rev 47415 : Add Thread Local handshakes and thread local polling
1 /*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "interp_masm_sparc.hpp"
27 #include "interpreter/interpreter.hpp"
28 #include "interpreter/interpreterRuntime.hpp"
29 #include "logging/log.hpp"
30 #include "oops/arrayOop.hpp"
31 #include "oops/markOop.hpp"
32 #include "oops/methodData.hpp"
33 #include "oops/method.hpp"
34 #include "oops/methodCounters.hpp"
35 #include "prims/jvmtiExport.hpp"
36 #include "prims/jvmtiThreadState.hpp"
37 #include "runtime/basicLock.hpp"
38 #include "runtime/biasedLocking.hpp"
39 #include "runtime/sharedRuntime.hpp"
40 #include "runtime/thread.inline.hpp"
41 #include "utilities/align.hpp"
42
43 // Implementation of InterpreterMacroAssembler
44
45 // This file specializes the assember with interpreter-specific macros
46
47 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
48 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
49
50 void InterpreterMacroAssembler::jump_to_entry(address entry) {
51 assert(entry, "Entry must have been generated by now");
52 AddressLiteral al(entry);
53 jump_to(al, G3_scratch);
54 delayed()->nop();
55 }
56
57 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
58 // Note: this algorithm is also used by C1's OSR entry sequence.
59 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
60 assert_different_registers(args_size, locals_size);
61 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
62 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
63 // Use br/mov combination because it works on both V8 and V9 and is
64 // faster.
65 Label skip_move;
66 br(Assembler::negative, true, Assembler::pt, skip_move);
67 delayed()->mov(G0, delta);
68 bind(skip_move);
69 align_up(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
70 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
71 }
72
73 // Dispatch code executed in the prolog of a bytecode which does not do it's
74 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
75 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
76 assert_not_delayed();
77 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
78 // dispatch table to use
79 AddressLiteral tbl(Interpreter::dispatch_table(state));
80 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
81 set(tbl, G3_scratch); // compute addr of table
82 ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
83 }
84
85
86 // Dispatch code executed in the epilog of a bytecode which does not do it's
87 // own dispatch. The dispatch address in IdispatchAddress is used for the
88 // dispatch.
89 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
90 assert_not_delayed();
91 verify_FPU(1, state);
92 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
93 jmp( IdispatchAddress, 0 );
94 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
95 else delayed()->nop();
96 }
97
98
99 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
100 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
101 assert_not_delayed();
102 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
103 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
104 }
105
106
107 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
108 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
109 assert_not_delayed();
110 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
111 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
112 }
113
114
115 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
116 // load current bytecode
117 assert_not_delayed();
118 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
119 dispatch_base(state, table);
120 }
121
122
123 void InterpreterMacroAssembler::call_VM_leaf_base(
124 Register java_thread,
125 address entry_point,
126 int number_of_arguments
127 ) {
128 if (!java_thread->is_valid())
129 java_thread = L7_thread_cache;
130 // super call
131 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
132 }
133
134
135 void InterpreterMacroAssembler::call_VM_base(
136 Register oop_result,
137 Register java_thread,
138 Register last_java_sp,
139 address entry_point,
140 int number_of_arguments,
141 bool check_exception
142 ) {
143 if (!java_thread->is_valid())
144 java_thread = L7_thread_cache;
145 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
146 // takes responsibility for setting its own thread-state on call-out.
147 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
148
149 //save_bcp(); // save bcp
150 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
151 //restore_bcp(); // restore bcp
152 //restore_locals(); // restore locals pointer
153 }
154
155
156 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
157 if (JvmtiExport::can_pop_frame()) {
158 Label L;
159
160 // Check the "pending popframe condition" flag in the current thread
161 ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
162
163 // Initiate popframe handling only if it is not already being processed. If the flag
164 // has the popframe_processing bit set, it means that this code is called *during* popframe
165 // handling - we don't want to reenter.
166 btst(JavaThread::popframe_pending_bit, scratch_reg);
167 br(zero, false, pt, L);
168 delayed()->nop();
169 btst(JavaThread::popframe_processing_bit, scratch_reg);
170 br(notZero, false, pt, L);
171 delayed()->nop();
172
173 // Call Interpreter::remove_activation_preserving_args_entry() to get the
174 // address of the same-named entrypoint in the generated interpreter code.
175 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
176
177 // Jump to Interpreter::_remove_activation_preserving_args_entry
178 jmpl(O0, G0, G0);
179 delayed()->nop();
180 bind(L);
181 }
182 }
183
184
185 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
186 Register thr_state = G4_scratch;
187 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
188 const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
189 const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
190 const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
191 switch (state) {
192 case ltos: ld_long(val_addr, Otos_l); break;
193 case atos: ld_ptr(oop_addr, Otos_l);
194 st_ptr(G0, oop_addr); break;
195 case btos: // fall through
196 case ztos: // fall through
197 case ctos: // fall through
198 case stos: // fall through
199 case itos: ld(val_addr, Otos_l1); break;
200 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
201 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
202 case vtos: /* nothing to do */ break;
203 default : ShouldNotReachHere();
204 }
205 // Clean up tos value in the jvmti thread state
206 or3(G0, ilgl, G3_scratch);
207 stw(G3_scratch, tos_addr);
208 st_long(G0, val_addr);
209 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
210 }
211
212
213 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
214 if (JvmtiExport::can_force_early_return()) {
215 Label L;
216 Register thr_state = G3_scratch;
217 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
218 br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
219
220 // Initiate earlyret handling only if it is not already being processed.
221 // If the flag has the earlyret_processing bit set, it means that this code
222 // is called *during* earlyret handling - we don't want to reenter.
223 ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
224 cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
225
226 // Call Interpreter::remove_activation_early_entry() to get the address of the
227 // same-named entrypoint in the generated interpreter code
228 ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
229 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
230
231 // Jump to Interpreter::_remove_activation_early_entry
232 jmpl(O0, G0, G0);
233 delayed()->nop();
234 bind(L);
235 }
236 }
237
238
239 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
240 mov(arg_1, O0);
241 mov(arg_2, O1);
242 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
243 }
244
245 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
246 assert_not_delayed();
247 dispatch_Lbyte_code(state, table);
248 }
249
250
251 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
252 dispatch_base(state, Interpreter::normal_table(state));
253 }
254
255
256 void InterpreterMacroAssembler::dispatch_only(TosState state) {
257 dispatch_base(state, Interpreter::dispatch_table(state));
258 }
259
260
261 // common code to dispatch and dispatch_only
262 // dispatch value in Lbyte_code and increment Lbcp
263
264 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
265 verify_FPU(1, state);
266 // %%%%% maybe implement +VerifyActivationFrameSize here
267 //verify_thread(); //too slow; we will just verify on method entry & exit
268 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
269 // dispatch table to use
270 AddressLiteral tbl(table);
271 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
272 set(tbl, G3_scratch); // compute addr of table
273 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
274 jmp( G3_scratch, 0 );
275 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
276 else delayed()->nop();
277 }
278
279
280 // Helpers for expression stack
281
282 // Longs and doubles are Category 2 computational types in the
283 // JVM specification (section 3.11.1) and take 2 expression stack or
284 // local slots.
285 // Aligning them on 32 bit with tagged stacks is hard because the code generated
286 // for the dup* bytecodes depends on what types are already on the stack.
287 // If the types are split into the two stack/local slots, that is much easier
288 // (and we can use 0 for non-reference tags).
289
290 // Known good alignment in _LP64 but unknown otherwise
291 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
292 assert_not_delayed();
293
294 ldf(FloatRegisterImpl::D, r1, offset, d);
295 }
296
297 // Known good alignment in _LP64 but unknown otherwise
298 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
299 assert_not_delayed();
300
301 stf(FloatRegisterImpl::D, d, r1, offset);
302 // store something more useful here
303 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
304 }
305
306
307 // Known good alignment in _LP64 but unknown otherwise
308 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
309 assert_not_delayed();
310 ldx(r1, offset, rd);
311 }
312
313 // Known good alignment in _LP64 but unknown otherwise
314 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
315 assert_not_delayed();
316
317 stx(l, r1, offset);
318 // store something more useful here
319 stx(G0, r1, offset+Interpreter::stackElementSize);
320 }
321
322 void InterpreterMacroAssembler::pop_i(Register r) {
323 assert_not_delayed();
324 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
325 inc(Lesp, Interpreter::stackElementSize);
326 debug_only(verify_esp(Lesp));
327 }
328
329 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
330 assert_not_delayed();
331 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
332 inc(Lesp, Interpreter::stackElementSize);
333 debug_only(verify_esp(Lesp));
334 }
335
336 void InterpreterMacroAssembler::pop_l(Register r) {
337 assert_not_delayed();
338 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
339 inc(Lesp, 2*Interpreter::stackElementSize);
340 debug_only(verify_esp(Lesp));
341 }
342
343
344 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
345 assert_not_delayed();
346 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
347 inc(Lesp, Interpreter::stackElementSize);
348 debug_only(verify_esp(Lesp));
349 }
350
351
352 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
353 assert_not_delayed();
354 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
355 inc(Lesp, 2*Interpreter::stackElementSize);
356 debug_only(verify_esp(Lesp));
357 }
358
359
360 void InterpreterMacroAssembler::push_i(Register r) {
361 assert_not_delayed();
362 debug_only(verify_esp(Lesp));
363 st(r, Lesp, 0);
364 dec(Lesp, Interpreter::stackElementSize);
365 }
366
367 void InterpreterMacroAssembler::push_ptr(Register r) {
368 assert_not_delayed();
369 st_ptr(r, Lesp, 0);
370 dec(Lesp, Interpreter::stackElementSize);
371 }
372
373 // remember: our convention for longs in SPARC is:
374 // O0 (Otos_l1) has high-order part in first word,
375 // O1 (Otos_l2) has low-order part in second word
376
377 void InterpreterMacroAssembler::push_l(Register r) {
378 assert_not_delayed();
379 debug_only(verify_esp(Lesp));
380 // Longs are stored in memory-correct order, even if unaligned.
381 int offset = -Interpreter::stackElementSize;
382 store_unaligned_long(r, Lesp, offset);
383 dec(Lesp, 2 * Interpreter::stackElementSize);
384 }
385
386
387 void InterpreterMacroAssembler::push_f(FloatRegister f) {
388 assert_not_delayed();
389 debug_only(verify_esp(Lesp));
390 stf(FloatRegisterImpl::S, f, Lesp, 0);
391 dec(Lesp, Interpreter::stackElementSize);
392 }
393
394
395 void InterpreterMacroAssembler::push_d(FloatRegister d) {
396 assert_not_delayed();
397 debug_only(verify_esp(Lesp));
398 // Longs are stored in memory-correct order, even if unaligned.
399 int offset = -Interpreter::stackElementSize;
400 store_unaligned_double(d, Lesp, offset);
401 dec(Lesp, 2 * Interpreter::stackElementSize);
402 }
403
404
405 void InterpreterMacroAssembler::push(TosState state) {
406 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
407 switch (state) {
408 case atos: push_ptr(); break;
409 case btos: // fall through
410 case ztos: // fall through
411 case ctos: // fall through
412 case stos: // fall through
413 case itos: push_i(); break;
414 case ltos: push_l(); break;
415 case ftos: push_f(); break;
416 case dtos: push_d(); break;
417 case vtos: /* nothing to do */ break;
418 default : ShouldNotReachHere();
419 }
420 }
421
422
423 void InterpreterMacroAssembler::pop(TosState state) {
424 switch (state) {
425 case atos: pop_ptr(); break;
426 case btos: // fall through
427 case ztos: // fall through
428 case ctos: // fall through
429 case stos: // fall through
430 case itos: pop_i(); break;
431 case ltos: pop_l(); break;
432 case ftos: pop_f(); break;
433 case dtos: pop_d(); break;
434 case vtos: /* nothing to do */ break;
435 default : ShouldNotReachHere();
436 }
437 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
438 }
439
440
441 // Helpers for swap and dup
442 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
443 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
444 }
445 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
446 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
447 }
448
449
450 void InterpreterMacroAssembler::load_receiver(Register param_count,
451 Register recv) {
452 sll(param_count, Interpreter::logStackElementSize, param_count);
453 ld_ptr(Lesp, param_count, recv); // gets receiver oop
454 }
455
456 void InterpreterMacroAssembler::empty_expression_stack() {
457 // Reset Lesp.
458 sub( Lmonitors, wordSize, Lesp );
459
460 // Reset SP by subtracting more space from Lesp.
461 Label done;
462 assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
463
464 // A native does not need to do this, since its callee does not change SP.
465 ld(Lmethod, Method::access_flags_offset(), Gframe_size); // Load access flags.
466 btst(JVM_ACC_NATIVE, Gframe_size);
467 br(Assembler::notZero, false, Assembler::pt, done);
468 delayed()->nop();
469
470 // Compute max expression stack+register save area
471 ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size);
472 lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size); // Load max stack.
473 add(Gframe_size, frame::memory_parameter_word_sp_offset+Method::extra_stack_entries(), Gframe_size );
474
475 //
476 // now set up a stack frame with the size computed above
477 //
478 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
479 sll( Gframe_size, LogBytesPerWord, Gframe_size );
480 sub( Lesp, Gframe_size, Gframe_size );
481 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
482 debug_only(verify_sp(Gframe_size, G4_scratch));
483 sub(Gframe_size, STACK_BIAS, Gframe_size );
484 mov(Gframe_size, SP);
485
486 bind(done);
487 }
488
489
490 #ifdef ASSERT
491 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
492 Label Bad, OK;
493
494 // Saved SP must be aligned.
495 btst(2*BytesPerWord-1, Rsp);
496 br(Assembler::notZero, false, Assembler::pn, Bad);
497 delayed()->nop();
498
499 // Saved SP, plus register window size, must not be above FP.
500 add(Rsp, frame::register_save_words * wordSize, Rtemp);
501 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
502 cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
503
504 // Saved SP must not be ridiculously below current SP.
505 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
506 set(maxstack, Rtemp);
507 sub(SP, Rtemp, Rtemp);
508 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
509 cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
510
511 ba_short(OK);
512
513 bind(Bad);
514 stop("on return to interpreted call, restored SP is corrupted");
515
516 bind(OK);
517 }
518
519
520 void InterpreterMacroAssembler::verify_esp(Register Resp) {
521 // about to read or write Resp[0]
522 // make sure it is not in the monitors or the register save area
523 Label OK1, OK2;
524
525 cmp(Resp, Lmonitors);
526 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
527 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
528 stop("too many pops: Lesp points into monitor area");
529 bind(OK1);
530 sub(Resp, STACK_BIAS, Resp);
531 cmp(Resp, SP);
532 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
533 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
534 stop("too many pushes: Lesp points into register window");
535 bind(OK2);
536 }
537 #endif // ASSERT
538
539 // Load compiled (i2c) or interpreter entry when calling from interpreted and
540 // do the call. Centralized so that all interpreter calls will do the same actions.
541 // If jvmti single stepping is on for a thread we must not call compiled code.
542 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
543
544 // Assume we want to go compiled if available
545
546 ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
547
548 if (JvmtiExport::can_post_interpreter_events()) {
549 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
550 // compiled code in threads for which the event is enabled. Check here for
551 // interp_only_mode if these events CAN be enabled.
552 verify_thread();
553 Label skip_compiled_code;
554
555 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
556 ld(interp_only, scratch);
557 cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
558 delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
559 bind(skip_compiled_code);
560 }
561
562 // the i2c_adapters need Method* in G5_method (right? %%%)
563 // do the call
564 #ifdef ASSERT
565 {
566 Label ok;
567 br_notnull_short(target, Assembler::pt, ok);
568 stop("null entry point");
569 bind(ok);
570 }
571 #endif // ASSERT
572
573 // Adjust Rret first so Llast_SP can be same as Rret
574 add(Rret, -frame::pc_return_offset, O7);
575 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
576 // Record SP so we can remove any stack space allocated by adapter transition
577 jmp(target, 0);
578 delayed()->mov(SP, Llast_SP);
579 }
580
581 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
582 assert_not_delayed();
583
584 Label not_taken;
585 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
586 else br (cc, false, Assembler::pn, not_taken);
587 delayed()->nop();
588
589 TemplateTable::branch(false,false);
590
591 bind(not_taken);
592
593 profile_not_taken_branch(G3_scratch);
594 }
595
596
597 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
598 int bcp_offset,
599 Register Rtmp,
600 Register Rdst,
601 signedOrNot is_signed,
602 setCCOrNot should_set_CC ) {
603 assert(Rtmp != Rdst, "need separate temp register");
604 assert_not_delayed();
605 switch (is_signed) {
606 default: ShouldNotReachHere();
607
608 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
609 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
610 }
611 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
612 sll( Rdst, BitsPerByte, Rdst);
613 switch (should_set_CC ) {
614 default: ShouldNotReachHere();
615
616 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
617 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
618 }
619 }
620
621
622 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
623 int bcp_offset,
624 Register Rtmp,
625 Register Rdst,
626 setCCOrNot should_set_CC ) {
627 assert(Rtmp != Rdst, "need separate temp register");
628 assert_not_delayed();
629 add( Lbcp, bcp_offset, Rtmp);
630 andcc( Rtmp, 3, G0);
631 Label aligned;
632 switch (should_set_CC ) {
633 default: ShouldNotReachHere();
634
635 case set_CC: break;
636 case dont_set_CC: break;
637 }
638
639 br(Assembler::zero, true, Assembler::pn, aligned);
640 delayed()->ldsw(Rtmp, 0, Rdst);
641
642 ldub(Lbcp, bcp_offset + 3, Rdst);
643 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
644 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
645 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
646 or3(Rtmp, Rdst, Rdst );
647
648 bind(aligned);
649 if (should_set_CC == set_CC) tst(Rdst);
650 }
651
652 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
653 int bcp_offset, size_t index_size) {
654 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
655 if (index_size == sizeof(u2)) {
656 get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
657 } else if (index_size == sizeof(u4)) {
658 get_4_byte_integer_at_bcp(bcp_offset, temp, index);
659 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
660 xor3(index, -1, index); // convert to plain index
661 } else if (index_size == sizeof(u1)) {
662 ldub(Lbcp, bcp_offset, index);
663 } else {
664 ShouldNotReachHere();
665 }
666 }
667
668
669 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
670 int bcp_offset, size_t index_size) {
671 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
672 assert_different_registers(cache, tmp);
673 assert_not_delayed();
674 get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
675 // convert from field index to ConstantPoolCacheEntry index and from
676 // word index to byte offset
677 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
678 add(LcpoolCache, tmp, cache);
679 }
680
681
682 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
683 Register temp,
684 Register bytecode,
685 int byte_no,
686 int bcp_offset,
687 size_t index_size) {
688 get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
689 ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
690 const int shift_count = (1 + byte_no) * BitsPerByte;
691 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
692 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
693 "correct shift count");
694 srl(bytecode, shift_count, bytecode);
695 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
696 and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
697 }
698
699
700 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
701 int bcp_offset, size_t index_size) {
702 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
703 assert_different_registers(cache, tmp);
704 assert_not_delayed();
705 if (index_size == sizeof(u2)) {
706 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
707 } else {
708 ShouldNotReachHere(); // other sizes not supported here
709 }
710 // convert from field index to ConstantPoolCacheEntry index
711 // and from word index to byte offset
712 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
713 // skip past the header
714 add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
715 // construct pointer to cache entry
716 add(LcpoolCache, tmp, cache);
717 }
718
719
720 // Load object from cpool->resolved_references(index)
721 void InterpreterMacroAssembler::load_resolved_reference_at_index(
722 Register result, Register index) {
723 assert_different_registers(result, index);
724 assert_not_delayed();
725 // convert from field index to resolved_references() index and from
726 // word index to byte offset. Since this is a java object, it can be compressed
727 Register tmp = index; // reuse
728 sll(index, LogBytesPerHeapOop, tmp);
729 get_constant_pool(result);
730 // load pointer for resolved_references[] objArray
731 ld_ptr(result, ConstantPool::cache_offset_in_bytes(), result);
732 ld_ptr(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
733 resolve_oop_handle(result);
734 // Add in the index
735 add(result, tmp, result);
736 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
737 }
738
739
740 // load cpool->resolved_klass_at(index)
741 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool,
742 Register Roffset, Register Rklass) {
743 // int value = *this_cp->int_at_addr(which);
744 // int resolved_klass_index = extract_low_short_from_int(value);
745 //
746 // Because SPARC is big-endian, the low_short is at (cpool->int_at_addr(which) + 2 bytes)
747 add(Roffset, Rcpool, Roffset);
748 lduh(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index
749
750 Register Rresolved_klasses = Rklass;
751 ld_ptr(Rcpool, ConstantPool::resolved_klasses_offset_in_bytes(), Rresolved_klasses);
752 sll(Roffset, LogBytesPerWord, Roffset);
753 add(Roffset, Array<Klass*>::base_offset_in_bytes(), Roffset);
754 ld_ptr(Rresolved_klasses, Roffset, Rklass);
755 }
756
757
758 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
759 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
760 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
761 Register Rsuper_klass,
762 Register Rtmp1,
763 Register Rtmp2,
764 Register Rtmp3,
765 Label &ok_is_subtype ) {
766 Label not_subtype;
767
768 // Profile the not-null value's klass.
769 profile_typecheck(Rsub_klass, Rtmp1);
770
771 check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
772 Rtmp1, Rtmp2,
773 &ok_is_subtype, ¬_subtype, NULL);
774
775 check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
776 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
777 &ok_is_subtype, NULL);
778
779 bind(not_subtype);
780 profile_typecheck_failed(Rtmp1);
781 }
782
783 // Separate these two to allow for delay slot in middle
784 // These are used to do a test and full jump to exception-throwing code.
785
786 // %%%%% Could possibly reoptimize this by testing to see if could use
787 // a single conditional branch (i.e. if span is small enough.
788 // If you go that route, than get rid of the split and give up
789 // on the delay-slot hack.
790
791 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
792 Label& ok ) {
793 assert_not_delayed();
794 br(ok_condition, true, pt, ok);
795 // DELAY SLOT
796 }
797
798 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
799 Label& ok ) {
800 assert_not_delayed();
801 bp( ok_condition, true, Assembler::xcc, pt, ok);
802 // DELAY SLOT
803 }
804
805 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
806 Label& ok ) {
807 assert_not_delayed();
808 brx(ok_condition, true, pt, ok);
809 // DELAY SLOT
810 }
811
812 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
813 Register Rscratch,
814 Label& ok ) {
815 assert(throw_entry_point != NULL, "entry point must be generated by now");
816 AddressLiteral dest(throw_entry_point);
817 jump_to(dest, Rscratch);
818 delayed()->nop();
819 bind(ok);
820 }
821
822
823 // And if you cannot use the delay slot, here is a shorthand:
824
825 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
826 address throw_entry_point,
827 Register Rscratch ) {
828 Label ok;
829 if (ok_condition != never) {
830 throw_if_not_1_icc( ok_condition, ok);
831 delayed()->nop();
832 }
833 throw_if_not_2( throw_entry_point, Rscratch, ok);
834 }
835 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
836 address throw_entry_point,
837 Register Rscratch ) {
838 Label ok;
839 if (ok_condition != never) {
840 throw_if_not_1_xcc( ok_condition, ok);
841 delayed()->nop();
842 }
843 throw_if_not_2( throw_entry_point, Rscratch, ok);
844 }
845 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
846 address throw_entry_point,
847 Register Rscratch ) {
848 Label ok;
849 if (ok_condition != never) {
850 throw_if_not_1_x( ok_condition, ok);
851 delayed()->nop();
852 }
853 throw_if_not_2( throw_entry_point, Rscratch, ok);
854 }
855
856 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
857 // Note: res is still shy of address by array offset into object.
858
859 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
860 assert_not_delayed();
861
862 verify_oop(array);
863 // sign extend since tos (index) can be a 32bit value
864 sra(index, G0, index);
865
866 // check array
867 Label ptr_ok;
868 tst(array);
869 throw_if_not_1_x( notZero, ptr_ok );
870 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
871 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
872
873 Label index_ok;
874 cmp(index, tmp);
875 throw_if_not_1_icc( lessUnsigned, index_ok );
876 if (index_shift > 0) delayed()->sll(index, index_shift, index);
877 else delayed()->add(array, index, res); // addr - const offset in index
878 // convention: move aberrant index into G3_scratch for exception message
879 mov(index, G3_scratch);
880 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
881
882 // add offset if didn't do it in delay slot
883 if (index_shift > 0) add(array, index, res); // addr - const offset in index
884 }
885
886
887 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
888 assert_not_delayed();
889
890 // pop array
891 pop_ptr(array);
892
893 // check array
894 index_check_without_pop(array, index, index_shift, tmp, res);
895 }
896
897
898 void InterpreterMacroAssembler::get_const(Register Rdst) {
899 ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
900 }
901
902
903 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
904 get_const(Rdst);
905 ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
906 }
907
908
909 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
910 get_constant_pool(Rdst);
911 ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
912 }
913
914
915 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
916 get_constant_pool(Rcpool);
917 ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
918 }
919
920
921 // unlock if synchronized method
922 //
923 // Unlock the receiver if this is a synchronized method.
924 // Unlock any Java monitors from syncronized blocks.
925 //
926 // If there are locked Java monitors
927 // If throw_monitor_exception
928 // throws IllegalMonitorStateException
929 // Else if install_monitor_exception
930 // installs IllegalMonitorStateException
931 // Else
932 // no error processing
933 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
934 bool throw_monitor_exception,
935 bool install_monitor_exception) {
936 Label unlocked, unlock, no_unlock;
937
938 // get the value of _do_not_unlock_if_synchronized into G1_scratch
939 const Address do_not_unlock_if_synchronized(G2_thread,
940 JavaThread::do_not_unlock_if_synchronized_offset());
941 ldbool(do_not_unlock_if_synchronized, G1_scratch);
942 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
943
944 // check if synchronized method
945 const Address access_flags(Lmethod, Method::access_flags_offset());
946 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
947 push(state); // save tos
948 ld(access_flags, G3_scratch); // Load access flags.
949 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
950 br(zero, false, pt, unlocked);
951 delayed()->nop();
952
953 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
954 // is set.
955 cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
956 delayed()->nop();
957
958 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
959 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
960
961 //Intel: if (throw_monitor_exception) ... else ...
962 // Entry already unlocked, need to throw exception
963 //...
964
965 // pass top-most monitor elem
966 add( top_most_monitor(), O1 );
967
968 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
969 br_notnull_short(G3_scratch, pt, unlock);
970
971 if (throw_monitor_exception) {
972 // Entry already unlocked need to throw an exception
973 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
974 should_not_reach_here();
975 } else {
976 // Monitor already unlocked during a stack unroll.
977 // If requested, install an illegal_monitor_state_exception.
978 // Continue with stack unrolling.
979 if (install_monitor_exception) {
980 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
981 }
982 ba_short(unlocked);
983 }
984
985 bind(unlock);
986
987 unlock_object(O1);
988
989 bind(unlocked);
990
991 // I0, I1: Might contain return value
992
993 // Check that all monitors are unlocked
994 { Label loop, exception, entry, restart;
995
996 Register Rmptr = O0;
997 Register Rtemp = O1;
998 Register Rlimit = Lmonitors;
999 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1000 assert( (delta & LongAlignmentMask) == 0,
1001 "sizeof BasicObjectLock must be even number of doublewords");
1002
1003 #ifdef ASSERT
1004 add(top_most_monitor(), Rmptr, delta);
1005 { Label L;
1006 // ensure that Rmptr starts out above (or at) Rlimit
1007 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1008 stop("monitor stack has negative size");
1009 bind(L);
1010 }
1011 #endif
1012 bind(restart);
1013 ba(entry);
1014 delayed()->
1015 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
1016
1017 // Entry is still locked, need to throw exception
1018 bind(exception);
1019 if (throw_monitor_exception) {
1020 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1021 should_not_reach_here();
1022 } else {
1023 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1024 // Unlock does not block, so don't have to worry about the frame
1025 unlock_object(Rmptr);
1026 if (install_monitor_exception) {
1027 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1028 }
1029 ba_short(restart);
1030 }
1031
1032 bind(loop);
1033 cmp(Rtemp, G0); // check if current entry is used
1034 brx(Assembler::notEqual, false, pn, exception);
1035 delayed()->
1036 dec(Rmptr, delta); // otherwise advance to next entry
1037 #ifdef ASSERT
1038 { Label L;
1039 // ensure that Rmptr has not somehow stepped below Rlimit
1040 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1041 stop("ran off the end of the monitor stack");
1042 bind(L);
1043 }
1044 #endif
1045 bind(entry);
1046 cmp(Rmptr, Rlimit); // check if bottom reached
1047 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
1048 delayed()->
1049 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1050 }
1051
1052 bind(no_unlock);
1053 pop(state);
1054 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1055 }
1056
1057 void InterpreterMacroAssembler::narrow(Register result) {
1058
1059 ld_ptr(Address(Lmethod, Method::const_offset()), G3_scratch);
1060 ldub(G3_scratch, in_bytes(ConstMethod::result_type_offset()), G3_scratch);
1061
1062 Label notBool, notByte, notChar, done;
1063
1064 // common case first
1065 cmp(G3_scratch, T_INT);
1066 br(Assembler::equal, true, pn, done);
1067 delayed()->nop();
1068
1069 cmp(G3_scratch, T_BOOLEAN);
1070 br(Assembler::notEqual, true, pn, notBool);
1071 delayed()->cmp(G3_scratch, T_BYTE);
1072 and3(result, 1, result);
1073 ba(done);
1074 delayed()->nop();
1075
1076 bind(notBool);
1077 // cmp(G3_scratch, T_BYTE);
1078 br(Assembler::notEqual, true, pn, notByte);
1079 delayed()->cmp(G3_scratch, T_CHAR);
1080 sll(result, 24, result);
1081 sra(result, 24, result);
1082 ba(done);
1083 delayed()->nop();
1084
1085 bind(notByte);
1086 // cmp(G3_scratch, T_CHAR);
1087 sll(result, 16, result);
1088 br(Assembler::notEqual, true, pn, done);
1089 delayed()->sra(result, 16, result);
1090 // sll(result, 16, result);
1091 srl(result, 16, result);
1092
1093 // bind(notChar);
1094 // must be short, instructions already executed in delay slot
1095 // sll(result, 16, result);
1096 // sra(result, 16, result);
1097
1098 bind(done);
1099 }
1100
1101 // remove activation
1102 //
1103 // Unlock the receiver if this is a synchronized method.
1104 // Unlock any Java monitors from syncronized blocks.
1105 // Remove the activation from the stack.
1106 //
1107 // If there are locked Java monitors
1108 // If throw_monitor_exception
1109 // throws IllegalMonitorStateException
1110 // Else if install_monitor_exception
1111 // installs IllegalMonitorStateException
1112 // Else
1113 // no error processing
1114 void InterpreterMacroAssembler::remove_activation(TosState state,
1115 bool throw_monitor_exception,
1116 bool install_monitor_exception) {
1117
1118 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1119
1120 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1121 notify_method_exit(false, state, NotifyJVMTI);
1122
1123 if (StackReservedPages > 0) {
1124 // testing if Stack Reserved Area needs to be re-enabled
1125 Label no_reserved_zone_enabling;
1126 ld_ptr(G2_thread, JavaThread::reserved_stack_activation_offset(), G3_scratch);
1127 cmp_and_brx_short(SP, G3_scratch, Assembler::lessUnsigned, Assembler::pt, no_reserved_zone_enabling);
1128
1129 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), G2_thread);
1130 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError), G2_thread);
1131 should_not_reach_here();
1132
1133 bind(no_reserved_zone_enabling);
1134 }
1135
1136 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1137 verify_thread();
1138
1139 // return tos
1140 assert(Otos_l1 == Otos_i, "adjust code below");
1141 switch (state) {
1142 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1143 case btos: // fall through
1144 case ztos: // fall through
1145 case ctos:
1146 case stos: // fall through
1147 case atos: // fall through
1148 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
1149 case ftos: // fall through
1150 case dtos: // fall through
1151 case vtos: /* nothing to do */ break;
1152 default : ShouldNotReachHere();
1153 }
1154 }
1155
1156 // Lock object
1157 //
1158 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1159 // it must be initialized with the object to lock
1160 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1161 if (UseHeavyMonitors) {
1162 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1163 }
1164 else {
1165 Register obj_reg = Object;
1166 Register mark_reg = G4_scratch;
1167 Register temp_reg = G1_scratch;
1168 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1169 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1170 Label done;
1171
1172 Label slow_case;
1173
1174 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1175
1176 // load markOop from object into mark_reg
1177 ld_ptr(mark_addr, mark_reg);
1178
1179 if (UseBiasedLocking) {
1180 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1181 }
1182
1183 // get the address of basicLock on stack that will be stored in the object
1184 // we need a temporary register here as we do not want to clobber lock_reg
1185 // (cas clobbers the destination register)
1186 mov(lock_reg, temp_reg);
1187 // set mark reg to be (markOop of object | UNLOCK_VALUE)
1188 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1189 // initialize the box (Must happen before we update the object mark!)
1190 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1191 // compare and exchange object_addr, markOop | 1, stack address of basicLock
1192 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1193 cas_ptr(mark_addr.base(), mark_reg, temp_reg);
1194
1195 // if the compare and exchange succeeded we are done (we saw an unlocked object)
1196 cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1197
1198 // We did not see an unlocked object so try the fast recursive case
1199
1200 // Check if owner is self by comparing the value in the markOop of object
1201 // with the stack pointer
1202 sub(temp_reg, SP, temp_reg);
1203 sub(temp_reg, STACK_BIAS, temp_reg);
1204 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1205
1206 // Composite "andcc" test:
1207 // (a) %sp -vs- markword proximity check, and,
1208 // (b) verify mark word LSBs == 0 (Stack-locked).
1209 //
1210 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1211 // Note that the page size used for %sp proximity testing is arbitrary and is
1212 // unrelated to the actual MMU page size. We use a 'logical' page size of
1213 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1214 // field of the andcc instruction.
1215 andcc (temp_reg, 0xFFFFF003, G0) ;
1216
1217 // if condition is true we are done and hence we can store 0 in the displaced
1218 // header indicating it is a recursive lock and be done
1219 brx(Assembler::zero, true, Assembler::pt, done);
1220 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1221
1222 // none of the above fast optimizations worked so we have to get into the
1223 // slow case of monitor enter
1224 bind(slow_case);
1225 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1226
1227 bind(done);
1228 }
1229 }
1230
1231 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1232 //
1233 // Argument - lock_reg points to the BasicObjectLock for lock
1234 // Throw IllegalMonitorException if object is not locked by current thread
1235 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1236 if (UseHeavyMonitors) {
1237 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1238 } else {
1239 Register obj_reg = G3_scratch;
1240 Register mark_reg = G4_scratch;
1241 Register displaced_header_reg = G1_scratch;
1242 Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1243 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1244 Label done;
1245
1246 if (UseBiasedLocking) {
1247 // load the object out of the BasicObjectLock
1248 ld_ptr(lockobj_addr, obj_reg);
1249 biased_locking_exit(mark_addr, mark_reg, done, true);
1250 st_ptr(G0, lockobj_addr); // free entry
1251 }
1252
1253 // Test first if we are in the fast recursive case
1254 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1255 ld_ptr(lock_addr, displaced_header_reg);
1256 br_null(displaced_header_reg, true, Assembler::pn, done);
1257 delayed()->st_ptr(G0, lockobj_addr); // free entry
1258
1259 // See if it is still a light weight lock, if so we just unlock
1260 // the object and we are done
1261
1262 if (!UseBiasedLocking) {
1263 // load the object out of the BasicObjectLock
1264 ld_ptr(lockobj_addr, obj_reg);
1265 }
1266
1267 // we have the displaced header in displaced_header_reg
1268 // we expect to see the stack address of the basicLock in case the
1269 // lock is still a light weight lock (lock_reg)
1270 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1271 cas_ptr(mark_addr.base(), lock_reg, displaced_header_reg);
1272 cmp(lock_reg, displaced_header_reg);
1273 brx(Assembler::equal, true, Assembler::pn, done);
1274 delayed()->st_ptr(G0, lockobj_addr); // free entry
1275
1276 // The lock has been converted into a heavy lock and hence
1277 // we need to get into the slow case
1278
1279 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1280
1281 bind(done);
1282 }
1283 }
1284
1285 // Get the method data pointer from the Method* and set the
1286 // specified register to its value.
1287
1288 void InterpreterMacroAssembler::set_method_data_pointer() {
1289 assert(ProfileInterpreter, "must be profiling interpreter");
1290 Label get_continue;
1291
1292 ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1293 test_method_data_pointer(get_continue);
1294 add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1295 bind(get_continue);
1296 }
1297
1298 // Set the method data pointer for the current bcp.
1299
1300 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1301 assert(ProfileInterpreter, "must be profiling interpreter");
1302 Label zero_continue;
1303
1304 // Test MDO to avoid the call if it is NULL.
1305 ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1306 test_method_data_pointer(zero_continue);
1307 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1308 add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1309 add(ImethodDataPtr, O0, ImethodDataPtr);
1310 bind(zero_continue);
1311 }
1312
1313 // Test ImethodDataPtr. If it is null, continue at the specified label
1314
1315 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1316 assert(ProfileInterpreter, "must be profiling interpreter");
1317 br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1318 }
1319
1320 void InterpreterMacroAssembler::verify_method_data_pointer() {
1321 assert(ProfileInterpreter, "must be profiling interpreter");
1322 #ifdef ASSERT
1323 Label verify_continue;
1324 test_method_data_pointer(verify_continue);
1325
1326 // If the mdp is valid, it will point to a DataLayout header which is
1327 // consistent with the bcp. The converse is highly probable also.
1328 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1329 ld_ptr(Lmethod, Method::const_offset(), O5);
1330 add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1331 add(G3_scratch, O5, G3_scratch);
1332 cmp(Lbcp, G3_scratch);
1333 brx(Assembler::equal, false, Assembler::pt, verify_continue);
1334
1335 Register temp_reg = O5;
1336 delayed()->mov(ImethodDataPtr, temp_reg);
1337 // %%% should use call_VM_leaf here?
1338 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1339 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1340 Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1341 stf(FloatRegisterImpl::D, Ftos_d, d_save);
1342 mov(temp_reg->after_save(), O2);
1343 save_thread(L7_thread_cache);
1344 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1345 delayed()->nop();
1346 restore_thread(L7_thread_cache);
1347 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1348 restore();
1349 bind(verify_continue);
1350 #endif // ASSERT
1351 }
1352
1353 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1354 Register method_counters,
1355 Register Rtmp,
1356 Label &profile_continue) {
1357 assert(ProfileInterpreter, "must be profiling interpreter");
1358 // Control will flow to "profile_continue" if the counter is less than the
1359 // limit or if we call profile_method()
1360
1361 Label done;
1362
1363 // if no method data exists, and the counter is high enough, make one
1364 br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1365
1366 // Test to see if we should create a method data oop
1367 Address profile_limit(method_counters, MethodCounters::interpreter_profile_limit_offset());
1368 ld(profile_limit, Rtmp);
1369 cmp(invocation_count, Rtmp);
1370 // Use long branches because call_VM() code and following code generated by
1371 // test_backedge_count_for_osr() is large in debug VM.
1372 br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1373 delayed()->nop();
1374
1375 // Build it now.
1376 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1377 set_method_data_pointer_for_bcp();
1378 ba(profile_continue);
1379 delayed()->nop();
1380 bind(done);
1381 }
1382
1383 // Store a value at some constant offset from the method data pointer.
1384
1385 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1386 assert(ProfileInterpreter, "must be profiling interpreter");
1387 st_ptr(value, ImethodDataPtr, constant);
1388 }
1389
1390 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1391 Register bumped_count,
1392 bool decrement) {
1393 assert(ProfileInterpreter, "must be profiling interpreter");
1394
1395 // Load the counter.
1396 ld_ptr(counter, bumped_count);
1397
1398 if (decrement) {
1399 // Decrement the register. Set condition codes.
1400 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1401
1402 // If the decrement causes the counter to overflow, stay negative
1403 Label L;
1404 brx(Assembler::negative, true, Assembler::pn, L);
1405
1406 // Store the decremented counter, if it is still negative.
1407 delayed()->st_ptr(bumped_count, counter);
1408 bind(L);
1409 } else {
1410 // Increment the register. Set carry flag.
1411 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1412
1413 // If the increment causes the counter to overflow, pull back by 1.
1414 assert(DataLayout::counter_increment == 1, "subc works");
1415 subc(bumped_count, G0, bumped_count);
1416
1417 // Store the incremented counter.
1418 st_ptr(bumped_count, counter);
1419 }
1420 }
1421
1422 // Increment the value at some constant offset from the method data pointer.
1423
1424 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1425 Register bumped_count,
1426 bool decrement) {
1427 // Locate the counter at a fixed offset from the mdp:
1428 Address counter(ImethodDataPtr, constant);
1429 increment_mdp_data_at(counter, bumped_count, decrement);
1430 }
1431
1432 // Increment the value at some non-fixed (reg + constant) offset from
1433 // the method data pointer.
1434
1435 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1436 int constant,
1437 Register bumped_count,
1438 Register scratch2,
1439 bool decrement) {
1440 // Add the constant to reg to get the offset.
1441 add(ImethodDataPtr, reg, scratch2);
1442 Address counter(scratch2, constant);
1443 increment_mdp_data_at(counter, bumped_count, decrement);
1444 }
1445
1446 // Set a flag value at the current method data pointer position.
1447 // Updates a single byte of the header, to avoid races with other header bits.
1448
1449 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1450 Register scratch) {
1451 assert(ProfileInterpreter, "must be profiling interpreter");
1452 // Load the data header
1453 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1454
1455 // Set the flag
1456 or3(scratch, flag_constant, scratch);
1457
1458 // Store the modified header.
1459 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1460 }
1461
1462 // Test the location at some offset from the method data pointer.
1463 // If it is not equal to value, branch to the not_equal_continue Label.
1464 // Set condition codes to match the nullness of the loaded value.
1465
1466 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1467 Register value,
1468 Label& not_equal_continue,
1469 Register scratch) {
1470 assert(ProfileInterpreter, "must be profiling interpreter");
1471 ld_ptr(ImethodDataPtr, offset, scratch);
1472 cmp(value, scratch);
1473 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1474 delayed()->tst(scratch);
1475 }
1476
1477 // Update the method data pointer by the displacement located at some fixed
1478 // offset from the method data pointer.
1479
1480 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1481 Register scratch) {
1482 assert(ProfileInterpreter, "must be profiling interpreter");
1483 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1484 add(ImethodDataPtr, scratch, ImethodDataPtr);
1485 }
1486
1487 // Update the method data pointer by the displacement located at the
1488 // offset (reg + offset_of_disp).
1489
1490 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1491 int offset_of_disp,
1492 Register scratch) {
1493 assert(ProfileInterpreter, "must be profiling interpreter");
1494 add(reg, offset_of_disp, scratch);
1495 ld_ptr(ImethodDataPtr, scratch, scratch);
1496 add(ImethodDataPtr, scratch, ImethodDataPtr);
1497 }
1498
1499 // Update the method data pointer by a simple constant displacement.
1500
1501 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1502 assert(ProfileInterpreter, "must be profiling interpreter");
1503 add(ImethodDataPtr, constant, ImethodDataPtr);
1504 }
1505
1506 // Update the method data pointer for a _ret bytecode whose target
1507 // was not among our cached targets.
1508
1509 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1510 Register return_bci) {
1511 assert(ProfileInterpreter, "must be profiling interpreter");
1512 push(state);
1513 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
1514 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1515 ld_ptr(l_tmp, return_bci);
1516 pop(state);
1517 }
1518
1519 // Count a taken branch in the bytecodes.
1520
1521 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1522 if (ProfileInterpreter) {
1523 Label profile_continue;
1524
1525 // If no method data exists, go to profile_continue.
1526 test_method_data_pointer(profile_continue);
1527
1528 // We are taking a branch. Increment the taken count.
1529 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1530
1531 // The method data pointer needs to be updated to reflect the new target.
1532 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1533 bind (profile_continue);
1534 }
1535 }
1536
1537
1538 // Count a not-taken branch in the bytecodes.
1539
1540 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1541 if (ProfileInterpreter) {
1542 Label profile_continue;
1543
1544 // If no method data exists, go to profile_continue.
1545 test_method_data_pointer(profile_continue);
1546
1547 // We are taking a branch. Increment the not taken count.
1548 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1549
1550 // The method data pointer needs to be updated to correspond to the
1551 // next bytecode.
1552 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1553 bind (profile_continue);
1554 }
1555 }
1556
1557
1558 // Count a non-virtual call in the bytecodes.
1559
1560 void InterpreterMacroAssembler::profile_call(Register scratch) {
1561 if (ProfileInterpreter) {
1562 Label profile_continue;
1563
1564 // If no method data exists, go to profile_continue.
1565 test_method_data_pointer(profile_continue);
1566
1567 // We are making a call. Increment the count.
1568 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1569
1570 // The method data pointer needs to be updated to reflect the new target.
1571 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1572 bind (profile_continue);
1573 }
1574 }
1575
1576
1577 // Count a final call in the bytecodes.
1578
1579 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1580 if (ProfileInterpreter) {
1581 Label profile_continue;
1582
1583 // If no method data exists, go to profile_continue.
1584 test_method_data_pointer(profile_continue);
1585
1586 // We are making a call. Increment the count.
1587 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1588
1589 // The method data pointer needs to be updated to reflect the new target.
1590 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1591 bind (profile_continue);
1592 }
1593 }
1594
1595
1596 // Count a virtual call in the bytecodes.
1597
1598 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1599 Register scratch,
1600 bool receiver_can_be_null) {
1601 if (ProfileInterpreter) {
1602 Label profile_continue;
1603
1604 // If no method data exists, go to profile_continue.
1605 test_method_data_pointer(profile_continue);
1606
1607
1608 Label skip_receiver_profile;
1609 if (receiver_can_be_null) {
1610 Label not_null;
1611 br_notnull_short(receiver, Assembler::pt, not_null);
1612 // We are making a call. Increment the count for null receiver.
1613 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1614 ba_short(skip_receiver_profile);
1615 bind(not_null);
1616 }
1617
1618 // Record the receiver type.
1619 record_klass_in_profile(receiver, scratch, true);
1620 bind(skip_receiver_profile);
1621
1622 // The method data pointer needs to be updated to reflect the new target.
1623 #if INCLUDE_JVMCI
1624 if (MethodProfileWidth == 0) {
1625 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1626 }
1627 #else
1628 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1629 #endif
1630 bind(profile_continue);
1631 }
1632 }
1633
1634 #if INCLUDE_JVMCI
1635 void InterpreterMacroAssembler::profile_called_method(Register method, Register scratch) {
1636 assert_different_registers(method, scratch);
1637 if (ProfileInterpreter && MethodProfileWidth > 0) {
1638 Label profile_continue;
1639
1640 // If no method data exists, go to profile_continue.
1641 test_method_data_pointer(profile_continue);
1642
1643 Label done;
1644 record_item_in_profile_helper(method, scratch, 0, done, MethodProfileWidth,
1645 &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1646 bind(done);
1647
1648 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1649 bind(profile_continue);
1650 }
1651 }
1652 #endif // INCLUDE_JVMCI
1653
1654 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register scratch,
1655 Label& done, bool is_virtual_call) {
1656 if (TypeProfileWidth == 0) {
1657 if (is_virtual_call) {
1658 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1659 }
1660 #if INCLUDE_JVMCI
1661 else if (EnableJVMCI) {
1662 increment_mdp_data_at(in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()), scratch);
1663 }
1664 #endif
1665 } else {
1666 int non_profiled_offset = -1;
1667 if (is_virtual_call) {
1668 non_profiled_offset = in_bytes(CounterData::count_offset());
1669 }
1670 #if INCLUDE_JVMCI
1671 else if (EnableJVMCI) {
1672 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1673 }
1674 #endif
1675
1676 record_item_in_profile_helper(receiver, scratch, 0, done, TypeProfileWidth,
1677 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1678 }
1679 }
1680
1681 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item,
1682 Register scratch, int start_row, Label& done, int total_rows,
1683 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1684 int non_profiled_offset) {
1685 int last_row = total_rows - 1;
1686 assert(start_row <= last_row, "must be work left to do");
1687 // Test this row for both the item and for null.
1688 // Take any of three different outcomes:
1689 // 1. found item => increment count and goto done
1690 // 2. found null => keep looking for case 1, maybe allocate this cell
1691 // 3. found something else => keep looking for cases 1 and 2
1692 // Case 3 is handled by a recursive call.
1693 for (int row = start_row; row <= last_row; row++) {
1694 Label next_test;
1695 bool test_for_null_also = (row == start_row);
1696
1697 // See if the item is item[n].
1698 int item_offset = in_bytes(item_offset_fn(row));
1699 test_mdp_data_at(item_offset, item, next_test, scratch);
1700 // delayed()->tst(scratch);
1701
1702 // The receiver is item[n]. Increment count[n].
1703 int count_offset = in_bytes(item_count_offset_fn(row));
1704 increment_mdp_data_at(count_offset, scratch);
1705 ba_short(done);
1706 bind(next_test);
1707
1708 if (test_for_null_also) {
1709 Label found_null;
1710 // Failed the equality check on item[n]... Test for null.
1711 if (start_row == last_row) {
1712 // The only thing left to do is handle the null case.
1713 if (non_profiled_offset >= 0) {
1714 brx(Assembler::zero, false, Assembler::pn, found_null);
1715 delayed()->nop();
1716 // Item did not match any saved item and there is no empty row for it.
1717 // Increment total counter to indicate polymorphic case.
1718 increment_mdp_data_at(non_profiled_offset, scratch);
1719 ba_short(done);
1720 bind(found_null);
1721 } else {
1722 brx(Assembler::notZero, false, Assembler::pt, done);
1723 delayed()->nop();
1724 }
1725 break;
1726 }
1727 // Since null is rare, make it be the branch-taken case.
1728 brx(Assembler::zero, false, Assembler::pn, found_null);
1729 delayed()->nop();
1730
1731 // Put all the "Case 3" tests here.
1732 record_item_in_profile_helper(item, scratch, start_row + 1, done, total_rows,
1733 item_offset_fn, item_count_offset_fn, non_profiled_offset);
1734
1735 // Found a null. Keep searching for a matching item,
1736 // but remember that this is an empty (unused) slot.
1737 bind(found_null);
1738 }
1739 }
1740
1741 // In the fall-through case, we found no matching item, but we
1742 // observed the item[start_row] is NULL.
1743
1744 // Fill in the item field and increment the count.
1745 int item_offset = in_bytes(item_offset_fn(start_row));
1746 set_mdp_data_at(item_offset, item);
1747 int count_offset = in_bytes(item_count_offset_fn(start_row));
1748 mov(DataLayout::counter_increment, scratch);
1749 set_mdp_data_at(count_offset, scratch);
1750 if (start_row > 0) {
1751 ba_short(done);
1752 }
1753 }
1754
1755 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1756 Register scratch, bool is_virtual_call) {
1757 assert(ProfileInterpreter, "must be profiling");
1758 Label done;
1759
1760 record_klass_in_profile_helper(receiver, scratch, done, is_virtual_call);
1761
1762 bind (done);
1763 }
1764
1765
1766 // Count a ret in the bytecodes.
1767
1768 void InterpreterMacroAssembler::profile_ret(TosState state,
1769 Register return_bci,
1770 Register scratch) {
1771 if (ProfileInterpreter) {
1772 Label profile_continue;
1773 uint row;
1774
1775 // If no method data exists, go to profile_continue.
1776 test_method_data_pointer(profile_continue);
1777
1778 // Update the total ret count.
1779 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1780
1781 for (row = 0; row < RetData::row_limit(); row++) {
1782 Label next_test;
1783
1784 // See if return_bci is equal to bci[n]:
1785 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1786 return_bci, next_test, scratch);
1787
1788 // return_bci is equal to bci[n]. Increment the count.
1789 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1790
1791 // The method data pointer needs to be updated to reflect the new target.
1792 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1793 ba_short(profile_continue);
1794 bind(next_test);
1795 }
1796
1797 update_mdp_for_ret(state, return_bci);
1798
1799 bind (profile_continue);
1800 }
1801 }
1802
1803 // Profile an unexpected null in the bytecodes.
1804 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1805 if (ProfileInterpreter) {
1806 Label profile_continue;
1807
1808 // If no method data exists, go to profile_continue.
1809 test_method_data_pointer(profile_continue);
1810
1811 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1812
1813 // The method data pointer needs to be updated.
1814 int mdp_delta = in_bytes(BitData::bit_data_size());
1815 if (TypeProfileCasts) {
1816 mdp_delta = in_bytes(ReceiverTypeData::receiver_type_data_size());
1817 }
1818 update_mdp_by_constant(mdp_delta);
1819
1820 bind (profile_continue);
1821 }
1822 }
1823
1824 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1825 Register scratch) {
1826 if (ProfileInterpreter) {
1827 Label profile_continue;
1828
1829 // If no method data exists, go to profile_continue.
1830 test_method_data_pointer(profile_continue);
1831
1832 int mdp_delta = in_bytes(BitData::bit_data_size());
1833 if (TypeProfileCasts) {
1834 mdp_delta = in_bytes(ReceiverTypeData::receiver_type_data_size());
1835
1836 // Record the object type.
1837 record_klass_in_profile(klass, scratch, false);
1838 }
1839
1840 // The method data pointer needs to be updated.
1841 update_mdp_by_constant(mdp_delta);
1842
1843 bind (profile_continue);
1844 }
1845 }
1846
1847 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1848 if (ProfileInterpreter && TypeProfileCasts) {
1849 Label profile_continue;
1850
1851 // If no method data exists, go to profile_continue.
1852 test_method_data_pointer(profile_continue);
1853
1854 int count_offset = in_bytes(CounterData::count_offset());
1855 // Back up the address, since we have already bumped the mdp.
1856 count_offset -= in_bytes(ReceiverTypeData::receiver_type_data_size());
1857
1858 // *Decrement* the counter. We expect to see zero or small negatives.
1859 increment_mdp_data_at(count_offset, scratch, true);
1860
1861 bind (profile_continue);
1862 }
1863 }
1864
1865 // Count the default case of a switch construct.
1866
1867 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1868 if (ProfileInterpreter) {
1869 Label profile_continue;
1870
1871 // If no method data exists, go to profile_continue.
1872 test_method_data_pointer(profile_continue);
1873
1874 // Update the default case count
1875 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1876 scratch);
1877
1878 // The method data pointer needs to be updated.
1879 update_mdp_by_offset(
1880 in_bytes(MultiBranchData::default_displacement_offset()),
1881 scratch);
1882
1883 bind (profile_continue);
1884 }
1885 }
1886
1887 // Count the index'th case of a switch construct.
1888
1889 void InterpreterMacroAssembler::profile_switch_case(Register index,
1890 Register scratch,
1891 Register scratch2,
1892 Register scratch3) {
1893 if (ProfileInterpreter) {
1894 Label profile_continue;
1895
1896 // If no method data exists, go to profile_continue.
1897 test_method_data_pointer(profile_continue);
1898
1899 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1900 set(in_bytes(MultiBranchData::per_case_size()), scratch);
1901 smul(index, scratch, scratch);
1902 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1903
1904 // Update the case count
1905 increment_mdp_data_at(scratch,
1906 in_bytes(MultiBranchData::relative_count_offset()),
1907 scratch2,
1908 scratch3);
1909
1910 // The method data pointer needs to be updated.
1911 update_mdp_by_offset(scratch,
1912 in_bytes(MultiBranchData::relative_displacement_offset()),
1913 scratch2);
1914
1915 bind (profile_continue);
1916 }
1917 }
1918
1919 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
1920 Label not_null, do_nothing, do_update;
1921
1922 assert_different_registers(obj, mdo_addr.base(), tmp);
1923
1924 verify_oop(obj);
1925
1926 ld_ptr(mdo_addr, tmp);
1927
1928 br_notnull_short(obj, pt, not_null);
1929 or3(tmp, TypeEntries::null_seen, tmp);
1930 ba_short(do_update);
1931
1932 bind(not_null);
1933 load_klass(obj, obj);
1934
1935 xor3(obj, tmp, obj);
1936 btst(TypeEntries::type_klass_mask, obj);
1937 // klass seen before, nothing to do. The unknown bit may have been
1938 // set already but no need to check.
1939 brx(zero, false, pt, do_nothing);
1940 delayed()->
1941
1942 btst(TypeEntries::type_unknown, obj);
1943 // already unknown. Nothing to do anymore.
1944 brx(notZero, false, pt, do_nothing);
1945 delayed()->
1946
1947 btst(TypeEntries::type_mask, tmp);
1948 brx(zero, true, pt, do_update);
1949 // first time here. Set profile type.
1950 delayed()->or3(tmp, obj, tmp);
1951
1952 // different than before. Cannot keep accurate profile.
1953 or3(tmp, TypeEntries::type_unknown, tmp);
1954
1955 bind(do_update);
1956 // update profile
1957 st_ptr(tmp, mdo_addr);
1958
1959 bind(do_nothing);
1960 }
1961
1962 void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
1963 if (!ProfileInterpreter) {
1964 return;
1965 }
1966
1967 assert_different_registers(callee, tmp1, tmp2, ImethodDataPtr);
1968
1969 if (MethodData::profile_arguments() || MethodData::profile_return()) {
1970 Label profile_continue;
1971
1972 test_method_data_pointer(profile_continue);
1973
1974 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1975
1976 ldub(ImethodDataPtr, in_bytes(DataLayout::tag_offset()) - off_to_start, tmp1);
1977 cmp_and_br_short(tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag, notEqual, pn, profile_continue);
1978
1979 if (MethodData::profile_arguments()) {
1980 Label done;
1981 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1982 add(ImethodDataPtr, off_to_args, ImethodDataPtr);
1983
1984 for (int i = 0; i < TypeProfileArgsLimit; i++) {
1985 if (i > 0 || MethodData::profile_return()) {
1986 // If return value type is profiled we may have no argument to profile
1987 ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
1988 sub(tmp1, i*TypeStackSlotEntries::per_arg_count(), tmp1);
1989 cmp_and_br_short(tmp1, TypeStackSlotEntries::per_arg_count(), less, pn, done);
1990 }
1991 ld_ptr(Address(callee, Method::const_offset()), tmp1);
1992 lduh(Address(tmp1, ConstMethod::size_of_parameters_offset()), tmp1);
1993 // stack offset o (zero based) from the start of the argument
1994 // list, for n arguments translates into offset n - o - 1 from
1995 // the end of the argument list. But there's an extra slot at
1996 // the stop of the stack. So the offset is n - o from Lesp.
1997 ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, tmp2);
1998 sub(tmp1, tmp2, tmp1);
1999
2000 // Can't use MacroAssembler::argument_address() which needs Gargs to be set up
2001 sll(tmp1, Interpreter::logStackElementSize, tmp1);
2002 ld_ptr(Lesp, tmp1, tmp1);
2003
2004 Address mdo_arg_addr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
2005 profile_obj_type(tmp1, mdo_arg_addr, tmp2);
2006
2007 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
2008 add(ImethodDataPtr, to_add, ImethodDataPtr);
2009 off_to_args += to_add;
2010 }
2011
2012 if (MethodData::profile_return()) {
2013 ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
2014 sub(tmp1, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count(), tmp1);
2015 }
2016
2017 bind(done);
2018
2019 if (MethodData::profile_return()) {
2020 // We're right after the type profile for the last
2021 // argument. tmp1 is the number of cells left in the
2022 // CallTypeData/VirtualCallTypeData to reach its end. Non null
2023 // if there's a return to profile.
2024 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
2025 sll(tmp1, exact_log2(DataLayout::cell_size), tmp1);
2026 add(ImethodDataPtr, tmp1, ImethodDataPtr);
2027 }
2028 } else {
2029 assert(MethodData::profile_return(), "either profile call args or call ret");
2030 update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
2031 }
2032
2033 // mdp points right after the end of the
2034 // CallTypeData/VirtualCallTypeData, right after the cells for the
2035 // return value type if there's one.
2036
2037 bind(profile_continue);
2038 }
2039 }
2040
2041 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
2042 assert_different_registers(ret, tmp1, tmp2);
2043 if (ProfileInterpreter && MethodData::profile_return()) {
2044 Label profile_continue, done;
2045
2046 test_method_data_pointer(profile_continue);
2047
2048 if (MethodData::profile_return_jsr292_only()) {
2049 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
2050
2051 // If we don't profile all invoke bytecodes we must make sure
2052 // it's a bytecode we indeed profile. We can't go back to the
2053 // begining of the ProfileData we intend to update to check its
2054 // type because we're right after it and we don't known its
2055 // length.
2056 Label do_profile;
2057 ldub(Lbcp, 0, tmp1);
2058 cmp_and_br_short(tmp1, Bytecodes::_invokedynamic, equal, pn, do_profile);
2059 cmp(tmp1, Bytecodes::_invokehandle);
2060 br(equal, false, pn, do_profile);
2061 delayed()->lduh(Lmethod, Method::intrinsic_id_offset_in_bytes(), tmp1);
2062 cmp_and_br_short(tmp1, vmIntrinsics::_compiledLambdaForm, notEqual, pt, profile_continue);
2063
2064 bind(do_profile);
2065 }
2066
2067 Address mdo_ret_addr(ImethodDataPtr, -in_bytes(ReturnTypeEntry::size()));
2068 mov(ret, tmp1);
2069 profile_obj_type(tmp1, mdo_ret_addr, tmp2);
2070
2071 bind(profile_continue);
2072 }
2073 }
2074
2075 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2076 if (ProfileInterpreter && MethodData::profile_parameters()) {
2077 Label profile_continue, done;
2078
2079 test_method_data_pointer(profile_continue);
2080
2081 // Load the offset of the area within the MDO used for
2082 // parameters. If it's negative we're not profiling any parameters.
2083 lduw(ImethodDataPtr, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), tmp1);
2084 cmp_and_br_short(tmp1, 0, less, pn, profile_continue);
2085
2086 // Compute a pointer to the area for parameters from the offset
2087 // and move the pointer to the slot for the last
2088 // parameters. Collect profiling from last parameter down.
2089 // mdo start + parameters offset + array length - 1
2090
2091 // Pointer to the parameter area in the MDO
2092 Register mdp = tmp1;
2093 add(ImethodDataPtr, tmp1, mdp);
2094
2095 // offset of the current profile entry to update
2096 Register entry_offset = tmp2;
2097 // entry_offset = array len in number of cells
2098 ld_ptr(mdp, ArrayData::array_len_offset(), entry_offset);
2099
2100 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
2101 assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
2102
2103 // entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field
2104 sub(entry_offset, TypeStackSlotEntries::per_arg_count() - (off_base / DataLayout::cell_size), entry_offset);
2105 // entry_offset in bytes
2106 sll(entry_offset, exact_log2(DataLayout::cell_size), entry_offset);
2107
2108 Label loop;
2109 bind(loop);
2110
2111 // load offset on the stack from the slot for this parameter
2112 ld_ptr(mdp, entry_offset, tmp3);
2113 sll(tmp3,Interpreter::logStackElementSize, tmp3);
2114 neg(tmp3);
2115 // read the parameter from the local area
2116 ld_ptr(Llocals, tmp3, tmp3);
2117
2118 // make entry_offset now point to the type field for this parameter
2119 int type_base = in_bytes(ParametersTypeData::type_offset(0));
2120 assert(type_base > off_base, "unexpected");
2121 add(entry_offset, type_base - off_base, entry_offset);
2122
2123 // profile the parameter
2124 Address arg_type(mdp, entry_offset);
2125 profile_obj_type(tmp3, arg_type, tmp4);
2126
2127 // go to next parameter
2128 sub(entry_offset, TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base), entry_offset);
2129 cmp_and_br_short(entry_offset, off_base, greaterEqual, pt, loop);
2130
2131 bind(profile_continue);
2132 }
2133 }
2134
2135 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
2136
2137 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
2138 Register Rtemp,
2139 Register Rtemp2 ) {
2140
2141 Register Rlimit = Lmonitors;
2142 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2143 assert( (delta & LongAlignmentMask) == 0,
2144 "sizeof BasicObjectLock must be even number of doublewords");
2145
2146 sub( SP, delta, SP);
2147 sub( Lesp, delta, Lesp);
2148 sub( Lmonitors, delta, Lmonitors);
2149
2150 if (!stack_is_empty) {
2151
2152 // must copy stack contents down
2153
2154 Label start_copying, next;
2155
2156 // untested("monitor stack expansion");
2157 compute_stack_base(Rtemp);
2158 ba(start_copying);
2159 delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
2160
2161 // note: must copy from low memory upwards
2162 // On entry to loop,
2163 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
2164 // Loop mutates Rtemp
2165
2166 bind( next);
2167
2168 st_ptr(Rtemp2, Rtemp, 0);
2169 inc(Rtemp, wordSize);
2170 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
2171
2172 bind( start_copying );
2173
2174 brx( notEqual, true, pn, next );
2175 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
2176
2177 // done copying stack
2178 }
2179 }
2180
2181 // Locals
2182 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2183 assert_not_delayed();
2184 sll(index, Interpreter::logStackElementSize, index);
2185 sub(Llocals, index, index);
2186 ld_ptr(index, 0, dst);
2187 // Note: index must hold the effective address--the iinc template uses it
2188 }
2189
2190 // Just like access_local_ptr but the tag is a returnAddress
2191 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2192 Register dst ) {
2193 assert_not_delayed();
2194 sll(index, Interpreter::logStackElementSize, index);
2195 sub(Llocals, index, index);
2196 ld_ptr(index, 0, dst);
2197 }
2198
2199 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2200 assert_not_delayed();
2201 sll(index, Interpreter::logStackElementSize, index);
2202 sub(Llocals, index, index);
2203 ld(index, 0, dst);
2204 // Note: index must hold the effective address--the iinc template uses it
2205 }
2206
2207
2208 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2209 assert_not_delayed();
2210 sll(index, Interpreter::logStackElementSize, index);
2211 sub(Llocals, index, index);
2212 // First half stored at index n+1 (which grows down from Llocals[n])
2213 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2214 }
2215
2216
2217 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2218 assert_not_delayed();
2219 sll(index, Interpreter::logStackElementSize, index);
2220 sub(Llocals, index, index);
2221 ldf(FloatRegisterImpl::S, index, 0, dst);
2222 }
2223
2224
2225 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2226 assert_not_delayed();
2227 sll(index, Interpreter::logStackElementSize, index);
2228 sub(Llocals, index, index);
2229 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2230 }
2231
2232
2233 #ifdef ASSERT
2234 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2235 Label L;
2236
2237 assert(Rindex != Rscratch, "Registers cannot be same");
2238 assert(Rindex != Rscratch1, "Registers cannot be same");
2239 assert(Rlimit != Rscratch, "Registers cannot be same");
2240 assert(Rlimit != Rscratch1, "Registers cannot be same");
2241 assert(Rscratch1 != Rscratch, "Registers cannot be same");
2242
2243 // untested("reg area corruption");
2244 add(Rindex, offset, Rscratch);
2245 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2246 cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2247 stop("regsave area is being clobbered");
2248 bind(L);
2249 }
2250 #endif // ASSERT
2251
2252
2253 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2254 assert_not_delayed();
2255 sll(index, Interpreter::logStackElementSize, index);
2256 sub(Llocals, index, index);
2257 debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2258 st(src, index, 0);
2259 }
2260
2261 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2262 assert_not_delayed();
2263 sll(index, Interpreter::logStackElementSize, index);
2264 sub(Llocals, index, index);
2265 #ifdef ASSERT
2266 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2267 #endif
2268 st_ptr(src, index, 0);
2269 }
2270
2271
2272
2273 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2274 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2275 }
2276
2277 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2278 assert_not_delayed();
2279 sll(index, Interpreter::logStackElementSize, index);
2280 sub(Llocals, index, index);
2281 #ifdef ASSERT
2282 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2283 #endif
2284 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2285 }
2286
2287
2288 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2289 assert_not_delayed();
2290 sll(index, Interpreter::logStackElementSize, index);
2291 sub(Llocals, index, index);
2292 #ifdef ASSERT
2293 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2294 #endif
2295 stf(FloatRegisterImpl::S, src, index, 0);
2296 }
2297
2298
2299 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2300 assert_not_delayed();
2301 sll(index, Interpreter::logStackElementSize, index);
2302 sub(Llocals, index, index);
2303 #ifdef ASSERT
2304 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2305 #endif
2306 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2307 }
2308
2309
2310 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2311 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2312 int rounded_vm_local_words = align_up((int)frame::interpreter_frame_vm_local_words, WordsPerLong);
2313 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2314 }
2315
2316
2317 Address InterpreterMacroAssembler::top_most_monitor() {
2318 return Address(FP, top_most_monitor_byte_offset());
2319 }
2320
2321
2322 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2323 add( Lesp, wordSize, Rdest );
2324 }
2325
2326 void InterpreterMacroAssembler::get_method_counters(Register method,
2327 Register Rcounters,
2328 Label& skip) {
2329 Label has_counters;
2330 Address method_counters(method, in_bytes(Method::method_counters_offset()));
2331 ld_ptr(method_counters, Rcounters);
2332 br_notnull_short(Rcounters, Assembler::pt, has_counters);
2333 call_VM(noreg, CAST_FROM_FN_PTR(address,
2334 InterpreterRuntime::build_method_counters), method);
2335 ld_ptr(method_counters, Rcounters);
2336 br_null(Rcounters, false, Assembler::pn, skip); // No MethodCounters, OutOfMemory
2337 delayed()->nop();
2338 bind(has_counters);
2339 }
2340
2341 void InterpreterMacroAssembler::increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2342 assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
2343 assert_different_registers(Rcounters, Rtmp, Rtmp2);
2344
2345 Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2346 InvocationCounter::counter_offset());
2347 Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2348 InvocationCounter::counter_offset());
2349 int delta = InvocationCounter::count_increment;
2350
2351 // Load each counter in a register
2352 ld( inv_counter, Rtmp );
2353 ld( be_counter, Rtmp2 );
2354
2355 assert( is_simm13( delta ), " delta too large.");
2356
2357 // Add the delta to the invocation counter and store the result
2358 add( Rtmp, delta, Rtmp );
2359
2360 // Mask the backedge counter
2361 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2362
2363 // Store value
2364 st( Rtmp, inv_counter);
2365
2366 // Add invocation counter + backedge counter
2367 add( Rtmp, Rtmp2, Rtmp);
2368
2369 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2370 }
2371
2372 void InterpreterMacroAssembler::increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2373 assert(UseCompiler, "incrementing must be useful");
2374 assert_different_registers(Rcounters, Rtmp, Rtmp2);
2375
2376 Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2377 InvocationCounter::counter_offset());
2378 Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2379 InvocationCounter::counter_offset());
2380
2381 int delta = InvocationCounter::count_increment;
2382 // Load each counter in a register
2383 ld( be_counter, Rtmp );
2384 ld( inv_counter, Rtmp2 );
2385
2386 // Add the delta to the backedge counter
2387 add( Rtmp, delta, Rtmp );
2388
2389 // Mask the invocation counter, add to backedge counter
2390 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2391
2392 // and store the result to memory
2393 st( Rtmp, be_counter );
2394
2395 // Add backedge + invocation counter
2396 add( Rtmp, Rtmp2, Rtmp );
2397
2398 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2399 }
2400
2401 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2402 Register method_counters,
2403 Register branch_bcp,
2404 Register Rtmp ) {
2405 Label did_not_overflow;
2406 Label overflow_with_error;
2407 assert_different_registers(backedge_count, Rtmp, branch_bcp);
2408 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2409
2410 Address limit(method_counters, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()));
2411 ld(limit, Rtmp);
2412 cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2413
2414 // When ProfileInterpreter is on, the backedge_count comes from the
2415 // MethodData*, which value does not get reset on the call to
2416 // frequency_counter_overflow(). To avoid excessive calls to the overflow
2417 // routine while the method is being compiled, add a second test to make sure
2418 // the overflow function is called only once every overflow_frequency.
2419 if (ProfileInterpreter) {
2420 const int overflow_frequency = 1024;
2421 andcc(backedge_count, overflow_frequency-1, Rtmp);
2422 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2423 delayed()->nop();
2424 }
2425
2426 // overflow in loop, pass branch bytecode
2427 set(6,Rtmp);
2428 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2429
2430 // Was an OSR adapter generated?
2431 // O0 = osr nmethod
2432 br_null_short(O0, Assembler::pn, overflow_with_error);
2433
2434 // Has the nmethod been invalidated already?
2435 ldub(O0, nmethod::state_offset(), O2);
2436 cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, overflow_with_error);
2437
2438 // migrate the interpreter frame off of the stack
2439
2440 mov(G2_thread, L7);
2441 // save nmethod
2442 mov(O0, L6);
2443 set_last_Java_frame(SP, noreg);
2444 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2445 reset_last_Java_frame();
2446 mov(L7, G2_thread);
2447
2448 // move OSR nmethod to I1
2449 mov(L6, I1);
2450
2451 // OSR buffer to I0
2452 mov(O0, I0);
2453
2454 // remove the interpreter frame
2455 restore(I5_savedSP, 0, SP);
2456
2457 // Jump to the osr code.
2458 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2459 jmp(O2, G0);
2460 delayed()->nop();
2461
2462 bind(overflow_with_error);
2463
2464 bind(did_not_overflow);
2465 }
2466
2467
2468
2469 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2470 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2471 }
2472
2473
2474 // local helper function for the verify_oop_or_return_address macro
2475 static bool verify_return_address(Method* m, int bci) {
2476 #ifndef PRODUCT
2477 address pc = (address)(m->constMethod())
2478 + in_bytes(ConstMethod::codes_offset()) + bci;
2479 // assume it is a valid return address if it is inside m and is preceded by a jsr
2480 if (!m->contains(pc)) return false;
2481 address jsr_pc;
2482 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2483 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
2484 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2485 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
2486 #endif // PRODUCT
2487 return false;
2488 }
2489
2490
2491 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2492 if (!VerifyOops) return;
2493 // the VM documentation for the astore[_wide] bytecode allows
2494 // the TOS to be not only an oop but also a return address
2495 Label test;
2496 Label skip;
2497 // See if it is an address (in the current method):
2498
2499 mov(reg, Rtmp);
2500 const int log2_bytecode_size_limit = 16;
2501 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2502 br_notnull_short( Rtmp, pt, test );
2503
2504 // %%% should use call_VM_leaf here?
2505 save_frame_and_mov(0, Lmethod, O0, reg, O1);
2506 save_thread(L7_thread_cache);
2507 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2508 delayed()->nop();
2509 restore_thread(L7_thread_cache);
2510 br_notnull( O0, false, pt, skip );
2511 delayed()->restore();
2512
2513 // Perform a more elaborate out-of-line call
2514 // Not an address; verify it:
2515 bind(test);
2516 verify_oop(reg);
2517 bind(skip);
2518 }
2519
2520
2521 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2522 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2523 }
2524
2525
2526 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2527 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2528 int increment, Address mask_addr,
2529 Register scratch1, Register scratch2,
2530 Condition cond, Label *where) {
2531 ld(counter_addr, scratch1);
2532 add(scratch1, increment, scratch1);
2533 ld(mask_addr, scratch2);
2534 andcc(scratch1, scratch2, G0);
2535 br(cond, false, Assembler::pn, *where);
2536 delayed()->st(scratch1, counter_addr);
2537 }
2538
2539 // Inline assembly for:
2540 //
2541 // if (thread is in interp_only_mode) {
2542 // InterpreterRuntime::post_method_entry();
2543 // }
2544 // if (DTraceMethodProbes) {
2545 // SharedRuntime::dtrace_method_entry(method, receiver);
2546 // }
2547 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2548 // SharedRuntime::rc_trace_method_entry(method, receiver);
2549 // }
2550
2551 void InterpreterMacroAssembler::notify_method_entry() {
2552
2553 // Whenever JVMTI puts a thread in interp_only_mode, method
2554 // entry/exit events are sent for that thread to track stack
2555 // depth. If it is possible to enter interp_only_mode we add
2556 // the code to check if the event should be sent.
2557 if (JvmtiExport::can_post_interpreter_events()) {
2558 Label L;
2559 Register temp_reg = O5;
2560 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2561 ld(interp_only, temp_reg);
2562 cmp_and_br_short(temp_reg, 0, equal, pt, L);
2563 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2564 bind(L);
2565 }
2566
2567 {
2568 Register temp_reg = O5;
2569 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2570 call_VM_leaf(noreg,
2571 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2572 G2_thread, Lmethod);
2573 }
2574
2575 // RedefineClasses() tracing support for obsolete method entry
2576 if (log_is_enabled(Trace, redefine, class, obsolete)) {
2577 call_VM_leaf(noreg,
2578 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2579 G2_thread, Lmethod);
2580 }
2581 }
2582
2583
2584 // Inline assembly for:
2585 //
2586 // if (thread is in interp_only_mode) {
2587 // // save result
2588 // InterpreterRuntime::post_method_exit();
2589 // // restore result
2590 // }
2591 // if (DTraceMethodProbes) {
2592 // SharedRuntime::dtrace_method_exit(thread, method);
2593 // }
2594 //
2595 // Native methods have their result stored in d_tmp and l_tmp
2596 // Java methods have their result stored in the expression stack
2597
2598 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2599 TosState state,
2600 NotifyMethodExitMode mode) {
2601
2602 // Whenever JVMTI puts a thread in interp_only_mode, method
2603 // entry/exit events are sent for that thread to track stack
2604 // depth. If it is possible to enter interp_only_mode we add
2605 // the code to check if the event should be sent.
2606 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2607 Label L;
2608 Register temp_reg = O5;
2609 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2610 ld(interp_only, temp_reg);
2611 cmp_and_br_short(temp_reg, 0, equal, pt, L);
2612
2613 // Note: frame::interpreter_frame_result has a dependency on how the
2614 // method result is saved across the call to post_method_exit. For
2615 // native methods it assumes the result registers are saved to
2616 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2617 // implementation will need to be updated too.
2618
2619 save_return_value(state, is_native_method);
2620 call_VM(noreg,
2621 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2622 restore_return_value(state, is_native_method);
2623 bind(L);
2624 }
2625
2626 {
2627 Register temp_reg = O5;
2628 // Dtrace notification
2629 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2630 save_return_value(state, is_native_method);
2631 call_VM_leaf(
2632 noreg,
2633 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2634 G2_thread, Lmethod);
2635 restore_return_value(state, is_native_method);
2636 }
2637 }
2638
2639 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2640 if (is_native_call) {
2641 stf(FloatRegisterImpl::D, F0, d_tmp);
2642 stx(O0, l_tmp);
2643 } else {
2644 push(state);
2645 }
2646 }
2647
2648 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2649 if (is_native_call) {
2650 ldf(FloatRegisterImpl::D, d_tmp, F0);
2651 ldx(l_tmp, O0);
2652 } else {
2653 pop(state);
2654 }
2655 }
--- EOF ---