

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Startup Challenges
Non-lethal bathwater removal techniques for a snappier OpenJDK

Claes Redestad
Java SE Performance
Oracle

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product directon. It is intended for
informaton purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functonality, and should not be relied upon
in making purchasing decisions. The development, release, and tming of any features or
functonality described for Oracle’s products remains at the sole discreton of Oracle.

4

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Startup challenges - at a glance...

● Intrinsic trade-of between startup and other concerns
such as peak performance and footprint

Startup ofen draws the shortest straw

● Death by a thousand cuts

Inefciencies - many of which individually escape
detecton - accumulate over tme

● New language features tend towards dynamic setup

Generatng code lazily (lambdas, indifed string
concatenaton, etc..) help performance at a startup cost

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

OpenJDK startup optmizaton... why bother?

● Broadens the range of applicatons the JVM can be a good ft for

CLI tools, functon-as-a-service ...

● Consolidate eforts targetng embedded systems

● Fight the misconcepton that "Java is slow"

● Improved quality of life

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Startup techniques

● CDS

● HotSpot AOT (jaotc)

● jlink

● GraalVM natve-image

Gains from removing unused modules

No limits on applicatons;
few - if any - drawbacks

"Natve" startup tmes; several limitatons

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

But let's start from the beginning...

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Winner
Best Startup
Benchmark

1995

Let's ignore that running a program like this from start to fnish includes
more than "startup" for now...

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello World: JDK 9

● While the Java module system
enables certain speed-ups, it does
come with some inital overhead

● Regressions also due making G1
default, segmentng the code
cache, implementng VM fag
constraint checks(!) etc...

● Numerous startup optmizatons
sofened the blow

8 9
0

20

40

60

80

100

120

Hello World

tim
e

 (
m

s)

Unless otherwise stated: -Xshare:auto -Xmx32m
Intel(R) Xeon(R) E5-2630 v3 @ 2.40GHz
Ubuntu 16.04.3 LTS

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello World: JDK 10

Turning the tde...

● Optmized module resoluton

● Numerous small library and runtme
optmizatons

● G1 startup and footprint
improvements

● CDS support for pre-resolving constant
pool entries (e.g. String literals) 8 9 10

0

20

40

60

80

100

120

Hello World

tim
e

 (
m

s)

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello World: JDK 11

Even faster...

● Removal of Java EE and Java FX
modules from the (Oracle) JDK
brings a leaner standard image,
which means less work needed to
bootstrap modules

● Library optmizatons contnued

8 9 10 11
0

20

40

60

80

100

120

Hello World

tim
e

 (
m

s)

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello World: JDK 12(?)

Early stage of development, but
startup is already set to improve:

● Using CDS to serialize the default
module graph (and more) allows a
large cut in startup

● Dialing up the strictness of module
encapsulaton (--illegal-
access=deny) is being
considered, which would cut of
another 2-3ms 8 9 10 11 12

0

20

40

60

80

100

120

Hello World

tim
e

 (
m

s)

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello World: Bytecodes executed

● Bootstrapping the module system
(JDK 9) caused a ~9x increase in the
number of "raw" bytecodes executed
(-Xint)

● ... but allowed us to do less work
before JIT threads can be actvated
(System.initPhase1), meaning JIT kick
in earlier

● ... which means we quickly shif from
the interpreter to more optmized
code (mainly C1 at this early stage)

8 9 10 11 12
0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

-Xint

OOTB

#
 b

yt
e

co
d

e
s

e
xe

cu
te

d

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello form factors

● The shif to execute more logic in
java during bootstrap means a
higher dependency on our
system's ability to quickly JIT of-
used methods

● On a dual-core laptop[1] we might
struggle to break even with JDK 8

[1] Intel(R) Core(TM) i5-7300U CPU @ 2.60GHz
8 9 10 11 12

0

20

40

60

80

100

120

140

Laptop

Workstation

tim
e

 (
m

s)

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Getng ahead of ourselves

JDK 9 introduced jaotc, an
experimental tool to compile Java
code into natve executable code
ahead-of-tme.

Improving startup tme and reduce
tme-to-performance is one of the
goals.

However, AOT will typically be a loss
for something as short-running as a
Hello World...

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello Lambda

import java.util.function.Consumer;

public class HelloLambda {
 public static void main(String[] args) {
 Consumer<String> println = System.out::println;
 println.accept("Hello World!");
 }
}

 Will the following program run as fast as HelloWorld?

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

8
0

20

40

60

80

100

120

140

160

180

200

Hello World

Hello Lambda

tim
e

 (
m

s)

Hello Lambda: JDK 8

On JDK 8, the cost of initalizing a single
lambda is almost 90ms on my
workstaton (8u172).

So during JDK 9 development, we
started seeing similar startup
regressions in various benchmarks, and
every so ofen nice improvements had
to be backed out...

"Let's try to do beter!" we exclaimed
in unison. Probably.

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello Lambda: JDK 9

Thus for JDK 9, an efort was made to reduce the one-of overheads (JDK-8086045):

● Various minor improvements to make
the JSR-292 implementaton lazier:
don't eagerly initalize the
LambdaForm interpreter (not used by
default since 8u40) etc...

● Implement an experimental jlink
plugin to generate a number of
dynamically generated but runtme
invariant classes ahead-of-tme, mainly
LFs

All-in-all 50-60% of inital overhead was removed.

8 9
0

20

40

60

80

100

120

140

160

180

200

Hello World

Hello Lambda

https://bugs.openjdk.java.net/browse/JDK-8086045

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello Lambda: JDK 10

JDK 10 saw only a few incremental
improvements as engineering tme was
mainly spent on other things...

(6 months go by so quickly!)

8 9 10
0

20

40

60

80

100

120

140

160

180

200

Hello World

Hello Lambda

tim
e

 (
m

s)

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello Lambda: JDK 11

An unexpected breakthrough brought the
inital Lambda setup cost down to a few
milliseconds!

This comes from special-casing the
LambdaMetafactory::metafactory
BSM to be invoked exactly from
BootstrapMethodInvoker.

Doing so removes the need to dynamically
type-check arguments, see JDK-8194818

Can we use lambdas everywhere now?!
8 9 10 11

0

20

40

60

80

100

120

140

160

180

200

Hello World

Hello Lambda

tim
e

 (
m

s)

https://bugs.openjdk.java.net/browse/JDK-8198418

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Scaling up: LambdaN

public class Lambda10 {
 public static void main(String[] args) {
 System.out.println(
 ((IntConsumer<Integer>)i -> i + 1).apply(0));
 ...
 System.out.println(
 ((IntConsumer<Integer>)i -> i + 10).apply(9));
 }
}

Let's generate a few simple test programs that create and execute an arbitrary
amount of similar lambdas:

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Scaling up: Lambda1-2000

Stepping from 1 to 2000 for this test of
non-capturing lambdas we end up at
~0.187ms/lambda afer warmup.

An equivalent test using anonymous
inner classes executes at a rate of
~0.140ms/class.

This means there is a slightly higher
scaling overhead

1 500 1000 1500 2000
0

100

200

300

400

500

600

Indy

Inner class

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Lambda translaton

Today, lambda expressions like the following:

System.out.println(((IntFunction<Integer>)i -> i + 1).apply(2));

.. is translated by javac into a private statc method:

private static Integer lambda$main$0(int i) { return i + 1; }

... and a invokedynamic to retrieve an object implementng the functonal interface (in
this case IntFunction), which is then invoked using typical means
(invokeinterface):

getstatic #2 // Get System.out
invokedynamic #3, 0 // References the static method above and a
 // bootstrap method used to link on first call
iconst_2
invokeinterface #4, 2 // IntFunction.apply
invokevirtual #5 // out.println

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Lambda linking

On frst invocaton of the invokedynamic, it will do some just-once bootstrapping.

The runtme frst retrieves method handles for the target method and the bootstrap
method (MethodHandleNatives.linkMethodHandleConstant)

The runtme does an upcall into java (MethodHandleNatives.linkCallSite),
which invokes the provided bootstrap method, in this case
LambdaMetafactory.metafactory.

The bootstrap method creates and returns a CallSite object, which is ultmately linked
into place by the runtme.

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Lambda class generaton

To create a CallSite to link, LambaMetafactory.metafactory spins a class that
implement the functonal interface.

Main purpose of the generated class will be to call the statc method generated by javac.

If the lambda is capturing, the CallSite will wrap a MethodHandle to the
constructor of the lambda class.

If the lambda is non-capturing the lambda class doesn't carry any state, we don't really
need to create an instance, so a single instance of the newly generated class is created and
returned:

 return new ConstantCallSite(MethodHandles.constant(...));

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Profling Lambda bootstrapping

Executon

On a bytecode executon level (-Xint -XX:+TraceBytecodes via bytestacks[1]), we
can see that these linking operatons dominate executon by far:

[1] htps://github.com/cl4es/bytestacks

https://github.com/cl4es/bytestacks

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Introducing Condy

JDK 11 adds Constant Dynamic: Condy.

In essence, condy enhances the ldc bytecode so that creaton of class-level constants
can be delegated to a bootstrap method on frst use.

Quite similar to how invokedynamic sets up its callsite on frst use.

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Using Condy to bootstrap Lambdas

If what your indy does is basically creatng and returning an instance of something
wrapped in a ConstantCallSite wrapped in a MethodHandles.constant...

... might as well use condy!

Making all non-capturing lambdas bootstrap using condy instead of indy is
straightorwards.

Doing so removes the creaton of a few objects and removes a simple invocaton to get
hold of the singleton.

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Lambda1-2000 - Condy Ed.

Using condy instead of indy for non-
capturing lambda instantaton is a
linearly scaling optmizaton:

● Around 10% total reducton in startup
tme at scale

● Removing 25% of the overhead
relatve to inner classes

This enhancement has been baking in
amber for a while, and should make it
into the mainline soon (JDK-8186216)

1 500 1000 1500 2000
0

100

200

300

400

500

600

Condy

Inner class

Indytim
e

 (
m

s)

https://bugs.openjdk.java.net/browse/JDK-8186216

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Indify String concatenaton

JDK 9 introduced the ability to indify String concatenaton (JEP 280): ISC for short.

Instead of desugaring to a series of StringBuilder operatons, javac may emit an
invokedynamic which delegates to a bootstrap method to set up the code
necessary to perform the concatenaton on demand.

By default, ISC generates a tree of MethodHandles that enables some very
substantal optmizatons, but there are some known startup overheads that have
been linked to the overheads of initalizing java.lang.invoke[1]

[1] htps://shipilev.net/talks/jfokus-Feb2016-lord-of-the-strings.pdf

http://openjdk.java.net/jeps/280

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Hello String concatenaton

Running code to test many repeated
but similar String concatenatons:

int i = 0;
out.println("Hello " + (i++));
out.println("Hello " + (i++));
...

.. using both the new default and the
old javac strategy (inline), we get some
interestng results...

It seems there's more to it than merely
paying for the shared infrastructure of
invokedynamic...

1 500 1000 1500 2000
0

50

100

150

200

250

300

Default

Inline

concatenations

tim
e

 (
m

s)

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Profling ISC initalizaton

● Time mainly spent in StringConcatFactory.doStringConcat, doing
various MethodHandles.drop-/fold-/insertArguments operatons.

This is the creaton of the MethodHandle combinator tree making up the String
concatenaton. Creaton will reuse cached internal primitves, e.g., LambdaForms,
but even so there's a lot of ceremony involved...

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Are the alternatve concatenaton strategies any beter?

ISC implements a few diferent strategies
for string concatenaton, for example
BC_SB and MH_SB_SIZED.

The BC_SB strategy spin bytecode per
call site that resembles the code emited
by javac before ISC. This is closer to the
legacy code in inital costs, but scales
poorly.

The simpler MethodHandle-based
strategies provided, e.g. MH_SB_SIZED
seem to scale worse than the default,
too.

1 500 1000 1500 2000
0

50

100

150

200

250

300

350

400

450

500

Default

Inline

BC_SB

MH_SB_SIZED

concatenations

tim
e

 (
m

s)

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

More indyfed, more overheads!

Several JDK projects aim to leverage indy in ways similar to ISC:

● String.format can efectvely reuse much of the ISC mechanics to
implement a routne that is up to 40x faster

● Valhalla and Amber explore routnely using indy to generate methods like
equals and hashCode to allow beter laziness and semantc coupling

Challenge: Setup is bound to have both one-of and per-callsite overheads in line
with lambdas and/or ISC

Opportunity: Optmizing the underlying machinery will yield greater benefts.

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Towards a beter MethodHandle API

● Adding more high-level and custom MethodHandle combinators can be proftable

JEP 274 (JDK 9) implemented a number of combinators for common paterns such
as loops and try/fnally blocks to ease composing more powerful expressions with
fewer building blocks - there might be opportunites to improve on this

● Beter support for spinning dynamically generated code ahead-of-tme

● Isolated methods? htp://openjdk.java.net/jeps/8158765

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Towards beter bytecode generaton

To generate bytecode, java.lang.invoke spend a lot of tme performing String
transforms, e.g., java.lang.String -> Ljava/lang/String.

In total ~50% of the bytecode executed in the spinInnerClass method is spent in
java.lang.String and friends, which seems a bit of a waste...

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Beter constants

JEP 334 would introduce an API to model methods, classes and dynamic constants
descriptvely, e.g., java.lang.invoke.constant.ClassDesc

This will allow us to simplify how we go from a descriptve model to bytecode,
mainly remove some intermediate String representatons.

Properly leveraged it seems hopeful that such an API will enable some wins.

The constants API is also a building block for adding language support to emit ldc and
invokedynamic instructons directly (JEP 303). This efort is motvated partly by
simplifying testng of increasingly complex usage of indy and condy, but might also
unlock some startup improvements...

http://openjdk.java.net/jeps/334
http://openjdk.java.net/jeps/303

Copyright © 2018, Oracle and/or its afliates. All rights reserved. |

Why this obsession with startup?
In our litle performance team we run a lot of benchmarks.

Startup benchmarks were ofen seen to regress for obscure reasons.

So I started scratching that itch ...
... developed some crude tools to help analyze ...
... helped develop beter benchmarks ...
... started fxing what I could.

Soon I was being asked to help out diferent projects to ensure startup
was on track.

It's been a lot of fun.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

