* m) {
 367     // If the method already exists in the set as qualified, this operation is
 368     // redundant.  If it already exists as disqualified, then we leave it as
 369     // disqualfied.  Thus we only add to the set if it's not already in the
 370     // set.
 371     if (!contains_method(m)) {
 372       add_method(m, QUALIFIED);
 373     }
 374   }
 375 
 376   void record_disqualified_method(Method* m) {
 377     // If not in the set, add it as disqualified.  If it's already in the set,
 378     // then set the state to disqualified no matter what the previous state was.
 379     if (!contains_method(m)) {
 380       add_method(m, DISQUALIFIED);
 381     } else {
 382       disqualify_method(m);
 383     }
 384   }
 385 
 386   bool has_target() const { return _selected_target != NULL; }
 387   bool throws_exception() { return _exception_message != NULL; }
 388 
 389   Method* get_selected_target() { return _selected_target; }
 390   Symbol* get_exception_message() { return _exception_message; }
 391   Symbol* get_exception_name() { return _exception_name; }
 392 
 393   // Either sets the target or the exception error message
 394   void determine_target(InstanceKlass* root, TRAPS) {
 395     if (has_target() || throws_exception()) {
 396       return;
 397     }
 398 
 399     // Qualified methods are maximally-specific methods
 400     // These include public, instance concrete (=default) and abstract methods
 401     GrowableArray<Method*> qualified_methods;
 402     int num_defaults = 0;
 403     int default_index = -1;
 404     int qualified_index = -1;
 405     for (int i = 0; i < _members.length(); ++i) {
 406       Pair<Method*,QualifiedState> entry = _members.at(i);
 407       if (entry.second == QUALIFIED) {
 408         qualified_methods.append(entry.first);
 409         qualified_index++;
 410         if (entry.first->is_default_method()) {
 411           num_defaults++;
 412           default_index = qualified_index;
 413 
 414         }
 415       }
 416     }
 417 
 418     if (num_defaults == 0) {
 419       // If the root klass has a static method with matching name and signature
 420       // then do not generate an overpass method because it will hide the
 421       // static method during resolution.
 422       if (qualified_methods.length() == 0) {
 423         _exception_message = generate_no_defaults_message(CHECK);
 424       } else {
 425         assert(root != NULL, "Null root class");
 426         _exception_message = generate_method_message(root->name(), qualified_methods.at(0), CHECK);
 427       }
 428       _exception_name = vmSymbols::java_lang_AbstractMethodError();
 429 
 430     // If only one qualified method is default, select that
 431     } else if (num_defaults == 1) {
 432         _selected_target = qualified_methods.at(default_index);
 433 
 434     } else if (num_defaults > 1) {
 435       _exception_message = generate_conflicts_message(&qualified_methods,CHECK);
 436       _exception_name = vmSymbols::java_lang_IncompatibleClassChangeError();
 437       LogTarget(Debug, defaultmethods) lt;
 438       if (lt.is_enabled()) {
 439         LogStream ls(lt);
 440         _exception_message->print_value_on(&ls);
 441         ls.cr();
 442       }
 443     }
 444   }
 445 
 446   bool contains_signature(Symbol* query) {
 447     for (int i = 0; i < _members.length(); ++i) {
 448       if (query == _members.at(i).first->signature()) {
 449         return true;
 450       }
 451     }
 452     return false;
 453   }
 454 
 455   void print_selected(outputStream* str, int indent) const {
 456     assert(has_target(), "Should be called otherwise");
 457     streamIndentor si(str, indent * 2);
 458     str->indent().print("Selected method: ");
 459     print_method(str, _selected_target);
 460     Klass* method_holder = _selected_target->method_holder();
 461     if (!method_holder->is_interface()) {
 462       str->print(" : in superclass");
 463     }
 464     str->cr();
 465   }
 466 
 467   void print_exception(outputStream* str, int indent) {
 468     assert(throws_exception(), "Should be called otherwise");
 469     assert(_exception_name != NULL, "exception_name should be set");
 470     streamIndentor si(str, indent * 2);
 471     str->indent().print_cr("%s: %s", _exception_name->as_C_string(), _exception_message->as_C_string());
 472   }
 473 };
 474 
 475 Symbol* MethodFamily::generate_no_defaults_message(TRAPS) const {
 476   return SymbolTable::new_symbol("No qualifying defaults found", THREAD);
 477 }
 478 
 479 Symbol* MethodFamily::generate_method_message(Symbol *klass_name, Method* method, TRAPS) const {
 480   stringStream ss;
 481   ss.print("Method ");
 482   Symbol* name = method->name();
 483   Symbol* signature = method->signature();
 484   ss.write((const char*)klass_name->bytes(), klass_name->utf8_length());
 485   ss.print(".");
 486   ss.write((const char*)name->bytes(), name->utf8_length());
 487   ss.write((const char*)signature->bytes(), signature->utf8_length());
 488   ss.print(" is abstract");
 489   return SymbolTable::new_symbol(ss.base(), (int)ss.size(), THREAD);
 490 }
 491 
 492 Symbol* MethodFamily::generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const {
 493   stringStream ss;
 494   ss.print("Conflicting default methods:");
 495   for (int i = 0; i < methods->length(); ++i) {
 496     Method* method = methods->at(i);
 497     Symbol* klass = method->klass_name();
 498     Symbol* name = method->name();
 499     ss.print(" ");
 500     ss.write((const char*)klass->bytes(), klass->utf8_length());
 501     ss.print(".");
 502     ss.write((const char*)name->bytes(), name->utf8_length());
 503   }
 504   return SymbolTable::new_symbol(ss.base(), (int)ss.size(), THREAD);
 505 }
 506 
 507 
 508 class StateRestorer;
 509 
 510 // StatefulMethodFamily is a wrapper around a MethodFamily that maintains the
 511 // qualification state during hierarchy visitation, and applies that state
 512 // when adding members to the MethodFamily
 513 class StatefulMethodFamily : public ResourceObj {
 514   friend class StateRestorer;
 515  private:
 516   QualifiedState _qualification_state;
 517 
 518   void set_qualification_state(QualifiedState state) {
 519     _qualification_state = state;
 520   }
 521 
 522  protected:
 523   MethodFamily* _method_family;
 524 
 525  public:
 526   StatefulMethodFamily() {
 527    _method_family = new MethodFamily();
 528    _qualification_state = QUALIFIED;
 529   }
 530 
 531   StatefulMethodFamily(MethodFamily* mf) {
 532    _method_family = mf;
 533    _qualification_state = QUALIFIED;
 534   }
 535 
 536   void set_target_if_empty(Method* m) { _method_family->set_target_if_empty(m); }
 537 
 538   MethodFamily* get_method_family() { return _method_family; }
 539 
 540   StateRestorer* record_method_and_dq_further(Method* mo);
 541 };
 542 
 543 class StateRestorer : public PseudoScopeMark {
 544  private:
 545   StatefulMethodFamily* _method;
 546   QualifiedState _state_to_restore;
 547  public:
 548   StateRestorer(StatefulMethodFamily* dm, QualifiedState state)
 549       : _method(dm), _state_to_restore(state) {}
 550   ~StateRestorer() { destroy(); }
 551   void restore_state() { _method->set_qualification_state(_state_to_restore); }
 552   virtual void destroy() { restore_state(); }
 553 };
 554 
 555 StateRestorer* StatefulMethodFamily::record_method_and_dq_further(Method* mo) {
 556   StateRestorer* mark = new StateRestorer(this, _qualification_state);
 557   if (_qualification_state == QUALIFIED) {
 558     _method_family->record_qualified_method(mo);
 559   } else {
 560     _method_family->record_disqualified_method(mo);
 561   }
 562   // Everything found "above"??? this method in the hierarchy walk is set to
 563   // disqualified
 564   set_qualification_state(DISQUALIFIED);
 565   return mark;
 566 }
 567 
 568 // Represents a location corresponding to a vtable slot for methods that
 569 // neither the class nor any of it's ancestors provide an implementaion.
 570 // Default methods may be present to fill this slot.
 571 class EmptyVtableSlot : public ResourceObj {
 572  private:
 573   Symbol* _name;
 574   Symbol* _signature;
 575   int _size_of_parameters;
 576   MethodFamily* _binding;
 577 
 578  public:
 579   EmptyVtableSlot(Method* method)
 580       : _name(method->name()), _signature(method->signature()),
 581         _size_of_parameters(method->size_of_parameters()), _binding(NULL) {}
 582 
 583   Symbol* name() const { return _name; }
 584   Symbol* signature() const { return _signature; }
 585   int size_of_parameters() const { return _size_of_parameters; }
 586 
 587   void bind_family(MethodFamily* lm) { _binding = lm; }
 588   bool is_bound() { return _binding != NULL; }
 589   MethodFamily* get_binding() { return _binding; }
 590 
 591   void print_on(outputStream* str) const {
 592     print_slot(str, name(), signature());
 593   }
 594 };
 595 
 596 static bool already_in_vtable_slots(GrowableArray<EmptyVtableSlot*>* slots, Method* m) {
 597   bool found = false;
 598   for (int j = 0; j < slots->length(); ++j) {
 599     if (slots->at(j)->name() == m->name() &&
 600         slots->at(j)->signature() == m->signature() ) {
 601       found = true;
 602       break;
 603     }
 604   }
 605   return found;
 606 }
 607 
 608 static GrowableArray<EmptyVtableSlot*>* find_empty_vtable_slots(
 609     InstanceKlass* klass, const GrowableArray<Method*>* mirandas, TRAPS) {
 610 
 611   assert(klass != NULL, "Must be valid class");
 612 
 613   GrowableArray<EmptyVtableSlot*>* slots = new GrowableArray<EmptyVtableSlot*>();
 614 
 615   // All miranda methods are obvious candidates
 616   for (int i = 0; i < mirandas->length(); ++i) {
 617     Method* m = mirandas->at(i);
 618     if (!already_in_vtable_slots(slots, m)) {
 619       slots->append(new EmptyVtableSlot(m));
 620     }
 621   }
 622 
 623   // Also any overpasses in our superclasses, that we haven't implemented.
 624   // (can't use the vtable because it is not guaranteed to be initialized yet)
 625   InstanceKlass* super = klass->java_super();
 626   while (super != NULL && super != SystemDictionary::Object_klass()) {
 627     for (int i = 0; i < super->methods()->length(); ++i) {
 628       Method* m = super->methods()->at(i);
 629       if (m->is_overpass() || (m->is_static() && vmSymbols::class_initializer_name() != m->name())) {
 630         // m is a method that would have been a miranda if not for the
 631         // default method processing that occurred on behalf of our superclass,
 632         // so it's a method we want to re-examine in this new context.  That is,
 633         // unless we have a real implementation of it in the current class.
 634         if (!already_in_vtable_slots(slots, m)) {
 635           Method* impl = klass->lookup_method(m->name(), m->signature());
 636           if (impl == NULL || impl->is_overpass() || impl->is_static()) {
 637             slots->append(new EmptyVtableSlot(m));
 638           }
 639         }
 640       }
 641     }
 642 
 643     // also any default methods in our superclasses
 644     if (super->default_methods() != NULL) {
 645       for (int i = 0; i < super->default_methods()->length(); ++i) {
 646         Method* m = super->default_methods()->at(i);
 647         // m is a method that would have been a miranda if not for the
 648         // default method processing that occurred on behalf of our superclass,
 649         // so it's a method we want to re-examine in this new context.  That is,
 650         // unless we have a real implementation of it in the current class.
 651         if (!already_in_vtable_slots(slots, m)) {
 652           Method* impl = klass->lookup_method(m->name(), m->signature());
 653           if (impl == NULL || impl->is_overpass() || impl->is_static()) {
 654             slots->append(new EmptyVtableSlot(m));
 655           }
 656         }
 657       }
 658     }
 659     super = super->java_super();
 660   }
 661 
 662   LogTarget(Debug, defaultmethods) lt;
 663   if (lt.is_enabled()) {
 664     lt.print("Slots that need filling:");
 665     ResourceMark rm;
 666     LogStream ls(lt);
 667     streamIndentor si(&ls);
 668     for (int i = 0; i < slots->length(); ++i) {
 669       ls.indent();
 670       slots->at(i)->print_on(&ls);
 671       ls.cr();
 672     }
 673   }
 674 
 675   return slots;
 676 }
 677 
 678 // Iterates over the superinterface type hierarchy looking for all methods
 679 // with a specific erased signature.
 680 class FindMethodsByErasedSig : public HierarchyVisitor<FindMethodsByErasedSig> {
 681  private:
 682   // Context data
 683   Symbol* _method_name;
 684   Symbol* _method_signature;
 685   StatefulMethodFamily*  _family;
 686   bool _cur_class_is_interface;
 687 
 688  public:
 689   FindMethodsByErasedSig(Symbol* name, Symbol* signature, bool is_interf) :
 690       _method_name(name), _method_signature(signature), _family(NULL),
 691       _cur_class_is_interface(is_interf) {}
 692 
 693   void get_discovered_family(MethodFamily** family) {
 694       if (_family != NULL) {
 695         *family = _family->get_method_family();
 696       } else {
 697         *family = NULL;
 698       }
 699   }
 700 
 701   void* new_node_data(InstanceKlass* cls) { return new PseudoScope(); }
 702   void free_node_data(void* node_data) {
 703     PseudoScope::cast(node_data)->destroy();
 704   }
 705 
 706   // Find all methods on this hierarchy that match this
 707   // method's erased (name, signature)
 708   bool visit() {
 709     PseudoScope* scope = PseudoScope::cast(current_data());
 710     InstanceKlass* iklass = current_class();
 711 
 712     Method* m = iklass->find_method(_method_name, _method_signature);
 713     // Private interface methods are not candidates for default methods.
 714     // invokespecial to private interface methods doesn't use default method logic.
 715     // Private class methods are not candidates for default methods.
 716     // Private methods do not override default methods, so need to perform
 717     // default method inheritance without including private methods.
 718     // The overpasses are your supertypes' errors, we do not include them.
 719     // Non-public methods in java.lang.Object are not candidates for default
 720     // methods.
 721     // Future: take access controls into account for superclass methods
 722     if (m != NULL && !m->is_static() && !m->is_overpass() && !m->is_private() &&
 723      (!_cur_class_is_interface || !SystemDictionary::is_nonpublic_Object_method(m))) {
 724       if (_family == NULL) {
 725         _family = new StatefulMethodFamily();
 726       }
 727 
 728       if (iklass->is_interface()) {
 729         StateRestorer* restorer = _family->record_method_and_dq_further(m);
 730         scope->add_mark(restorer);
 731       } else {
 732         // This is the rule that methods in classes "win" (bad word) over
 733         // methods in interfaces. This works because of single inheritance.
 734         // Private methods in classes do not "win", they will be found
 735         // first on searching, but overriding for invokevirtual needs
 736         // to find default method candidates for the same signature
 737         _family->set_target_if_empty(m);
 738       }
 739     }
 740     return true;
 741   }
 742 
 743 };
 744 
 745 
 746 
 747 static void create_defaults_and_exceptions(
 748     GrowableArray<EmptyVtableSlot*>* slots, InstanceKlass* klass, TRAPS);
 749 
 750 static void generate_erased_defaults(
 751      InstanceKlass* klass, EmptyVtableSlot* slot, bool is_intf, TRAPS) {
 752 
 753   // sets up a set of methods with the same exact erased signature
 754   FindMethodsByErasedSig visitor(slot->name(), slot->signature(), is_intf);
 755   visitor.run(klass);
 756 
 757   MethodFamily* family;
 758   visitor.get_discovered_family(&family);
 759   if (family != NULL) {
 760     family->determine_target(klass, CHECK);
 761     slot->bind_family(family);
 762   }
 763 }
 764 
 765 static void merge_in_new_methods(InstanceKlass* klass,
 766     GrowableArray<Method*>* new_methods, TRAPS);
 767 static void create_default_methods( InstanceKlass* klass,
 768     GrowableArray<Method*>* new_methods, TRAPS);
 769 
 770 // This is the guts of the default methods implementation.  This is called just
 771 // after the classfile has been parsed if some ancestor has default methods.
 772 //
 773 // First it finds any name/signature slots that need any implementation (either
 774 // because they are miranda or a superclass's implementation is an overpass
 775 // itself).  For each slot, iterate over the hierarchy, to see if they contain a
 776 // signature that matches the slot we are looking at.
 777 //
 778 // For each slot filled, we either record the default method candidate in the
 779 // klass default_methods list or, only to handle exception cases, we create an
 780 // overpass method that throws an exception and add it to the klass methods list.
 781 // The JVM does not create bridges nor handle generic signatures here.
 782 void DefaultMethods::generate_default_methods(
 783     InstanceKlass* klass, const GrowableArray<Method*>* mirandas, TRAPS) {
 784   assert(klass != NULL, "invariant");
 785 
 786   // This resource mark is the bound for all memory allocation that takes
 787   // place during default method processing.  After this goes out of scope,
 788   // all (Resource) objects' memory will be reclaimed.  Be careful if adding an
 789   // embedded resource mark under here as that memory can't be used outside
 790   // whatever scope it's in.
 791   ResourceMark rm(THREAD);
 792 
 793   // Keep entire hierarchy alive for the duration of the computation
 794   constantPoolHandle cp(THREAD, klass->constants());
 795   KeepAliveRegistrar keepAlive(THREAD);
 796   KeepAliveVisitor loadKeepAlive(&keepAlive);
 797   loadKeepAlive.run(klass);
 798 
 799   LogTarget(Debug, defaultmethods) lt;
 800   if (lt.is_enabled()) {
 801     ResourceMark rm;
 802     lt.print("%s %s requires default method processing",
 803              klass->is_interface() ? "Interface" : "Class",
 804              klass->name()->as_klass_external_name());
 805     LogStream ls(lt);
 806     PrintHierarchy printer(&ls);
 807     printer.run(klass);
 808   }
 809 
 810   GrowableArray<EmptyVtableSlot*>* empty_slots =
 811       find_empty_vtable_slots(klass, mirandas, CHECK);
 812 
 813   if (empty_slots->length() > 0) {
 814     for (int i = 0; i < empty_slots->length(); ++i) {
 815       EmptyVtableSlot* slot = empty_slots->at(i);
 816       LogTarget(Debug, defaultmethods) lt;
 817       if (lt.is_enabled()) {
 818         LogStream ls(lt);
 819         streamIndentor si(&ls, 2);
 820         ls.indent().print("Looking for default methods for slot ");
 821         slot->print_on(&ls);
 822         ls.cr();
 823       }
 824       generate_erased_defaults(klass, slot, klass->is_interface(), CHECK);
 825     }
 826     log_debug(defaultmethods)("Creating defaults and overpasses...");
 827     create_defaults_and_exceptions(empty_slots, klass, CHECK);
 828   }
 829   log_debug(defaultmethods)("Default method processing complete");
 830 }
 831 
 832 static int assemble_method_error(
 833     BytecodeConstantPool* cp, BytecodeBuffer* buffer, Symbol* errorName, Symbol* message, TRAPS) {
 834 
 835   Symbol* init = vmSymbols::object_initializer_name();
 836   Symbol* sig = vmSymbols::string_void_signature();
 837 
 838   BytecodeAssembler assem(buffer, cp);
 839 
 840   assem._new(errorName);
 841   assem.dup();
 842   assem.load_string(message);
 843   assem.invokespecial(errorName, init, sig);
 844   assem.athrow();
 845 
 846   return 3; // max stack size: [ exception, exception, string ]
 847 }
 848 
 849 static Method* new_method(
 850     BytecodeConstantPool* cp, BytecodeBuffer* bytecodes, Symbol* name,
 851     Symbol* sig, AccessFlags flags, int max_stack, int params,
 852     ConstMethod::MethodType mt, TRAPS) {
 853 
 854   address code_start = 0;
 855   int code_length = 0;
 856   InlineTableSizes sizes;
 857 
 858   if (bytecodes != NULL && bytecodes->length() > 0) {
 859     code_start = static_cast<address>(bytecodes->adr_at(0));
 860     code_length = bytecodes->length();
 861   }
 862 
 863   Method* m = Method::allocate(cp->pool_holder()->class_loader_data(),
 864                                code_length, flags, &sizes,
 865                                mt, CHECK_NULL);
 866 
 867   m->set_constants(NULL); // This will get filled in later
 868   m->set_name_index(cp->utf8(name));
 869   m->set_signature_index(cp->utf8(sig));
 870   ResultTypeFinder rtf(sig);
 871   m->constMethod()->set_result_type(rtf.type());
 872   m->set_size_of_parameters(params);
 873   m->set_max_stack(max_stack);
 874   m->set_max_locals(params);
 875   m->constMethod()->set_stackmap_data(NULL);
 876   m->set_code(code_start);
 877 
 878   return m;
 879 }
 880 
 881 static void switchover_constant_pool(BytecodeConstantPool* bpool,
 882     InstanceKlass* klass, GrowableArray<Method*>* new_methods, TRAPS) {
 883 
 884   if (new_methods->length() > 0) {
 885     ConstantPool* cp = bpool->create_constant_pool(CHECK);
 886     if (cp != klass->constants()) {
 887       // Copy resolved anonymous class into new constant pool.
 888       if (klass->is_unsafe_anonymous()) {
 889         cp->klass_at_put(klass->this_class_index(), klass);
 890       }
 891       klass->class_loader_data()->add_to_deallocate_list(klass->constants());
 892       klass->set_constants(cp);
 893       cp->set_pool_holder(klass);
 894 
 895       for (int i = 0; i < new_methods->length(); ++i) {
 896         new_methods->at(i)->set_constants(cp);
 897       }
 898       for (int i = 0; i < klass->methods()->length(); ++i) {
 899         Method* mo = klass->methods()->at(i);
 900         mo->set_constants(cp);
 901       }
 902     }
 903   }
 904 }
 905 
 906 // Create default_methods list for the current class.
 907 // With the VM only processing erased signatures, the VM only
 908 // creates an overpass in a conflict case or a case with no candidates.
 909 // This allows virtual methods to override the overpass, but ensures
 910 // that a local method search will find the exception rather than an abstract
 911 // or default method that is not a valid candidate.
 912 //
 913 // Note that if overpass method are ever created that are not exception
 914 // throwing methods then the loader constraint checking logic for vtable and
 915 // itable creation needs to be changed to check loader constraints for the
 916 // overpass methods that do not throw exceptions.
 917 static void create_defaults_and_exceptions(
 918     GrowableArray<EmptyVtableSlot*>* slots,
 919     InstanceKlass* klass, TRAPS) {
 920 
 921   GrowableArray<Method*> overpasses;
 922   GrowableArray<Method*> defaults;
 923   BytecodeConstantPool bpool(klass->constants());
 924 
 925   for (int i = 0; i < slots->length(); ++i) {
 926     EmptyVtableSlot* slot = slots->at(i);
 927 
 928     if (slot->is_bound()) {
 929       MethodFamily* method = slot->get_binding();
 930       BytecodeBuffer buffer;
 931 
 932       LogTarget(Debug, defaultmethods) lt;
 933       if (lt.is_enabled()) {
 934         ResourceMark rm(THREAD);
 935         LogStream ls(lt);
 936         ls.print("for slot: ");
 937         slot->print_on(&ls);
 938         ls.cr();
 939         if (method->has_target()) {
 940           method->print_selected(&ls, 1);
 941         } else if (method->throws_exception()) {
 942           method->print_exception(&ls, 1);
 943         }
 944       }
 945 
 946       if (method->has_target()) {
 947         Method* selected = method->get_selected_target();
 948         if (selected->method_holder()->is_interface()) {
 949           assert(!selected->is_private(), "pushing private interface method as default");
 950           defaults.push(selected);
 951         }
 952       } else if (method->throws_exception()) {
 953         int max_stack = assemble_method_error(&bpool, &buffer,
 954            method->get_exception_name(), method->get_exception_message(), CHECK);
 955         AccessFlags flags = accessFlags_from(
 956           JVM_ACC_PUBLIC | JVM_ACC_SYNTHETIC | JVM_ACC_BRIDGE);
 957          Method* m = new_method(&bpool, &buffer, slot->name(), slot->signature(),
 958           flags, max_stack, slot->size_of_parameters(),
 959           ConstMethod::OVERPASS, CHECK);
 960         // We push to the methods list:
 961         // overpass methods which are exception throwing methods
 962         if (m != NULL) {
 963           overpasses.push(m);
 964         }
 965       }
 966     }
 967   }
 968 
 969 
 970   log_debug(defaultmethods)("Created %d overpass methods", overpasses.length());
 971   log_debug(defaultmethods)("Created %d default  methods", defaults.length());
 972 
 973   if (overpasses.length() > 0) {
 974     switchover_constant_pool(&bpool, klass, &overpasses, CHECK);
 975     merge_in_new_methods(klass, &overpasses, CHECK);
 976   }
 977   if (defaults.length() > 0) {
 978     create_default_methods(klass, &defaults, CHECK);
 979   }
 980 }
 981 
 982 static void create_default_methods( InstanceKlass* klass,
 983     GrowableArray<Method*>* new_methods, TRAPS) {
 984 
 985   int new_size = new_methods->length();
 986   Array<Method*>* total_default_methods = MetadataFactory::new_array<Method*>(
 987       klass->class_loader_data(), new_size, NULL, CHECK);
 988   for (int index = 0; index < new_size; index++ ) {
 989     total_default_methods->at_put(index, new_methods->at(index));
 990   }
 991   Method::sort_methods(total_default_methods, /*set_idnums=*/false);
 992 
 993   klass->set_default_methods(total_default_methods);
 994 }
 995 
 996 static void sort_methods(GrowableArray<Method*>* methods) {
 997   // Note that this must sort using the same key as is used for sorting
 998   // methods in InstanceKlass.
 999   bool sorted = true;
1000   for (int i = methods->length() - 1; i > 0; --i) {
1001     for (int j = 0; j < i; ++j) {
1002       Method* m1 = methods->at(j);
1003       Method* m2 = methods->at(j + 1);
1004       if ((uintptr_t)m1->name() > (uintptr_t)m2->name()) {
1005         methods->at_put(j, m2);
1006         methods->at_put(j + 1, m1);
1007         sorted = false;
1008       }
1009     }
1010     if (sorted) break;
1011     sorted = true;
1012   }
1013 #ifdef ASSERT
1014   uintptr_t prev = 0;
1015   for (int i = 0; i < methods->length(); ++i) {
1016     Method* mh = methods->at(i);
1017     uintptr_t nv = (uintptr_t)mh->name();
1018     assert(nv >= prev, "Incorrect overpass method ordering");
1019     prev = nv;
1020   }
1021 #endif
1022 }
1023 
1024 static void merge_in_new_methods(InstanceKlass* klass,
1025     GrowableArray<Method*>* new_methods, TRAPS) {
1026 
1027   enum { ANNOTATIONS, PARAMETERS, DEFAULTS, NUM_ARRAYS };
1028 
1029   Array<Method*>* original_methods = klass->methods();
1030   Array<int>* original_ordering = klass->method_ordering();
1031   Array<int>* merged_ordering = Universe::the_empty_int_array();
1032 
1033   int new_size = klass->methods()->length() + new_methods->length();
1034 
1035   Array<Method*>* merged_methods = MetadataFactory::new_array<Method*>(
1036       klass->class_loader_data(), new_size, NULL, CHECK);
1037 
1038   // original_ordering might be empty if this class has no methods of its own
1039   if (JvmtiExport::can_maintain_original_method_order() || DumpSharedSpaces) {
1040     merged_ordering = MetadataFactory::new_array<int>(
1041         klass->class_loader_data(), new_size, CHECK);
1042   }
1043   int method_order_index = klass->methods()->length();
1044 
1045   sort_methods(new_methods);
1046 
1047   // Perform grand merge of existing methods and new methods
1048   int orig_idx = 0;
1049   int new_idx = 0;
1050 
1051   for (int i = 0; i < new_size; ++i) {
1052     Method* orig_method = NULL;
1053     Method* new_method = NULL;
1054     if (orig_idx < original_methods->length()) {
1055       orig_method = original_methods->at(orig_idx);
1056     }
1057     if (new_idx < new_methods->length()) {
1058       new_method = new_methods->at(new_idx);
1059     }
1060 
1061     if (orig_method != NULL &&
1062         (new_method == NULL || orig_method->name() < new_method->name())) {
1063       merged_methods->at_put(i, orig_method);
1064       original_methods->at_put(orig_idx, NULL);
1065       if (merged_ordering->length() > 0) {
1066         assert(original_ordering != NULL && original_ordering->length() > 0,
1067                "should have original order information for this method");
1068         merged_ordering->at_put(i, original_ordering->at(orig_idx));
1069       }
1070       ++orig_idx;
1071     } else {
1072       merged_methods->at_put(i, new_method);
1073       if (merged_ordering->length() > 0) {
1074         merged_ordering->at_put(i, method_order_index++);
1075       }
1076       ++new_idx;
1077     }
1078     // update idnum for new location
1079     merged_methods->at(i)->set_method_idnum(i);
1080     merged_methods->at(i)->set_orig_method_idnum(i);
1081   }
1082 
1083   // Verify correct order
1084 #ifdef ASSERT
1085   uintptr_t prev = 0;
1086   for (int i = 0; i < merged_methods->length(); ++i) {
1087     Method* mo = merged_methods->at(i);
1088     uintptr_t nv = (uintptr_t)mo->name();
1089     assert(nv >= prev, "Incorrect method ordering");
1090     prev = nv;
1091   }
1092 #endif
1093 
1094   // Replace klass methods with new merged lists
1095   klass->set_methods(merged_methods);
1096   klass->set_initial_method_idnum(new_size);
1097   klass->set_method_ordering(merged_ordering);
1098 
1099   // Free metadata
1100   ClassLoaderData* cld = klass->class_loader_data();
1101   if (original_methods->length() > 0) {
1102     MetadataFactory::free_array(cld, original_methods);
1103   }
1104   if (original_ordering != NULL && original_ordering->length() > 0) {
1105     MetadataFactory::free_array(cld, original_ordering);
1106   }
1107 }