rev 47414 : Move polling page allocation to SafepointMechanism initialization
rev 47415 : Add Thread Local handshakes and thread local polling
1 /*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 // no precompiled headers
26 #include "classfile/classLoader.hpp"
27 #include "classfile/systemDictionary.hpp"
28 #include "classfile/vmSymbols.hpp"
29 #include "code/icBuffer.hpp"
30 #include "code/vtableStubs.hpp"
31 #include "compiler/compileBroker.hpp"
32 #include "compiler/disassembler.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "jvm_solaris.h"
35 #include "logging/log.hpp"
36 #include "memory/allocation.inline.hpp"
37 #include "memory/filemap.hpp"
38 #include "oops/oop.inline.hpp"
39 #include "os_share_solaris.hpp"
40 #include "os_solaris.inline.hpp"
41 #include "prims/jniFastGetField.hpp"
42 #include "prims/jvm.h"
43 #include "prims/jvm_misc.hpp"
44 #include "runtime/arguments.hpp"
45 #include "runtime/atomic.hpp"
46 #include "runtime/extendedPC.hpp"
47 #include "runtime/globals.hpp"
48 #include "runtime/interfaceSupport.hpp"
49 #include "runtime/java.hpp"
50 #include "runtime/javaCalls.hpp"
51 #include "runtime/mutexLocker.hpp"
52 #include "runtime/objectMonitor.hpp"
53 #include "runtime/orderAccess.inline.hpp"
54 #include "runtime/osThread.hpp"
55 #include "runtime/perfMemory.hpp"
56 #include "runtime/sharedRuntime.hpp"
57 #include "runtime/statSampler.hpp"
58 #include "runtime/stubRoutines.hpp"
59 #include "runtime/thread.inline.hpp"
60 #include "runtime/threadCritical.hpp"
61 #include "runtime/timer.hpp"
62 #include "runtime/vm_version.hpp"
63 #include "semaphore_posix.hpp"
64 #include "services/attachListener.hpp"
65 #include "services/memTracker.hpp"
66 #include "services/runtimeService.hpp"
67 #include "utilities/align.hpp"
68 #include "utilities/decoder.hpp"
69 #include "utilities/defaultStream.hpp"
70 #include "utilities/events.hpp"
71 #include "utilities/growableArray.hpp"
72 #include "utilities/macros.hpp"
73 #include "utilities/vmError.hpp"
74
75 // put OS-includes here
76 # include <dlfcn.h>
77 # include <errno.h>
78 # include <exception>
79 # include <link.h>
80 # include <poll.h>
81 # include <pthread.h>
82 # include <schedctl.h>
83 # include <setjmp.h>
84 # include <signal.h>
85 # include <stdio.h>
86 # include <alloca.h>
87 # include <sys/filio.h>
88 # include <sys/ipc.h>
89 # include <sys/lwp.h>
90 # include <sys/machelf.h> // for elf Sym structure used by dladdr1
91 # include <sys/mman.h>
92 # include <sys/processor.h>
93 # include <sys/procset.h>
94 # include <sys/pset.h>
95 # include <sys/resource.h>
96 # include <sys/shm.h>
97 # include <sys/socket.h>
98 # include <sys/stat.h>
99 # include <sys/systeminfo.h>
100 # include <sys/time.h>
101 # include <sys/times.h>
102 # include <sys/types.h>
103 # include <sys/wait.h>
104 # include <sys/utsname.h>
105 # include <thread.h>
106 # include <unistd.h>
107 # include <sys/priocntl.h>
108 # include <sys/rtpriocntl.h>
109 # include <sys/tspriocntl.h>
110 # include <sys/iapriocntl.h>
111 # include <sys/fxpriocntl.h>
112 # include <sys/loadavg.h>
113 # include <string.h>
114 # include <stdio.h>
115
116 # define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later
117 # include <sys/procfs.h> // see comment in <sys/procfs.h>
118
119 #define MAX_PATH (2 * K)
120
121 // for timer info max values which include all bits
122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
123
124
125 // Here are some liblgrp types from sys/lgrp_user.h to be able to
126 // compile on older systems without this header file.
127
128 #ifndef MADV_ACCESS_LWP
129 #define MADV_ACCESS_LWP 7 /* next LWP to access heavily */
130 #endif
131 #ifndef MADV_ACCESS_MANY
132 #define MADV_ACCESS_MANY 8 /* many processes to access heavily */
133 #endif
134
135 #ifndef LGRP_RSRC_CPU
136 #define LGRP_RSRC_CPU 0 /* CPU resources */
137 #endif
138 #ifndef LGRP_RSRC_MEM
139 #define LGRP_RSRC_MEM 1 /* memory resources */
140 #endif
141
142 // Values for ThreadPriorityPolicy == 1
143 int prio_policy1[CriticalPriority+1] = {
144 -99999, 0, 16, 32, 48, 64,
145 80, 96, 112, 124, 127, 127 };
146
147 // System parameters used internally
148 static clock_t clock_tics_per_sec = 100;
149
150 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
151 static bool enabled_extended_FILE_stdio = false;
152
153 // For diagnostics to print a message once. see run_periodic_checks
154 static bool check_addr0_done = false;
155 static sigset_t check_signal_done;
156 static bool check_signals = true;
157
158 address os::Solaris::handler_start; // start pc of thr_sighndlrinfo
159 address os::Solaris::handler_end; // end pc of thr_sighndlrinfo
160
161 address os::Solaris::_main_stack_base = NULL; // 4352906 workaround
162
163 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
164
165 // "default" initializers for missing libc APIs
166 extern "C" {
167 static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
168 static int lwp_mutex_destroy(mutex_t *mx) { return 0; }
169
170 static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
171 static int lwp_cond_destroy(cond_t *cv) { return 0; }
172 }
173
174 // "default" initializers for pthread-based synchronization
175 extern "C" {
176 static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
177 static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
178 }
179
180 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
181
182 static inline size_t adjust_stack_size(address base, size_t size) {
183 if ((ssize_t)size < 0) {
184 // 4759953: Compensate for ridiculous stack size.
185 size = max_intx;
186 }
187 if (size > (size_t)base) {
188 // 4812466: Make sure size doesn't allow the stack to wrap the address space.
189 size = (size_t)base;
190 }
191 return size;
192 }
193
194 static inline stack_t get_stack_info() {
195 stack_t st;
196 int retval = thr_stksegment(&st);
197 st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
198 assert(retval == 0, "incorrect return value from thr_stksegment");
199 assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
200 assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
201 return st;
202 }
203
204 address os::current_stack_base() {
205 int r = thr_main();
206 guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
207 bool is_primordial_thread = r;
208
209 // Workaround 4352906, avoid calls to thr_stksegment by
210 // thr_main after the first one (it looks like we trash
211 // some data, causing the value for ss_sp to be incorrect).
212 if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
213 stack_t st = get_stack_info();
214 if (is_primordial_thread) {
215 // cache initial value of stack base
216 os::Solaris::_main_stack_base = (address)st.ss_sp;
217 }
218 return (address)st.ss_sp;
219 } else {
220 guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
221 return os::Solaris::_main_stack_base;
222 }
223 }
224
225 size_t os::current_stack_size() {
226 size_t size;
227
228 int r = thr_main();
229 guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
230 if (!r) {
231 size = get_stack_info().ss_size;
232 } else {
233 struct rlimit limits;
234 getrlimit(RLIMIT_STACK, &limits);
235 size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
236 }
237 // base may not be page aligned
238 address base = current_stack_base();
239 address bottom = align_up(base - size, os::vm_page_size());;
240 return (size_t)(base - bottom);
241 }
242
243 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
244 return localtime_r(clock, res);
245 }
246
247 void os::Solaris::try_enable_extended_io() {
248 typedef int (*enable_extended_FILE_stdio_t)(int, int);
249
250 if (!UseExtendedFileIO) {
251 return;
252 }
253
254 enable_extended_FILE_stdio_t enabler =
255 (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
256 "enable_extended_FILE_stdio");
257 if (enabler) {
258 enabler(-1, -1);
259 }
260 }
261
262 static int _processors_online = 0;
263
264 jint os::Solaris::_os_thread_limit = 0;
265 volatile jint os::Solaris::_os_thread_count = 0;
266
267 julong os::available_memory() {
268 return Solaris::available_memory();
269 }
270
271 julong os::Solaris::available_memory() {
272 return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
273 }
274
275 julong os::Solaris::_physical_memory = 0;
276
277 julong os::physical_memory() {
278 return Solaris::physical_memory();
279 }
280
281 static hrtime_t first_hrtime = 0;
282 static const hrtime_t hrtime_hz = 1000*1000*1000;
283 static volatile hrtime_t max_hrtime = 0;
284
285
286 void os::Solaris::initialize_system_info() {
287 set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
288 _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
289 _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
290 (julong)sysconf(_SC_PAGESIZE);
291 }
292
293 int os::active_processor_count() {
294 int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
295 pid_t pid = getpid();
296 psetid_t pset = PS_NONE;
297 // Are we running in a processor set or is there any processor set around?
298 if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
299 uint_t pset_cpus;
300 // Query the number of cpus available to us.
301 if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
302 assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
303 _processors_online = pset_cpus;
304 return pset_cpus;
305 }
306 }
307 // Otherwise return number of online cpus
308 return online_cpus;
309 }
310
311 static bool find_processors_in_pset(psetid_t pset,
312 processorid_t** id_array,
313 uint_t* id_length) {
314 bool result = false;
315 // Find the number of processors in the processor set.
316 if (pset_info(pset, NULL, id_length, NULL) == 0) {
317 // Make up an array to hold their ids.
318 *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
319 // Fill in the array with their processor ids.
320 if (pset_info(pset, NULL, id_length, *id_array) == 0) {
321 result = true;
322 }
323 }
324 return result;
325 }
326
327 // Callers of find_processors_online() must tolerate imprecise results --
328 // the system configuration can change asynchronously because of DR
329 // or explicit psradm operations.
330 //
331 // We also need to take care that the loop (below) terminates as the
332 // number of processors online can change between the _SC_NPROCESSORS_ONLN
333 // request and the loop that builds the list of processor ids. Unfortunately
334 // there's no reliable way to determine the maximum valid processor id,
335 // so we use a manifest constant, MAX_PROCESSOR_ID, instead. See p_online
336 // man pages, which claim the processor id set is "sparse, but
337 // not too sparse". MAX_PROCESSOR_ID is used to ensure that we eventually
338 // exit the loop.
339 //
340 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
341 // not available on S8.0.
342
343 static bool find_processors_online(processorid_t** id_array,
344 uint* id_length) {
345 const processorid_t MAX_PROCESSOR_ID = 100000;
346 // Find the number of processors online.
347 *id_length = sysconf(_SC_NPROCESSORS_ONLN);
348 // Make up an array to hold their ids.
349 *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
350 // Processors need not be numbered consecutively.
351 long found = 0;
352 processorid_t next = 0;
353 while (found < *id_length && next < MAX_PROCESSOR_ID) {
354 processor_info_t info;
355 if (processor_info(next, &info) == 0) {
356 // NB, PI_NOINTR processors are effectively online ...
357 if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
358 (*id_array)[found] = next;
359 found += 1;
360 }
361 }
362 next += 1;
363 }
364 if (found < *id_length) {
365 // The loop above didn't identify the expected number of processors.
366 // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
367 // and re-running the loop, above, but there's no guarantee of progress
368 // if the system configuration is in flux. Instead, we just return what
369 // we've got. Note that in the worst case find_processors_online() could
370 // return an empty set. (As a fall-back in the case of the empty set we
371 // could just return the ID of the current processor).
372 *id_length = found;
373 }
374
375 return true;
376 }
377
378 static bool assign_distribution(processorid_t* id_array,
379 uint id_length,
380 uint* distribution,
381 uint distribution_length) {
382 // We assume we can assign processorid_t's to uint's.
383 assert(sizeof(processorid_t) == sizeof(uint),
384 "can't convert processorid_t to uint");
385 // Quick check to see if we won't succeed.
386 if (id_length < distribution_length) {
387 return false;
388 }
389 // Assign processor ids to the distribution.
390 // Try to shuffle processors to distribute work across boards,
391 // assuming 4 processors per board.
392 const uint processors_per_board = ProcessDistributionStride;
393 // Find the maximum processor id.
394 processorid_t max_id = 0;
395 for (uint m = 0; m < id_length; m += 1) {
396 max_id = MAX2(max_id, id_array[m]);
397 }
398 // The next id, to limit loops.
399 const processorid_t limit_id = max_id + 1;
400 // Make up markers for available processors.
401 bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
402 for (uint c = 0; c < limit_id; c += 1) {
403 available_id[c] = false;
404 }
405 for (uint a = 0; a < id_length; a += 1) {
406 available_id[id_array[a]] = true;
407 }
408 // Step by "boards", then by "slot", copying to "assigned".
409 // NEEDS_CLEANUP: The assignment of processors should be stateful,
410 // remembering which processors have been assigned by
411 // previous calls, etc., so as to distribute several
412 // independent calls of this method. What we'd like is
413 // It would be nice to have an API that let us ask
414 // how many processes are bound to a processor,
415 // but we don't have that, either.
416 // In the short term, "board" is static so that
417 // subsequent distributions don't all start at board 0.
418 static uint board = 0;
419 uint assigned = 0;
420 // Until we've found enough processors ....
421 while (assigned < distribution_length) {
422 // ... find the next available processor in the board.
423 for (uint slot = 0; slot < processors_per_board; slot += 1) {
424 uint try_id = board * processors_per_board + slot;
425 if ((try_id < limit_id) && (available_id[try_id] == true)) {
426 distribution[assigned] = try_id;
427 available_id[try_id] = false;
428 assigned += 1;
429 break;
430 }
431 }
432 board += 1;
433 if (board * processors_per_board + 0 >= limit_id) {
434 board = 0;
435 }
436 }
437 if (available_id != NULL) {
438 FREE_C_HEAP_ARRAY(bool, available_id);
439 }
440 return true;
441 }
442
443 void os::set_native_thread_name(const char *name) {
444 if (Solaris::_pthread_setname_np != NULL) {
445 // Only the first 31 bytes of 'name' are processed by pthread_setname_np
446 // but we explicitly copy into a size-limited buffer to avoid any
447 // possible overflow.
448 char buf[32];
449 snprintf(buf, sizeof(buf), "%s", name);
450 buf[sizeof(buf) - 1] = '\0';
451 Solaris::_pthread_setname_np(pthread_self(), buf);
452 }
453 }
454
455 bool os::distribute_processes(uint length, uint* distribution) {
456 bool result = false;
457 // Find the processor id's of all the available CPUs.
458 processorid_t* id_array = NULL;
459 uint id_length = 0;
460 // There are some races between querying information and using it,
461 // since processor sets can change dynamically.
462 psetid_t pset = PS_NONE;
463 // Are we running in a processor set?
464 if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
465 result = find_processors_in_pset(pset, &id_array, &id_length);
466 } else {
467 result = find_processors_online(&id_array, &id_length);
468 }
469 if (result == true) {
470 if (id_length >= length) {
471 result = assign_distribution(id_array, id_length, distribution, length);
472 } else {
473 result = false;
474 }
475 }
476 if (id_array != NULL) {
477 FREE_C_HEAP_ARRAY(processorid_t, id_array);
478 }
479 return result;
480 }
481
482 bool os::bind_to_processor(uint processor_id) {
483 // We assume that a processorid_t can be stored in a uint.
484 assert(sizeof(uint) == sizeof(processorid_t),
485 "can't convert uint to processorid_t");
486 int bind_result =
487 processor_bind(P_LWPID, // bind LWP.
488 P_MYID, // bind current LWP.
489 (processorid_t) processor_id, // id.
490 NULL); // don't return old binding.
491 return (bind_result == 0);
492 }
493
494 // Return true if user is running as root.
495
496 bool os::have_special_privileges() {
497 static bool init = false;
498 static bool privileges = false;
499 if (!init) {
500 privileges = (getuid() != geteuid()) || (getgid() != getegid());
501 init = true;
502 }
503 return privileges;
504 }
505
506
507 void os::init_system_properties_values() {
508 // The next steps are taken in the product version:
509 //
510 // Obtain the JAVA_HOME value from the location of libjvm.so.
511 // This library should be located at:
512 // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
513 //
514 // If "/jre/lib/" appears at the right place in the path, then we
515 // assume libjvm.so is installed in a JDK and we use this path.
516 //
517 // Otherwise exit with message: "Could not create the Java virtual machine."
518 //
519 // The following extra steps are taken in the debugging version:
520 //
521 // If "/jre/lib/" does NOT appear at the right place in the path
522 // instead of exit check for $JAVA_HOME environment variable.
523 //
524 // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
525 // then we append a fake suffix "hotspot/libjvm.so" to this path so
526 // it looks like libjvm.so is installed there
527 // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
528 //
529 // Otherwise exit.
530 //
531 // Important note: if the location of libjvm.so changes this
532 // code needs to be changed accordingly.
533
534 // Base path of extensions installed on the system.
535 #define SYS_EXT_DIR "/usr/jdk/packages"
536 #define EXTENSIONS_DIR "/lib/ext"
537
538 // Buffer that fits several sprintfs.
539 // Note that the space for the colon and the trailing null are provided
540 // by the nulls included by the sizeof operator.
541 const size_t bufsize =
542 MAX3((size_t)MAXPATHLEN, // For dll_dir & friends.
543 sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
544 (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
545 char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
546
547 // sysclasspath, java_home, dll_dir
548 {
549 char *pslash;
550 os::jvm_path(buf, bufsize);
551
552 // Found the full path to libjvm.so.
553 // Now cut the path to <java_home>/jre if we can.
554 *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
555 pslash = strrchr(buf, '/');
556 if (pslash != NULL) {
557 *pslash = '\0'; // Get rid of /{client|server|hotspot}.
558 }
559 Arguments::set_dll_dir(buf);
560
561 if (pslash != NULL) {
562 pslash = strrchr(buf, '/');
563 if (pslash != NULL) {
564 *pslash = '\0'; // Get rid of /lib.
565 }
566 }
567 Arguments::set_java_home(buf);
568 set_boot_path('/', ':');
569 }
570
571 // Where to look for native libraries.
572 {
573 // Use dlinfo() to determine the correct java.library.path.
574 //
575 // If we're launched by the Java launcher, and the user
576 // does not set java.library.path explicitly on the commandline,
577 // the Java launcher sets LD_LIBRARY_PATH for us and unsets
578 // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64. In this case
579 // dlinfo returns LD_LIBRARY_PATH + crle settings (including
580 // /usr/lib), which is exactly what we want.
581 //
582 // If the user does set java.library.path, it completely
583 // overwrites this setting, and always has.
584 //
585 // If we're not launched by the Java launcher, we may
586 // get here with any/all of the LD_LIBRARY_PATH[_32|64]
587 // settings. Again, dlinfo does exactly what we want.
588
589 Dl_serinfo info_sz, *info = &info_sz;
590 Dl_serpath *path;
591 char *library_path;
592 char *common_path = buf;
593
594 // Determine search path count and required buffer size.
595 if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
596 FREE_C_HEAP_ARRAY(char, buf);
597 vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
598 }
599
600 // Allocate new buffer and initialize.
601 info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
602 info->dls_size = info_sz.dls_size;
603 info->dls_cnt = info_sz.dls_cnt;
604
605 // Obtain search path information.
606 if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
607 FREE_C_HEAP_ARRAY(char, buf);
608 FREE_C_HEAP_ARRAY(char, info);
609 vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
610 }
611
612 path = &info->dls_serpath[0];
613
614 // Note: Due to a legacy implementation, most of the library path
615 // is set in the launcher. This was to accomodate linking restrictions
616 // on legacy Solaris implementations (which are no longer supported).
617 // Eventually, all the library path setting will be done here.
618 //
619 // However, to prevent the proliferation of improperly built native
620 // libraries, the new path component /usr/jdk/packages is added here.
621
622 // Construct the invariant part of ld_library_path.
623 sprintf(common_path, SYS_EXT_DIR "/lib");
624
625 // Struct size is more than sufficient for the path components obtained
626 // through the dlinfo() call, so only add additional space for the path
627 // components explicitly added here.
628 size_t library_path_size = info->dls_size + strlen(common_path);
629 library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
630 library_path[0] = '\0';
631
632 // Construct the desired Java library path from the linker's library
633 // search path.
634 //
635 // For compatibility, it is optimal that we insert the additional path
636 // components specific to the Java VM after those components specified
637 // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
638 // infrastructure.
639 if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
640 strcpy(library_path, common_path);
641 } else {
642 int inserted = 0;
643 int i;
644 for (i = 0; i < info->dls_cnt; i++, path++) {
645 uint_t flags = path->dls_flags & LA_SER_MASK;
646 if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
647 strcat(library_path, common_path);
648 strcat(library_path, os::path_separator());
649 inserted = 1;
650 }
651 strcat(library_path, path->dls_name);
652 strcat(library_path, os::path_separator());
653 }
654 // Eliminate trailing path separator.
655 library_path[strlen(library_path)-1] = '\0';
656 }
657
658 // happens before argument parsing - can't use a trace flag
659 // tty->print_raw("init_system_properties_values: native lib path: ");
660 // tty->print_raw_cr(library_path);
661
662 // Callee copies into its own buffer.
663 Arguments::set_library_path(library_path);
664
665 FREE_C_HEAP_ARRAY(char, library_path);
666 FREE_C_HEAP_ARRAY(char, info);
667 }
668
669 // Extensions directories.
670 sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
671 Arguments::set_ext_dirs(buf);
672
673 FREE_C_HEAP_ARRAY(char, buf);
674
675 #undef SYS_EXT_DIR
676 #undef EXTENSIONS_DIR
677 }
678
679 void os::breakpoint() {
680 BREAKPOINT;
681 }
682
683 bool os::obsolete_option(const JavaVMOption *option) {
684 if (!strncmp(option->optionString, "-Xt", 3)) {
685 return true;
686 } else if (!strncmp(option->optionString, "-Xtm", 4)) {
687 return true;
688 } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
689 return true;
690 } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
691 return true;
692 }
693 return false;
694 }
695
696 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
697 address stackStart = (address)thread->stack_base();
698 address stackEnd = (address)(stackStart - (address)thread->stack_size());
699 if (sp < stackStart && sp >= stackEnd) return true;
700 return false;
701 }
702
703 extern "C" void breakpoint() {
704 // use debugger to set breakpoint here
705 }
706
707 static thread_t main_thread;
708
709 // Thread start routine for all newly created threads
710 extern "C" void* thread_native_entry(void* thread_addr) {
711 // Try to randomize the cache line index of hot stack frames.
712 // This helps when threads of the same stack traces evict each other's
713 // cache lines. The threads can be either from the same JVM instance, or
714 // from different JVM instances. The benefit is especially true for
715 // processors with hyperthreading technology.
716 static int counter = 0;
717 int pid = os::current_process_id();
718 alloca(((pid ^ counter++) & 7) * 128);
719
720 int prio;
721 Thread* thread = (Thread*)thread_addr;
722
723 thread->initialize_thread_current();
724
725 OSThread* osthr = thread->osthread();
726
727 osthr->set_lwp_id(_lwp_self()); // Store lwp in case we are bound
728 thread->_schedctl = (void *) schedctl_init();
729
730 log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
731 os::current_thread_id());
732
733 if (UseNUMA) {
734 int lgrp_id = os::numa_get_group_id();
735 if (lgrp_id != -1) {
736 thread->set_lgrp_id(lgrp_id);
737 }
738 }
739
740 // Our priority was set when we were created, and stored in the
741 // osthread, but couldn't be passed through to our LWP until now.
742 // So read back the priority and set it again.
743
744 if (osthr->thread_id() != -1) {
745 if (UseThreadPriorities) {
746 int prio = osthr->native_priority();
747 if (ThreadPriorityVerbose) {
748 tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
749 INTPTR_FORMAT ", setting priority: %d\n",
750 osthr->thread_id(), osthr->lwp_id(), prio);
751 }
752 os::set_native_priority(thread, prio);
753 }
754 } else if (ThreadPriorityVerbose) {
755 warning("Can't set priority in _start routine, thread id hasn't been set\n");
756 }
757
758 assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
759
760 // initialize signal mask for this thread
761 os::Solaris::hotspot_sigmask(thread);
762
763 thread->run();
764
765 // One less thread is executing
766 // When the VMThread gets here, the main thread may have already exited
767 // which frees the CodeHeap containing the Atomic::dec code
768 if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
769 Atomic::dec(&os::Solaris::_os_thread_count);
770 }
771
772 log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
773
774 // If a thread has not deleted itself ("delete this") as part of its
775 // termination sequence, we have to ensure thread-local-storage is
776 // cleared before we actually terminate. No threads should ever be
777 // deleted asynchronously with respect to their termination.
778 if (Thread::current_or_null_safe() != NULL) {
779 assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
780 thread->clear_thread_current();
781 }
782
783 if (UseDetachedThreads) {
784 thr_exit(NULL);
785 ShouldNotReachHere();
786 }
787 return NULL;
788 }
789
790 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
791 // Allocate the OSThread object
792 OSThread* osthread = new OSThread(NULL, NULL);
793 if (osthread == NULL) return NULL;
794
795 // Store info on the Solaris thread into the OSThread
796 osthread->set_thread_id(thread_id);
797 osthread->set_lwp_id(_lwp_self());
798 thread->_schedctl = (void *) schedctl_init();
799
800 if (UseNUMA) {
801 int lgrp_id = os::numa_get_group_id();
802 if (lgrp_id != -1) {
803 thread->set_lgrp_id(lgrp_id);
804 }
805 }
806
807 if (ThreadPriorityVerbose) {
808 tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
809 osthread->thread_id(), osthread->lwp_id());
810 }
811
812 // Initial thread state is INITIALIZED, not SUSPENDED
813 osthread->set_state(INITIALIZED);
814
815 return osthread;
816 }
817
818 void os::Solaris::hotspot_sigmask(Thread* thread) {
819 //Save caller's signal mask
820 sigset_t sigmask;
821 pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
822 OSThread *osthread = thread->osthread();
823 osthread->set_caller_sigmask(sigmask);
824
825 pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
826 if (!ReduceSignalUsage) {
827 if (thread->is_VM_thread()) {
828 // Only the VM thread handles BREAK_SIGNAL ...
829 pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
830 } else {
831 // ... all other threads block BREAK_SIGNAL
832 assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
833 pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
834 }
835 }
836 }
837
838 bool os::create_attached_thread(JavaThread* thread) {
839 #ifdef ASSERT
840 thread->verify_not_published();
841 #endif
842 OSThread* osthread = create_os_thread(thread, thr_self());
843 if (osthread == NULL) {
844 return false;
845 }
846
847 // Initial thread state is RUNNABLE
848 osthread->set_state(RUNNABLE);
849 thread->set_osthread(osthread);
850
851 // initialize signal mask for this thread
852 // and save the caller's signal mask
853 os::Solaris::hotspot_sigmask(thread);
854
855 log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
856 os::current_thread_id());
857
858 return true;
859 }
860
861 bool os::create_main_thread(JavaThread* thread) {
862 #ifdef ASSERT
863 thread->verify_not_published();
864 #endif
865 if (_starting_thread == NULL) {
866 _starting_thread = create_os_thread(thread, main_thread);
867 if (_starting_thread == NULL) {
868 return false;
869 }
870 }
871
872 // The primodial thread is runnable from the start
873 _starting_thread->set_state(RUNNABLE);
874
875 thread->set_osthread(_starting_thread);
876
877 // initialize signal mask for this thread
878 // and save the caller's signal mask
879 os::Solaris::hotspot_sigmask(thread);
880
881 return true;
882 }
883
884 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
885 static char* describe_thr_create_attributes(char* buf, size_t buflen,
886 size_t stacksize, long flags) {
887 stringStream ss(buf, buflen);
888 ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
889 ss.print("flags: ");
890 #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
891 #define ALL(X) \
892 X(THR_SUSPENDED) \
893 X(THR_DETACHED) \
894 X(THR_BOUND) \
895 X(THR_NEW_LWP) \
896 X(THR_DAEMON)
897 ALL(PRINT_FLAG)
898 #undef ALL
899 #undef PRINT_FLAG
900 return buf;
901 }
902
903 // return default stack size for thr_type
904 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
905 // default stack size when not specified by caller is 1M (2M for LP64)
906 size_t s = (BytesPerWord >> 2) * K * K;
907 return s;
908 }
909
910 bool os::create_thread(Thread* thread, ThreadType thr_type,
911 size_t req_stack_size) {
912 // Allocate the OSThread object
913 OSThread* osthread = new OSThread(NULL, NULL);
914 if (osthread == NULL) {
915 return false;
916 }
917
918 if (ThreadPriorityVerbose) {
919 char *thrtyp;
920 switch (thr_type) {
921 case vm_thread:
922 thrtyp = (char *)"vm";
923 break;
924 case cgc_thread:
925 thrtyp = (char *)"cgc";
926 break;
927 case pgc_thread:
928 thrtyp = (char *)"pgc";
929 break;
930 case java_thread:
931 thrtyp = (char *)"java";
932 break;
933 case compiler_thread:
934 thrtyp = (char *)"compiler";
935 break;
936 case watcher_thread:
937 thrtyp = (char *)"watcher";
938 break;
939 default:
940 thrtyp = (char *)"unknown";
941 break;
942 }
943 tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
944 }
945
946 // calculate stack size if it's not specified by caller
947 size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
948
949 // Initial state is ALLOCATED but not INITIALIZED
950 osthread->set_state(ALLOCATED);
951
952 if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
953 // We got lots of threads. Check if we still have some address space left.
954 // Need to be at least 5Mb of unreserved address space. We do check by
955 // trying to reserve some.
956 const size_t VirtualMemoryBangSize = 20*K*K;
957 char* mem = os::reserve_memory(VirtualMemoryBangSize);
958 if (mem == NULL) {
959 delete osthread;
960 return false;
961 } else {
962 // Release the memory again
963 os::release_memory(mem, VirtualMemoryBangSize);
964 }
965 }
966
967 // Setup osthread because the child thread may need it.
968 thread->set_osthread(osthread);
969
970 // Create the Solaris thread
971 thread_t tid = 0;
972 long flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
973 int status;
974
975 // Mark that we don't have an lwp or thread id yet.
976 // In case we attempt to set the priority before the thread starts.
977 osthread->set_lwp_id(-1);
978 osthread->set_thread_id(-1);
979
980 status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
981
982 char buf[64];
983 if (status == 0) {
984 log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
985 (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
986 } else {
987 log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
988 os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
989 }
990
991 if (status != 0) {
992 thread->set_osthread(NULL);
993 // Need to clean up stuff we've allocated so far
994 delete osthread;
995 return false;
996 }
997
998 Atomic::inc(&os::Solaris::_os_thread_count);
999
1000 // Store info on the Solaris thread into the OSThread
1001 osthread->set_thread_id(tid);
1002
1003 // Remember that we created this thread so we can set priority on it
1004 osthread->set_vm_created();
1005
1006 // Most thread types will set an explicit priority before starting the thread,
1007 // but for those that don't we need a valid value to read back in thread_native_entry.
1008 osthread->set_native_priority(NormPriority);
1009
1010 // Initial thread state is INITIALIZED, not SUSPENDED
1011 osthread->set_state(INITIALIZED);
1012
1013 // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1014 return true;
1015 }
1016
1017 debug_only(static bool signal_sets_initialized = false);
1018 static sigset_t unblocked_sigs, vm_sigs;
1019
1020 bool os::Solaris::is_sig_ignored(int sig) {
1021 struct sigaction oact;
1022 sigaction(sig, (struct sigaction*)NULL, &oact);
1023 void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
1024 : CAST_FROM_FN_PTR(void*, oact.sa_handler);
1025 if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1026 return true;
1027 } else {
1028 return false;
1029 }
1030 }
1031
1032 void os::Solaris::signal_sets_init() {
1033 // Should also have an assertion stating we are still single-threaded.
1034 assert(!signal_sets_initialized, "Already initialized");
1035 // Fill in signals that are necessarily unblocked for all threads in
1036 // the VM. Currently, we unblock the following signals:
1037 // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1038 // by -Xrs (=ReduceSignalUsage));
1039 // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1040 // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1041 // the dispositions or masks wrt these signals.
1042 // Programs embedding the VM that want to use the above signals for their
1043 // own purposes must, at this time, use the "-Xrs" option to prevent
1044 // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1045 // (See bug 4345157, and other related bugs).
1046 // In reality, though, unblocking these signals is really a nop, since
1047 // these signals are not blocked by default.
1048 sigemptyset(&unblocked_sigs);
1049 sigaddset(&unblocked_sigs, SIGILL);
1050 sigaddset(&unblocked_sigs, SIGSEGV);
1051 sigaddset(&unblocked_sigs, SIGBUS);
1052 sigaddset(&unblocked_sigs, SIGFPE);
1053 sigaddset(&unblocked_sigs, ASYNC_SIGNAL);
1054
1055 if (!ReduceSignalUsage) {
1056 if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1057 sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1058 }
1059 if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1060 sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1061 }
1062 if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1063 sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1064 }
1065 }
1066 // Fill in signals that are blocked by all but the VM thread.
1067 sigemptyset(&vm_sigs);
1068 if (!ReduceSignalUsage) {
1069 sigaddset(&vm_sigs, BREAK_SIGNAL);
1070 }
1071 debug_only(signal_sets_initialized = true);
1072
1073 // For diagnostics only used in run_periodic_checks
1074 sigemptyset(&check_signal_done);
1075 }
1076
1077 // These are signals that are unblocked while a thread is running Java.
1078 // (For some reason, they get blocked by default.)
1079 sigset_t* os::Solaris::unblocked_signals() {
1080 assert(signal_sets_initialized, "Not initialized");
1081 return &unblocked_sigs;
1082 }
1083
1084 // These are the signals that are blocked while a (non-VM) thread is
1085 // running Java. Only the VM thread handles these signals.
1086 sigset_t* os::Solaris::vm_signals() {
1087 assert(signal_sets_initialized, "Not initialized");
1088 return &vm_sigs;
1089 }
1090
1091 void _handle_uncaught_cxx_exception() {
1092 VMError::report_and_die("An uncaught C++ exception");
1093 }
1094
1095
1096 // First crack at OS-specific initialization, from inside the new thread.
1097 void os::initialize_thread(Thread* thr) {
1098 int r = thr_main();
1099 guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1100 if (r) {
1101 JavaThread* jt = (JavaThread *)thr;
1102 assert(jt != NULL, "Sanity check");
1103 size_t stack_size;
1104 address base = jt->stack_base();
1105 if (Arguments::created_by_java_launcher()) {
1106 // Use 2MB to allow for Solaris 7 64 bit mode.
1107 stack_size = JavaThread::stack_size_at_create() == 0
1108 ? 2048*K : JavaThread::stack_size_at_create();
1109
1110 // There are rare cases when we may have already used more than
1111 // the basic stack size allotment before this method is invoked.
1112 // Attempt to allow for a normally sized java_stack.
1113 size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1114 stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1115 } else {
1116 // 6269555: If we were not created by a Java launcher, i.e. if we are
1117 // running embedded in a native application, treat the primordial thread
1118 // as much like a native attached thread as possible. This means using
1119 // the current stack size from thr_stksegment(), unless it is too large
1120 // to reliably setup guard pages. A reasonable max size is 8MB.
1121 size_t current_size = current_stack_size();
1122 // This should never happen, but just in case....
1123 if (current_size == 0) current_size = 2 * K * K;
1124 stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1125 }
1126 address bottom = align_up(base - stack_size, os::vm_page_size());;
1127 stack_size = (size_t)(base - bottom);
1128
1129 assert(stack_size > 0, "Stack size calculation problem");
1130
1131 if (stack_size > jt->stack_size()) {
1132 #ifndef PRODUCT
1133 struct rlimit limits;
1134 getrlimit(RLIMIT_STACK, &limits);
1135 size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1136 assert(size >= jt->stack_size(), "Stack size problem in main thread");
1137 #endif
1138 tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1139 "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1140 "See limit(1) to increase the stack size limit.",
1141 stack_size / K, jt->stack_size() / K);
1142 vm_exit(1);
1143 }
1144 assert(jt->stack_size() >= stack_size,
1145 "Attempt to map more stack than was allocated");
1146 jt->set_stack_size(stack_size);
1147 }
1148
1149 // With the T2 libthread (T1 is no longer supported) threads are always bound
1150 // and we use stackbanging in all cases.
1151
1152 os::Solaris::init_thread_fpu_state();
1153 std::set_terminate(_handle_uncaught_cxx_exception);
1154 }
1155
1156
1157
1158 // Free Solaris resources related to the OSThread
1159 void os::free_thread(OSThread* osthread) {
1160 assert(osthread != NULL, "os::free_thread but osthread not set");
1161
1162 // We are told to free resources of the argument thread,
1163 // but we can only really operate on the current thread.
1164 assert(Thread::current()->osthread() == osthread,
1165 "os::free_thread but not current thread");
1166
1167 // Restore caller's signal mask
1168 sigset_t sigmask = osthread->caller_sigmask();
1169 pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1170
1171 delete osthread;
1172 }
1173
1174 void os::pd_start_thread(Thread* thread) {
1175 int status = thr_continue(thread->osthread()->thread_id());
1176 assert_status(status == 0, status, "thr_continue failed");
1177 }
1178
1179
1180 intx os::current_thread_id() {
1181 return (intx)thr_self();
1182 }
1183
1184 static pid_t _initial_pid = 0;
1185
1186 int os::current_process_id() {
1187 return (int)(_initial_pid ? _initial_pid : getpid());
1188 }
1189
1190 // gethrtime() should be monotonic according to the documentation,
1191 // but some virtualized platforms are known to break this guarantee.
1192 // getTimeNanos() must be guaranteed not to move backwards, so we
1193 // are forced to add a check here.
1194 inline hrtime_t getTimeNanos() {
1195 const hrtime_t now = gethrtime();
1196 const hrtime_t prev = max_hrtime;
1197 if (now <= prev) {
1198 return prev; // same or retrograde time;
1199 }
1200 const hrtime_t obsv = Atomic::cmpxchg(now, &max_hrtime, prev);
1201 assert(obsv >= prev, "invariant"); // Monotonicity
1202 // If the CAS succeeded then we're done and return "now".
1203 // If the CAS failed and the observed value "obsv" is >= now then
1204 // we should return "obsv". If the CAS failed and now > obsv > prv then
1205 // some other thread raced this thread and installed a new value, in which case
1206 // we could either (a) retry the entire operation, (b) retry trying to install now
1207 // or (c) just return obsv. We use (c). No loop is required although in some cases
1208 // we might discard a higher "now" value in deference to a slightly lower but freshly
1209 // installed obsv value. That's entirely benign -- it admits no new orderings compared
1210 // to (a) or (b) -- and greatly reduces coherence traffic.
1211 // We might also condition (c) on the magnitude of the delta between obsv and now.
1212 // Avoiding excessive CAS operations to hot RW locations is critical.
1213 // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1214 return (prev == obsv) ? now : obsv;
1215 }
1216
1217 // Time since start-up in seconds to a fine granularity.
1218 // Used by VMSelfDestructTimer and the MemProfiler.
1219 double os::elapsedTime() {
1220 return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1221 }
1222
1223 jlong os::elapsed_counter() {
1224 return (jlong)(getTimeNanos() - first_hrtime);
1225 }
1226
1227 jlong os::elapsed_frequency() {
1228 return hrtime_hz;
1229 }
1230
1231 // Return the real, user, and system times in seconds from an
1232 // arbitrary fixed point in the past.
1233 bool os::getTimesSecs(double* process_real_time,
1234 double* process_user_time,
1235 double* process_system_time) {
1236 struct tms ticks;
1237 clock_t real_ticks = times(&ticks);
1238
1239 if (real_ticks == (clock_t) (-1)) {
1240 return false;
1241 } else {
1242 double ticks_per_second = (double) clock_tics_per_sec;
1243 *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1244 *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1245 // For consistency return the real time from getTimeNanos()
1246 // converted to seconds.
1247 *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1248
1249 return true;
1250 }
1251 }
1252
1253 bool os::supports_vtime() { return true; }
1254 bool os::enable_vtime() { return false; }
1255 bool os::vtime_enabled() { return false; }
1256
1257 double os::elapsedVTime() {
1258 return (double)gethrvtime() / (double)hrtime_hz;
1259 }
1260
1261 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1262 jlong os::javaTimeMillis() {
1263 timeval t;
1264 if (gettimeofday(&t, NULL) == -1) {
1265 fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1266 }
1267 return jlong(t.tv_sec) * 1000 + jlong(t.tv_usec) / 1000;
1268 }
1269
1270 // Must return seconds+nanos since Jan 1 1970. This must use the same
1271 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1272 // we need better than 1ms accuracy
1273 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1274 timeval t;
1275 if (gettimeofday(&t, NULL) == -1) {
1276 fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1277 }
1278 seconds = jlong(t.tv_sec);
1279 nanos = jlong(t.tv_usec) * 1000;
1280 }
1281
1282
1283 jlong os::javaTimeNanos() {
1284 return (jlong)getTimeNanos();
1285 }
1286
1287 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1288 info_ptr->max_value = ALL_64_BITS; // gethrtime() uses all 64 bits
1289 info_ptr->may_skip_backward = false; // not subject to resetting or drifting
1290 info_ptr->may_skip_forward = false; // not subject to resetting or drifting
1291 info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time
1292 }
1293
1294 char * os::local_time_string(char *buf, size_t buflen) {
1295 struct tm t;
1296 time_t long_time;
1297 time(&long_time);
1298 localtime_r(&long_time, &t);
1299 jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1300 t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1301 t.tm_hour, t.tm_min, t.tm_sec);
1302 return buf;
1303 }
1304
1305 // Note: os::shutdown() might be called very early during initialization, or
1306 // called from signal handler. Before adding something to os::shutdown(), make
1307 // sure it is async-safe and can handle partially initialized VM.
1308 void os::shutdown() {
1309
1310 // allow PerfMemory to attempt cleanup of any persistent resources
1311 perfMemory_exit();
1312
1313 // needs to remove object in file system
1314 AttachListener::abort();
1315
1316 // flush buffered output, finish log files
1317 ostream_abort();
1318
1319 // Check for abort hook
1320 abort_hook_t abort_hook = Arguments::abort_hook();
1321 if (abort_hook != NULL) {
1322 abort_hook();
1323 }
1324 }
1325
1326 // Note: os::abort() might be called very early during initialization, or
1327 // called from signal handler. Before adding something to os::abort(), make
1328 // sure it is async-safe and can handle partially initialized VM.
1329 void os::abort(bool dump_core, void* siginfo, const void* context) {
1330 os::shutdown();
1331 if (dump_core) {
1332 #ifndef PRODUCT
1333 fdStream out(defaultStream::output_fd());
1334 out.print_raw("Current thread is ");
1335 char buf[16];
1336 jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1337 out.print_raw_cr(buf);
1338 out.print_raw_cr("Dumping core ...");
1339 #endif
1340 ::abort(); // dump core (for debugging)
1341 }
1342
1343 ::exit(1);
1344 }
1345
1346 // Die immediately, no exit hook, no abort hook, no cleanup.
1347 void os::die() {
1348 ::abort(); // dump core (for debugging)
1349 }
1350
1351 // DLL functions
1352
1353 const char* os::dll_file_extension() { return ".so"; }
1354
1355 // This must be hard coded because it's the system's temporary
1356 // directory not the java application's temp directory, ala java.io.tmpdir.
1357 const char* os::get_temp_directory() { return "/tmp"; }
1358
1359 // check if addr is inside libjvm.so
1360 bool os::address_is_in_vm(address addr) {
1361 static address libjvm_base_addr;
1362 Dl_info dlinfo;
1363
1364 if (libjvm_base_addr == NULL) {
1365 if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1366 libjvm_base_addr = (address)dlinfo.dli_fbase;
1367 }
1368 assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1369 }
1370
1371 if (dladdr((void *)addr, &dlinfo) != 0) {
1372 if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1373 }
1374
1375 return false;
1376 }
1377
1378 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1379 static dladdr1_func_type dladdr1_func = NULL;
1380
1381 bool os::dll_address_to_function_name(address addr, char *buf,
1382 int buflen, int * offset,
1383 bool demangle) {
1384 // buf is not optional, but offset is optional
1385 assert(buf != NULL, "sanity check");
1386
1387 Dl_info dlinfo;
1388
1389 // dladdr1_func was initialized in os::init()
1390 if (dladdr1_func != NULL) {
1391 // yes, we have dladdr1
1392
1393 // Support for dladdr1 is checked at runtime; it may be
1394 // available even if the vm is built on a machine that does
1395 // not have dladdr1 support. Make sure there is a value for
1396 // RTLD_DL_SYMENT.
1397 #ifndef RTLD_DL_SYMENT
1398 #define RTLD_DL_SYMENT 1
1399 #endif
1400 #ifdef _LP64
1401 Elf64_Sym * info;
1402 #else
1403 Elf32_Sym * info;
1404 #endif
1405 if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1406 RTLD_DL_SYMENT) != 0) {
1407 // see if we have a matching symbol that covers our address
1408 if (dlinfo.dli_saddr != NULL &&
1409 (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1410 if (dlinfo.dli_sname != NULL) {
1411 if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1412 jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1413 }
1414 if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1415 return true;
1416 }
1417 }
1418 // no matching symbol so try for just file info
1419 if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1420 if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1421 buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1422 return true;
1423 }
1424 }
1425 }
1426 buf[0] = '\0';
1427 if (offset != NULL) *offset = -1;
1428 return false;
1429 }
1430
1431 // no, only dladdr is available
1432 if (dladdr((void *)addr, &dlinfo) != 0) {
1433 // see if we have a matching symbol
1434 if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1435 if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1436 jio_snprintf(buf, buflen, dlinfo.dli_sname);
1437 }
1438 if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1439 return true;
1440 }
1441 // no matching symbol so try for just file info
1442 if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1443 if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1444 buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1445 return true;
1446 }
1447 }
1448 }
1449 buf[0] = '\0';
1450 if (offset != NULL) *offset = -1;
1451 return false;
1452 }
1453
1454 bool os::dll_address_to_library_name(address addr, char* buf,
1455 int buflen, int* offset) {
1456 // buf is not optional, but offset is optional
1457 assert(buf != NULL, "sanity check");
1458
1459 Dl_info dlinfo;
1460
1461 if (dladdr((void*)addr, &dlinfo) != 0) {
1462 if (dlinfo.dli_fname != NULL) {
1463 jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1464 }
1465 if (dlinfo.dli_fbase != NULL && offset != NULL) {
1466 *offset = addr - (address)dlinfo.dli_fbase;
1467 }
1468 return true;
1469 }
1470
1471 buf[0] = '\0';
1472 if (offset) *offset = -1;
1473 return false;
1474 }
1475
1476 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1477 Dl_info dli;
1478 // Sanity check?
1479 if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1480 dli.dli_fname == NULL) {
1481 return 1;
1482 }
1483
1484 void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1485 if (handle == NULL) {
1486 return 1;
1487 }
1488
1489 Link_map *map;
1490 dlinfo(handle, RTLD_DI_LINKMAP, &map);
1491 if (map == NULL) {
1492 dlclose(handle);
1493 return 1;
1494 }
1495
1496 while (map->l_prev != NULL) {
1497 map = map->l_prev;
1498 }
1499
1500 while (map != NULL) {
1501 // Iterate through all map entries and call callback with fields of interest
1502 if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1503 dlclose(handle);
1504 return 1;
1505 }
1506 map = map->l_next;
1507 }
1508
1509 dlclose(handle);
1510 return 0;
1511 }
1512
1513 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1514 outputStream * out = (outputStream *) param;
1515 out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1516 return 0;
1517 }
1518
1519 void os::print_dll_info(outputStream * st) {
1520 st->print_cr("Dynamic libraries:"); st->flush();
1521 if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1522 st->print_cr("Error: Cannot print dynamic libraries.");
1523 }
1524 }
1525
1526 // Loads .dll/.so and
1527 // in case of error it checks if .dll/.so was built for the
1528 // same architecture as Hotspot is running on
1529
1530 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1531 void * result= ::dlopen(filename, RTLD_LAZY);
1532 if (result != NULL) {
1533 // Successful loading
1534 return result;
1535 }
1536
1537 Elf32_Ehdr elf_head;
1538
1539 // Read system error message into ebuf
1540 // It may or may not be overwritten below
1541 ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1542 ebuf[ebuflen-1]='\0';
1543 int diag_msg_max_length=ebuflen-strlen(ebuf);
1544 char* diag_msg_buf=ebuf+strlen(ebuf);
1545
1546 if (diag_msg_max_length==0) {
1547 // No more space in ebuf for additional diagnostics message
1548 return NULL;
1549 }
1550
1551
1552 int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1553
1554 if (file_descriptor < 0) {
1555 // Can't open library, report dlerror() message
1556 return NULL;
1557 }
1558
1559 bool failed_to_read_elf_head=
1560 (sizeof(elf_head)!=
1561 (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1562
1563 ::close(file_descriptor);
1564 if (failed_to_read_elf_head) {
1565 // file i/o error - report dlerror() msg
1566 return NULL;
1567 }
1568
1569 typedef struct {
1570 Elf32_Half code; // Actual value as defined in elf.h
1571 Elf32_Half compat_class; // Compatibility of archs at VM's sense
1572 char elf_class; // 32 or 64 bit
1573 char endianess; // MSB or LSB
1574 char* name; // String representation
1575 } arch_t;
1576
1577 static const arch_t arch_array[]={
1578 {EM_386, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1579 {EM_486, EM_386, ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1580 {EM_IA_64, EM_IA_64, ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1581 {EM_X86_64, EM_X86_64, ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1582 {EM_SPARC, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1583 {EM_SPARC32PLUS, EM_SPARC, ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1584 {EM_SPARCV9, EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1585 {EM_PPC, EM_PPC, ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1586 {EM_PPC64, EM_PPC64, ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1587 {EM_ARM, EM_ARM, ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1588 };
1589
1590 #if (defined IA32)
1591 static Elf32_Half running_arch_code=EM_386;
1592 #elif (defined AMD64)
1593 static Elf32_Half running_arch_code=EM_X86_64;
1594 #elif (defined IA64)
1595 static Elf32_Half running_arch_code=EM_IA_64;
1596 #elif (defined __sparc) && (defined _LP64)
1597 static Elf32_Half running_arch_code=EM_SPARCV9;
1598 #elif (defined __sparc) && (!defined _LP64)
1599 static Elf32_Half running_arch_code=EM_SPARC;
1600 #elif (defined __powerpc64__)
1601 static Elf32_Half running_arch_code=EM_PPC64;
1602 #elif (defined __powerpc__)
1603 static Elf32_Half running_arch_code=EM_PPC;
1604 #elif (defined ARM)
1605 static Elf32_Half running_arch_code=EM_ARM;
1606 #else
1607 #error Method os::dll_load requires that one of following is defined:\
1608 IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1609 #endif
1610
1611 // Identify compatability class for VM's architecture and library's architecture
1612 // Obtain string descriptions for architectures
1613
1614 arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1615 int running_arch_index=-1;
1616
1617 for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1618 if (running_arch_code == arch_array[i].code) {
1619 running_arch_index = i;
1620 }
1621 if (lib_arch.code == arch_array[i].code) {
1622 lib_arch.compat_class = arch_array[i].compat_class;
1623 lib_arch.name = arch_array[i].name;
1624 }
1625 }
1626
1627 assert(running_arch_index != -1,
1628 "Didn't find running architecture code (running_arch_code) in arch_array");
1629 if (running_arch_index == -1) {
1630 // Even though running architecture detection failed
1631 // we may still continue with reporting dlerror() message
1632 return NULL;
1633 }
1634
1635 if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1636 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1637 return NULL;
1638 }
1639
1640 if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1641 ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1642 return NULL;
1643 }
1644
1645 if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1646 if (lib_arch.name!=NULL) {
1647 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1648 " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1649 lib_arch.name, arch_array[running_arch_index].name);
1650 } else {
1651 ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1652 " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1653 lib_arch.code,
1654 arch_array[running_arch_index].name);
1655 }
1656 }
1657
1658 return NULL;
1659 }
1660
1661 void* os::dll_lookup(void* handle, const char* name) {
1662 return dlsym(handle, name);
1663 }
1664
1665 void* os::get_default_process_handle() {
1666 return (void*)::dlopen(NULL, RTLD_LAZY);
1667 }
1668
1669 int os::stat(const char *path, struct stat *sbuf) {
1670 char pathbuf[MAX_PATH];
1671 if (strlen(path) > MAX_PATH - 1) {
1672 errno = ENAMETOOLONG;
1673 return -1;
1674 }
1675 os::native_path(strcpy(pathbuf, path));
1676 return ::stat(pathbuf, sbuf);
1677 }
1678
1679 static inline time_t get_mtime(const char* filename) {
1680 struct stat st;
1681 int ret = os::stat(filename, &st);
1682 assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1683 return st.st_mtime;
1684 }
1685
1686 int os::compare_file_modified_times(const char* file1, const char* file2) {
1687 time_t t1 = get_mtime(file1);
1688 time_t t2 = get_mtime(file2);
1689 return t1 - t2;
1690 }
1691
1692 static bool _print_ascii_file(const char* filename, outputStream* st) {
1693 int fd = ::open(filename, O_RDONLY);
1694 if (fd == -1) {
1695 return false;
1696 }
1697
1698 char buf[32];
1699 int bytes;
1700 while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1701 st->print_raw(buf, bytes);
1702 }
1703
1704 ::close(fd);
1705
1706 return true;
1707 }
1708
1709 void os::print_os_info_brief(outputStream* st) {
1710 os::Solaris::print_distro_info(st);
1711
1712 os::Posix::print_uname_info(st);
1713
1714 os::Solaris::print_libversion_info(st);
1715 }
1716
1717 void os::print_os_info(outputStream* st) {
1718 st->print("OS:");
1719
1720 os::Solaris::print_distro_info(st);
1721
1722 os::Posix::print_uname_info(st);
1723
1724 os::Solaris::print_libversion_info(st);
1725
1726 os::Posix::print_rlimit_info(st);
1727
1728 os::Posix::print_load_average(st);
1729 }
1730
1731 void os::Solaris::print_distro_info(outputStream* st) {
1732 if (!_print_ascii_file("/etc/release", st)) {
1733 st->print("Solaris");
1734 }
1735 st->cr();
1736 }
1737
1738 void os::get_summary_os_info(char* buf, size_t buflen) {
1739 strncpy(buf, "Solaris", buflen); // default to plain solaris
1740 FILE* fp = fopen("/etc/release", "r");
1741 if (fp != NULL) {
1742 char tmp[256];
1743 // Only get the first line and chop out everything but the os name.
1744 if (fgets(tmp, sizeof(tmp), fp)) {
1745 char* ptr = tmp;
1746 // skip past whitespace characters
1747 while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1748 if (*ptr != '\0') {
1749 char* nl = strchr(ptr, '\n');
1750 if (nl != NULL) *nl = '\0';
1751 strncpy(buf, ptr, buflen);
1752 }
1753 }
1754 fclose(fp);
1755 }
1756 }
1757
1758 void os::Solaris::print_libversion_info(outputStream* st) {
1759 st->print(" (T2 libthread)");
1760 st->cr();
1761 }
1762
1763 static bool check_addr0(outputStream* st) {
1764 jboolean status = false;
1765 const int read_chunk = 200;
1766 int ret = 0;
1767 int nmap = 0;
1768 int fd = ::open("/proc/self/map",O_RDONLY);
1769 if (fd >= 0) {
1770 prmap_t *p = NULL;
1771 char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1772 if (NULL == mbuff) {
1773 ::close(fd);
1774 return status;
1775 }
1776 while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1777 //check if read() has not read partial data
1778 if( 0 != ret % sizeof(prmap_t)){
1779 break;
1780 }
1781 nmap = ret / sizeof(prmap_t);
1782 p = (prmap_t *)mbuff;
1783 for(int i = 0; i < nmap; i++){
1784 if (p->pr_vaddr == 0x0) {
1785 st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1786 st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1787 st->print("Access: ");
1788 st->print("%s",(p->pr_mflags & MA_READ) ? "r" : "-");
1789 st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1790 st->print("%s",(p->pr_mflags & MA_EXEC) ? "x" : "-");
1791 st->cr();
1792 status = true;
1793 }
1794 p++;
1795 }
1796 }
1797 free(mbuff);
1798 ::close(fd);
1799 }
1800 return status;
1801 }
1802
1803 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1804 // Get MHz with system call. We don't seem to already have this.
1805 processor_info_t stats;
1806 processorid_t id = getcpuid();
1807 int clock = 0;
1808 if (processor_info(id, &stats) != -1) {
1809 clock = stats.pi_clock; // pi_processor_type isn't more informative than below
1810 }
1811 #ifdef AMD64
1812 snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1813 #else
1814 // must be sparc
1815 snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1816 #endif
1817 }
1818
1819 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1820 // Nothing to do for now.
1821 }
1822
1823 void os::print_memory_info(outputStream* st) {
1824 st->print("Memory:");
1825 st->print(" %dk page", os::vm_page_size()>>10);
1826 st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1827 st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1828 st->cr();
1829 (void) check_addr0(st);
1830 }
1831
1832 // Moved from whole group, because we need them here for diagnostic
1833 // prints.
1834 static int Maxsignum = 0;
1835 static int *ourSigFlags = NULL;
1836
1837 int os::Solaris::get_our_sigflags(int sig) {
1838 assert(ourSigFlags!=NULL, "signal data structure not initialized");
1839 assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1840 return ourSigFlags[sig];
1841 }
1842
1843 void os::Solaris::set_our_sigflags(int sig, int flags) {
1844 assert(ourSigFlags!=NULL, "signal data structure not initialized");
1845 assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1846 ourSigFlags[sig] = flags;
1847 }
1848
1849
1850 static const char* get_signal_handler_name(address handler,
1851 char* buf, int buflen) {
1852 int offset;
1853 bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1854 if (found) {
1855 // skip directory names
1856 const char *p1, *p2;
1857 p1 = buf;
1858 size_t len = strlen(os::file_separator());
1859 while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1860 jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1861 } else {
1862 jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1863 }
1864 return buf;
1865 }
1866
1867 static void print_signal_handler(outputStream* st, int sig,
1868 char* buf, size_t buflen) {
1869 struct sigaction sa;
1870
1871 sigaction(sig, NULL, &sa);
1872
1873 st->print("%s: ", os::exception_name(sig, buf, buflen));
1874
1875 address handler = (sa.sa_flags & SA_SIGINFO)
1876 ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1877 : CAST_FROM_FN_PTR(address, sa.sa_handler);
1878
1879 if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1880 st->print("SIG_DFL");
1881 } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1882 st->print("SIG_IGN");
1883 } else {
1884 st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1885 }
1886
1887 st->print(", sa_mask[0]=");
1888 os::Posix::print_signal_set_short(st, &sa.sa_mask);
1889
1890 address rh = VMError::get_resetted_sighandler(sig);
1891 // May be, handler was resetted by VMError?
1892 if (rh != NULL) {
1893 handler = rh;
1894 sa.sa_flags = VMError::get_resetted_sigflags(sig);
1895 }
1896
1897 st->print(", sa_flags=");
1898 os::Posix::print_sa_flags(st, sa.sa_flags);
1899
1900 // Check: is it our handler?
1901 if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1902 // It is our signal handler
1903 // check for flags
1904 if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1905 st->print(
1906 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1907 os::Solaris::get_our_sigflags(sig));
1908 }
1909 }
1910 st->cr();
1911 }
1912
1913 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1914 st->print_cr("Signal Handlers:");
1915 print_signal_handler(st, SIGSEGV, buf, buflen);
1916 print_signal_handler(st, SIGBUS , buf, buflen);
1917 print_signal_handler(st, SIGFPE , buf, buflen);
1918 print_signal_handler(st, SIGPIPE, buf, buflen);
1919 print_signal_handler(st, SIGXFSZ, buf, buflen);
1920 print_signal_handler(st, SIGILL , buf, buflen);
1921 print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
1922 print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1923 print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
1924 print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1925 print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
1926 }
1927
1928 static char saved_jvm_path[MAXPATHLEN] = { 0 };
1929
1930 // Find the full path to the current module, libjvm.so
1931 void os::jvm_path(char *buf, jint buflen) {
1932 // Error checking.
1933 if (buflen < MAXPATHLEN) {
1934 assert(false, "must use a large-enough buffer");
1935 buf[0] = '\0';
1936 return;
1937 }
1938 // Lazy resolve the path to current module.
1939 if (saved_jvm_path[0] != 0) {
1940 strcpy(buf, saved_jvm_path);
1941 return;
1942 }
1943
1944 Dl_info dlinfo;
1945 int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1946 assert(ret != 0, "cannot locate libjvm");
1947 if (ret != 0 && dlinfo.dli_fname != NULL) {
1948 if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
1949 return;
1950 }
1951 } else {
1952 buf[0] = '\0';
1953 return;
1954 }
1955
1956 if (Arguments::sun_java_launcher_is_altjvm()) {
1957 // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1958 // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
1959 // If "/jre/lib/" appears at the right place in the string, then
1960 // assume we are installed in a JDK and we're done. Otherwise, check
1961 // for a JAVA_HOME environment variable and fix up the path so it
1962 // looks like libjvm.so is installed there (append a fake suffix
1963 // hotspot/libjvm.so).
1964 const char *p = buf + strlen(buf) - 1;
1965 for (int count = 0; p > buf && count < 5; ++count) {
1966 for (--p; p > buf && *p != '/'; --p)
1967 /* empty */ ;
1968 }
1969
1970 if (strncmp(p, "/jre/lib/", 9) != 0) {
1971 // Look for JAVA_HOME in the environment.
1972 char* java_home_var = ::getenv("JAVA_HOME");
1973 if (java_home_var != NULL && java_home_var[0] != 0) {
1974 char* jrelib_p;
1975 int len;
1976
1977 // Check the current module name "libjvm.so".
1978 p = strrchr(buf, '/');
1979 assert(strstr(p, "/libjvm") == p, "invalid library name");
1980
1981 if (os::Posix::realpath(java_home_var, buf, buflen) == NULL) {
1982 return;
1983 }
1984 // determine if this is a legacy image or modules image
1985 // modules image doesn't have "jre" subdirectory
1986 len = strlen(buf);
1987 assert(len < buflen, "Ran out of buffer space");
1988 jrelib_p = buf + len;
1989 snprintf(jrelib_p, buflen-len, "/jre/lib");
1990 if (0 != access(buf, F_OK)) {
1991 snprintf(jrelib_p, buflen-len, "/lib");
1992 }
1993
1994 if (0 == access(buf, F_OK)) {
1995 // Use current module name "libjvm.so"
1996 len = strlen(buf);
1997 snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1998 } else {
1999 // Go back to path of .so
2000 if (os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen) == NULL) {
2001 return;
2002 }
2003 }
2004 }
2005 }
2006 }
2007
2008 strncpy(saved_jvm_path, buf, MAXPATHLEN);
2009 saved_jvm_path[MAXPATHLEN - 1] = '\0';
2010 }
2011
2012
2013 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2014 // no prefix required, not even "_"
2015 }
2016
2017
2018 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2019 // no suffix required
2020 }
2021
2022 // This method is a copy of JDK's sysGetLastErrorString
2023 // from src/solaris/hpi/src/system_md.c
2024
2025 size_t os::lasterror(char *buf, size_t len) {
2026 if (errno == 0) return 0;
2027
2028 const char *s = os::strerror(errno);
2029 size_t n = ::strlen(s);
2030 if (n >= len) {
2031 n = len - 1;
2032 }
2033 ::strncpy(buf, s, n);
2034 buf[n] = '\0';
2035 return n;
2036 }
2037
2038
2039 // sun.misc.Signal
2040
2041 extern "C" {
2042 static void UserHandler(int sig, void *siginfo, void *context) {
2043 // Ctrl-C is pressed during error reporting, likely because the error
2044 // handler fails to abort. Let VM die immediately.
2045 if (sig == SIGINT && VMError::is_error_reported()) {
2046 os::die();
2047 }
2048
2049 os::signal_notify(sig);
2050 // We do not need to reinstate the signal handler each time...
2051 }
2052 }
2053
2054 void* os::user_handler() {
2055 return CAST_FROM_FN_PTR(void*, UserHandler);
2056 }
2057
2058 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2059 struct timespec ts;
2060 unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2061
2062 return ts;
2063 }
2064
2065 extern "C" {
2066 typedef void (*sa_handler_t)(int);
2067 typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2068 }
2069
2070 void* os::signal(int signal_number, void* handler) {
2071 struct sigaction sigAct, oldSigAct;
2072 sigfillset(&(sigAct.sa_mask));
2073 sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2074 sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2075
2076 if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2077 // -1 means registration failed
2078 return (void *)-1;
2079 }
2080
2081 return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2082 }
2083
2084 void os::signal_raise(int signal_number) {
2085 raise(signal_number);
2086 }
2087
2088 // The following code is moved from os.cpp for making this
2089 // code platform specific, which it is by its very nature.
2090
2091 // a counter for each possible signal value
2092 static int Sigexit = 0;
2093 static jint *pending_signals = NULL;
2094 static int *preinstalled_sigs = NULL;
2095 static struct sigaction *chainedsigactions = NULL;
2096 static sema_t sig_sem;
2097 typedef int (*version_getting_t)();
2098 version_getting_t os::Solaris::get_libjsig_version = NULL;
2099
2100 int os::sigexitnum_pd() {
2101 assert(Sigexit > 0, "signal memory not yet initialized");
2102 return Sigexit;
2103 }
2104
2105 void os::Solaris::init_signal_mem() {
2106 // Initialize signal structures
2107 Maxsignum = SIGRTMAX;
2108 Sigexit = Maxsignum+1;
2109 assert(Maxsignum >0, "Unable to obtain max signal number");
2110
2111 // pending_signals has one int per signal
2112 // The additional signal is for SIGEXIT - exit signal to signal_thread
2113 pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2114 memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2115
2116 if (UseSignalChaining) {
2117 chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2118 * (Maxsignum + 1), mtInternal);
2119 memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2120 preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2121 memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2122 }
2123 ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2124 memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2125 }
2126
2127 void os::signal_init_pd() {
2128 int ret;
2129
2130 ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2131 assert(ret == 0, "sema_init() failed");
2132 }
2133
2134 void os::signal_notify(int signal_number) {
2135 int ret;
2136
2137 Atomic::inc(&pending_signals[signal_number]);
2138 ret = ::sema_post(&sig_sem);
2139 assert(ret == 0, "sema_post() failed");
2140 }
2141
2142 static int check_pending_signals(bool wait_for_signal) {
2143 int ret;
2144 while (true) {
2145 for (int i = 0; i < Sigexit + 1; i++) {
2146 jint n = pending_signals[i];
2147 if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2148 return i;
2149 }
2150 }
2151 if (!wait_for_signal) {
2152 return -1;
2153 }
2154 JavaThread *thread = JavaThread::current();
2155 ThreadBlockInVM tbivm(thread);
2156
2157 bool threadIsSuspended;
2158 do {
2159 thread->set_suspend_equivalent();
2160 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2161 while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2162 ;
2163 assert(ret == 0, "sema_wait() failed");
2164
2165 // were we externally suspended while we were waiting?
2166 threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2167 if (threadIsSuspended) {
2168 // The semaphore has been incremented, but while we were waiting
2169 // another thread suspended us. We don't want to continue running
2170 // while suspended because that would surprise the thread that
2171 // suspended us.
2172 ret = ::sema_post(&sig_sem);
2173 assert(ret == 0, "sema_post() failed");
2174
2175 thread->java_suspend_self();
2176 }
2177 } while (threadIsSuspended);
2178 }
2179 }
2180
2181 int os::signal_lookup() {
2182 return check_pending_signals(false);
2183 }
2184
2185 int os::signal_wait() {
2186 return check_pending_signals(true);
2187 }
2188
2189 ////////////////////////////////////////////////////////////////////////////////
2190 // Virtual Memory
2191
2192 static int page_size = -1;
2193
2194 int os::vm_page_size() {
2195 assert(page_size != -1, "must call os::init");
2196 return page_size;
2197 }
2198
2199 // Solaris allocates memory by pages.
2200 int os::vm_allocation_granularity() {
2201 assert(page_size != -1, "must call os::init");
2202 return page_size;
2203 }
2204
2205 static bool recoverable_mmap_error(int err) {
2206 // See if the error is one we can let the caller handle. This
2207 // list of errno values comes from the Solaris mmap(2) man page.
2208 switch (err) {
2209 case EBADF:
2210 case EINVAL:
2211 case ENOTSUP:
2212 // let the caller deal with these errors
2213 return true;
2214
2215 default:
2216 // Any remaining errors on this OS can cause our reserved mapping
2217 // to be lost. That can cause confusion where different data
2218 // structures think they have the same memory mapped. The worst
2219 // scenario is if both the VM and a library think they have the
2220 // same memory mapped.
2221 return false;
2222 }
2223 }
2224
2225 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2226 int err) {
2227 warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2228 ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2229 os::strerror(err), err);
2230 }
2231
2232 static void warn_fail_commit_memory(char* addr, size_t bytes,
2233 size_t alignment_hint, bool exec,
2234 int err) {
2235 warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2236 ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2237 alignment_hint, exec, os::strerror(err), err);
2238 }
2239
2240 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2241 int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2242 size_t size = bytes;
2243 char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2244 if (res != NULL) {
2245 if (UseNUMAInterleaving) {
2246 numa_make_global(addr, bytes);
2247 }
2248 return 0;
2249 }
2250
2251 int err = errno; // save errno from mmap() call in mmap_chunk()
2252
2253 if (!recoverable_mmap_error(err)) {
2254 warn_fail_commit_memory(addr, bytes, exec, err);
2255 vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2256 }
2257
2258 return err;
2259 }
2260
2261 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2262 return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2263 }
2264
2265 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2266 const char* mesg) {
2267 assert(mesg != NULL, "mesg must be specified");
2268 int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2269 if (err != 0) {
2270 // the caller wants all commit errors to exit with the specified mesg:
2271 warn_fail_commit_memory(addr, bytes, exec, err);
2272 vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2273 }
2274 }
2275
2276 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2277 assert(is_aligned(alignment, (size_t) vm_page_size()),
2278 SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2279 alignment, (size_t) vm_page_size());
2280
2281 for (int i = 0; _page_sizes[i] != 0; i++) {
2282 if (is_aligned(alignment, _page_sizes[i])) {
2283 return _page_sizes[i];
2284 }
2285 }
2286
2287 return (size_t) vm_page_size();
2288 }
2289
2290 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2291 size_t alignment_hint, bool exec) {
2292 int err = Solaris::commit_memory_impl(addr, bytes, exec);
2293 if (err == 0 && UseLargePages && alignment_hint > 0) {
2294 assert(is_aligned(bytes, alignment_hint),
2295 SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2296
2297 // The syscall memcntl requires an exact page size (see man memcntl for details).
2298 size_t page_size = page_size_for_alignment(alignment_hint);
2299 if (page_size > (size_t) vm_page_size()) {
2300 (void)Solaris::setup_large_pages(addr, bytes, page_size);
2301 }
2302 }
2303 return err;
2304 }
2305
2306 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2307 bool exec) {
2308 return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2309 }
2310
2311 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2312 size_t alignment_hint, bool exec,
2313 const char* mesg) {
2314 assert(mesg != NULL, "mesg must be specified");
2315 int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2316 if (err != 0) {
2317 // the caller wants all commit errors to exit with the specified mesg:
2318 warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2319 vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2320 }
2321 }
2322
2323 // Uncommit the pages in a specified region.
2324 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2325 if (madvise(addr, bytes, MADV_FREE) < 0) {
2326 debug_only(warning("MADV_FREE failed."));
2327 return;
2328 }
2329 }
2330
2331 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2332 return os::commit_memory(addr, size, !ExecMem);
2333 }
2334
2335 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2336 return os::uncommit_memory(addr, size);
2337 }
2338
2339 // Change the page size in a given range.
2340 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2341 assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2342 assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2343 if (UseLargePages) {
2344 size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2345 if (page_size > (size_t) vm_page_size()) {
2346 Solaris::setup_large_pages(addr, bytes, page_size);
2347 }
2348 }
2349 }
2350
2351 // Tell the OS to make the range local to the first-touching LWP
2352 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2353 assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2354 if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2355 debug_only(warning("MADV_ACCESS_LWP failed."));
2356 }
2357 }
2358
2359 // Tell the OS that this range would be accessed from different LWPs.
2360 void os::numa_make_global(char *addr, size_t bytes) {
2361 assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2362 if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2363 debug_only(warning("MADV_ACCESS_MANY failed."));
2364 }
2365 }
2366
2367 // Get the number of the locality groups.
2368 size_t os::numa_get_groups_num() {
2369 size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2370 return n != -1 ? n : 1;
2371 }
2372
2373 // Get a list of leaf locality groups. A leaf lgroup is group that
2374 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2375 // board. An LWP is assigned to one of these groups upon creation.
2376 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2377 if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2378 ids[0] = 0;
2379 return 1;
2380 }
2381 int result_size = 0, top = 1, bottom = 0, cur = 0;
2382 for (int k = 0; k < size; k++) {
2383 int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2384 (Solaris::lgrp_id_t*)&ids[top], size - top);
2385 if (r == -1) {
2386 ids[0] = 0;
2387 return 1;
2388 }
2389 if (!r) {
2390 // That's a leaf node.
2391 assert(bottom <= cur, "Sanity check");
2392 // Check if the node has memory
2393 if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2394 NULL, 0, LGRP_RSRC_MEM) > 0) {
2395 ids[bottom++] = ids[cur];
2396 }
2397 }
2398 top += r;
2399 cur++;
2400 }
2401 if (bottom == 0) {
2402 // Handle a situation, when the OS reports no memory available.
2403 // Assume UMA architecture.
2404 ids[0] = 0;
2405 return 1;
2406 }
2407 return bottom;
2408 }
2409
2410 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2411 bool os::numa_topology_changed() {
2412 int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2413 if (is_stale != -1 && is_stale) {
2414 Solaris::lgrp_fini(Solaris::lgrp_cookie());
2415 Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2416 assert(c != 0, "Failure to initialize LGRP API");
2417 Solaris::set_lgrp_cookie(c);
2418 return true;
2419 }
2420 return false;
2421 }
2422
2423 // Get the group id of the current LWP.
2424 int os::numa_get_group_id() {
2425 int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2426 if (lgrp_id == -1) {
2427 return 0;
2428 }
2429 const int size = os::numa_get_groups_num();
2430 int *ids = (int*)alloca(size * sizeof(int));
2431
2432 // Get the ids of all lgroups with memory; r is the count.
2433 int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2434 (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2435 if (r <= 0) {
2436 return 0;
2437 }
2438 return ids[os::random() % r];
2439 }
2440
2441 // Request information about the page.
2442 bool os::get_page_info(char *start, page_info* info) {
2443 const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2444 uint64_t addr = (uintptr_t)start;
2445 uint64_t outdata[2];
2446 uint_t validity = 0;
2447
2448 if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2449 return false;
2450 }
2451
2452 info->size = 0;
2453 info->lgrp_id = -1;
2454
2455 if ((validity & 1) != 0) {
2456 if ((validity & 2) != 0) {
2457 info->lgrp_id = outdata[0];
2458 }
2459 if ((validity & 4) != 0) {
2460 info->size = outdata[1];
2461 }
2462 return true;
2463 }
2464 return false;
2465 }
2466
2467 // Scan the pages from start to end until a page different than
2468 // the one described in the info parameter is encountered.
2469 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2470 page_info* page_found) {
2471 const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2472 const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2473 uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2474 uint_t validity[MAX_MEMINFO_CNT];
2475
2476 size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2477 uint64_t p = (uint64_t)start;
2478 while (p < (uint64_t)end) {
2479 addrs[0] = p;
2480 size_t addrs_count = 1;
2481 while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2482 addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2483 addrs_count++;
2484 }
2485
2486 if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2487 return NULL;
2488 }
2489
2490 size_t i = 0;
2491 for (; i < addrs_count; i++) {
2492 if ((validity[i] & 1) != 0) {
2493 if ((validity[i] & 4) != 0) {
2494 if (outdata[types * i + 1] != page_expected->size) {
2495 break;
2496 }
2497 } else if (page_expected->size != 0) {
2498 break;
2499 }
2500
2501 if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2502 if (outdata[types * i] != page_expected->lgrp_id) {
2503 break;
2504 }
2505 }
2506 } else {
2507 return NULL;
2508 }
2509 }
2510
2511 if (i < addrs_count) {
2512 if ((validity[i] & 2) != 0) {
2513 page_found->lgrp_id = outdata[types * i];
2514 } else {
2515 page_found->lgrp_id = -1;
2516 }
2517 if ((validity[i] & 4) != 0) {
2518 page_found->size = outdata[types * i + 1];
2519 } else {
2520 page_found->size = 0;
2521 }
2522 return (char*)addrs[i];
2523 }
2524
2525 p = addrs[addrs_count - 1] + page_size;
2526 }
2527 return end;
2528 }
2529
2530 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2531 size_t size = bytes;
2532 // Map uncommitted pages PROT_NONE so we fail early if we touch an
2533 // uncommitted page. Otherwise, the read/write might succeed if we
2534 // have enough swap space to back the physical page.
2535 return
2536 NULL != Solaris::mmap_chunk(addr, size,
2537 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2538 PROT_NONE);
2539 }
2540
2541 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2542 char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2543
2544 if (b == MAP_FAILED) {
2545 return NULL;
2546 }
2547 return b;
2548 }
2549
2550 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2551 size_t alignment_hint, bool fixed) {
2552 char* addr = requested_addr;
2553 int flags = MAP_PRIVATE | MAP_NORESERVE;
2554
2555 assert(!(fixed && (alignment_hint > 0)),
2556 "alignment hint meaningless with fixed mmap");
2557
2558 if (fixed) {
2559 flags |= MAP_FIXED;
2560 } else if (alignment_hint > (size_t) vm_page_size()) {
2561 flags |= MAP_ALIGN;
2562 addr = (char*) alignment_hint;
2563 }
2564
2565 // Map uncommitted pages PROT_NONE so we fail early if we touch an
2566 // uncommitted page. Otherwise, the read/write might succeed if we
2567 // have enough swap space to back the physical page.
2568 return mmap_chunk(addr, bytes, flags, PROT_NONE);
2569 }
2570
2571 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2572 size_t alignment_hint) {
2573 char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2574 (requested_addr != NULL));
2575
2576 guarantee(requested_addr == NULL || requested_addr == addr,
2577 "OS failed to return requested mmap address.");
2578 return addr;
2579 }
2580
2581 // Reserve memory at an arbitrary address, only if that area is
2582 // available (and not reserved for something else).
2583
2584 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2585 const int max_tries = 10;
2586 char* base[max_tries];
2587 size_t size[max_tries];
2588
2589 // Solaris adds a gap between mmap'ed regions. The size of the gap
2590 // is dependent on the requested size and the MMU. Our initial gap
2591 // value here is just a guess and will be corrected later.
2592 bool had_top_overlap = false;
2593 bool have_adjusted_gap = false;
2594 size_t gap = 0x400000;
2595
2596 // Assert only that the size is a multiple of the page size, since
2597 // that's all that mmap requires, and since that's all we really know
2598 // about at this low abstraction level. If we need higher alignment,
2599 // we can either pass an alignment to this method or verify alignment
2600 // in one of the methods further up the call chain. See bug 5044738.
2601 assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2602
2603 // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2604 // Give it a try, if the kernel honors the hint we can return immediately.
2605 char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2606
2607 volatile int err = errno;
2608 if (addr == requested_addr) {
2609 return addr;
2610 } else if (addr != NULL) {
2611 pd_unmap_memory(addr, bytes);
2612 }
2613
2614 if (log_is_enabled(Warning, os)) {
2615 char buf[256];
2616 buf[0] = '\0';
2617 if (addr == NULL) {
2618 jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2619 }
2620 log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2621 PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2622 "%s", bytes, requested_addr, addr, buf);
2623 }
2624
2625 // Address hint method didn't work. Fall back to the old method.
2626 // In theory, once SNV becomes our oldest supported platform, this
2627 // code will no longer be needed.
2628 //
2629 // Repeatedly allocate blocks until the block is allocated at the
2630 // right spot. Give up after max_tries.
2631 int i;
2632 for (i = 0; i < max_tries; ++i) {
2633 base[i] = reserve_memory(bytes);
2634
2635 if (base[i] != NULL) {
2636 // Is this the block we wanted?
2637 if (base[i] == requested_addr) {
2638 size[i] = bytes;
2639 break;
2640 }
2641
2642 // check that the gap value is right
2643 if (had_top_overlap && !have_adjusted_gap) {
2644 size_t actual_gap = base[i-1] - base[i] - bytes;
2645 if (gap != actual_gap) {
2646 // adjust the gap value and retry the last 2 allocations
2647 assert(i > 0, "gap adjustment code problem");
2648 have_adjusted_gap = true; // adjust the gap only once, just in case
2649 gap = actual_gap;
2650 log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2651 unmap_memory(base[i], bytes);
2652 unmap_memory(base[i-1], size[i-1]);
2653 i-=2;
2654 continue;
2655 }
2656 }
2657
2658 // Does this overlap the block we wanted? Give back the overlapped
2659 // parts and try again.
2660 //
2661 // There is still a bug in this code: if top_overlap == bytes,
2662 // the overlap is offset from requested region by the value of gap.
2663 // In this case giving back the overlapped part will not work,
2664 // because we'll give back the entire block at base[i] and
2665 // therefore the subsequent allocation will not generate a new gap.
2666 // This could be fixed with a new algorithm that used larger
2667 // or variable size chunks to find the requested region -
2668 // but such a change would introduce additional complications.
2669 // It's rare enough that the planets align for this bug,
2670 // so we'll just wait for a fix for 6204603/5003415 which
2671 // will provide a mmap flag to allow us to avoid this business.
2672
2673 size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2674 if (top_overlap >= 0 && top_overlap < bytes) {
2675 had_top_overlap = true;
2676 unmap_memory(base[i], top_overlap);
2677 base[i] += top_overlap;
2678 size[i] = bytes - top_overlap;
2679 } else {
2680 size_t bottom_overlap = base[i] + bytes - requested_addr;
2681 if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2682 if (bottom_overlap == 0) {
2683 log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2684 }
2685 unmap_memory(requested_addr, bottom_overlap);
2686 size[i] = bytes - bottom_overlap;
2687 } else {
2688 size[i] = bytes;
2689 }
2690 }
2691 }
2692 }
2693
2694 // Give back the unused reserved pieces.
2695
2696 for (int j = 0; j < i; ++j) {
2697 if (base[j] != NULL) {
2698 unmap_memory(base[j], size[j]);
2699 }
2700 }
2701
2702 return (i < max_tries) ? requested_addr : NULL;
2703 }
2704
2705 bool os::pd_release_memory(char* addr, size_t bytes) {
2706 size_t size = bytes;
2707 return munmap(addr, size) == 0;
2708 }
2709
2710 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2711 assert(addr == (char*)align_down((uintptr_t)addr, os::vm_page_size()),
2712 "addr must be page aligned");
2713 int retVal = mprotect(addr, bytes, prot);
2714 return retVal == 0;
2715 }
2716
2717 // Protect memory (Used to pass readonly pages through
2718 // JNI GetArray<type>Elements with empty arrays.)
2719 // Also, used for serialization page and for compressed oops null pointer
2720 // checking.
2721 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2722 bool is_committed) {
2723 unsigned int p = 0;
2724 switch (prot) {
2725 case MEM_PROT_NONE: p = PROT_NONE; break;
2726 case MEM_PROT_READ: p = PROT_READ; break;
2727 case MEM_PROT_RW: p = PROT_READ|PROT_WRITE; break;
2728 case MEM_PROT_RWX: p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2729 default:
2730 ShouldNotReachHere();
2731 }
2732 // is_committed is unused.
2733 return solaris_mprotect(addr, bytes, p);
2734 }
2735
2736 // guard_memory and unguard_memory only happens within stack guard pages.
2737 // Since ISM pertains only to the heap, guard and unguard memory should not
2738 /// happen with an ISM region.
2739 bool os::guard_memory(char* addr, size_t bytes) {
2740 return solaris_mprotect(addr, bytes, PROT_NONE);
2741 }
2742
2743 bool os::unguard_memory(char* addr, size_t bytes) {
2744 return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2745 }
2746
2747 // Large page support
2748 static size_t _large_page_size = 0;
2749
2750 // Insertion sort for small arrays (descending order).
2751 static void insertion_sort_descending(size_t* array, int len) {
2752 for (int i = 0; i < len; i++) {
2753 size_t val = array[i];
2754 for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2755 size_t tmp = array[key];
2756 array[key] = array[key - 1];
2757 array[key - 1] = tmp;
2758 }
2759 }
2760 }
2761
2762 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2763 const unsigned int usable_count = VM_Version::page_size_count();
2764 if (usable_count == 1) {
2765 return false;
2766 }
2767
2768 // Find the right getpagesizes interface. When solaris 11 is the minimum
2769 // build platform, getpagesizes() (without the '2') can be called directly.
2770 typedef int (*gps_t)(size_t[], int);
2771 gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2772 if (gps_func == NULL) {
2773 gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2774 if (gps_func == NULL) {
2775 if (warn) {
2776 warning("MPSS is not supported by the operating system.");
2777 }
2778 return false;
2779 }
2780 }
2781
2782 // Fill the array of page sizes.
2783 int n = (*gps_func)(_page_sizes, page_sizes_max);
2784 assert(n > 0, "Solaris bug?");
2785
2786 if (n == page_sizes_max) {
2787 // Add a sentinel value (necessary only if the array was completely filled
2788 // since it is static (zeroed at initialization)).
2789 _page_sizes[--n] = 0;
2790 DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2791 }
2792 assert(_page_sizes[n] == 0, "missing sentinel");
2793 trace_page_sizes("available page sizes", _page_sizes, n);
2794
2795 if (n == 1) return false; // Only one page size available.
2796
2797 // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2798 // select up to usable_count elements. First sort the array, find the first
2799 // acceptable value, then copy the usable sizes to the top of the array and
2800 // trim the rest. Make sure to include the default page size :-).
2801 //
2802 // A better policy could get rid of the 4M limit by taking the sizes of the
2803 // important VM memory regions (java heap and possibly the code cache) into
2804 // account.
2805 insertion_sort_descending(_page_sizes, n);
2806 const size_t size_limit =
2807 FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2808 int beg;
2809 for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2810 const int end = MIN2((int)usable_count, n) - 1;
2811 for (int cur = 0; cur < end; ++cur, ++beg) {
2812 _page_sizes[cur] = _page_sizes[beg];
2813 }
2814 _page_sizes[end] = vm_page_size();
2815 _page_sizes[end + 1] = 0;
2816
2817 if (_page_sizes[end] > _page_sizes[end - 1]) {
2818 // Default page size is not the smallest; sort again.
2819 insertion_sort_descending(_page_sizes, end + 1);
2820 }
2821 *page_size = _page_sizes[0];
2822
2823 trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2824 return true;
2825 }
2826
2827 void os::large_page_init() {
2828 if (UseLargePages) {
2829 // print a warning if any large page related flag is specified on command line
2830 bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2831 !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2832
2833 UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2834 }
2835 }
2836
2837 bool os::Solaris::is_valid_page_size(size_t bytes) {
2838 for (int i = 0; _page_sizes[i] != 0; i++) {
2839 if (_page_sizes[i] == bytes) {
2840 return true;
2841 }
2842 }
2843 return false;
2844 }
2845
2846 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2847 assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2848 assert(is_aligned((void*) start, align),
2849 PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2850 assert(is_aligned(bytes, align),
2851 SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2852
2853 // Signal to OS that we want large pages for addresses
2854 // from addr, addr + bytes
2855 struct memcntl_mha mpss_struct;
2856 mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2857 mpss_struct.mha_pagesize = align;
2858 mpss_struct.mha_flags = 0;
2859 // Upon successful completion, memcntl() returns 0
2860 if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2861 debug_only(warning("Attempt to use MPSS failed."));
2862 return false;
2863 }
2864 return true;
2865 }
2866
2867 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2868 fatal("os::reserve_memory_special should not be called on Solaris.");
2869 return NULL;
2870 }
2871
2872 bool os::release_memory_special(char* base, size_t bytes) {
2873 fatal("os::release_memory_special should not be called on Solaris.");
2874 return false;
2875 }
2876
2877 size_t os::large_page_size() {
2878 return _large_page_size;
2879 }
2880
2881 // MPSS allows application to commit large page memory on demand; with ISM
2882 // the entire memory region must be allocated as shared memory.
2883 bool os::can_commit_large_page_memory() {
2884 return true;
2885 }
2886
2887 bool os::can_execute_large_page_memory() {
2888 return true;
2889 }
2890
2891 // Read calls from inside the vm need to perform state transitions
2892 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2893 size_t res;
2894 JavaThread* thread = (JavaThread*)Thread::current();
2895 assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2896 ThreadBlockInVM tbiv(thread);
2897 RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2898 return res;
2899 }
2900
2901 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2902 size_t res;
2903 JavaThread* thread = (JavaThread*)Thread::current();
2904 assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2905 ThreadBlockInVM tbiv(thread);
2906 RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
2907 return res;
2908 }
2909
2910 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
2911 size_t res;
2912 assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
2913 "Assumed _thread_in_native");
2914 RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2915 return res;
2916 }
2917
2918 void os::naked_short_sleep(jlong ms) {
2919 assert(ms < 1000, "Un-interruptable sleep, short time use only");
2920
2921 // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
2922 // Solaris requires -lrt for this.
2923 usleep((ms * 1000));
2924
2925 return;
2926 }
2927
2928 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2929 void os::infinite_sleep() {
2930 while (true) { // sleep forever ...
2931 ::sleep(100); // ... 100 seconds at a time
2932 }
2933 }
2934
2935 // Used to convert frequent JVM_Yield() to nops
2936 bool os::dont_yield() {
2937 if (DontYieldALot) {
2938 static hrtime_t last_time = 0;
2939 hrtime_t diff = getTimeNanos() - last_time;
2940
2941 if (diff < DontYieldALotInterval * 1000000) {
2942 return true;
2943 }
2944
2945 last_time += diff;
2946
2947 return false;
2948 } else {
2949 return false;
2950 }
2951 }
2952
2953 // Note that yield semantics are defined by the scheduling class to which
2954 // the thread currently belongs. Typically, yield will _not yield to
2955 // other equal or higher priority threads that reside on the dispatch queues
2956 // of other CPUs.
2957
2958 void os::naked_yield() {
2959 thr_yield();
2960 }
2961
2962 // Interface for setting lwp priorities. We are using T2 libthread,
2963 // which forces the use of bound threads, so all of our threads will
2964 // be assigned to real lwp's. Using the thr_setprio function is
2965 // meaningless in this mode so we must adjust the real lwp's priority.
2966 // The routines below implement the getting and setting of lwp priorities.
2967 //
2968 // Note: There are three priority scales used on Solaris. Java priotities
2969 // which range from 1 to 10, libthread "thr_setprio" scale which range
2970 // from 0 to 127, and the current scheduling class of the process we
2971 // are running in. This is typically from -60 to +60.
2972 // The setting of the lwp priorities in done after a call to thr_setprio
2973 // so Java priorities are mapped to libthread priorities and we map from
2974 // the latter to lwp priorities. We don't keep priorities stored in
2975 // Java priorities since some of our worker threads want to set priorities
2976 // higher than all Java threads.
2977 //
2978 // For related information:
2979 // (1) man -s 2 priocntl
2980 // (2) man -s 4 priocntl
2981 // (3) man dispadmin
2982 // = librt.so
2983 // = libthread/common/rtsched.c - thrp_setlwpprio().
2984 // = ps -cL <pid> ... to validate priority.
2985 // = sched_get_priority_min and _max
2986 // pthread_create
2987 // sched_setparam
2988 // pthread_setschedparam
2989 //
2990 // Assumptions:
2991 // + We assume that all threads in the process belong to the same
2992 // scheduling class. IE. an homogenous process.
2993 // + Must be root or in IA group to change change "interactive" attribute.
2994 // Priocntl() will fail silently. The only indication of failure is when
2995 // we read-back the value and notice that it hasn't changed.
2996 // + Interactive threads enter the runq at the head, non-interactive at the tail.
2997 // + For RT, change timeslice as well. Invariant:
2998 // constant "priority integral"
2999 // Konst == TimeSlice * (60-Priority)
3000 // Given a priority, compute appropriate timeslice.
3001 // + Higher numerical values have higher priority.
3002
3003 // sched class attributes
3004 typedef struct {
3005 int schedPolicy; // classID
3006 int maxPrio;
3007 int minPrio;
3008 } SchedInfo;
3009
3010
3011 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3012
3013 #ifdef ASSERT
3014 static int ReadBackValidate = 1;
3015 #endif
3016 static int myClass = 0;
3017 static int myMin = 0;
3018 static int myMax = 0;
3019 static int myCur = 0;
3020 static bool priocntl_enable = false;
3021
3022 static const int criticalPrio = FXCriticalPriority;
3023 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3024
3025
3026 // lwp_priocntl_init
3027 //
3028 // Try to determine the priority scale for our process.
3029 //
3030 // Return errno or 0 if OK.
3031 //
3032 static int lwp_priocntl_init() {
3033 int rslt;
3034 pcinfo_t ClassInfo;
3035 pcparms_t ParmInfo;
3036 int i;
3037
3038 if (!UseThreadPriorities) return 0;
3039
3040 // If ThreadPriorityPolicy is 1, switch tables
3041 if (ThreadPriorityPolicy == 1) {
3042 for (i = 0; i < CriticalPriority+1; i++)
3043 os::java_to_os_priority[i] = prio_policy1[i];
3044 }
3045 if (UseCriticalJavaThreadPriority) {
3046 // MaxPriority always maps to the FX scheduling class and criticalPrio.
3047 // See set_native_priority() and set_lwp_class_and_priority().
3048 // Save original MaxPriority mapping in case attempt to
3049 // use critical priority fails.
3050 java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3051 // Set negative to distinguish from other priorities
3052 os::java_to_os_priority[MaxPriority] = -criticalPrio;
3053 }
3054
3055 // Get IDs for a set of well-known scheduling classes.
3056 // TODO-FIXME: GETCLINFO returns the current # of classes in the
3057 // the system. We should have a loop that iterates over the
3058 // classID values, which are known to be "small" integers.
3059
3060 strcpy(ClassInfo.pc_clname, "TS");
3061 ClassInfo.pc_cid = -1;
3062 rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3063 if (rslt < 0) return errno;
3064 assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3065 tsLimits.schedPolicy = ClassInfo.pc_cid;
3066 tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3067 tsLimits.minPrio = -tsLimits.maxPrio;
3068
3069 strcpy(ClassInfo.pc_clname, "IA");
3070 ClassInfo.pc_cid = -1;
3071 rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3072 if (rslt < 0) return errno;
3073 assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3074 iaLimits.schedPolicy = ClassInfo.pc_cid;
3075 iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3076 iaLimits.minPrio = -iaLimits.maxPrio;
3077
3078 strcpy(ClassInfo.pc_clname, "RT");
3079 ClassInfo.pc_cid = -1;
3080 rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3081 if (rslt < 0) return errno;
3082 assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3083 rtLimits.schedPolicy = ClassInfo.pc_cid;
3084 rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3085 rtLimits.minPrio = 0;
3086
3087 strcpy(ClassInfo.pc_clname, "FX");
3088 ClassInfo.pc_cid = -1;
3089 rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3090 if (rslt < 0) return errno;
3091 assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3092 fxLimits.schedPolicy = ClassInfo.pc_cid;
3093 fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3094 fxLimits.minPrio = 0;
3095
3096 // Query our "current" scheduling class.
3097 // This will normally be IA, TS or, rarely, FX or RT.
3098 memset(&ParmInfo, 0, sizeof(ParmInfo));
3099 ParmInfo.pc_cid = PC_CLNULL;
3100 rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3101 if (rslt < 0) return errno;
3102 myClass = ParmInfo.pc_cid;
3103
3104 // We now know our scheduling classId, get specific information
3105 // about the class.
3106 ClassInfo.pc_cid = myClass;
3107 ClassInfo.pc_clname[0] = 0;
3108 rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3109 if (rslt < 0) return errno;
3110
3111 if (ThreadPriorityVerbose) {
3112 tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3113 }
3114
3115 memset(&ParmInfo, 0, sizeof(pcparms_t));
3116 ParmInfo.pc_cid = PC_CLNULL;
3117 rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3118 if (rslt < 0) return errno;
3119
3120 if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3121 myMin = rtLimits.minPrio;
3122 myMax = rtLimits.maxPrio;
3123 } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3124 iaparms_t *iaInfo = (iaparms_t*)ParmInfo.pc_clparms;
3125 myMin = iaLimits.minPrio;
3126 myMax = iaLimits.maxPrio;
3127 myMax = MIN2(myMax, (int)iaInfo->ia_uprilim); // clamp - restrict
3128 } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3129 tsparms_t *tsInfo = (tsparms_t*)ParmInfo.pc_clparms;
3130 myMin = tsLimits.minPrio;
3131 myMax = tsLimits.maxPrio;
3132 myMax = MIN2(myMax, (int)tsInfo->ts_uprilim); // clamp - restrict
3133 } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3134 fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3135 myMin = fxLimits.minPrio;
3136 myMax = fxLimits.maxPrio;
3137 myMax = MIN2(myMax, (int)fxInfo->fx_uprilim); // clamp - restrict
3138 } else {
3139 // No clue - punt
3140 if (ThreadPriorityVerbose) {
3141 tty->print_cr("Unknown scheduling class: %s ... \n",
3142 ClassInfo.pc_clname);
3143 }
3144 return EINVAL; // no clue, punt
3145 }
3146
3147 if (ThreadPriorityVerbose) {
3148 tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3149 }
3150
3151 priocntl_enable = true; // Enable changing priorities
3152 return 0;
3153 }
3154
3155 #define IAPRI(x) ((iaparms_t *)((x).pc_clparms))
3156 #define RTPRI(x) ((rtparms_t *)((x).pc_clparms))
3157 #define TSPRI(x) ((tsparms_t *)((x).pc_clparms))
3158 #define FXPRI(x) ((fxparms_t *)((x).pc_clparms))
3159
3160
3161 // scale_to_lwp_priority
3162 //
3163 // Convert from the libthread "thr_setprio" scale to our current
3164 // lwp scheduling class scale.
3165 //
3166 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3167 int v;
3168
3169 if (x == 127) return rMax; // avoid round-down
3170 v = (((x*(rMax-rMin)))/128)+rMin;
3171 return v;
3172 }
3173
3174
3175 // set_lwp_class_and_priority
3176 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3177 int newPrio, int new_class, bool scale) {
3178 int rslt;
3179 int Actual, Expected, prv;
3180 pcparms_t ParmInfo; // for GET-SET
3181 #ifdef ASSERT
3182 pcparms_t ReadBack; // for readback
3183 #endif
3184
3185 // Set priority via PC_GETPARMS, update, PC_SETPARMS
3186 // Query current values.
3187 // TODO: accelerate this by eliminating the PC_GETPARMS call.
3188 // Cache "pcparms_t" in global ParmCache.
3189 // TODO: elide set-to-same-value
3190
3191 // If something went wrong on init, don't change priorities.
3192 if (!priocntl_enable) {
3193 if (ThreadPriorityVerbose) {
3194 tty->print_cr("Trying to set priority but init failed, ignoring");
3195 }
3196 return EINVAL;
3197 }
3198
3199 // If lwp hasn't started yet, just return
3200 // the _start routine will call us again.
3201 if (lwpid <= 0) {
3202 if (ThreadPriorityVerbose) {
3203 tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3204 INTPTR_FORMAT " to %d, lwpid not set",
3205 ThreadID, newPrio);
3206 }
3207 return 0;
3208 }
3209
3210 if (ThreadPriorityVerbose) {
3211 tty->print_cr ("set_lwp_class_and_priority("
3212 INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3213 ThreadID, lwpid, newPrio);
3214 }
3215
3216 memset(&ParmInfo, 0, sizeof(pcparms_t));
3217 ParmInfo.pc_cid = PC_CLNULL;
3218 rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3219 if (rslt < 0) return errno;
3220
3221 int cur_class = ParmInfo.pc_cid;
3222 ParmInfo.pc_cid = (id_t)new_class;
3223
3224 if (new_class == rtLimits.schedPolicy) {
3225 rtparms_t *rtInfo = (rtparms_t*)ParmInfo.pc_clparms;
3226 rtInfo->rt_pri = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3227 rtLimits.maxPrio, newPrio)
3228 : newPrio;
3229 rtInfo->rt_tqsecs = RT_NOCHANGE;
3230 rtInfo->rt_tqnsecs = RT_NOCHANGE;
3231 if (ThreadPriorityVerbose) {
3232 tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3233 }
3234 } else if (new_class == iaLimits.schedPolicy) {
3235 iaparms_t* iaInfo = (iaparms_t*)ParmInfo.pc_clparms;
3236 int maxClamped = MIN2(iaLimits.maxPrio,
3237 cur_class == new_class
3238 ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3239 iaInfo->ia_upri = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3240 maxClamped, newPrio)
3241 : newPrio;
3242 iaInfo->ia_uprilim = cur_class == new_class
3243 ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3244 iaInfo->ia_mode = IA_NOCHANGE;
3245 if (ThreadPriorityVerbose) {
3246 tty->print_cr("IA: [%d...%d] %d->%d\n",
3247 iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3248 }
3249 } else if (new_class == tsLimits.schedPolicy) {
3250 tsparms_t* tsInfo = (tsparms_t*)ParmInfo.pc_clparms;
3251 int maxClamped = MIN2(tsLimits.maxPrio,
3252 cur_class == new_class
3253 ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3254 tsInfo->ts_upri = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3255 maxClamped, newPrio)
3256 : newPrio;
3257 tsInfo->ts_uprilim = cur_class == new_class
3258 ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3259 if (ThreadPriorityVerbose) {
3260 tty->print_cr("TS: [%d...%d] %d->%d\n",
3261 tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3262 }
3263 } else if (new_class == fxLimits.schedPolicy) {
3264 fxparms_t* fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3265 int maxClamped = MIN2(fxLimits.maxPrio,
3266 cur_class == new_class
3267 ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3268 fxInfo->fx_upri = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3269 maxClamped, newPrio)
3270 : newPrio;
3271 fxInfo->fx_uprilim = cur_class == new_class
3272 ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3273 fxInfo->fx_tqsecs = FX_NOCHANGE;
3274 fxInfo->fx_tqnsecs = FX_NOCHANGE;
3275 if (ThreadPriorityVerbose) {
3276 tty->print_cr("FX: [%d...%d] %d->%d\n",
3277 fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3278 }
3279 } else {
3280 if (ThreadPriorityVerbose) {
3281 tty->print_cr("Unknown new scheduling class %d\n", new_class);
3282 }
3283 return EINVAL; // no clue, punt
3284 }
3285
3286 rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3287 if (ThreadPriorityVerbose && rslt) {
3288 tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3289 }
3290 if (rslt < 0) return errno;
3291
3292 #ifdef ASSERT
3293 // Sanity check: read back what we just attempted to set.
3294 // In theory it could have changed in the interim ...
3295 //
3296 // The priocntl system call is tricky.
3297 // Sometimes it'll validate the priority value argument and
3298 // return EINVAL if unhappy. At other times it fails silently.
3299 // Readbacks are prudent.
3300
3301 if (!ReadBackValidate) return 0;
3302
3303 memset(&ReadBack, 0, sizeof(pcparms_t));
3304 ReadBack.pc_cid = PC_CLNULL;
3305 rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3306 assert(rslt >= 0, "priocntl failed");
3307 Actual = Expected = 0xBAD;
3308 assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3309 if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3310 Actual = RTPRI(ReadBack)->rt_pri;
3311 Expected = RTPRI(ParmInfo)->rt_pri;
3312 } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3313 Actual = IAPRI(ReadBack)->ia_upri;
3314 Expected = IAPRI(ParmInfo)->ia_upri;
3315 } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3316 Actual = TSPRI(ReadBack)->ts_upri;
3317 Expected = TSPRI(ParmInfo)->ts_upri;
3318 } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3319 Actual = FXPRI(ReadBack)->fx_upri;
3320 Expected = FXPRI(ParmInfo)->fx_upri;
3321 } else {
3322 if (ThreadPriorityVerbose) {
3323 tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3324 ParmInfo.pc_cid);
3325 }
3326 }
3327
3328 if (Actual != Expected) {
3329 if (ThreadPriorityVerbose) {
3330 tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3331 lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3332 }
3333 }
3334 #endif
3335
3336 return 0;
3337 }
3338
3339 // Solaris only gives access to 128 real priorities at a time,
3340 // so we expand Java's ten to fill this range. This would be better
3341 // if we dynamically adjusted relative priorities.
3342 //
3343 // The ThreadPriorityPolicy option allows us to select 2 different
3344 // priority scales.
3345 //
3346 // ThreadPriorityPolicy=0
3347 // Since the Solaris' default priority is MaximumPriority, we do not
3348 // set a priority lower than Max unless a priority lower than
3349 // NormPriority is requested.
3350 //
3351 // ThreadPriorityPolicy=1
3352 // This mode causes the priority table to get filled with
3353 // linear values. NormPriority get's mapped to 50% of the
3354 // Maximum priority an so on. This will cause VM threads
3355 // to get unfair treatment against other Solaris processes
3356 // which do not explicitly alter their thread priorities.
3357
3358 int os::java_to_os_priority[CriticalPriority + 1] = {
3359 -99999, // 0 Entry should never be used
3360
3361 0, // 1 MinPriority
3362 32, // 2
3363 64, // 3
3364
3365 96, // 4
3366 127, // 5 NormPriority
3367 127, // 6
3368
3369 127, // 7
3370 127, // 8
3371 127, // 9 NearMaxPriority
3372
3373 127, // 10 MaxPriority
3374
3375 -criticalPrio // 11 CriticalPriority
3376 };
3377
3378 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3379 OSThread* osthread = thread->osthread();
3380
3381 // Save requested priority in case the thread hasn't been started
3382 osthread->set_native_priority(newpri);
3383
3384 // Check for critical priority request
3385 bool fxcritical = false;
3386 if (newpri == -criticalPrio) {
3387 fxcritical = true;
3388 newpri = criticalPrio;
3389 }
3390
3391 assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3392 if (!UseThreadPriorities) return OS_OK;
3393
3394 int status = 0;
3395
3396 if (!fxcritical) {
3397 // Use thr_setprio only if we have a priority that thr_setprio understands
3398 status = thr_setprio(thread->osthread()->thread_id(), newpri);
3399 }
3400
3401 int lwp_status =
3402 set_lwp_class_and_priority(osthread->thread_id(),
3403 osthread->lwp_id(),
3404 newpri,
3405 fxcritical ? fxLimits.schedPolicy : myClass,
3406 !fxcritical);
3407 if (lwp_status != 0 && fxcritical) {
3408 // Try again, this time without changing the scheduling class
3409 newpri = java_MaxPriority_to_os_priority;
3410 lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3411 osthread->lwp_id(),
3412 newpri, myClass, false);
3413 }
3414 status |= lwp_status;
3415 return (status == 0) ? OS_OK : OS_ERR;
3416 }
3417
3418
3419 OSReturn os::get_native_priority(const Thread* const thread,
3420 int *priority_ptr) {
3421 int p;
3422 if (!UseThreadPriorities) {
3423 *priority_ptr = NormalPriority;
3424 return OS_OK;
3425 }
3426 int status = thr_getprio(thread->osthread()->thread_id(), &p);
3427 if (status != 0) {
3428 return OS_ERR;
3429 }
3430 *priority_ptr = p;
3431 return OS_OK;
3432 }
3433
3434
3435 // Hint to the underlying OS that a task switch would not be good.
3436 // Void return because it's a hint and can fail.
3437 void os::hint_no_preempt() {
3438 schedctl_start(schedctl_init());
3439 }
3440
3441 ////////////////////////////////////////////////////////////////////////////////
3442 // suspend/resume support
3443
3444 // The low-level signal-based suspend/resume support is a remnant from the
3445 // old VM-suspension that used to be for java-suspension, safepoints etc,
3446 // within hotspot. Currently used by JFR's OSThreadSampler
3447 //
3448 // The remaining code is greatly simplified from the more general suspension
3449 // code that used to be used.
3450 //
3451 // The protocol is quite simple:
3452 // - suspend:
3453 // - sends a signal to the target thread
3454 // - polls the suspend state of the osthread using a yield loop
3455 // - target thread signal handler (SR_handler) sets suspend state
3456 // and blocks in sigsuspend until continued
3457 // - resume:
3458 // - sets target osthread state to continue
3459 // - sends signal to end the sigsuspend loop in the SR_handler
3460 //
3461 // Note that the SR_lock plays no role in this suspend/resume protocol,
3462 // but is checked for NULL in SR_handler as a thread termination indicator.
3463 // The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
3464 //
3465 // Note that resume_clear_context() and suspend_save_context() are needed
3466 // by SR_handler(), so that fetch_frame_from_ucontext() works,
3467 // which in part is used by:
3468 // - Forte Analyzer: AsyncGetCallTrace()
3469 // - StackBanging: get_frame_at_stack_banging_point()
3470 // - JFR: get_topframe()-->....-->get_valid_uc_in_signal_handler()
3471
3472 static void resume_clear_context(OSThread *osthread) {
3473 osthread->set_ucontext(NULL);
3474 }
3475
3476 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3477 osthread->set_ucontext(context);
3478 }
3479
3480 static PosixSemaphore sr_semaphore;
3481
3482 void os::Solaris::SR_handler(Thread* thread, ucontext_t* context) {
3483 // Save and restore errno to avoid confusing native code with EINTR
3484 // after sigsuspend.
3485 int old_errno = errno;
3486
3487 OSThread* osthread = thread->osthread();
3488 assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3489
3490 os::SuspendResume::State current = osthread->sr.state();
3491 if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3492 suspend_save_context(osthread, context);
3493
3494 // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3495 os::SuspendResume::State state = osthread->sr.suspended();
3496 if (state == os::SuspendResume::SR_SUSPENDED) {
3497 sigset_t suspend_set; // signals for sigsuspend()
3498
3499 // get current set of blocked signals and unblock resume signal
3500 pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3501 sigdelset(&suspend_set, ASYNC_SIGNAL);
3502
3503 sr_semaphore.signal();
3504 // wait here until we are resumed
3505 while (1) {
3506 sigsuspend(&suspend_set);
3507
3508 os::SuspendResume::State result = osthread->sr.running();
3509 if (result == os::SuspendResume::SR_RUNNING) {
3510 sr_semaphore.signal();
3511 break;
3512 }
3513 }
3514
3515 } else if (state == os::SuspendResume::SR_RUNNING) {
3516 // request was cancelled, continue
3517 } else {
3518 ShouldNotReachHere();
3519 }
3520
3521 resume_clear_context(osthread);
3522 } else if (current == os::SuspendResume::SR_RUNNING) {
3523 // request was cancelled, continue
3524 } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3525 // ignore
3526 } else {
3527 // ignore
3528 }
3529
3530 errno = old_errno;
3531 }
3532
3533 void os::print_statistics() {
3534 }
3535
3536 bool os::message_box(const char* title, const char* message) {
3537 int i;
3538 fdStream err(defaultStream::error_fd());
3539 for (i = 0; i < 78; i++) err.print_raw("=");
3540 err.cr();
3541 err.print_raw_cr(title);
3542 for (i = 0; i < 78; i++) err.print_raw("-");
3543 err.cr();
3544 err.print_raw_cr(message);
3545 for (i = 0; i < 78; i++) err.print_raw("=");
3546 err.cr();
3547
3548 char buf[16];
3549 // Prevent process from exiting upon "read error" without consuming all CPU
3550 while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3551
3552 return buf[0] == 'y' || buf[0] == 'Y';
3553 }
3554
3555 static int sr_notify(OSThread* osthread) {
3556 int status = thr_kill(osthread->thread_id(), ASYNC_SIGNAL);
3557 assert_status(status == 0, status, "thr_kill");
3558 return status;
3559 }
3560
3561 // "Randomly" selected value for how long we want to spin
3562 // before bailing out on suspending a thread, also how often
3563 // we send a signal to a thread we want to resume
3564 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3565 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3566
3567 static bool do_suspend(OSThread* osthread) {
3568 assert(osthread->sr.is_running(), "thread should be running");
3569 assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3570
3571 // mark as suspended and send signal
3572 if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3573 // failed to switch, state wasn't running?
3574 ShouldNotReachHere();
3575 return false;
3576 }
3577
3578 if (sr_notify(osthread) != 0) {
3579 ShouldNotReachHere();
3580 }
3581
3582 // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3583 while (true) {
3584 if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3585 break;
3586 } else {
3587 // timeout
3588 os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3589 if (cancelled == os::SuspendResume::SR_RUNNING) {
3590 return false;
3591 } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3592 // make sure that we consume the signal on the semaphore as well
3593 sr_semaphore.wait();
3594 break;
3595 } else {
3596 ShouldNotReachHere();
3597 return false;
3598 }
3599 }
3600 }
3601
3602 guarantee(osthread->sr.is_suspended(), "Must be suspended");
3603 return true;
3604 }
3605
3606 static void do_resume(OSThread* osthread) {
3607 assert(osthread->sr.is_suspended(), "thread should be suspended");
3608 assert(!sr_semaphore.trywait(), "invalid semaphore state");
3609
3610 if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3611 // failed to switch to WAKEUP_REQUEST
3612 ShouldNotReachHere();
3613 return;
3614 }
3615
3616 while (true) {
3617 if (sr_notify(osthread) == 0) {
3618 if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3619 if (osthread->sr.is_running()) {
3620 return;
3621 }
3622 }
3623 } else {
3624 ShouldNotReachHere();
3625 }
3626 }
3627
3628 guarantee(osthread->sr.is_running(), "Must be running!");
3629 }
3630
3631 void os::SuspendedThreadTask::internal_do_task() {
3632 if (do_suspend(_thread->osthread())) {
3633 SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3634 do_task(context);
3635 do_resume(_thread->osthread());
3636 }
3637 }
3638
3639 // This does not do anything on Solaris. This is basically a hook for being
3640 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3641 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3642 const methodHandle& method, JavaCallArguments* args,
3643 Thread* thread) {
3644 f(value, method, args, thread);
3645 }
3646
3647 // This routine may be used by user applications as a "hook" to catch signals.
3648 // The user-defined signal handler must pass unrecognized signals to this
3649 // routine, and if it returns true (non-zero), then the signal handler must
3650 // return immediately. If the flag "abort_if_unrecognized" is true, then this
3651 // routine will never retun false (zero), but instead will execute a VM panic
3652 // routine kill the process.
3653 //
3654 // If this routine returns false, it is OK to call it again. This allows
3655 // the user-defined signal handler to perform checks either before or after
3656 // the VM performs its own checks. Naturally, the user code would be making
3657 // a serious error if it tried to handle an exception (such as a null check
3658 // or breakpoint) that the VM was generating for its own correct operation.
3659 //
3660 // This routine may recognize any of the following kinds of signals:
3661 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3662 // ASYNC_SIGNAL.
3663 // It should be consulted by handlers for any of those signals.
3664 //
3665 // The caller of this routine must pass in the three arguments supplied
3666 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3667 // field of the structure passed to sigaction(). This routine assumes that
3668 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3669 //
3670 // Note that the VM will print warnings if it detects conflicting signal
3671 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3672 //
3673 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3674 siginfo_t* siginfo,
3675 void* ucontext,
3676 int abort_if_unrecognized);
3677
3678
3679 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3680 int orig_errno = errno; // Preserve errno value over signal handler.
3681 JVM_handle_solaris_signal(sig, info, ucVoid, true);
3682 errno = orig_errno;
3683 }
3684
3685 // This boolean allows users to forward their own non-matching signals
3686 // to JVM_handle_solaris_signal, harmlessly.
3687 bool os::Solaris::signal_handlers_are_installed = false;
3688
3689 // For signal-chaining
3690 bool os::Solaris::libjsig_is_loaded = false;
3691 typedef struct sigaction *(*get_signal_t)(int);
3692 get_signal_t os::Solaris::get_signal_action = NULL;
3693
3694 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3695 struct sigaction *actp = NULL;
3696
3697 if ((libjsig_is_loaded) && (sig <= Maxsignum)) {
3698 // Retrieve the old signal handler from libjsig
3699 actp = (*get_signal_action)(sig);
3700 }
3701 if (actp == NULL) {
3702 // Retrieve the preinstalled signal handler from jvm
3703 actp = get_preinstalled_handler(sig);
3704 }
3705
3706 return actp;
3707 }
3708
3709 static bool call_chained_handler(struct sigaction *actp, int sig,
3710 siginfo_t *siginfo, void *context) {
3711 // Call the old signal handler
3712 if (actp->sa_handler == SIG_DFL) {
3713 // It's more reasonable to let jvm treat it as an unexpected exception
3714 // instead of taking the default action.
3715 return false;
3716 } else if (actp->sa_handler != SIG_IGN) {
3717 if ((actp->sa_flags & SA_NODEFER) == 0) {
3718 // automaticlly block the signal
3719 sigaddset(&(actp->sa_mask), sig);
3720 }
3721
3722 sa_handler_t hand;
3723 sa_sigaction_t sa;
3724 bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3725 // retrieve the chained handler
3726 if (siginfo_flag_set) {
3727 sa = actp->sa_sigaction;
3728 } else {
3729 hand = actp->sa_handler;
3730 }
3731
3732 if ((actp->sa_flags & SA_RESETHAND) != 0) {
3733 actp->sa_handler = SIG_DFL;
3734 }
3735
3736 // try to honor the signal mask
3737 sigset_t oset;
3738 pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3739
3740 // call into the chained handler
3741 if (siginfo_flag_set) {
3742 (*sa)(sig, siginfo, context);
3743 } else {
3744 (*hand)(sig);
3745 }
3746
3747 // restore the signal mask
3748 pthread_sigmask(SIG_SETMASK, &oset, 0);
3749 }
3750 // Tell jvm's signal handler the signal is taken care of.
3751 return true;
3752 }
3753
3754 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3755 bool chained = false;
3756 // signal-chaining
3757 if (UseSignalChaining) {
3758 struct sigaction *actp = get_chained_signal_action(sig);
3759 if (actp != NULL) {
3760 chained = call_chained_handler(actp, sig, siginfo, context);
3761 }
3762 }
3763 return chained;
3764 }
3765
3766 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3767 assert((chainedsigactions != (struct sigaction *)NULL) &&
3768 (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3769 if (preinstalled_sigs[sig] != 0) {
3770 return &chainedsigactions[sig];
3771 }
3772 return NULL;
3773 }
3774
3775 void os::Solaris::save_preinstalled_handler(int sig,
3776 struct sigaction& oldAct) {
3777 assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3778 assert((chainedsigactions != (struct sigaction *)NULL) &&
3779 (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3780 chainedsigactions[sig] = oldAct;
3781 preinstalled_sigs[sig] = 1;
3782 }
3783
3784 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3785 bool oktochain) {
3786 // Check for overwrite.
3787 struct sigaction oldAct;
3788 sigaction(sig, (struct sigaction*)NULL, &oldAct);
3789 void* oldhand =
3790 oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3791 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3792 if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3793 oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3794 oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3795 if (AllowUserSignalHandlers || !set_installed) {
3796 // Do not overwrite; user takes responsibility to forward to us.
3797 return;
3798 } else if (UseSignalChaining) {
3799 if (oktochain) {
3800 // save the old handler in jvm
3801 save_preinstalled_handler(sig, oldAct);
3802 } else {
3803 vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3804 }
3805 // libjsig also interposes the sigaction() call below and saves the
3806 // old sigaction on it own.
3807 } else {
3808 fatal("Encountered unexpected pre-existing sigaction handler "
3809 "%#lx for signal %d.", (long)oldhand, sig);
3810 }
3811 }
3812
3813 struct sigaction sigAct;
3814 sigfillset(&(sigAct.sa_mask));
3815 sigAct.sa_handler = SIG_DFL;
3816
3817 sigAct.sa_sigaction = signalHandler;
3818 // Handle SIGSEGV on alternate signal stack if
3819 // not using stack banging
3820 if (!UseStackBanging && sig == SIGSEGV) {
3821 sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3822 } else {
3823 sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3824 }
3825 os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3826
3827 sigaction(sig, &sigAct, &oldAct);
3828
3829 void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3830 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3831 assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3832 }
3833
3834
3835 #define DO_SIGNAL_CHECK(sig) \
3836 do { \
3837 if (!sigismember(&check_signal_done, sig)) { \
3838 os::Solaris::check_signal_handler(sig); \
3839 } \
3840 } while (0)
3841
3842 // This method is a periodic task to check for misbehaving JNI applications
3843 // under CheckJNI, we can add any periodic checks here
3844
3845 void os::run_periodic_checks() {
3846 // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3847 // thereby preventing a NULL checks.
3848 if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3849
3850 if (check_signals == false) return;
3851
3852 // SEGV and BUS if overridden could potentially prevent
3853 // generation of hs*.log in the event of a crash, debugging
3854 // such a case can be very challenging, so we absolutely
3855 // check for the following for a good measure:
3856 DO_SIGNAL_CHECK(SIGSEGV);
3857 DO_SIGNAL_CHECK(SIGILL);
3858 DO_SIGNAL_CHECK(SIGFPE);
3859 DO_SIGNAL_CHECK(SIGBUS);
3860 DO_SIGNAL_CHECK(SIGPIPE);
3861 DO_SIGNAL_CHECK(SIGXFSZ);
3862 DO_SIGNAL_CHECK(ASYNC_SIGNAL);
3863
3864 // ReduceSignalUsage allows the user to override these handlers
3865 // see comments at the very top and jvm_solaris.h
3866 if (!ReduceSignalUsage) {
3867 DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3868 DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3869 DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3870 DO_SIGNAL_CHECK(BREAK_SIGNAL);
3871 }
3872 }
3873
3874 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3875
3876 static os_sigaction_t os_sigaction = NULL;
3877
3878 void os::Solaris::check_signal_handler(int sig) {
3879 char buf[O_BUFLEN];
3880 address jvmHandler = NULL;
3881
3882 struct sigaction act;
3883 if (os_sigaction == NULL) {
3884 // only trust the default sigaction, in case it has been interposed
3885 os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3886 if (os_sigaction == NULL) return;
3887 }
3888
3889 os_sigaction(sig, (struct sigaction*)NULL, &act);
3890
3891 address thisHandler = (act.sa_flags & SA_SIGINFO)
3892 ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3893 : CAST_FROM_FN_PTR(address, act.sa_handler);
3894
3895
3896 switch (sig) {
3897 case SIGSEGV:
3898 case SIGBUS:
3899 case SIGFPE:
3900 case SIGPIPE:
3901 case SIGXFSZ:
3902 case SIGILL:
3903 case ASYNC_SIGNAL:
3904 jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
3905 break;
3906
3907 case SHUTDOWN1_SIGNAL:
3908 case SHUTDOWN2_SIGNAL:
3909 case SHUTDOWN3_SIGNAL:
3910 case BREAK_SIGNAL:
3911 jvmHandler = (address)user_handler();
3912 break;
3913
3914 default:
3915 return;
3916 }
3917
3918 if (thisHandler != jvmHandler) {
3919 tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3920 tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3921 tty->print_cr(" found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3922 // No need to check this sig any longer
3923 sigaddset(&check_signal_done, sig);
3924 // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3925 if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3926 tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3927 exception_name(sig, buf, O_BUFLEN));
3928 }
3929 } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
3930 tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3931 tty->print("expected:");
3932 os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
3933 tty->cr();
3934 tty->print(" found:");
3935 os::Posix::print_sa_flags(tty, act.sa_flags);
3936 tty->cr();
3937 // No need to check this sig any longer
3938 sigaddset(&check_signal_done, sig);
3939 }
3940
3941 // Print all the signal handler state
3942 if (sigismember(&check_signal_done, sig)) {
3943 print_signal_handlers(tty, buf, O_BUFLEN);
3944 }
3945
3946 }
3947
3948 void os::Solaris::install_signal_handlers() {
3949 signal_handlers_are_installed = true;
3950
3951 // signal-chaining
3952 typedef void (*signal_setting_t)();
3953 signal_setting_t begin_signal_setting = NULL;
3954 signal_setting_t end_signal_setting = NULL;
3955 begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3956 dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3957 if (begin_signal_setting != NULL) {
3958 end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3959 dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3960 get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3961 dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3962 get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
3963 dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
3964 libjsig_is_loaded = true;
3965 if (os::Solaris::get_libjsig_version != NULL) {
3966 int libjsigversion = (*os::Solaris::get_libjsig_version)();
3967 assert(libjsigversion == JSIG_VERSION_1_4_1, "libjsig version mismatch");
3968 }
3969 assert(UseSignalChaining, "should enable signal-chaining");
3970 }
3971 if (libjsig_is_loaded) {
3972 // Tell libjsig jvm is setting signal handlers
3973 (*begin_signal_setting)();
3974 }
3975
3976 set_signal_handler(SIGSEGV, true, true);
3977 set_signal_handler(SIGPIPE, true, true);
3978 set_signal_handler(SIGXFSZ, true, true);
3979 set_signal_handler(SIGBUS, true, true);
3980 set_signal_handler(SIGILL, true, true);
3981 set_signal_handler(SIGFPE, true, true);
3982 set_signal_handler(ASYNC_SIGNAL, true, true);
3983
3984 if (libjsig_is_loaded) {
3985 // Tell libjsig jvm finishes setting signal handlers
3986 (*end_signal_setting)();
3987 }
3988
3989 // We don't activate signal checker if libjsig is in place, we trust ourselves
3990 // and if UserSignalHandler is installed all bets are off.
3991 // Log that signal checking is off only if -verbose:jni is specified.
3992 if (CheckJNICalls) {
3993 if (libjsig_is_loaded) {
3994 if (PrintJNIResolving) {
3995 tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3996 }
3997 check_signals = false;
3998 }
3999 if (AllowUserSignalHandlers) {
4000 if (PrintJNIResolving) {
4001 tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4002 }
4003 check_signals = false;
4004 }
4005 }
4006 }
4007
4008
4009 void report_error(const char* file_name, int line_no, const char* title,
4010 const char* format, ...);
4011
4012 // (Static) wrappers for the liblgrp API
4013 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4014 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4015 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4016 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4017 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4018 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4019 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4020 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4021 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4022
4023 static address resolve_symbol_lazy(const char* name) {
4024 address addr = (address) dlsym(RTLD_DEFAULT, name);
4025 if (addr == NULL) {
4026 // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4027 addr = (address) dlsym(RTLD_NEXT, name);
4028 }
4029 return addr;
4030 }
4031
4032 static address resolve_symbol(const char* name) {
4033 address addr = resolve_symbol_lazy(name);
4034 if (addr == NULL) {
4035 fatal(dlerror());
4036 }
4037 return addr;
4038 }
4039
4040 void os::Solaris::libthread_init() {
4041 address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4042
4043 lwp_priocntl_init();
4044
4045 // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4046 if (func == NULL) {
4047 func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4048 // Guarantee that this VM is running on an new enough OS (5.6 or
4049 // later) that it will have a new enough libthread.so.
4050 guarantee(func != NULL, "libthread.so is too old.");
4051 }
4052
4053 int size;
4054 void (*handler_info_func)(address *, int *);
4055 handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4056 handler_info_func(&handler_start, &size);
4057 handler_end = handler_start + size;
4058 }
4059
4060
4061 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4062 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4063 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4064 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4065 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4066 int os::Solaris::_mutex_scope = USYNC_THREAD;
4067
4068 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4069 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4070 int_fnP_cond_tP os::Solaris::_cond_signal;
4071 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4072 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4073 int_fnP_cond_tP os::Solaris::_cond_destroy;
4074 int os::Solaris::_cond_scope = USYNC_THREAD;
4075 bool os::Solaris::_synchronization_initialized;
4076
4077 void os::Solaris::synchronization_init() {
4078 if (UseLWPSynchronization) {
4079 os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4080 os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4081 os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4082 os::Solaris::set_mutex_init(lwp_mutex_init);
4083 os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4084 os::Solaris::set_mutex_scope(USYNC_THREAD);
4085
4086 os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4087 os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4088 os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4089 os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4090 os::Solaris::set_cond_init(lwp_cond_init);
4091 os::Solaris::set_cond_destroy(lwp_cond_destroy);
4092 os::Solaris::set_cond_scope(USYNC_THREAD);
4093 } else {
4094 os::Solaris::set_mutex_scope(USYNC_THREAD);
4095 os::Solaris::set_cond_scope(USYNC_THREAD);
4096
4097 if (UsePthreads) {
4098 os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4099 os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4100 os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4101 os::Solaris::set_mutex_init(pthread_mutex_default_init);
4102 os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4103
4104 os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4105 os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4106 os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4107 os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4108 os::Solaris::set_cond_init(pthread_cond_default_init);
4109 os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4110 } else {
4111 os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4112 os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4113 os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4114 os::Solaris::set_mutex_init(::mutex_init);
4115 os::Solaris::set_mutex_destroy(::mutex_destroy);
4116
4117 os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4118 os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4119 os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4120 os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4121 os::Solaris::set_cond_init(::cond_init);
4122 os::Solaris::set_cond_destroy(::cond_destroy);
4123 }
4124 }
4125 _synchronization_initialized = true;
4126 }
4127
4128 bool os::Solaris::liblgrp_init() {
4129 void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4130 if (handle != NULL) {
4131 os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4132 os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4133 os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4134 os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4135 os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4136 os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4137 os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4138 os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4139 dlsym(handle, "lgrp_cookie_stale")));
4140
4141 lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4142 set_lgrp_cookie(c);
4143 return true;
4144 }
4145 return false;
4146 }
4147
4148 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4149 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4150 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4151
4152 void init_pset_getloadavg_ptr(void) {
4153 pset_getloadavg_ptr =
4154 (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4155 if (pset_getloadavg_ptr == NULL) {
4156 log_warning(os)("pset_getloadavg function not found");
4157 }
4158 }
4159
4160 int os::Solaris::_dev_zero_fd = -1;
4161
4162 // this is called _before_ the global arguments have been parsed
4163 void os::init(void) {
4164 _initial_pid = getpid();
4165
4166 max_hrtime = first_hrtime = gethrtime();
4167
4168 init_random(1234567);
4169
4170 page_size = sysconf(_SC_PAGESIZE);
4171 if (page_size == -1) {
4172 fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4173 }
4174 init_page_sizes((size_t) page_size);
4175
4176 Solaris::initialize_system_info();
4177
4178 int fd = ::open("/dev/zero", O_RDWR);
4179 if (fd < 0) {
4180 fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4181 } else {
4182 Solaris::set_dev_zero_fd(fd);
4183
4184 // Close on exec, child won't inherit.
4185 fcntl(fd, F_SETFD, FD_CLOEXEC);
4186 }
4187
4188 clock_tics_per_sec = CLK_TCK;
4189
4190 // check if dladdr1() exists; dladdr1 can provide more information than
4191 // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4192 // and is available on linker patches for 5.7 and 5.8.
4193 // libdl.so must have been loaded, this call is just an entry lookup
4194 void * hdl = dlopen("libdl.so", RTLD_NOW);
4195 if (hdl) {
4196 dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4197 }
4198
4199 main_thread = thr_self();
4200
4201 // dynamic lookup of functions that may not be available in our lowest
4202 // supported Solaris release
4203 void * handle = dlopen("libc.so.1", RTLD_LAZY);
4204 if (handle != NULL) {
4205 Solaris::_pthread_setname_np = // from 11.3
4206 (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4207 }
4208 }
4209
4210 // To install functions for atexit system call
4211 extern "C" {
4212 static void perfMemory_exit_helper() {
4213 perfMemory_exit();
4214 }
4215 }
4216
4217 // this is called _after_ the global arguments have been parsed
4218 jint os::init_2(void) {
4219 // try to enable extended file IO ASAP, see 6431278
4220 os::Solaris::try_enable_extended_io();
4221
4222 // Check and sets minimum stack sizes against command line options
4223 if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4224 return JNI_ERR;
4225 }
4226
4227 Solaris::libthread_init();
4228
4229 if (UseNUMA) {
4230 if (!Solaris::liblgrp_init()) {
4231 UseNUMA = false;
4232 } else {
4233 size_t lgrp_limit = os::numa_get_groups_num();
4234 int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4235 size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4236 FREE_C_HEAP_ARRAY(int, lgrp_ids);
4237 if (lgrp_num < 2) {
4238 // There's only one locality group, disable NUMA.
4239 UseNUMA = false;
4240 }
4241 }
4242 if (!UseNUMA && ForceNUMA) {
4243 UseNUMA = true;
4244 }
4245 }
4246
4247 Solaris::signal_sets_init();
4248 Solaris::init_signal_mem();
4249 Solaris::install_signal_handlers();
4250
4251 // initialize synchronization primitives to use either thread or
4252 // lwp synchronization (controlled by UseLWPSynchronization)
4253 Solaris::synchronization_init();
4254
4255 if (MaxFDLimit) {
4256 // set the number of file descriptors to max. print out error
4257 // if getrlimit/setrlimit fails but continue regardless.
4258 struct rlimit nbr_files;
4259 int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4260 if (status != 0) {
4261 log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4262 } else {
4263 nbr_files.rlim_cur = nbr_files.rlim_max;
4264 status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4265 if (status != 0) {
4266 log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4267 }
4268 }
4269 }
4270
4271 // Calculate theoretical max. size of Threads to guard gainst
4272 // artifical out-of-memory situations, where all available address-
4273 // space has been reserved by thread stacks. Default stack size is 1Mb.
4274 size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4275 JavaThread::stack_size_at_create() : (1*K*K);
4276 assert(pre_thread_stack_size != 0, "Must have a stack");
4277 // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4278 // we should start doing Virtual Memory banging. Currently when the threads will
4279 // have used all but 200Mb of space.
4280 size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4281 Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4282
4283 // at-exit methods are called in the reverse order of their registration.
4284 // In Solaris 7 and earlier, atexit functions are called on return from
4285 // main or as a result of a call to exit(3C). There can be only 32 of
4286 // these functions registered and atexit() does not set errno. In Solaris
4287 // 8 and later, there is no limit to the number of functions registered
4288 // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4289 // functions are called upon dlclose(3DL) in addition to return from main
4290 // and exit(3C).
4291
4292 if (PerfAllowAtExitRegistration) {
4293 // only register atexit functions if PerfAllowAtExitRegistration is set.
4294 // atexit functions can be delayed until process exit time, which
4295 // can be problematic for embedded VM situations. Embedded VMs should
4296 // call DestroyJavaVM() to assure that VM resources are released.
4297
4298 // note: perfMemory_exit_helper atexit function may be removed in
4299 // the future if the appropriate cleanup code can be added to the
4300 // VM_Exit VMOperation's doit method.
4301 if (atexit(perfMemory_exit_helper) != 0) {
4302 warning("os::init2 atexit(perfMemory_exit_helper) failed");
4303 }
4304 }
4305
4306 // Init pset_loadavg function pointer
4307 init_pset_getloadavg_ptr();
4308
4309 return JNI_OK;
4310 }
4311
4312 // Mark the polling page as unreadable
4313 void os::make_polling_page_unreadable(void) {
4314 if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4315 fatal("Could not disable polling page");
4316 }
4317 }
4318
4319 // Mark the polling page as readable
4320 void os::make_polling_page_readable(void) {
4321 if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4322 fatal("Could not enable polling page");
4323 }
4324 }
4325
4326 // Is a (classpath) directory empty?
4327 bool os::dir_is_empty(const char* path) {
4328 DIR *dir = NULL;
4329 struct dirent *ptr;
4330
4331 dir = opendir(path);
4332 if (dir == NULL) return true;
4333
4334 // Scan the directory
4335 bool result = true;
4336 char buf[sizeof(struct dirent) + MAX_PATH];
4337 struct dirent *dbuf = (struct dirent *) buf;
4338 while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4339 if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4340 result = false;
4341 }
4342 }
4343 closedir(dir);
4344 return result;
4345 }
4346
4347 // This code originates from JDK's sysOpen and open64_w
4348 // from src/solaris/hpi/src/system_md.c
4349
4350 int os::open(const char *path, int oflag, int mode) {
4351 if (strlen(path) > MAX_PATH - 1) {
4352 errno = ENAMETOOLONG;
4353 return -1;
4354 }
4355 int fd;
4356
4357 fd = ::open64(path, oflag, mode);
4358 if (fd == -1) return -1;
4359
4360 // If the open succeeded, the file might still be a directory
4361 {
4362 struct stat64 buf64;
4363 int ret = ::fstat64(fd, &buf64);
4364 int st_mode = buf64.st_mode;
4365
4366 if (ret != -1) {
4367 if ((st_mode & S_IFMT) == S_IFDIR) {
4368 errno = EISDIR;
4369 ::close(fd);
4370 return -1;
4371 }
4372 } else {
4373 ::close(fd);
4374 return -1;
4375 }
4376 }
4377
4378 // 32-bit Solaris systems suffer from:
4379 //
4380 // - an historical default soft limit of 256 per-process file
4381 // descriptors that is too low for many Java programs.
4382 //
4383 // - a design flaw where file descriptors created using stdio
4384 // fopen must be less than 256, _even_ when the first limit above
4385 // has been raised. This can cause calls to fopen (but not calls to
4386 // open, for example) to fail mysteriously, perhaps in 3rd party
4387 // native code (although the JDK itself uses fopen). One can hardly
4388 // criticize them for using this most standard of all functions.
4389 //
4390 // We attempt to make everything work anyways by:
4391 //
4392 // - raising the soft limit on per-process file descriptors beyond
4393 // 256
4394 //
4395 // - As of Solaris 10u4, we can request that Solaris raise the 256
4396 // stdio fopen limit by calling function enable_extended_FILE_stdio.
4397 // This is done in init_2 and recorded in enabled_extended_FILE_stdio
4398 //
4399 // - If we are stuck on an old (pre 10u4) Solaris system, we can
4400 // workaround the bug by remapping non-stdio file descriptors below
4401 // 256 to ones beyond 256, which is done below.
4402 //
4403 // See:
4404 // 1085341: 32-bit stdio routines should support file descriptors >255
4405 // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4406 // 6431278: Netbeans crash on 32 bit Solaris: need to call
4407 // enable_extended_FILE_stdio() in VM initialisation
4408 // Giri Mandalika's blog
4409 // http://technopark02.blogspot.com/2005_05_01_archive.html
4410 //
4411 #ifndef _LP64
4412 if ((!enabled_extended_FILE_stdio) && fd < 256) {
4413 int newfd = ::fcntl(fd, F_DUPFD, 256);
4414 if (newfd != -1) {
4415 ::close(fd);
4416 fd = newfd;
4417 }
4418 }
4419 #endif // 32-bit Solaris
4420
4421 // All file descriptors that are opened in the JVM and not
4422 // specifically destined for a subprocess should have the
4423 // close-on-exec flag set. If we don't set it, then careless 3rd
4424 // party native code might fork and exec without closing all
4425 // appropriate file descriptors (e.g. as we do in closeDescriptors in
4426 // UNIXProcess.c), and this in turn might:
4427 //
4428 // - cause end-of-file to fail to be detected on some file
4429 // descriptors, resulting in mysterious hangs, or
4430 //
4431 // - might cause an fopen in the subprocess to fail on a system
4432 // suffering from bug 1085341.
4433 //
4434 // (Yes, the default setting of the close-on-exec flag is a Unix
4435 // design flaw)
4436 //
4437 // See:
4438 // 1085341: 32-bit stdio routines should support file descriptors >255
4439 // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4440 // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4441 //
4442 #ifdef FD_CLOEXEC
4443 {
4444 int flags = ::fcntl(fd, F_GETFD);
4445 if (flags != -1) {
4446 ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4447 }
4448 }
4449 #endif
4450
4451 return fd;
4452 }
4453
4454 // create binary file, rewriting existing file if required
4455 int os::create_binary_file(const char* path, bool rewrite_existing) {
4456 int oflags = O_WRONLY | O_CREAT;
4457 if (!rewrite_existing) {
4458 oflags |= O_EXCL;
4459 }
4460 return ::open64(path, oflags, S_IREAD | S_IWRITE);
4461 }
4462
4463 // return current position of file pointer
4464 jlong os::current_file_offset(int fd) {
4465 return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4466 }
4467
4468 // move file pointer to the specified offset
4469 jlong os::seek_to_file_offset(int fd, jlong offset) {
4470 return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4471 }
4472
4473 jlong os::lseek(int fd, jlong offset, int whence) {
4474 return (jlong) ::lseek64(fd, offset, whence);
4475 }
4476
4477 char * os::native_path(char *path) {
4478 return path;
4479 }
4480
4481 int os::ftruncate(int fd, jlong length) {
4482 return ::ftruncate64(fd, length);
4483 }
4484
4485 int os::fsync(int fd) {
4486 RESTARTABLE_RETURN_INT(::fsync(fd));
4487 }
4488
4489 int os::available(int fd, jlong *bytes) {
4490 assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4491 "Assumed _thread_in_native");
4492 jlong cur, end;
4493 int mode;
4494 struct stat64 buf64;
4495
4496 if (::fstat64(fd, &buf64) >= 0) {
4497 mode = buf64.st_mode;
4498 if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4499 int n,ioctl_return;
4500
4501 RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4502 if (ioctl_return>= 0) {
4503 *bytes = n;
4504 return 1;
4505 }
4506 }
4507 }
4508 if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4509 return 0;
4510 } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4511 return 0;
4512 } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4513 return 0;
4514 }
4515 *bytes = end - cur;
4516 return 1;
4517 }
4518
4519 // Map a block of memory.
4520 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4521 char *addr, size_t bytes, bool read_only,
4522 bool allow_exec) {
4523 int prot;
4524 int flags;
4525
4526 if (read_only) {
4527 prot = PROT_READ;
4528 flags = MAP_SHARED;
4529 } else {
4530 prot = PROT_READ | PROT_WRITE;
4531 flags = MAP_PRIVATE;
4532 }
4533
4534 if (allow_exec) {
4535 prot |= PROT_EXEC;
4536 }
4537
4538 if (addr != NULL) {
4539 flags |= MAP_FIXED;
4540 }
4541
4542 char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4543 fd, file_offset);
4544 if (mapped_address == MAP_FAILED) {
4545 return NULL;
4546 }
4547 return mapped_address;
4548 }
4549
4550
4551 // Remap a block of memory.
4552 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4553 char *addr, size_t bytes, bool read_only,
4554 bool allow_exec) {
4555 // same as map_memory() on this OS
4556 return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4557 allow_exec);
4558 }
4559
4560
4561 // Unmap a block of memory.
4562 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4563 return munmap(addr, bytes) == 0;
4564 }
4565
4566 void os::pause() {
4567 char filename[MAX_PATH];
4568 if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4569 jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4570 } else {
4571 jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4572 }
4573
4574 int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4575 if (fd != -1) {
4576 struct stat buf;
4577 ::close(fd);
4578 while (::stat(filename, &buf) == 0) {
4579 (void)::poll(NULL, 0, 100);
4580 }
4581 } else {
4582 jio_fprintf(stderr,
4583 "Could not open pause file '%s', continuing immediately.\n", filename);
4584 }
4585 }
4586
4587 #ifndef PRODUCT
4588 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4589 // Turn this on if you need to trace synch operations.
4590 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4591 // and call record_synch_enable and record_synch_disable
4592 // around the computation of interest.
4593
4594 void record_synch(char* name, bool returning); // defined below
4595
4596 class RecordSynch {
4597 char* _name;
4598 public:
4599 RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4600 ~RecordSynch() { record_synch(_name, true); }
4601 };
4602
4603 #define CHECK_SYNCH_OP(ret, name, params, args, inner) \
4604 extern "C" ret name params { \
4605 typedef ret name##_t params; \
4606 static name##_t* implem = NULL; \
4607 static int callcount = 0; \
4608 if (implem == NULL) { \
4609 implem = (name##_t*) dlsym(RTLD_NEXT, #name); \
4610 if (implem == NULL) fatal(dlerror()); \
4611 } \
4612 ++callcount; \
4613 RecordSynch _rs(#name); \
4614 inner; \
4615 return implem args; \
4616 }
4617 // in dbx, examine callcounts this way:
4618 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4619
4620 #define CHECK_POINTER_OK(p) \
4621 (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4622 #define CHECK_MU \
4623 if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4624 #define CHECK_CV \
4625 if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4626 #define CHECK_P(p) \
4627 if (!CHECK_POINTER_OK(p)) fatal(false, "Pointer must be in C heap only.");
4628
4629 #define CHECK_MUTEX(mutex_op) \
4630 CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4631
4632 CHECK_MUTEX( mutex_lock)
4633 CHECK_MUTEX( _mutex_lock)
4634 CHECK_MUTEX( mutex_unlock)
4635 CHECK_MUTEX(_mutex_unlock)
4636 CHECK_MUTEX( mutex_trylock)
4637 CHECK_MUTEX(_mutex_trylock)
4638
4639 #define CHECK_COND(cond_op) \
4640 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4641
4642 CHECK_COND( cond_wait);
4643 CHECK_COND(_cond_wait);
4644 CHECK_COND(_cond_wait_cancel);
4645
4646 #define CHECK_COND2(cond_op) \
4647 CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4648
4649 CHECK_COND2( cond_timedwait);
4650 CHECK_COND2(_cond_timedwait);
4651 CHECK_COND2(_cond_timedwait_cancel);
4652
4653 // do the _lwp_* versions too
4654 #define mutex_t lwp_mutex_t
4655 #define cond_t lwp_cond_t
4656 CHECK_MUTEX( _lwp_mutex_lock)
4657 CHECK_MUTEX( _lwp_mutex_unlock)
4658 CHECK_MUTEX( _lwp_mutex_trylock)
4659 CHECK_MUTEX( __lwp_mutex_lock)
4660 CHECK_MUTEX( __lwp_mutex_unlock)
4661 CHECK_MUTEX( __lwp_mutex_trylock)
4662 CHECK_MUTEX(___lwp_mutex_lock)
4663 CHECK_MUTEX(___lwp_mutex_unlock)
4664
4665 CHECK_COND( _lwp_cond_wait);
4666 CHECK_COND( __lwp_cond_wait);
4667 CHECK_COND(___lwp_cond_wait);
4668
4669 CHECK_COND2( _lwp_cond_timedwait);
4670 CHECK_COND2( __lwp_cond_timedwait);
4671 #undef mutex_t
4672 #undef cond_t
4673
4674 CHECK_SYNCH_OP(int, _lwp_suspend2, (int lwp, int *n), (lwp, n), 0);
4675 CHECK_SYNCH_OP(int,__lwp_suspend2, (int lwp, int *n), (lwp, n), 0);
4676 CHECK_SYNCH_OP(int, _lwp_kill, (int lwp, int n), (lwp, n), 0);
4677 CHECK_SYNCH_OP(int,__lwp_kill, (int lwp, int n), (lwp, n), 0);
4678 CHECK_SYNCH_OP(int, _lwp_sema_wait, (lwp_sema_t* p), (p), CHECK_P(p));
4679 CHECK_SYNCH_OP(int,__lwp_sema_wait, (lwp_sema_t* p), (p), CHECK_P(p));
4680 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv), (cv), CHECK_CV);
4681 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv), (cv), CHECK_CV);
4682
4683
4684 // recording machinery:
4685
4686 enum { RECORD_SYNCH_LIMIT = 200 };
4687 char* record_synch_name[RECORD_SYNCH_LIMIT];
4688 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4689 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4690 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4691 int record_synch_count = 0;
4692 bool record_synch_enabled = false;
4693
4694 // in dbx, examine recorded data this way:
4695 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4696
4697 void record_synch(char* name, bool returning) {
4698 if (record_synch_enabled) {
4699 if (record_synch_count < RECORD_SYNCH_LIMIT) {
4700 record_synch_name[record_synch_count] = name;
4701 record_synch_returning[record_synch_count] = returning;
4702 record_synch_thread[record_synch_count] = thr_self();
4703 record_synch_arg0ptr[record_synch_count] = &name;
4704 record_synch_count++;
4705 }
4706 // put more checking code here:
4707 // ...
4708 }
4709 }
4710
4711 void record_synch_enable() {
4712 // start collecting trace data, if not already doing so
4713 if (!record_synch_enabled) record_synch_count = 0;
4714 record_synch_enabled = true;
4715 }
4716
4717 void record_synch_disable() {
4718 // stop collecting trace data
4719 record_synch_enabled = false;
4720 }
4721
4722 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4723 #endif // PRODUCT
4724
4725 const intptr_t thr_time_off = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4726 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4727 (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4728
4729
4730 // JVMTI & JVM monitoring and management support
4731 // The thread_cpu_time() and current_thread_cpu_time() are only
4732 // supported if is_thread_cpu_time_supported() returns true.
4733 // They are not supported on Solaris T1.
4734
4735 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4736 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4737 // of a thread.
4738 //
4739 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4740 // returns the fast estimate available on the platform.
4741
4742 // hrtime_t gethrvtime() return value includes
4743 // user time but does not include system time
4744 jlong os::current_thread_cpu_time() {
4745 return (jlong) gethrvtime();
4746 }
4747
4748 jlong os::thread_cpu_time(Thread *thread) {
4749 // return user level CPU time only to be consistent with
4750 // what current_thread_cpu_time returns.
4751 // thread_cpu_time_info() must be changed if this changes
4752 return os::thread_cpu_time(thread, false /* user time only */);
4753 }
4754
4755 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4756 if (user_sys_cpu_time) {
4757 return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4758 } else {
4759 return os::current_thread_cpu_time();
4760 }
4761 }
4762
4763 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4764 char proc_name[64];
4765 int count;
4766 prusage_t prusage;
4767 jlong lwp_time;
4768 int fd;
4769
4770 sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4771 getpid(),
4772 thread->osthread()->lwp_id());
4773 fd = ::open(proc_name, O_RDONLY);
4774 if (fd == -1) return -1;
4775
4776 do {
4777 count = ::pread(fd,
4778 (void *)&prusage.pr_utime,
4779 thr_time_size,
4780 thr_time_off);
4781 } while (count < 0 && errno == EINTR);
4782 ::close(fd);
4783 if (count < 0) return -1;
4784
4785 if (user_sys_cpu_time) {
4786 // user + system CPU time
4787 lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4788 (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4789 (jlong)prusage.pr_stime.tv_nsec +
4790 (jlong)prusage.pr_utime.tv_nsec;
4791 } else {
4792 // user level CPU time only
4793 lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4794 (jlong)prusage.pr_utime.tv_nsec;
4795 }
4796
4797 return (lwp_time);
4798 }
4799
4800 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4801 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
4802 info_ptr->may_skip_backward = false; // elapsed time not wall time
4803 info_ptr->may_skip_forward = false; // elapsed time not wall time
4804 info_ptr->kind = JVMTI_TIMER_USER_CPU; // only user time is returned
4805 }
4806
4807 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4808 info_ptr->max_value = ALL_64_BITS; // will not wrap in less than 64 bits
4809 info_ptr->may_skip_backward = false; // elapsed time not wall time
4810 info_ptr->may_skip_forward = false; // elapsed time not wall time
4811 info_ptr->kind = JVMTI_TIMER_USER_CPU; // only user time is returned
4812 }
4813
4814 bool os::is_thread_cpu_time_supported() {
4815 return true;
4816 }
4817
4818 // System loadavg support. Returns -1 if load average cannot be obtained.
4819 // Return the load average for our processor set if the primitive exists
4820 // (Solaris 9 and later). Otherwise just return system wide loadavg.
4821 int os::loadavg(double loadavg[], int nelem) {
4822 if (pset_getloadavg_ptr != NULL) {
4823 return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4824 } else {
4825 return ::getloadavg(loadavg, nelem);
4826 }
4827 }
4828
4829 //---------------------------------------------------------------------------------
4830
4831 bool os::find(address addr, outputStream* st) {
4832 Dl_info dlinfo;
4833 memset(&dlinfo, 0, sizeof(dlinfo));
4834 if (dladdr(addr, &dlinfo) != 0) {
4835 st->print(PTR_FORMAT ": ", addr);
4836 if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4837 st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4838 } else if (dlinfo.dli_fbase != NULL) {
4839 st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4840 } else {
4841 st->print("<absolute address>");
4842 }
4843 if (dlinfo.dli_fname != NULL) {
4844 st->print(" in %s", dlinfo.dli_fname);
4845 }
4846 if (dlinfo.dli_fbase != NULL) {
4847 st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4848 }
4849 st->cr();
4850
4851 if (Verbose) {
4852 // decode some bytes around the PC
4853 address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4854 address end = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4855 address lowest = (address) dlinfo.dli_sname;
4856 if (!lowest) lowest = (address) dlinfo.dli_fbase;
4857 if (begin < lowest) begin = lowest;
4858 Dl_info dlinfo2;
4859 if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4860 && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4861 end = (address) dlinfo2.dli_saddr;
4862 }
4863 Disassembler::decode(begin, end, st);
4864 }
4865 return true;
4866 }
4867 return false;
4868 }
4869
4870 // Following function has been added to support HotSparc's libjvm.so running
4871 // under Solaris production JDK 1.2.2 / 1.3.0. These came from
4872 // src/solaris/hpi/native_threads in the EVM codebase.
4873 //
4874 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
4875 // libraries and should thus be removed. We will leave it behind for a while
4876 // until we no longer want to able to run on top of 1.3.0 Solaris production
4877 // JDK. See 4341971.
4878
4879 #define STACK_SLACK 0x800
4880
4881 extern "C" {
4882 intptr_t sysThreadAvailableStackWithSlack() {
4883 stack_t st;
4884 intptr_t retval, stack_top;
4885 retval = thr_stksegment(&st);
4886 assert(retval == 0, "incorrect return value from thr_stksegment");
4887 assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
4888 assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
4889 stack_top=(intptr_t)st.ss_sp-st.ss_size;
4890 return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
4891 }
4892 }
4893
4894 // ObjectMonitor park-unpark infrastructure ...
4895 //
4896 // We implement Solaris and Linux PlatformEvents with the
4897 // obvious condvar-mutex-flag triple.
4898 // Another alternative that works quite well is pipes:
4899 // Each PlatformEvent consists of a pipe-pair.
4900 // The thread associated with the PlatformEvent
4901 // calls park(), which reads from the input end of the pipe.
4902 // Unpark() writes into the other end of the pipe.
4903 // The write-side of the pipe must be set NDELAY.
4904 // Unfortunately pipes consume a large # of handles.
4905 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
4906 // Using pipes for the 1st few threads might be workable, however.
4907 //
4908 // park() is permitted to return spuriously.
4909 // Callers of park() should wrap the call to park() in
4910 // an appropriate loop. A litmus test for the correct
4911 // usage of park is the following: if park() were modified
4912 // to immediately return 0 your code should still work,
4913 // albeit degenerating to a spin loop.
4914 //
4915 // In a sense, park()-unpark() just provides more polite spinning
4916 // and polling with the key difference over naive spinning being
4917 // that a parked thread needs to be explicitly unparked() in order
4918 // to wake up and to poll the underlying condition.
4919 //
4920 // Assumption:
4921 // Only one parker can exist on an event, which is why we allocate
4922 // them per-thread. Multiple unparkers can coexist.
4923 //
4924 // _Event transitions in park()
4925 // -1 => -1 : illegal
4926 // 1 => 0 : pass - return immediately
4927 // 0 => -1 : block; then set _Event to 0 before returning
4928 //
4929 // _Event transitions in unpark()
4930 // 0 => 1 : just return
4931 // 1 => 1 : just return
4932 // -1 => either 0 or 1; must signal target thread
4933 // That is, we can safely transition _Event from -1 to either
4934 // 0 or 1.
4935 //
4936 // _Event serves as a restricted-range semaphore.
4937 // -1 : thread is blocked, i.e. there is a waiter
4938 // 0 : neutral: thread is running or ready,
4939 // could have been signaled after a wait started
4940 // 1 : signaled - thread is running or ready
4941 //
4942 // Another possible encoding of _Event would be with
4943 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4944 //
4945 // TODO-FIXME: add DTRACE probes for:
4946 // 1. Tx parks
4947 // 2. Ty unparks Tx
4948 // 3. Tx resumes from park
4949
4950
4951 // value determined through experimentation
4952 #define ROUNDINGFIX 11
4953
4954 // utility to compute the abstime argument to timedwait.
4955 // TODO-FIXME: switch from compute_abstime() to unpackTime().
4956
4957 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
4958 // millis is the relative timeout time
4959 // abstime will be the absolute timeout time
4960 if (millis < 0) millis = 0;
4961 struct timeval now;
4962 int status = gettimeofday(&now, NULL);
4963 assert(status == 0, "gettimeofday");
4964 jlong seconds = millis / 1000;
4965 jlong max_wait_period;
4966
4967 if (UseLWPSynchronization) {
4968 // forward port of fix for 4275818 (not sleeping long enough)
4969 // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
4970 // _lwp_cond_timedwait() used a round_down algorithm rather
4971 // than a round_up. For millis less than our roundfactor
4972 // it rounded down to 0 which doesn't meet the spec.
4973 // For millis > roundfactor we may return a bit sooner, but
4974 // since we can not accurately identify the patch level and
4975 // this has already been fixed in Solaris 9 and 8 we will
4976 // leave it alone rather than always rounding down.
4977
4978 if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
4979 // It appears that when we go directly through Solaris _lwp_cond_timedwait()
4980 // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
4981 max_wait_period = 21000000;
4982 } else {
4983 max_wait_period = 50000000;
4984 }
4985 millis %= 1000;
4986 if (seconds > max_wait_period) { // see man cond_timedwait(3T)
4987 seconds = max_wait_period;
4988 }
4989 abstime->tv_sec = now.tv_sec + seconds;
4990 long usec = now.tv_usec + millis * 1000;
4991 if (usec >= 1000000) {
4992 abstime->tv_sec += 1;
4993 usec -= 1000000;
4994 }
4995 abstime->tv_nsec = usec * 1000;
4996 return abstime;
4997 }
4998
4999 void os::PlatformEvent::park() { // AKA: down()
5000 // Transitions for _Event:
5001 // -1 => -1 : illegal
5002 // 1 => 0 : pass - return immediately
5003 // 0 => -1 : block; then set _Event to 0 before returning
5004
5005 // Invariant: Only the thread associated with the Event/PlatformEvent
5006 // may call park().
5007 assert(_nParked == 0, "invariant");
5008
5009 int v;
5010 for (;;) {
5011 v = _Event;
5012 if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5013 }
5014 guarantee(v >= 0, "invariant");
5015 if (v == 0) {
5016 // Do this the hard way by blocking ...
5017 // See http://monaco.sfbay/detail.jsf?cr=5094058.
5018 int status = os::Solaris::mutex_lock(_mutex);
5019 assert_status(status == 0, status, "mutex_lock");
5020 guarantee(_nParked == 0, "invariant");
5021 ++_nParked;
5022 while (_Event < 0) {
5023 // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5024 // Treat this the same as if the wait was interrupted
5025 // With usr/lib/lwp going to kernel, always handle ETIME
5026 status = os::Solaris::cond_wait(_cond, _mutex);
5027 if (status == ETIME) status = EINTR;
5028 assert_status(status == 0 || status == EINTR, status, "cond_wait");
5029 }
5030 --_nParked;
5031 _Event = 0;
5032 status = os::Solaris::mutex_unlock(_mutex);
5033 assert_status(status == 0, status, "mutex_unlock");
5034 // Paranoia to ensure our locked and lock-free paths interact
5035 // correctly with each other.
5036 OrderAccess::fence();
5037 }
5038 }
5039
5040 int os::PlatformEvent::park(jlong millis) {
5041 // Transitions for _Event:
5042 // -1 => -1 : illegal
5043 // 1 => 0 : pass - return immediately
5044 // 0 => -1 : block; then set _Event to 0 before returning
5045
5046 guarantee(_nParked == 0, "invariant");
5047 int v;
5048 for (;;) {
5049 v = _Event;
5050 if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5051 }
5052 guarantee(v >= 0, "invariant");
5053 if (v != 0) return OS_OK;
5054
5055 int ret = OS_TIMEOUT;
5056 timestruc_t abst;
5057 compute_abstime(&abst, millis);
5058
5059 // See http://monaco.sfbay/detail.jsf?cr=5094058.
5060 int status = os::Solaris::mutex_lock(_mutex);
5061 assert_status(status == 0, status, "mutex_lock");
5062 guarantee(_nParked == 0, "invariant");
5063 ++_nParked;
5064 while (_Event < 0) {
5065 int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5066 assert_status(status == 0 || status == EINTR ||
5067 status == ETIME || status == ETIMEDOUT,
5068 status, "cond_timedwait");
5069 if (!FilterSpuriousWakeups) break; // previous semantics
5070 if (status == ETIME || status == ETIMEDOUT) break;
5071 // We consume and ignore EINTR and spurious wakeups.
5072 }
5073 --_nParked;
5074 if (_Event >= 0) ret = OS_OK;
5075 _Event = 0;
5076 status = os::Solaris::mutex_unlock(_mutex);
5077 assert_status(status == 0, status, "mutex_unlock");
5078 // Paranoia to ensure our locked and lock-free paths interact
5079 // correctly with each other.
5080 OrderAccess::fence();
5081 return ret;
5082 }
5083
5084 void os::PlatformEvent::unpark() {
5085 // Transitions for _Event:
5086 // 0 => 1 : just return
5087 // 1 => 1 : just return
5088 // -1 => either 0 or 1; must signal target thread
5089 // That is, we can safely transition _Event from -1 to either
5090 // 0 or 1.
5091 // See also: "Semaphores in Plan 9" by Mullender & Cox
5092 //
5093 // Note: Forcing a transition from "-1" to "1" on an unpark() means
5094 // that it will take two back-to-back park() calls for the owning
5095 // thread to block. This has the benefit of forcing a spurious return
5096 // from the first park() call after an unpark() call which will help
5097 // shake out uses of park() and unpark() without condition variables.
5098
5099 if (Atomic::xchg(1, &_Event) >= 0) return;
5100
5101 // If the thread associated with the event was parked, wake it.
5102 // Wait for the thread assoc with the PlatformEvent to vacate.
5103 int status = os::Solaris::mutex_lock(_mutex);
5104 assert_status(status == 0, status, "mutex_lock");
5105 int AnyWaiters = _nParked;
5106 status = os::Solaris::mutex_unlock(_mutex);
5107 assert_status(status == 0, status, "mutex_unlock");
5108 guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5109 if (AnyWaiters != 0) {
5110 // Note that we signal() *after* dropping the lock for "immortal" Events.
5111 // This is safe and avoids a common class of futile wakeups. In rare
5112 // circumstances this can cause a thread to return prematurely from
5113 // cond_{timed}wait() but the spurious wakeup is benign and the victim
5114 // will simply re-test the condition and re-park itself.
5115 // This provides particular benefit if the underlying platform does not
5116 // provide wait morphing.
5117 status = os::Solaris::cond_signal(_cond);
5118 assert_status(status == 0, status, "cond_signal");
5119 }
5120 }
5121
5122 // JSR166
5123 // -------------------------------------------------------
5124
5125 // The solaris and linux implementations of park/unpark are fairly
5126 // conservative for now, but can be improved. They currently use a
5127 // mutex/condvar pair, plus _counter.
5128 // Park decrements _counter if > 0, else does a condvar wait. Unpark
5129 // sets count to 1 and signals condvar. Only one thread ever waits
5130 // on the condvar. Contention seen when trying to park implies that someone
5131 // is unparking you, so don't wait. And spurious returns are fine, so there
5132 // is no need to track notifications.
5133
5134 #define MAX_SECS 100000000
5135
5136 // This code is common to linux and solaris and will be moved to a
5137 // common place in dolphin.
5138 //
5139 // The passed in time value is either a relative time in nanoseconds
5140 // or an absolute time in milliseconds. Either way it has to be unpacked
5141 // into suitable seconds and nanoseconds components and stored in the
5142 // given timespec structure.
5143 // Given time is a 64-bit value and the time_t used in the timespec is only
5144 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5145 // overflow if times way in the future are given. Further on Solaris versions
5146 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5147 // number of seconds, in abstime, is less than current_time + 100,000,000.
5148 // As it will be 28 years before "now + 100000000" will overflow we can
5149 // ignore overflow and just impose a hard-limit on seconds using the value
5150 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5151 // years from "now".
5152 //
5153 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5154 assert(time > 0, "convertTime");
5155
5156 struct timeval now;
5157 int status = gettimeofday(&now, NULL);
5158 assert(status == 0, "gettimeofday");
5159
5160 time_t max_secs = now.tv_sec + MAX_SECS;
5161
5162 if (isAbsolute) {
5163 jlong secs = time / 1000;
5164 if (secs > max_secs) {
5165 absTime->tv_sec = max_secs;
5166 } else {
5167 absTime->tv_sec = secs;
5168 }
5169 absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5170 } else {
5171 jlong secs = time / NANOSECS_PER_SEC;
5172 if (secs >= MAX_SECS) {
5173 absTime->tv_sec = max_secs;
5174 absTime->tv_nsec = 0;
5175 } else {
5176 absTime->tv_sec = now.tv_sec + secs;
5177 absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5178 if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5179 absTime->tv_nsec -= NANOSECS_PER_SEC;
5180 ++absTime->tv_sec; // note: this must be <= max_secs
5181 }
5182 }
5183 }
5184 assert(absTime->tv_sec >= 0, "tv_sec < 0");
5185 assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5186 assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5187 assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5188 }
5189
5190 void Parker::park(bool isAbsolute, jlong time) {
5191 // Ideally we'd do something useful while spinning, such
5192 // as calling unpackTime().
5193
5194 // Optional fast-path check:
5195 // Return immediately if a permit is available.
5196 // We depend on Atomic::xchg() having full barrier semantics
5197 // since we are doing a lock-free update to _counter.
5198 if (Atomic::xchg(0, &_counter) > 0) return;
5199
5200 // Optional fast-exit: Check interrupt before trying to wait
5201 Thread* thread = Thread::current();
5202 assert(thread->is_Java_thread(), "Must be JavaThread");
5203 JavaThread *jt = (JavaThread *)thread;
5204 if (Thread::is_interrupted(thread, false)) {
5205 return;
5206 }
5207
5208 // First, demultiplex/decode time arguments
5209 timespec absTime;
5210 if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5211 return;
5212 }
5213 if (time > 0) {
5214 // Warning: this code might be exposed to the old Solaris time
5215 // round-down bugs. Grep "roundingFix" for details.
5216 unpackTime(&absTime, isAbsolute, time);
5217 }
5218
5219 // Enter safepoint region
5220 // Beware of deadlocks such as 6317397.
5221 // The per-thread Parker:: _mutex is a classic leaf-lock.
5222 // In particular a thread must never block on the Threads_lock while
5223 // holding the Parker:: mutex. If safepoints are pending both the
5224 // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5225 ThreadBlockInVM tbivm(jt);
5226
5227 // Don't wait if cannot get lock since interference arises from
5228 // unblocking. Also. check interrupt before trying wait
5229 if (Thread::is_interrupted(thread, false) ||
5230 os::Solaris::mutex_trylock(_mutex) != 0) {
5231 return;
5232 }
5233
5234 int status;
5235
5236 if (_counter > 0) { // no wait needed
5237 _counter = 0;
5238 status = os::Solaris::mutex_unlock(_mutex);
5239 assert(status == 0, "invariant");
5240 // Paranoia to ensure our locked and lock-free paths interact
5241 // correctly with each other and Java-level accesses.
5242 OrderAccess::fence();
5243 return;
5244 }
5245
5246 OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5247 jt->set_suspend_equivalent();
5248 // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5249
5250 // Do this the hard way by blocking ...
5251 // See http://monaco.sfbay/detail.jsf?cr=5094058.
5252 if (time == 0) {
5253 status = os::Solaris::cond_wait(_cond, _mutex);
5254 } else {
5255 status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5256 }
5257 // Note that an untimed cond_wait() can sometimes return ETIME on older
5258 // versions of the Solaris.
5259 assert_status(status == 0 || status == EINTR ||
5260 status == ETIME || status == ETIMEDOUT,
5261 status, "cond_timedwait");
5262
5263 _counter = 0;
5264 status = os::Solaris::mutex_unlock(_mutex);
5265 assert_status(status == 0, status, "mutex_unlock");
5266 // Paranoia to ensure our locked and lock-free paths interact
5267 // correctly with each other and Java-level accesses.
5268 OrderAccess::fence();
5269
5270 // If externally suspended while waiting, re-suspend
5271 if (jt->handle_special_suspend_equivalent_condition()) {
5272 jt->java_suspend_self();
5273 }
5274 }
5275
5276 void Parker::unpark() {
5277 int status = os::Solaris::mutex_lock(_mutex);
5278 assert(status == 0, "invariant");
5279 const int s = _counter;
5280 _counter = 1;
5281 status = os::Solaris::mutex_unlock(_mutex);
5282 assert(status == 0, "invariant");
5283
5284 if (s < 1) {
5285 status = os::Solaris::cond_signal(_cond);
5286 assert(status == 0, "invariant");
5287 }
5288 }
5289
5290 extern char** environ;
5291
5292 // Run the specified command in a separate process. Return its exit value,
5293 // or -1 on failure (e.g. can't fork a new process).
5294 // Unlike system(), this function can be called from signal handler. It
5295 // doesn't block SIGINT et al.
5296 int os::fork_and_exec(char* cmd) {
5297 char * argv[4];
5298 argv[0] = (char *)"sh";
5299 argv[1] = (char *)"-c";
5300 argv[2] = cmd;
5301 argv[3] = NULL;
5302
5303 // fork is async-safe, fork1 is not so can't use in signal handler
5304 pid_t pid;
5305 Thread* t = Thread::current_or_null_safe();
5306 if (t != NULL && t->is_inside_signal_handler()) {
5307 pid = fork();
5308 } else {
5309 pid = fork1();
5310 }
5311
5312 if (pid < 0) {
5313 // fork failed
5314 warning("fork failed: %s", os::strerror(errno));
5315 return -1;
5316
5317 } else if (pid == 0) {
5318 // child process
5319
5320 // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5321 execve("/usr/bin/sh", argv, environ);
5322
5323 // execve failed
5324 _exit(-1);
5325
5326 } else {
5327 // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5328 // care about the actual exit code, for now.
5329
5330 int status;
5331
5332 // Wait for the child process to exit. This returns immediately if
5333 // the child has already exited. */
5334 while (waitpid(pid, &status, 0) < 0) {
5335 switch (errno) {
5336 case ECHILD: return 0;
5337 case EINTR: break;
5338 default: return -1;
5339 }
5340 }
5341
5342 if (WIFEXITED(status)) {
5343 // The child exited normally; get its exit code.
5344 return WEXITSTATUS(status);
5345 } else if (WIFSIGNALED(status)) {
5346 // The child exited because of a signal
5347 // The best value to return is 0x80 + signal number,
5348 // because that is what all Unix shells do, and because
5349 // it allows callers to distinguish between process exit and
5350 // process death by signal.
5351 return 0x80 + WTERMSIG(status);
5352 } else {
5353 // Unknown exit code; pass it through
5354 return status;
5355 }
5356 }
5357 }
5358
5359 // is_headless_jre()
5360 //
5361 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5362 // in order to report if we are running in a headless jre
5363 //
5364 // Since JDK8 xawt/libmawt.so was moved into the same directory
5365 // as libawt.so, and renamed libawt_xawt.so
5366 //
5367 bool os::is_headless_jre() {
5368 struct stat statbuf;
5369 char buf[MAXPATHLEN];
5370 char libmawtpath[MAXPATHLEN];
5371 const char *xawtstr = "/xawt/libmawt.so";
5372 const char *new_xawtstr = "/libawt_xawt.so";
5373 char *p;
5374
5375 // Get path to libjvm.so
5376 os::jvm_path(buf, sizeof(buf));
5377
5378 // Get rid of libjvm.so
5379 p = strrchr(buf, '/');
5380 if (p == NULL) {
5381 return false;
5382 } else {
5383 *p = '\0';
5384 }
5385
5386 // Get rid of client or server
5387 p = strrchr(buf, '/');
5388 if (p == NULL) {
5389 return false;
5390 } else {
5391 *p = '\0';
5392 }
5393
5394 // check xawt/libmawt.so
5395 strcpy(libmawtpath, buf);
5396 strcat(libmawtpath, xawtstr);
5397 if (::stat(libmawtpath, &statbuf) == 0) return false;
5398
5399 // check libawt_xawt.so
5400 strcpy(libmawtpath, buf);
5401 strcat(libmawtpath, new_xawtstr);
5402 if (::stat(libmawtpath, &statbuf) == 0) return false;
5403
5404 return true;
5405 }
5406
5407 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5408 size_t res;
5409 RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5410 return res;
5411 }
5412
5413 int os::close(int fd) {
5414 return ::close(fd);
5415 }
5416
5417 int os::socket_close(int fd) {
5418 return ::close(fd);
5419 }
5420
5421 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5422 assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5423 "Assumed _thread_in_native");
5424 RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5425 }
5426
5427 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5428 assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5429 "Assumed _thread_in_native");
5430 RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5431 }
5432
5433 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5434 RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5435 }
5436
5437 // As both poll and select can be interrupted by signals, we have to be
5438 // prepared to restart the system call after updating the timeout, unless
5439 // a poll() is done with timeout == -1, in which case we repeat with this
5440 // "wait forever" value.
5441
5442 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5443 int _result;
5444 _result = ::connect(fd, him, len);
5445
5446 // On Solaris, when a connect() call is interrupted, the connection
5447 // can be established asynchronously (see 6343810). Subsequent calls
5448 // to connect() must check the errno value which has the semantic
5449 // described below (copied from the connect() man page). Handling
5450 // of asynchronously established connections is required for both
5451 // blocking and non-blocking sockets.
5452 // EINTR The connection attempt was interrupted
5453 // before any data arrived by the delivery of
5454 // a signal. The connection, however, will be
5455 // established asynchronously.
5456 //
5457 // EINPROGRESS The socket is non-blocking, and the connec-
5458 // tion cannot be completed immediately.
5459 //
5460 // EALREADY The socket is non-blocking, and a previous
5461 // connection attempt has not yet been com-
5462 // pleted.
5463 //
5464 // EISCONN The socket is already connected.
5465 if (_result == OS_ERR && errno == EINTR) {
5466 // restarting a connect() changes its errno semantics
5467 RESTARTABLE(::connect(fd, him, len), _result);
5468 // undo these changes
5469 if (_result == OS_ERR) {
5470 if (errno == EALREADY) {
5471 errno = EINPROGRESS; // fall through
5472 } else if (errno == EISCONN) {
5473 errno = 0;
5474 return OS_OK;
5475 }
5476 }
5477 }
5478 return _result;
5479 }
5480
5481 // Get the default path to the core file
5482 // Returns the length of the string
5483 int os::get_core_path(char* buffer, size_t bufferSize) {
5484 const char* p = get_current_directory(buffer, bufferSize);
5485
5486 if (p == NULL) {
5487 assert(p != NULL, "failed to get current directory");
5488 return 0;
5489 }
5490
5491 jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5492 p, current_process_id());
5493
5494 return strlen(buffer);
5495 }
5496
5497 #ifndef PRODUCT
5498 void TestReserveMemorySpecial_test() {
5499 // No tests available for this platform
5500 }
5501 #endif
5502
5503 bool os::start_debugging(char *buf, int buflen) {
5504 int len = (int)strlen(buf);
5505 char *p = &buf[len];
5506
5507 jio_snprintf(p, buflen-len,
5508 "\n\n"
5509 "Do you want to debug the problem?\n\n"
5510 "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5511 "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5512 "Otherwise, press RETURN to abort...",
5513 os::current_process_id(), os::current_thread_id());
5514
5515 bool yes = os::message_box("Unexpected Error", buf);
5516
5517 if (yes) {
5518 // yes, user asked VM to launch debugger
5519 jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5520
5521 os::fork_and_exec(buf);
5522 yes = false;
5523 }
5524 return yes;
5525 }
--- EOF ---