
Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Scaling the
OpenJDK

Claes Redestad
Java SE Performance Team
Oracle

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Safe Harbor Statement
The following is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated
into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

2

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

In this talk...

3

We'll mainly concern ourselves with the vertical scalability of Java
running on a single OpenJDK 9 JVM

For examples, I will be using JMH to explore code and bottlenecks
– http://openjdk.java.net/projects/code-tools/jmh/
– Benchmarking machine is a dual-socket Intel Xeon E5-2630 v3

(Haswell), 8 cores with 2 threads each

Don't take anything presented here to be good, general performance
advice or even representative of what you'd see on your own
hardware.

http://openjdk.java.net/projects/code-tools/jmh/

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

JVM Scalability challenges

4

• Allow many concurrent and parallel tasks

• Allow for increasing memory requirements of applications

• Make it easy to work with

• Do all this without degrading throughput, latency and memory
overheads (too much)!

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Scaling up gently

5

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Bottlenecks hiding in plain sight...

6

import org.openjdk.jmh.annotations.*;
import java.util.*;

@State(Scope.Benchmark)
public class Scale {
 public int year = 2017;
 public int month = 11;
 public int day = 29;

 @Benchmark
 public Date getDate() {
 return new Date(year, month, day);
 }
}

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Bottlenecks hiding in plain sight..

7

Benchmark Mode Cnt Score Error Units
Scale.getDate avgt 10 0.637 ± 0.027 us/op # 1 thread
Scale.getDate avgt 10 1.239 ± 0.149 us/op # 2 threads
Scale.getDate avgt 10 37.693 ± 2.374 us/op # 32 threads

Benchmark Mode Cnt Score Error Units
Scale.getDate avgt 10 0.637 ± 0.027 us/op # 1 thread
Scale.getDate avgt 10 1.239 ± 0.149 us/op # 2 threads
Scale.getDate avgt 10 9.713 ± 0.676 us/op # 8 threads
Scale.getDate avgt 10 18.215 ± 2.578 us/op # 16 threads
Scale.getDate avgt 10 37.693 ± 2.374 us/op # 32 threads

No scaling at all!

Reason: Date(int, int, int) synchronizes on a shared, mutable calendar instance!

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Better alternatives exist

8

Benchmark Mode Cnt Score Error Units
Scale.getDate avgt 10 0.637 ± 0.027 us/op # 1 thread
Scale.getDate avgt 10 1.239 ± 0.149 us/op # 2 threads
Scale.getDate avgt 10 37.693 ± 2.374 us/op # 32 threads

 public LocalDate getLocalDate() {
 return LocalDate.of(year, month, day);
 }

Benchmark Mode Cnt Score Error Units
Scale.getLocalDate avgt 10 0.031 ± 0.007 us/op # 1
Scale.getLocalDate avgt 10 0.024 ± 0.009 us/op # 2
Scale.getLocalDate avgt 10 0.029 ± 0.005 us/op # 8
Scale.getLocalDate avgt 10 0.037 ± 0.007 us/op # 16
Scale.getLocalDate avgt 10 0.067 ± 0.001 us/op # 32

Much better! Only a small overhead per operation when saturating all hyperthreads.

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Sharing efects

9

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Improve String.hashCode implementation
During JDK 9 development, an innocent little clean-up was done to the
String.hashCode implementation:

int h = hash;
if (h == 0) {
 for (int v : value) {
 h = 31 * h + v;
 }
 hash = h;
}

int h = hash;
if (h == 0 && value.length > 0) {
 char val[] = value;
 for (int i = 0;
 i < value.length;
 i++) {
 h = 31 * h + val[i];
 }
 hash = h;
}

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Improve String.hashCode a bit further...

int h = hash;
if (h == 0) {
 for (int v : value) {
 h = 31 * h + v;
 }
 hash = h;
}

int h = hash;
if (h == 0 && value.length > 0) {
 char val[] = value;
 for (int i = 0;
 i < value.length;
 i++) {
 h = 31 * h + val[i];
 }
 hash = h;
}

int h = hash;
if (h == 0) {
 for (int v : value) {
 h = 31 * h + v;
 }
 if (h != 0) {

hash = h;
 }
}

For the corner case of the empty String we were now always calculating and storing 0
to the hash feld.

Even though the value doesn't change, this causes the cache line to be evicted, which
led to a 5% regression on a standard benchmark on dual-socket machines

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

True sharing in "".hashCode()

Using JMHs perfnorm profler made it easy to see not only the extra store in the second
implemenation, but also the dramatic increase in L1 cache misses per operation
induced by these stores:

$ java -jar benchmarks.jar .*String.hashCode.* -t 4 -prof perfnorm

String.hashCode2 avgt 5 38.701 ± 0.794 ns/op
String.hashCode2:CPI avgt 3.501 #/op
String.hashCode2:L1-dcache-load-misses avgt 0.460 #/op
String.hashCode2:L1-dcache-loads avgt 14.173 #/op
String.hashCode2:L1-dcache-stores avgt 5.067 #/op

String.hashCode3 avgt 5 6.512 ± 0.450 ns/op
String.hashCode3:CPI avgt 0.527 #/op
String.hashCode3:L1-dcache-load-misses avgt 0.001 #/op
String.hashCode3:L1-dcache-loads avgt 13.995 #/op
String.hashCode3:L1-dcache-stores avgt 4.005 #/op

(Omitted the frst implementation as those results are indistinguishable from the third)

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Sharing another story...
• Around 2012 we got a new batch of multi-socket hardware where we

started seeing intermittent performance regressions on various
benchmarks not seen before

– Often reductions of around 5-10% from one build to another,
then back to normal after a build or two...

– Then discovered that within the same build - with everything
else exactly the same - performance could fip back and forth
between a good and bad state by simply adding any parameter
to the command line...

• It took a few false starts, but soon a possible root cause was found

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Cache Line 1Cache Line 0

The dreaded false sharing
• HotSpots parallel GC implementation has a PSPromotionManager

class to keep information pertaining to an individual GC thread

• Each thread's instance of the PSPromotionManager is allocated at
the same time and laid out next to each other in an array

• When aligned to cache lines, all was good

PSPromotionManager 0 PSPromotionManager 1

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

The dreaded false sharing
• When memory layout changed, say, due to the addition of a

command line fag, the alignment of the PSPromotionManager might
shift so that they were now split across cache lines:

• When mutating state at the end of the frst manager instance,
memory pertaining to the second manager is dirtied and evicted
from CPU caches

Cache Line 1Cache Line 0

PSPromotionManager 0 PSPromotionManager 1

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

False sharing explained
• On most multi-core CPU architectures, data stores will enable a

cache coherency protocol to ensure the view of the memory is kept
consistent across CPUs - atomicity guarantees may incur added cost

• False sharing happens when one (or more) CPUs write to memory
that just happens to be on the same cache line as other memory
that another CPU is working on

The cost of false sharing grows
dramatically when work is
spread across diferent sockets

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

PSPromotionManager false sharing
Solution:

– Pad the PSPromotionManager object to be size aligned with
cache line size

– Align the array of PSPromotionManager objects to start at a
cache line boundary

Much more consistent performance in benchmarks using ParallelGC
ever since!

Most code isn't as massively parallel as the stop-the-world parallel
GC algorithm at play here, so it's not unlikely there are problems
lurking elsewhere that are simply harder to detect or provoke...

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Contention everywhere!
• JEP 143: Improved Contended Locking was a project delivered as part

of JDK 9
– Java diferentiates between biased locks, thin locks, and heavy,

contended monitors
– Biased or thin locks are used as a fast-path when application code

needs to lock on an Object but noone else is contending for the
lock

– Monitors are installed, or infated, into Objects when demand for
the Object monitor becomes contentious

• The JEP work includes a number of small but well-rounded
optimizations to reduce the overall latencies of synchronization
primitives in java

http://openjdk.java.net/jeps/143

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

• One optimization of JEP-143 was to pad the native data structure
used to represent the contended monitor of an Object

– Up to 50% improvements in targetted microbenchmarks
• Global monitors and mutexes in HotSpot were later padded out, too
• Similarly there is the @jdk.internal.vm.annotation.Contended facility

(since JDK 8) to apply padding around a Java feld and objects

Pad all the things!

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Inherent VM latencies

20

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Safepoints, GC and VM operations
• When the VM for some reason needs to stop all threads, it requests

a safepoint that instructs all application threads to stop

• Java threads perform safepoint polls at regular intervals during
normal execution - if a safepoint has been requested the thread will
halt and not resume work until the safepoint has completed

• Safepoints can be initiated by the GC or the VM, and by default the
VM will safepoint at least once per second

• While typically small and quick, time spent in safepoints and GC do
put upper bounds on scalability

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Monitor defation and other cleanup...
• One VM operation performed at safepoints is scanning for Java

object monitors to defate, which means removing the object
monitor from an Object and recycling it to a global list.

• A single thread scans the entire population of monitors...

• ... and both in benchmarks and real world applications, the monitor
population might grow to 100s of thousands, causing this defation
operation to take signifcant time

• JDK 9: Made -XX:+MonitorInUseLists default (+ deprecated the fag)

• Future work:
– Concurrent Monitor Defation
– Parallelize safepoint cleanup

https://bugs.openjdk.java.net/browse/JDK-8183909
https://bugs.openjdk.java.net/browse/JDK-8184751

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

JEP 312: Thread-local handshakes (JDK 10)
• Added infrastructure to move from only allowing global safepoints

(that stop all threads) to perform handshakes on any number of
threads.

"The big diference between safepointing and handshaking is that
the per thread operation will be performed on all threads as soon as
possible and they will continue to execute as soon as its own
operation is completed."

• Enables a number of optimizations, such as no longer needing to
stop all threads to revoke a biased lock

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

UseMembar - Not all optimizations age well
• -XX:-UseMembar was implemented at a time when fence instructions on the

state of the art hardware were expensive. Instead a "pseudo-membar" was
introduced.

• Turns out this implementation caused various issues, including a scalability
bottleneck when reading thread states, a long tail of actual bugs... there's
even some false sharing possible when running more than ~64 java threads

• Making +UseMembar the default trades global synchronization of thread
state for local fences

– In single-threaded benchmarks that take a lot of transitions this can be
a performance loss since fences still have higher latencies

– For scalability, however, it's typically preferable to take a local
performance hit if it removes a cost incurred on all threads

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

GC scalability

25

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

G1 scalability improvements in JDK 9
• 10 TB dataset on :

– "Pause times reduced by 5-20x on read-only benchmark"
– "For the frst time we achieved stable operation on a mixed

read-write workload with a 10 TB dataset"

https://www.youtube.com/watch?v=LppgqvKOUKs

• Key improvements includes merging per-thread bitmaps into a single
shared structure managed by lock-free algorithms, dropping worst
case mark times from 15 minutes to mere seconds mainly from
becoming way more cache-friendly.

https://www.youtube.com/watch?v=LppgqvKOUKs

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

ZGC project proposed
• Max pause times not exceeding 10ms on multi-TB heaps

• Parallel and concurrent: Designed for 1000s of hardware threads

=> Requires lock- and/or wait-free datastructures

=> Thread/CPU local data

• Dynamic, NUMA-aware and lazy resource allocation

• Features striping: tries to be locality aware and allocate into
compact chunks of memory that individual GC workers tend to,
aiming to reduce memory contention and cache cross-talk.

• Sacrifce a bit of throughput to improve latency and scalability

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Honorable mention:
Project Loom

28

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

• Implement a light-weight user-mode thread as an alternative to the
OS-managed threads that are the de facto standard in Java today

• The goal is that such "threads" will:
– Have minimal footprint - allow millions of concurrent jobs on a

system which could host only thousands of Threads
– Remove penalties of blocking
– Support tail calls...

• 5 minute lightning talk:
https://www.youtube.com/watch?v=T-8fA3dEUlg

Project Loom

https://www.youtube.com/watch?v=T-8fA3dEUlg

Copyright © 2017, Oracle and/or its afliates. All rights reserved. |

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

