rev 47415 : Add Thread Local handshakes and thread local polling
1 /*
2 * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "c1/c1_Compilation.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_Runtime1.hpp"
32 #include "c1/c1_ValueStack.hpp"
33 #include "ci/ciArray.hpp"
34 #include "ci/ciObjArrayKlass.hpp"
35 #include "ci/ciTypeArrayKlass.hpp"
36 #include "runtime/sharedRuntime.hpp"
37 #include "runtime/stubRoutines.hpp"
38 #include "vmreg_sparc.inline.hpp"
39
40 #ifdef ASSERT
41 #define __ gen()->lir(__FILE__, __LINE__)->
42 #else
43 #define __ gen()->lir()->
44 #endif
45
46 void LIRItem::load_byte_item() {
47 // byte loads use same registers as other loads
48 load_item();
49 }
50
51
52 void LIRItem::load_nonconstant() {
53 LIR_Opr r = value()->operand();
54 if (_gen->can_inline_as_constant(value())) {
55 if (!r->is_constant()) {
56 r = LIR_OprFact::value_type(value()->type());
57 }
58 _result = r;
59 } else {
60 load_item();
61 }
62 }
63
64
65 //--------------------------------------------------------------
66 // LIRGenerator
67 //--------------------------------------------------------------
68
69 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::Oexception_opr; }
70 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::Oissuing_pc_opr; }
71 LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); }
72 LIR_Opr LIRGenerator::syncTempOpr() { return new_register(T_OBJECT); }
73 LIR_Opr LIRGenerator::getThreadTemp() { return rlock_callee_saved(T_LONG); }
74
75 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
76 LIR_Opr opr;
77 switch (type->tag()) {
78 case intTag: opr = callee ? FrameMap::I0_opr : FrameMap::O0_opr; break;
79 case objectTag: opr = callee ? FrameMap::I0_oop_opr : FrameMap::O0_oop_opr; break;
80 case longTag: opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
81 case floatTag: opr = FrameMap::F0_opr; break;
82 case doubleTag: opr = FrameMap::F0_double_opr; break;
83
84 case addressTag:
85 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
86 }
87
88 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
89 return opr;
90 }
91
92 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
93 LIR_Opr reg = new_register(type);
94 set_vreg_flag(reg, callee_saved);
95 return reg;
96 }
97
98
99 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
100 return new_register(T_INT);
101 }
102
103
104
105
106
107 //--------- loading items into registers --------------------------------
108
109 // SPARC cannot inline all constants
110 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
111 if (v->type()->as_IntConstant() != NULL) {
112 return v->type()->as_IntConstant()->value() == 0;
113 } else if (v->type()->as_LongConstant() != NULL) {
114 return v->type()->as_LongConstant()->value() == 0L;
115 } else if (v->type()->as_ObjectConstant() != NULL) {
116 return v->type()->as_ObjectConstant()->value()->is_null_object();
117 } else {
118 return false;
119 }
120 }
121
122
123 // only simm13 constants can be inlined
124 bool LIRGenerator:: can_inline_as_constant(Value i) const {
125 if (i->type()->as_IntConstant() != NULL) {
126 return Assembler::is_simm13(i->type()->as_IntConstant()->value());
127 } else {
128 return can_store_as_constant(i, as_BasicType(i->type()));
129 }
130 }
131
132
133 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
134 if (c->type() == T_INT) {
135 return Assembler::is_simm13(c->as_jint());
136 }
137 return false;
138 }
139
140
141 LIR_Opr LIRGenerator::safepoint_poll_register() {
142 return new_register(T_INT);
143 }
144
145
146
147 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
148 int shift, int disp, BasicType type) {
149 assert(base->is_register(), "must be");
150 intx large_disp = disp;
151
152 // accumulate fixed displacements
153 if (index->is_constant()) {
154 large_disp += (intx)(index->as_constant_ptr()->as_jint()) << shift;
155 index = LIR_OprFact::illegalOpr;
156 }
157
158 if (index->is_register()) {
159 // apply the shift and accumulate the displacement
160 if (shift > 0) {
161 LIR_Opr tmp = new_pointer_register();
162 __ shift_left(index, shift, tmp);
163 index = tmp;
164 }
165 if (large_disp != 0) {
166 LIR_Opr tmp = new_pointer_register();
167 if (Assembler::is_simm13(large_disp)) {
168 __ add(tmp, LIR_OprFact::intptrConst(large_disp), tmp);
169 index = tmp;
170 } else {
171 __ move(LIR_OprFact::intptrConst(large_disp), tmp);
172 __ add(tmp, index, tmp);
173 index = tmp;
174 }
175 large_disp = 0;
176 }
177 } else if (large_disp != 0 && !Assembler::is_simm13(large_disp)) {
178 // index is illegal so replace it with the displacement loaded into a register
179 index = new_pointer_register();
180 __ move(LIR_OprFact::intptrConst(large_disp), index);
181 large_disp = 0;
182 }
183
184 // at this point we either have base + index or base + displacement
185 if (large_disp == 0) {
186 return new LIR_Address(base, index, type);
187 } else {
188 assert(Assembler::is_simm13(large_disp), "must be");
189 return new LIR_Address(base, large_disp, type);
190 }
191 }
192
193
194 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
195 BasicType type, bool needs_card_mark) {
196 int elem_size = type2aelembytes(type);
197 int shift = exact_log2(elem_size);
198
199 LIR_Opr base_opr;
200 intx offset = arrayOopDesc::base_offset_in_bytes(type);
201
202 if (index_opr->is_constant()) {
203 intx i = index_opr->as_constant_ptr()->as_jint();
204 intx array_offset = i * elem_size;
205 if (Assembler::is_simm13(array_offset + offset)) {
206 base_opr = array_opr;
207 offset = array_offset + offset;
208 } else {
209 base_opr = new_pointer_register();
210 if (Assembler::is_simm13(array_offset)) {
211 __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
212 } else {
213 __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
214 __ add(base_opr, array_opr, base_opr);
215 }
216 }
217 } else {
218 if (index_opr->type() == T_INT) {
219 LIR_Opr tmp = new_register(T_LONG);
220 __ convert(Bytecodes::_i2l, index_opr, tmp);
221 index_opr = tmp;
222 }
223
224 base_opr = new_pointer_register();
225 assert (index_opr->is_register(), "Must be register");
226 if (shift > 0) {
227 __ shift_left(index_opr, shift, base_opr);
228 __ add(base_opr, array_opr, base_opr);
229 } else {
230 __ add(index_opr, array_opr, base_opr);
231 }
232 }
233 if (needs_card_mark) {
234 LIR_Opr ptr = new_pointer_register();
235 __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
236 return new LIR_Address(ptr, type);
237 } else {
238 return new LIR_Address(base_opr, offset, type);
239 }
240 }
241
242 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
243 LIR_Opr r;
244 if (type == T_LONG) {
245 r = LIR_OprFact::longConst(x);
246 } else if (type == T_INT) {
247 r = LIR_OprFact::intConst(x);
248 } else {
249 ShouldNotReachHere();
250 }
251 if (!Assembler::is_simm13(x)) {
252 LIR_Opr tmp = new_register(type);
253 __ move(r, tmp);
254 return tmp;
255 }
256 return r;
257 }
258
259 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
260 LIR_Opr pointer = new_pointer_register();
261 __ move(LIR_OprFact::intptrConst(counter), pointer);
262 LIR_Address* addr = new LIR_Address(pointer, type);
263 increment_counter(addr, step);
264 }
265
266 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
267 LIR_Opr temp = new_register(addr->type());
268 __ move(addr, temp);
269 __ add(temp, load_immediate(step, addr->type()), temp);
270 __ move(temp, addr);
271 }
272
273 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
274 LIR_Opr o7opr = FrameMap::O7_opr;
275 __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
276 __ cmp(condition, o7opr, c);
277 }
278
279
280 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
281 LIR_Opr o7opr = FrameMap::O7_opr;
282 __ load(new LIR_Address(base, disp, type), o7opr, info);
283 __ cmp(condition, reg, o7opr);
284 }
285
286
287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
288 LIR_Opr o7opr = FrameMap::O7_opr;
289 __ load(new LIR_Address(base, disp, type), o7opr, info);
290 __ cmp(condition, reg, o7opr);
291 }
292
293
294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
295 assert(left != result, "should be different registers");
296 if (is_power_of_2(c + 1)) {
297 __ shift_left(left, log2_intptr(c + 1), result);
298 __ sub(result, left, result);
299 return true;
300 } else if (is_power_of_2(c - 1)) {
301 __ shift_left(left, log2_intptr(c - 1), result);
302 __ add(result, left, result);
303 return true;
304 }
305 return false;
306 }
307
308
309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
310 BasicType t = item->type();
311 LIR_Opr sp_opr = FrameMap::SP_opr;
312 if ((t == T_LONG || t == T_DOUBLE) &&
313 ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
314 __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
315 } else {
316 __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
317 }
318 }
319
320 //----------------------------------------------------------------------
321 // visitor functions
322 //----------------------------------------------------------------------
323
324
325 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
326 assert(x->is_pinned(),"");
327 bool needs_range_check = x->compute_needs_range_check();
328 bool use_length = x->length() != NULL;
329 bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
330 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
331 !get_jobject_constant(x->value())->is_null_object() ||
332 x->should_profile());
333
334 LIRItem array(x->array(), this);
335 LIRItem index(x->index(), this);
336 LIRItem value(x->value(), this);
337 LIRItem length(this);
338
339 array.load_item();
340 index.load_nonconstant();
341
342 if (use_length && needs_range_check) {
343 length.set_instruction(x->length());
344 length.load_item();
345 }
346 if (needs_store_check || x->check_boolean()) {
347 value.load_item();
348 } else {
349 value.load_for_store(x->elt_type());
350 }
351
352 set_no_result(x);
353
354 // the CodeEmitInfo must be duplicated for each different
355 // LIR-instruction because spilling can occur anywhere between two
356 // instructions and so the debug information must be different
357 CodeEmitInfo* range_check_info = state_for(x);
358 CodeEmitInfo* null_check_info = NULL;
359 if (x->needs_null_check()) {
360 null_check_info = new CodeEmitInfo(range_check_info);
361 }
362
363 // emit array address setup early so it schedules better
364 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
365
366 if (GenerateRangeChecks && needs_range_check) {
367 if (use_length) {
368 __ cmp(lir_cond_belowEqual, length.result(), index.result());
369 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
370 } else {
371 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
372 // range_check also does the null check
373 null_check_info = NULL;
374 }
375 }
376
377 if (GenerateArrayStoreCheck && needs_store_check) {
378 LIR_Opr tmp1 = FrameMap::G1_opr;
379 LIR_Opr tmp2 = FrameMap::G3_opr;
380 LIR_Opr tmp3 = FrameMap::G5_opr;
381
382 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
383 __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
384 }
385
386 if (obj_store) {
387 // Needs GC write barriers.
388 pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
389 true /* do_load */, false /* patch */, NULL);
390 }
391 LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info);
392 __ move(result, array_addr, null_check_info);
393 if (obj_store) {
394 // Precise card mark
395 post_barrier(LIR_OprFact::address(array_addr), value.result());
396 }
397 }
398
399
400 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
401 assert(x->is_pinned(),"");
402 LIRItem obj(x->obj(), this);
403 obj.load_item();
404
405 set_no_result(x);
406
407 LIR_Opr lock = FrameMap::G1_opr;
408 LIR_Opr scratch = FrameMap::G3_opr;
409 LIR_Opr hdr = FrameMap::G4_opr;
410
411 CodeEmitInfo* info_for_exception = NULL;
412 if (x->needs_null_check()) {
413 info_for_exception = state_for(x);
414 }
415
416 // this CodeEmitInfo must not have the xhandlers because here the
417 // object is already locked (xhandlers expects object to be unlocked)
418 CodeEmitInfo* info = state_for(x, x->state(), true);
419 monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
420 }
421
422
423 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
424 assert(x->is_pinned(),"");
425 LIRItem obj(x->obj(), this);
426 obj.dont_load_item();
427
428 set_no_result(x);
429 LIR_Opr lock = FrameMap::G1_opr;
430 LIR_Opr hdr = FrameMap::G3_opr;
431 LIR_Opr obj_temp = FrameMap::G4_opr;
432 monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
433 }
434
435
436 // _ineg, _lneg, _fneg, _dneg
437 void LIRGenerator::do_NegateOp(NegateOp* x) {
438 LIRItem value(x->x(), this);
439 value.load_item();
440 LIR_Opr reg = rlock_result(x);
441 __ negate(value.result(), reg);
442 }
443
444
445
446 // for _fadd, _fmul, _fsub, _fdiv, _frem
447 // _dadd, _dmul, _dsub, _ddiv, _drem
448 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
449 switch (x->op()) {
450 case Bytecodes::_fadd:
451 case Bytecodes::_fmul:
452 case Bytecodes::_fsub:
453 case Bytecodes::_fdiv:
454 case Bytecodes::_dadd:
455 case Bytecodes::_dmul:
456 case Bytecodes::_dsub:
457 case Bytecodes::_ddiv: {
458 LIRItem left(x->x(), this);
459 LIRItem right(x->y(), this);
460 left.load_item();
461 right.load_item();
462 rlock_result(x);
463 arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
464 }
465 break;
466
467 case Bytecodes::_frem:
468 case Bytecodes::_drem: {
469 address entry;
470 switch (x->op()) {
471 case Bytecodes::_frem:
472 entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
473 break;
474 case Bytecodes::_drem:
475 entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
476 break;
477 default:
478 ShouldNotReachHere();
479 }
480 LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
481 set_result(x, result);
482 }
483 break;
484
485 default: ShouldNotReachHere();
486 }
487 }
488
489
490 // for _ladd, _lmul, _lsub, _ldiv, _lrem
491 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
492 switch (x->op()) {
493 case Bytecodes::_lrem:
494 case Bytecodes::_lmul:
495 case Bytecodes::_ldiv: {
496
497 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
498 LIRItem right(x->y(), this);
499 right.load_item();
500
501 CodeEmitInfo* info = state_for(x);
502 LIR_Opr item = right.result();
503 assert(item->is_register(), "must be");
504 __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
505 __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
506 }
507
508 address entry;
509 switch (x->op()) {
510 case Bytecodes::_lrem:
511 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
512 break; // check if dividend is 0 is done elsewhere
513 case Bytecodes::_ldiv:
514 entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
515 break; // check if dividend is 0 is done elsewhere
516 case Bytecodes::_lmul:
517 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
518 break;
519 default:
520 ShouldNotReachHere();
521 }
522
523 // order of arguments to runtime call is reversed.
524 LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
525 set_result(x, result);
526 break;
527 }
528 case Bytecodes::_ladd:
529 case Bytecodes::_lsub: {
530 LIRItem left(x->x(), this);
531 LIRItem right(x->y(), this);
532 left.load_item();
533 right.load_item();
534 rlock_result(x);
535
536 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
537 break;
538 }
539 default: ShouldNotReachHere();
540 }
541 }
542
543
544 // Returns if item is an int constant that can be represented by a simm13
545 static bool is_simm13(LIR_Opr item) {
546 if (item->is_constant() && item->type() == T_INT) {
547 return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
548 } else {
549 return false;
550 }
551 }
552
553
554 // for: _iadd, _imul, _isub, _idiv, _irem
555 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
556 bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
557 LIRItem left(x->x(), this);
558 LIRItem right(x->y(), this);
559 // missing test if instr is commutative and if we should swap
560 right.load_nonconstant();
561 assert(right.is_constant() || right.is_register(), "wrong state of right");
562 left.load_item();
563 rlock_result(x);
564 if (is_div_rem) {
565 CodeEmitInfo* info = state_for(x);
566 LIR_Opr tmp = FrameMap::G1_opr;
567 if (x->op() == Bytecodes::_irem) {
568 __ irem(left.result(), right.result(), x->operand(), tmp, info);
569 } else if (x->op() == Bytecodes::_idiv) {
570 __ idiv(left.result(), right.result(), x->operand(), tmp, info);
571 }
572 } else {
573 arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
574 }
575 }
576
577
578 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
579 ValueTag tag = x->type()->tag();
580 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
581 switch (tag) {
582 case floatTag:
583 case doubleTag: do_ArithmeticOp_FPU(x); return;
584 case longTag: do_ArithmeticOp_Long(x); return;
585 case intTag: do_ArithmeticOp_Int(x); return;
586 }
587 ShouldNotReachHere();
588 }
589
590
591 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
592 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
593 LIRItem value(x->x(), this);
594 LIRItem count(x->y(), this);
595 // Long shift destroys count register
596 if (value.type()->is_long()) {
597 count.set_destroys_register();
598 }
599 value.load_item();
600 // the old backend doesn't support this
601 if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
602 jint c = count.get_jint_constant() & 0x1f;
603 assert(c >= 0 && c < 32, "should be small");
604 count.dont_load_item();
605 } else {
606 count.load_item();
607 }
608 LIR_Opr reg = rlock_result(x);
609 shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
610 }
611
612
613 // _iand, _land, _ior, _lor, _ixor, _lxor
614 void LIRGenerator::do_LogicOp(LogicOp* x) {
615 LIRItem left(x->x(), this);
616 LIRItem right(x->y(), this);
617
618 left.load_item();
619 right.load_nonconstant();
620 LIR_Opr reg = rlock_result(x);
621
622 logic_op(x->op(), reg, left.result(), right.result());
623 }
624
625
626
627 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
628 void LIRGenerator::do_CompareOp(CompareOp* x) {
629 LIRItem left(x->x(), this);
630 LIRItem right(x->y(), this);
631 left.load_item();
632 right.load_item();
633 LIR_Opr reg = rlock_result(x);
634 if (x->x()->type()->is_float_kind()) {
635 Bytecodes::Code code = x->op();
636 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
637 } else if (x->x()->type()->tag() == longTag) {
638 __ lcmp2int(left.result(), right.result(), reg);
639 } else {
640 Unimplemented();
641 }
642 }
643
644
645 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
646 assert(x->number_of_arguments() == 4, "wrong type");
647 LIRItem obj (x->argument_at(0), this); // object
648 LIRItem offset(x->argument_at(1), this); // offset of field
649 LIRItem cmp (x->argument_at(2), this); // value to compare with field
650 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
651
652 // Use temps to avoid kills
653 LIR_Opr t1 = FrameMap::G1_opr;
654 LIR_Opr t2 = FrameMap::G3_opr;
655 LIR_Opr addr = new_pointer_register();
656
657 // get address of field
658 obj.load_item();
659 offset.load_item();
660 cmp.load_item();
661 val.load_item();
662
663 __ add(obj.result(), offset.result(), addr);
664
665 if (type == objectType) { // Write-barrier needed for Object fields.
666 pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
667 true /* do_load */, false /* patch */, NULL);
668 }
669
670 if (type == objectType)
671 __ cas_obj(addr, cmp.result(), val.result(), t1, t2);
672 else if (type == intType)
673 __ cas_int(addr, cmp.result(), val.result(), t1, t2);
674 else if (type == longType)
675 __ cas_long(addr, cmp.result(), val.result(), t1, t2);
676 else {
677 ShouldNotReachHere();
678 }
679 // generate conditional move of boolean result
680 LIR_Opr result = rlock_result(x);
681 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
682 result, as_BasicType(type));
683 if (type == objectType) { // Write-barrier needed for Object fields.
684 // Precise card mark since could either be object or array
685 post_barrier(addr, val.result());
686 }
687 }
688
689
690 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
691 switch (x->id()) {
692 case vmIntrinsics::_dabs:
693 case vmIntrinsics::_dsqrt: {
694 assert(x->number_of_arguments() == 1, "wrong type");
695 LIRItem value(x->argument_at(0), this);
696 value.load_item();
697 LIR_Opr dst = rlock_result(x);
698
699 switch (x->id()) {
700 case vmIntrinsics::_dsqrt: {
701 __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
702 break;
703 }
704 case vmIntrinsics::_dabs: {
705 __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
706 break;
707 }
708 }
709 break;
710 }
711 case vmIntrinsics::_dlog10: // fall through
712 case vmIntrinsics::_dlog: // fall through
713 case vmIntrinsics::_dsin: // fall through
714 case vmIntrinsics::_dtan: // fall through
715 case vmIntrinsics::_dcos: // fall through
716 case vmIntrinsics::_dexp: {
717 assert(x->number_of_arguments() == 1, "wrong type");
718
719 address runtime_entry = NULL;
720 switch (x->id()) {
721 case vmIntrinsics::_dsin:
722 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
723 break;
724 case vmIntrinsics::_dcos:
725 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
726 break;
727 case vmIntrinsics::_dtan:
728 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
729 break;
730 case vmIntrinsics::_dlog:
731 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
732 break;
733 case vmIntrinsics::_dlog10:
734 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
735 break;
736 case vmIntrinsics::_dexp:
737 runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
738 break;
739 default:
740 ShouldNotReachHere();
741 }
742
743 LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
744 set_result(x, result);
745 break;
746 }
747 case vmIntrinsics::_dpow: {
748 assert(x->number_of_arguments() == 2, "wrong type");
749 address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
750 LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
751 set_result(x, result);
752 break;
753 }
754 }
755 }
756
757
758 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
759 assert(x->number_of_arguments() == 5, "wrong type");
760
761 // Make all state_for calls early since they can emit code
762 CodeEmitInfo* info = state_for(x, x->state());
763
764 // Note: spill caller save before setting the item
765 LIRItem src (x->argument_at(0), this);
766 LIRItem src_pos (x->argument_at(1), this);
767 LIRItem dst (x->argument_at(2), this);
768 LIRItem dst_pos (x->argument_at(3), this);
769 LIRItem length (x->argument_at(4), this);
770 // load all values in callee_save_registers, as this makes the
771 // parameter passing to the fast case simpler
772 src.load_item_force (rlock_callee_saved(T_OBJECT));
773 src_pos.load_item_force (rlock_callee_saved(T_INT));
774 dst.load_item_force (rlock_callee_saved(T_OBJECT));
775 dst_pos.load_item_force (rlock_callee_saved(T_INT));
776 length.load_item_force (rlock_callee_saved(T_INT));
777
778 int flags;
779 ciArrayKlass* expected_type;
780 arraycopy_helper(x, &flags, &expected_type);
781
782 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
783 length.result(), rlock_callee_saved(T_INT),
784 expected_type, flags, info);
785 set_no_result(x);
786 }
787
788 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
789 // Make all state_for calls early since they can emit code
790 LIR_Opr result = rlock_result(x);
791 int flags = 0;
792 switch (x->id()) {
793 case vmIntrinsics::_updateCRC32: {
794 LIRItem crc(x->argument_at(0), this);
795 LIRItem val(x->argument_at(1), this);
796 // val is destroyed by update_crc32
797 val.set_destroys_register();
798 crc.load_item();
799 val.load_item();
800 __ update_crc32(crc.result(), val.result(), result);
801 break;
802 }
803 case vmIntrinsics::_updateBytesCRC32:
804 case vmIntrinsics::_updateByteBufferCRC32: {
805
806 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
807
808 LIRItem crc(x->argument_at(0), this);
809 LIRItem buf(x->argument_at(1), this);
810 LIRItem off(x->argument_at(2), this);
811 LIRItem len(x->argument_at(3), this);
812
813 buf.load_item();
814 off.load_nonconstant();
815
816 LIR_Opr index = off.result();
817 int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
818 if(off.result()->is_constant()) {
819 index = LIR_OprFact::illegalOpr;
820 offset += off.result()->as_jint();
821 }
822
823 LIR_Opr base_op = buf.result();
824
825 if (index->is_valid()) {
826 LIR_Opr tmp = new_register(T_LONG);
827 __ convert(Bytecodes::_i2l, index, tmp);
828 index = tmp;
829 if (index->is_constant()) {
830 offset += index->as_constant_ptr()->as_jint();
831 index = LIR_OprFact::illegalOpr;
832 } else if (index->is_register()) {
833 LIR_Opr tmp2 = new_register(T_LONG);
834 LIR_Opr tmp3 = new_register(T_LONG);
835 __ move(base_op, tmp2);
836 __ move(index, tmp3);
837 __ add(tmp2, tmp3, tmp2);
838 base_op = tmp2;
839 } else {
840 ShouldNotReachHere();
841 }
842 }
843
844 LIR_Address* a = new LIR_Address(base_op, offset, T_BYTE);
845
846 BasicTypeList signature(3);
847 signature.append(T_INT);
848 signature.append(T_ADDRESS);
849 signature.append(T_INT);
850 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
851 const LIR_Opr result_reg = result_register_for(x->type());
852
853 LIR_Opr addr = new_pointer_register();
854 __ leal(LIR_OprFact::address(a), addr);
855
856 crc.load_item_force(cc->at(0));
857 __ move(addr, cc->at(1));
858 len.load_item_force(cc->at(2));
859
860 __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
861 __ move(result_reg, result);
862
863 break;
864 }
865 default: {
866 ShouldNotReachHere();
867 }
868 }
869 }
870
871 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
872 // Make all state_for calls early since they can emit code
873 LIR_Opr result = rlock_result(x);
874 int flags = 0;
875 switch (x->id()) {
876 case vmIntrinsics::_updateBytesCRC32C:
877 case vmIntrinsics::_updateDirectByteBufferCRC32C: {
878
879 bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
880 int array_offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
881
882 LIRItem crc(x->argument_at(0), this);
883 LIRItem buf(x->argument_at(1), this);
884 LIRItem off(x->argument_at(2), this);
885 LIRItem end(x->argument_at(3), this);
886
887 buf.load_item();
888 off.load_nonconstant();
889 end.load_nonconstant();
890
891 // len = end - off
892 LIR_Opr len = end.result();
893 LIR_Opr tmpA = new_register(T_INT);
894 LIR_Opr tmpB = new_register(T_INT);
895 __ move(end.result(), tmpA);
896 __ move(off.result(), tmpB);
897 __ sub(tmpA, tmpB, tmpA);
898 len = tmpA;
899
900 LIR_Opr index = off.result();
901
902 if(off.result()->is_constant()) {
903 index = LIR_OprFact::illegalOpr;
904 array_offset += off.result()->as_jint();
905 }
906
907 LIR_Opr base_op = buf.result();
908
909 if (index->is_valid()) {
910 LIR_Opr tmp = new_register(T_LONG);
911 __ convert(Bytecodes::_i2l, index, tmp);
912 index = tmp;
913 if (index->is_constant()) {
914 array_offset += index->as_constant_ptr()->as_jint();
915 index = LIR_OprFact::illegalOpr;
916 } else if (index->is_register()) {
917 LIR_Opr tmp2 = new_register(T_LONG);
918 LIR_Opr tmp3 = new_register(T_LONG);
919 __ move(base_op, tmp2);
920 __ move(index, tmp3);
921 __ add(tmp2, tmp3, tmp2);
922 base_op = tmp2;
923 } else {
924 ShouldNotReachHere();
925 }
926 }
927
928 LIR_Address* a = new LIR_Address(base_op, array_offset, T_BYTE);
929
930 BasicTypeList signature(3);
931 signature.append(T_INT);
932 signature.append(T_ADDRESS);
933 signature.append(T_INT);
934 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
935 const LIR_Opr result_reg = result_register_for(x->type());
936
937 LIR_Opr addr = new_pointer_register();
938 __ leal(LIR_OprFact::address(a), addr);
939
940 crc.load_item_force(cc->at(0));
941 __ move(addr, cc->at(1));
942 __ move(len, cc->at(2));
943
944 __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
945 __ move(result_reg, result);
946
947 break;
948 }
949 default: {
950 ShouldNotReachHere();
951 }
952 }
953 }
954
955 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
956 assert(x->number_of_arguments() == 3, "wrong type");
957 assert(UseFMA, "Needs FMA instructions support.");
958
959 LIRItem a(x->argument_at(0), this);
960 LIRItem b(x->argument_at(1), this);
961 LIRItem c(x->argument_at(2), this);
962
963 a.load_item();
964 b.load_item();
965 c.load_item();
966
967 LIR_Opr ina = a.result();
968 LIR_Opr inb = b.result();
969 LIR_Opr inc = c.result();
970 LIR_Opr res = rlock_result(x);
971
972 switch (x->id()) {
973 case vmIntrinsics::_fmaF: __ fmaf(ina, inb, inc, res); break;
974 case vmIntrinsics::_fmaD: __ fmad(ina, inb, inc, res); break;
975 default:
976 ShouldNotReachHere();
977 break;
978 }
979 }
980
981 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
982 fatal("vectorizedMismatch intrinsic is not implemented on this platform");
983 }
984
985 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
986 // _i2b, _i2c, _i2s
987 void LIRGenerator::do_Convert(Convert* x) {
988
989 switch (x->op()) {
990 case Bytecodes::_f2l:
991 case Bytecodes::_d2l:
992 case Bytecodes::_d2i:
993 case Bytecodes::_l2f:
994 case Bytecodes::_l2d: {
995
996 address entry;
997 switch (x->op()) {
998 case Bytecodes::_l2f:
999 entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
1000 break;
1001 case Bytecodes::_l2d:
1002 entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
1003 break;
1004 case Bytecodes::_f2l:
1005 entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
1006 break;
1007 case Bytecodes::_d2l:
1008 entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
1009 break;
1010 case Bytecodes::_d2i:
1011 entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
1012 break;
1013 default:
1014 ShouldNotReachHere();
1015 }
1016 LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
1017 set_result(x, result);
1018 break;
1019 }
1020
1021 case Bytecodes::_i2f:
1022 case Bytecodes::_i2d: {
1023 LIRItem value(x->value(), this);
1024
1025 LIR_Opr reg = rlock_result(x);
1026 // To convert an int to double, we need to load the 32-bit int
1027 // from memory into a single precision floating point register
1028 // (even numbered). Then the sparc fitod instruction takes care
1029 // of the conversion. This is a bit ugly, but is the best way to
1030 // get the int value in a single precision floating point register
1031 value.load_item();
1032 LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
1033 __ convert(x->op(), tmp, reg);
1034 break;
1035 }
1036 break;
1037
1038 case Bytecodes::_i2l:
1039 case Bytecodes::_i2b:
1040 case Bytecodes::_i2c:
1041 case Bytecodes::_i2s:
1042 case Bytecodes::_l2i:
1043 case Bytecodes::_f2d:
1044 case Bytecodes::_d2f: { // inline code
1045 LIRItem value(x->value(), this);
1046
1047 value.load_item();
1048 LIR_Opr reg = rlock_result(x);
1049 __ convert(x->op(), value.result(), reg, false);
1050 }
1051 break;
1052
1053 case Bytecodes::_f2i: {
1054 LIRItem value (x->value(), this);
1055 value.set_destroys_register();
1056 value.load_item();
1057 LIR_Opr reg = rlock_result(x);
1058 set_vreg_flag(reg, must_start_in_memory);
1059 __ convert(x->op(), value.result(), reg, false);
1060 }
1061 break;
1062
1063 default: ShouldNotReachHere();
1064 }
1065 }
1066
1067
1068 void LIRGenerator::do_NewInstance(NewInstance* x) {
1069 print_if_not_loaded(x);
1070
1071 // This instruction can be deoptimized in the slow path : use
1072 // O0 as result register.
1073 const LIR_Opr reg = result_register_for(x->type());
1074
1075 CodeEmitInfo* info = state_for(x, x->state());
1076 LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1077 LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1078 LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1079 LIR_Opr tmp4 = FrameMap::O1_oop_opr;
1080 LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
1081 new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
1082 LIR_Opr result = rlock_result(x);
1083 __ move(reg, result);
1084 }
1085
1086
1087 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1088 // Evaluate state_for early since it may emit code
1089 CodeEmitInfo* info = state_for(x, x->state());
1090
1091 LIRItem length(x->length(), this);
1092 length.load_item();
1093
1094 LIR_Opr reg = result_register_for(x->type());
1095 LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1096 LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1097 LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1098 LIR_Opr tmp4 = FrameMap::O1_oop_opr;
1099 LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
1100 LIR_Opr len = length.result();
1101 BasicType elem_type = x->elt_type();
1102
1103 __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1104
1105 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1106 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1107
1108 LIR_Opr result = rlock_result(x);
1109 __ move(reg, result);
1110 }
1111
1112
1113 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1114 // Evaluate state_for early since it may emit code.
1115 CodeEmitInfo* info = state_for(x, x->state());
1116 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1117 // and therefore provide the state before the parameters have been consumed
1118 CodeEmitInfo* patching_info = NULL;
1119 if (!x->klass()->is_loaded() || PatchALot) {
1120 patching_info = state_for(x, x->state_before());
1121 }
1122
1123 LIRItem length(x->length(), this);
1124 length.load_item();
1125
1126 const LIR_Opr reg = result_register_for(x->type());
1127 LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1128 LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1129 LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1130 LIR_Opr tmp4 = FrameMap::O1_oop_opr;
1131 LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
1132 LIR_Opr len = length.result();
1133
1134 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1135 ciMetadata* obj = ciObjArrayKlass::make(x->klass());
1136 if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1137 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1138 }
1139 klass2reg_with_patching(klass_reg, obj, patching_info);
1140 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1141
1142 LIR_Opr result = rlock_result(x);
1143 __ move(reg, result);
1144 }
1145
1146
1147 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1148 Values* dims = x->dims();
1149 int i = dims->length();
1150 LIRItemList* items = new LIRItemList(i, i, NULL);
1151 while (i-- > 0) {
1152 LIRItem* size = new LIRItem(dims->at(i), this);
1153 items->at_put(i, size);
1154 }
1155
1156 // Evaluate state_for early since it may emit code.
1157 CodeEmitInfo* patching_info = NULL;
1158 if (!x->klass()->is_loaded() || PatchALot) {
1159 patching_info = state_for(x, x->state_before());
1160
1161 // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1162 // clone all handlers (NOTE: Usually this is handled transparently
1163 // by the CodeEmitInfo cloning logic in CodeStub constructors but
1164 // is done explicitly here because a stub isn't being used).
1165 x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1166 }
1167 CodeEmitInfo* info = state_for(x, x->state());
1168
1169 i = dims->length();
1170 while (i-- > 0) {
1171 LIRItem* size = items->at(i);
1172 size->load_item();
1173 store_stack_parameter (size->result(),
1174 in_ByteSize(STACK_BIAS +
1175 frame::memory_parameter_word_sp_offset * wordSize +
1176 i * sizeof(jint)));
1177 }
1178
1179 // This instruction can be deoptimized in the slow path : use
1180 // O0 as result register.
1181 const LIR_Opr klass_reg = FrameMap::O0_metadata_opr;
1182 klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1183 LIR_Opr rank = FrameMap::O1_opr;
1184 __ move(LIR_OprFact::intConst(x->rank()), rank);
1185 LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
1186 int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
1187 __ add(FrameMap::SP_opr,
1188 LIR_OprFact::intptrConst(offset_from_sp),
1189 varargs);
1190 LIR_OprList* args = new LIR_OprList(3);
1191 args->append(klass_reg);
1192 args->append(rank);
1193 args->append(varargs);
1194 const LIR_Opr reg = result_register_for(x->type());
1195 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1196 LIR_OprFact::illegalOpr,
1197 reg, args, info);
1198
1199 LIR_Opr result = rlock_result(x);
1200 __ move(reg, result);
1201 }
1202
1203
1204 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1205 }
1206
1207
1208 void LIRGenerator::do_CheckCast(CheckCast* x) {
1209 LIRItem obj(x->obj(), this);
1210 CodeEmitInfo* patching_info = NULL;
1211 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1212 // must do this before locking the destination register as an oop register,
1213 // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
1214 patching_info = state_for(x, x->state_before());
1215 }
1216 obj.load_item();
1217 LIR_Opr out_reg = rlock_result(x);
1218 CodeStub* stub;
1219 CodeEmitInfo* info_for_exception =
1220 (x->needs_exception_state() ? state_for(x) :
1221 state_for(x, x->state_before(), true /*ignore_xhandler*/));
1222
1223 if (x->is_incompatible_class_change_check()) {
1224 assert(patching_info == NULL, "can't patch this");
1225 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1226 } else if (x->is_invokespecial_receiver_check()) {
1227 assert(patching_info == NULL, "can't patch this");
1228 stub = new DeoptimizeStub(info_for_exception,
1229 Deoptimization::Reason_class_check,
1230 Deoptimization::Action_none);
1231 } else {
1232 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1233 }
1234 LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1235 LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1236 LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1237 __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1238 x->direct_compare(), info_for_exception, patching_info, stub,
1239 x->profiled_method(), x->profiled_bci());
1240 }
1241
1242
1243 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1244 LIRItem obj(x->obj(), this);
1245 CodeEmitInfo* patching_info = NULL;
1246 if (!x->klass()->is_loaded() || PatchALot) {
1247 patching_info = state_for(x, x->state_before());
1248 }
1249 // ensure the result register is not the input register because the result is initialized before the patching safepoint
1250 obj.load_item();
1251 LIR_Opr out_reg = rlock_result(x);
1252 LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1253 LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1254 LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1255 __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1256 x->direct_compare(), patching_info,
1257 x->profiled_method(), x->profiled_bci());
1258 }
1259
1260
1261 void LIRGenerator::do_If(If* x) {
1262 assert(x->number_of_sux() == 2, "inconsistency");
1263 ValueTag tag = x->x()->type()->tag();
1264 LIRItem xitem(x->x(), this);
1265 LIRItem yitem(x->y(), this);
1266 LIRItem* xin = &xitem;
1267 LIRItem* yin = &yitem;
1268 If::Condition cond = x->cond();
1269
1270 if (tag == longTag) {
1271 // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1272 // mirror for other conditions
1273 if (cond == If::gtr || cond == If::leq) {
1274 // swap inputs
1275 cond = Instruction::mirror(cond);
1276 xin = &yitem;
1277 yin = &xitem;
1278 }
1279 xin->set_destroys_register();
1280 }
1281
1282 LIR_Opr left = LIR_OprFact::illegalOpr;
1283 LIR_Opr right = LIR_OprFact::illegalOpr;
1284
1285 xin->load_item();
1286 left = xin->result();
1287
1288 if (is_simm13(yin->result())) {
1289 // inline int constants which are small enough to be immediate operands
1290 right = LIR_OprFact::value_type(yin->value()->type());
1291 } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1292 (cond == If::eql || cond == If::neq)) {
1293 // inline long zero
1294 right = LIR_OprFact::value_type(yin->value()->type());
1295 } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
1296 right = LIR_OprFact::value_type(yin->value()->type());
1297 } else {
1298 yin->load_item();
1299 right = yin->result();
1300 }
1301 set_no_result(x);
1302
1303 // add safepoint before generating condition code so it can be recomputed
1304 if (x->is_safepoint()) {
1305 // increment backedge counter if needed
1306 increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1307 __ safepoint(new_register(T_INT), state_for(x, x->state_before()));
1308 }
1309
1310 __ cmp(lir_cond(cond), left, right);
1311 // Generate branch profiling. Profiling code doesn't kill flags.
1312 profile_branch(x, cond);
1313 move_to_phi(x->state());
1314 if (x->x()->type()->is_float_kind()) {
1315 __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1316 } else {
1317 __ branch(lir_cond(cond), right->type(), x->tsux());
1318 }
1319 assert(x->default_sux() == x->fsux(), "wrong destination above");
1320 __ jump(x->default_sux());
1321 }
1322
1323
1324 LIR_Opr LIRGenerator::getThreadPointer() {
1325 return FrameMap::as_pointer_opr(G2);
1326 }
1327
1328
1329 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1330 __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
1331 LIR_OprList* args = new LIR_OprList(1);
1332 args->append(FrameMap::O0_opr);
1333 address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1334 __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
1335 }
1336
1337
1338 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1339 CodeEmitInfo* info) {
1340 __ store(value, address, info);
1341 }
1342
1343 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1344 CodeEmitInfo* info) {
1345 __ load(address, result, info);
1346 }
1347
1348
1349 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1350 BasicType type, bool is_volatile) {
1351 LIR_Opr base_op = src;
1352 LIR_Opr index_op = offset;
1353
1354 bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1355 {
1356 if (type == T_BOOLEAN) {
1357 type = T_BYTE;
1358 }
1359 LIR_Address* addr;
1360 if (type == T_ARRAY || type == T_OBJECT) {
1361 LIR_Opr tmp = new_pointer_register();
1362 __ add(base_op, index_op, tmp);
1363 addr = new LIR_Address(tmp, type);
1364 } else {
1365 addr = new LIR_Address(base_op, index_op, type);
1366 }
1367
1368 if (is_obj) {
1369 pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1370 true /* do_load */, false /* patch */, NULL);
1371 // _bs->c1_write_barrier_pre(this, LIR_OprFact::address(addr));
1372 }
1373 __ move(data, addr);
1374 if (is_obj) {
1375 // This address is precise
1376 post_barrier(LIR_OprFact::address(addr), data);
1377 }
1378 }
1379 }
1380
1381
1382 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1383 BasicType type, bool is_volatile) {
1384 {
1385 LIR_Address* addr = new LIR_Address(src, offset, type);
1386 __ load(addr, dst);
1387 }
1388 }
1389
1390 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1391 BasicType type = x->basic_type();
1392 LIRItem src(x->object(), this);
1393 LIRItem off(x->offset(), this);
1394 LIRItem value(x->value(), this);
1395
1396 src.load_item();
1397 value.load_item();
1398 off.load_nonconstant();
1399
1400 LIR_Opr dst = rlock_result(x, type);
1401 LIR_Opr data = value.result();
1402 bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1403 LIR_Opr offset = off.result();
1404
1405 // Because we want a 2-arg form of xchg
1406 __ move(data, dst);
1407
1408 assert (!x->is_add() && (type == T_INT || (is_obj && UseCompressedOops)), "unexpected type");
1409 LIR_Address* addr;
1410 if (offset->is_constant()) {
1411
1412 jlong l = offset->as_jlong();
1413 assert((jlong)((jint)l) == l, "offset too large for constant");
1414 jint c = (jint)l;
1415 addr = new LIR_Address(src.result(), c, type);
1416 } else {
1417 addr = new LIR_Address(src.result(), offset, type);
1418 }
1419
1420 LIR_Opr tmp = LIR_OprFact::illegalOpr;
1421 LIR_Opr ptr = LIR_OprFact::illegalOpr;
1422
1423 if (is_obj) {
1424 // Do the pre-write barrier, if any.
1425 // barriers on sparc don't work with a base + index address
1426 tmp = FrameMap::G3_opr;
1427 ptr = new_pointer_register();
1428 __ add(src.result(), off.result(), ptr);
1429 pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */,
1430 true /* do_load */, false /* patch */, NULL);
1431 }
1432 __ xchg(LIR_OprFact::address(addr), dst, dst, tmp);
1433 if (is_obj) {
1434 // Seems to be a precise address
1435 post_barrier(ptr, data);
1436 }
1437 }
--- EOF ---