1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/cardTableModRefBS.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "nativeInst_sparc.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/safepointMechanism.inline.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 
  41 #define __ _masm->
  42 
  43 
  44 //------------------------------------------------------------
  45 
  46 
  47 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  48   if (opr->is_constant()) {
  49     LIR_Const* constant = opr->as_constant_ptr();
  50     switch (constant->type()) {
  51       case T_INT: {
  52         jint value = constant->as_jint();
  53         return Assembler::is_simm13(value);
  54       }
  55 
  56       default:
  57         return false;
  58     }
  59   }
  60   return false;
  61 }
  62 
  63 
  64 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  65   switch (op->code()) {
  66     case lir_null_check:
  67     return true;
  68 
  69 
  70     case lir_add:
  71     case lir_ushr:
  72     case lir_shr:
  73     case lir_shl:
  74       // integer shifts and adds are always one instruction
  75       return op->result_opr()->is_single_cpu();
  76 
  77 
  78     case lir_move: {
  79       LIR_Op1* op1 = op->as_Op1();
  80       LIR_Opr src = op1->in_opr();
  81       LIR_Opr dst = op1->result_opr();
  82 
  83       if (src == dst) {
  84         NEEDS_CLEANUP;
  85         // this works around a problem where moves with the same src and dst
  86         // end up in the delay slot and then the assembler swallows the mov
  87         // since it has no effect and then it complains because the delay slot
  88         // is empty.  returning false stops the optimizer from putting this in
  89         // the delay slot
  90         return false;
  91       }
  92 
  93       // don't put moves involving oops into the delay slot since the VerifyOops code
  94       // will make it much larger than a single instruction.
  95       if (VerifyOops) {
  96         return false;
  97       }
  98 
  99       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
 100           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 101         return false;
 102       }
 103 
 104       if (UseCompressedOops) {
 105         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
 106         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
 107       }
 108 
 109       if (UseCompressedClassPointers) {
 110         if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
 111             src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
 112       }
 113 
 114       if (dst->is_register()) {
 115         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 116           return !PatchALot;
 117         } else if (src->is_single_stack()) {
 118           return true;
 119         }
 120       }
 121 
 122       if (src->is_register()) {
 123         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 124           return !PatchALot;
 125         } else if (dst->is_single_stack()) {
 126           return true;
 127         }
 128       }
 129 
 130       if (dst->is_register() &&
 131           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 132            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 133         return true;
 134       }
 135 
 136       return false;
 137     }
 138 
 139     default:
 140       return false;
 141   }
 142   ShouldNotReachHere();
 143 }
 144 
 145 
 146 LIR_Opr LIR_Assembler::receiverOpr() {
 147   return FrameMap::O0_oop_opr;
 148 }
 149 
 150 
 151 LIR_Opr LIR_Assembler::osrBufferPointer() {
 152   return FrameMap::I0_opr;
 153 }
 154 
 155 
 156 int LIR_Assembler::initial_frame_size_in_bytes() const {
 157   return in_bytes(frame_map()->framesize_in_bytes());
 158 }
 159 
 160 
 161 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 162 // we fetch the class of the receiver (O0) and compare it with the cached class.
 163 // If they do not match we jump to slow case.
 164 int LIR_Assembler::check_icache() {
 165   int offset = __ offset();
 166   __ inline_cache_check(O0, G5_inline_cache_reg);
 167   return offset;
 168 }
 169 
 170 
 171 void LIR_Assembler::osr_entry() {
 172   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 173   //
 174   //   1. Create a new compiled activation.
 175   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 176   //      at the osr_bci; it is not initialized.
 177   //   3. Jump to the continuation address in compiled code to resume execution.
 178 
 179   // OSR entry point
 180   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 181   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 182   ValueStack* entry_state = osr_entry->end()->state();
 183   int number_of_locks = entry_state->locks_size();
 184 
 185   // Create a frame for the compiled activation.
 186   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 187 
 188   // OSR buffer is
 189   //
 190   // locals[nlocals-1..0]
 191   // monitors[number_of_locks-1..0]
 192   //
 193   // locals is a direct copy of the interpreter frame so in the osr buffer
 194   // so first slot in the local array is the last local from the interpreter
 195   // and last slot is local[0] (receiver) from the interpreter
 196   //
 197   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 198   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 199   // in the interpreter frame (the method lock if a sync method)
 200 
 201   // Initialize monitors in the compiled activation.
 202   //   I0: pointer to osr buffer
 203   //
 204   // All other registers are dead at this point and the locals will be
 205   // copied into place by code emitted in the IR.
 206 
 207   Register OSR_buf = osrBufferPointer()->as_register();
 208   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 209     int monitor_offset = BytesPerWord * method()->max_locals() +
 210       (2 * BytesPerWord) * (number_of_locks - 1);
 211     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 212     // the OSR buffer using 2 word entries: first the lock and then
 213     // the oop.
 214     for (int i = 0; i < number_of_locks; i++) {
 215       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 216 #ifdef ASSERT
 217       // verify the interpreter's monitor has a non-null object
 218       {
 219         Label L;
 220         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 221         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
 222         __ stop("locked object is NULL");
 223         __ bind(L);
 224       }
 225 #endif // ASSERT
 226       // Copy the lock field into the compiled activation.
 227       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 228       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 229       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 230       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 231     }
 232   }
 233 }
 234 
 235 
 236 // --------------------------------------------------------------------------------------------
 237 
 238 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 239   if (!GenerateSynchronizationCode) return;
 240 
 241   Register obj_reg = obj_opr->as_register();
 242   Register lock_reg = lock_opr->as_register();
 243 
 244   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 245   Register reg = mon_addr.base();
 246   int offset = mon_addr.disp();
 247   // compute pointer to BasicLock
 248   if (mon_addr.is_simm13()) {
 249     __ add(reg, offset, lock_reg);
 250   }
 251   else {
 252     __ set(offset, lock_reg);
 253     __ add(reg, lock_reg, lock_reg);
 254   }
 255   // unlock object
 256   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 257   // _slow_case_stubs->append(slow_case);
 258   // temporary fix: must be created after exceptionhandler, therefore as call stub
 259   _slow_case_stubs->append(slow_case);
 260   if (UseFastLocking) {
 261     // try inlined fast unlocking first, revert to slow locking if it fails
 262     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 263     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 264     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 265   } else {
 266     // always do slow unlocking
 267     // note: the slow unlocking code could be inlined here, however if we use
 268     //       slow unlocking, speed doesn't matter anyway and this solution is
 269     //       simpler and requires less duplicated code - additionally, the
 270     //       slow unlocking code is the same in either case which simplifies
 271     //       debugging
 272     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 273     __ delayed()->nop();
 274   }
 275   // done
 276   __ bind(*slow_case->continuation());
 277 }
 278 
 279 
 280 int LIR_Assembler::emit_exception_handler() {
 281   // if the last instruction is a call (typically to do a throw which
 282   // is coming at the end after block reordering) the return address
 283   // must still point into the code area in order to avoid assertion
 284   // failures when searching for the corresponding bci => add a nop
 285   // (was bug 5/14/1999 - gri)
 286   __ nop();
 287 
 288   // generate code for exception handler
 289   ciMethod* method = compilation()->method();
 290 
 291   address handler_base = __ start_a_stub(exception_handler_size());
 292 
 293   if (handler_base == NULL) {
 294     // not enough space left for the handler
 295     bailout("exception handler overflow");
 296     return -1;
 297   }
 298 
 299   int offset = code_offset();
 300 
 301   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
 302   __ delayed()->nop();
 303   __ should_not_reach_here();
 304   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 305   __ end_a_stub();
 306 
 307   return offset;
 308 }
 309 
 310 
 311 // Emit the code to remove the frame from the stack in the exception
 312 // unwind path.
 313 int LIR_Assembler::emit_unwind_handler() {
 314 #ifndef PRODUCT
 315   if (CommentedAssembly) {
 316     _masm->block_comment("Unwind handler");
 317   }
 318 #endif
 319 
 320   int offset = code_offset();
 321 
 322   // Fetch the exception from TLS and clear out exception related thread state
 323   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
 324   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
 325   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
 326 
 327   __ bind(_unwind_handler_entry);
 328   __ verify_not_null_oop(O0);
 329   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 330     __ mov(O0, I0);  // Preserve the exception
 331   }
 332 
 333   // Preform needed unlocking
 334   MonitorExitStub* stub = NULL;
 335   if (method()->is_synchronized()) {
 336     monitor_address(0, FrameMap::I1_opr);
 337     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
 338     __ unlock_object(I3, I2, I1, *stub->entry());
 339     __ bind(*stub->continuation());
 340   }
 341 
 342   if (compilation()->env()->dtrace_method_probes()) {
 343     __ mov(G2_thread, O0);
 344     __ save_thread(I1); // need to preserve thread in G2 across
 345                         // runtime call
 346     metadata2reg(method()->constant_encoding(), O1);
 347     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
 348     __ delayed()->nop();
 349     __ restore_thread(I1);
 350   }
 351 
 352   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 353     __ mov(I0, O0);  // Restore the exception
 354   }
 355 
 356   // dispatch to the unwind logic
 357   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 358   __ delayed()->nop();
 359 
 360   // Emit the slow path assembly
 361   if (stub != NULL) {
 362     stub->emit_code(this);
 363   }
 364 
 365   return offset;
 366 }
 367 
 368 
 369 int LIR_Assembler::emit_deopt_handler() {
 370   // if the last instruction is a call (typically to do a throw which
 371   // is coming at the end after block reordering) the return address
 372   // must still point into the code area in order to avoid assertion
 373   // failures when searching for the corresponding bci => add a nop
 374   // (was bug 5/14/1999 - gri)
 375   __ nop();
 376 
 377   // generate code for deopt handler
 378   ciMethod* method = compilation()->method();
 379   address handler_base = __ start_a_stub(deopt_handler_size());
 380   if (handler_base == NULL) {
 381     // not enough space left for the handler
 382     bailout("deopt handler overflow");
 383     return -1;
 384   }
 385 
 386   int offset = code_offset();
 387   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 388   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 389   __ delayed()->nop();
 390   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 391   __ end_a_stub();
 392 
 393   return offset;
 394 }
 395 
 396 
 397 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 398   if (o == NULL) {
 399     __ set(NULL_WORD, reg);
 400   } else {
 401     int oop_index = __ oop_recorder()->find_index(o);
 402     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
 403     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 404     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 405   }
 406 }
 407 
 408 
 409 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 410   // Allocate a new index in table to hold the object once it's been patched
 411   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
 412   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
 413 
 414   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 415   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 416   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 417   // NULL will be dynamically patched later and the patched value may be large.  We must
 418   // therefore generate the sethi/add as a placeholders
 419   __ patchable_set(addrlit, reg);
 420 
 421   patching_epilog(patch, lir_patch_normal, reg, info);
 422 }
 423 
 424 
 425 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
 426   __ set_metadata_constant(o, reg);
 427 }
 428 
 429 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
 430   // Allocate a new index in table to hold the klass once it's been patched
 431   int index = __ oop_recorder()->allocate_metadata_index(NULL);
 432   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 433   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
 434   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
 435   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 436   // NULL will be dynamically patched later and the patched value may be large.  We must
 437   // therefore generate the sethi/add as a placeholders
 438   __ patchable_set(addrlit, reg);
 439 
 440   patching_epilog(patch, lir_patch_normal, reg, info);
 441 }
 442 
 443 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 444   switch (op->code()) {
 445     case lir_idiv:
 446     case lir_irem:  // Both idiv & irem are handled after the switch (below).
 447       break;
 448     case lir_fmaf:
 449       __ fmadd(FloatRegisterImpl::S,
 450                op->in_opr1()->as_float_reg(),
 451                op->in_opr2()->as_float_reg(),
 452                op->in_opr3()->as_float_reg(),
 453                op->result_opr()->as_float_reg());
 454       return;
 455     case lir_fmad:
 456       __ fmadd(FloatRegisterImpl::D,
 457                op->in_opr1()->as_double_reg(),
 458                op->in_opr2()->as_double_reg(),
 459                op->in_opr3()->as_double_reg(),
 460                op->result_opr()->as_double_reg());
 461       return;
 462     default:
 463       ShouldNotReachHere();
 464       break;
 465   }
 466 
 467   // Handle idiv & irem:
 468 
 469   Register Rdividend = op->in_opr1()->as_register();
 470   Register Rdivisor  = noreg;
 471   Register Rscratch  = op->in_opr3()->as_register();
 472   Register Rresult   = op->result_opr()->as_register();
 473   int divisor = -1;
 474 
 475   if (op->in_opr2()->is_register()) {
 476     Rdivisor = op->in_opr2()->as_register();
 477   } else {
 478     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 479     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 480   }
 481 
 482   assert(Rdividend != Rscratch, "");
 483   assert(Rdivisor  != Rscratch, "");
 484   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 485 
 486   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 487     // convert division by a power of two into some shifts and logical operations
 488     if (op->code() == lir_idiv) {
 489       if (divisor == 2) {
 490         __ srl(Rdividend, 31, Rscratch);
 491       } else {
 492         __ sra(Rdividend, 31, Rscratch);
 493         __ and3(Rscratch, divisor - 1, Rscratch);
 494       }
 495       __ add(Rdividend, Rscratch, Rscratch);
 496       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 497       return;
 498     } else {
 499       if (divisor == 2) {
 500         __ srl(Rdividend, 31, Rscratch);
 501       } else {
 502         __ sra(Rdividend, 31, Rscratch);
 503         __ and3(Rscratch, divisor - 1,Rscratch);
 504       }
 505       __ add(Rdividend, Rscratch, Rscratch);
 506       __ andn(Rscratch, divisor - 1,Rscratch);
 507       __ sub(Rdividend, Rscratch, Rresult);
 508       return;
 509     }
 510   }
 511 
 512   __ sra(Rdividend, 31, Rscratch);
 513   __ wry(Rscratch);
 514 
 515   add_debug_info_for_div0_here(op->info());
 516 
 517   if (Rdivisor != noreg) {
 518     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 519   } else {
 520     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 521     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 522   }
 523 
 524   Label skip;
 525   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 526   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 527   __ bind(skip);
 528 
 529   if (op->code() == lir_irem) {
 530     if (Rdivisor != noreg) {
 531       __ smul(Rscratch, Rdivisor, Rscratch);
 532     } else {
 533       __ smul(Rscratch, divisor, Rscratch);
 534     }
 535     __ sub(Rdividend, Rscratch, Rresult);
 536   }
 537 }
 538 
 539 
 540 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 541 #ifdef ASSERT
 542   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 543   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 544   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 545 #endif
 546   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 547 
 548   if (op->cond() == lir_cond_always) {
 549     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 550   } else if (op->code() == lir_cond_float_branch) {
 551     assert(op->ublock() != NULL, "must have unordered successor");
 552     bool is_unordered = (op->ublock() == op->block());
 553     Assembler::Condition acond;
 554     switch (op->cond()) {
 555       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 556       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 557       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 558       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 559       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 560       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 561       default :                         ShouldNotReachHere();
 562     }
 563     __ fb( acond, false, Assembler::pn, *(op->label()));
 564   } else {
 565     assert (op->code() == lir_branch, "just checking");
 566 
 567     Assembler::Condition acond;
 568     switch (op->cond()) {
 569       case lir_cond_equal:        acond = Assembler::equal;                break;
 570       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 571       case lir_cond_less:         acond = Assembler::less;                 break;
 572       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 573       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 574       case lir_cond_greater:      acond = Assembler::greater;              break;
 575       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 576       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 577       default:                         ShouldNotReachHere();
 578     };
 579 
 580     // sparc has different condition codes for testing 32-bit
 581     // vs. 64-bit values.  We could always test xcc is we could
 582     // guarantee that 32-bit loads always sign extended but that isn't
 583     // true and since sign extension isn't free, it would impose a
 584     // slight cost.
 585     if  (op->type() == T_INT) {
 586       __ br(acond, false, Assembler::pn, *(op->label()));
 587     } else
 588       __ brx(acond, false, Assembler::pn, *(op->label()));
 589   }
 590   // The peephole pass fills the delay slot
 591 }
 592 
 593 
 594 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 595   Bytecodes::Code code = op->bytecode();
 596   LIR_Opr dst = op->result_opr();
 597 
 598   switch(code) {
 599     case Bytecodes::_i2l: {
 600       Register rlo  = dst->as_register_lo();
 601       Register rhi  = dst->as_register_hi();
 602       Register rval = op->in_opr()->as_register();
 603       __ sra(rval, 0, rlo);
 604       break;
 605     }
 606     case Bytecodes::_i2d:
 607     case Bytecodes::_i2f: {
 608       bool is_double = (code == Bytecodes::_i2d);
 609       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 610       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 611       FloatRegister rsrc = op->in_opr()->as_float_reg();
 612       if (rsrc != rdst) {
 613         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 614       }
 615       __ fitof(w, rdst, rdst);
 616       break;
 617     }
 618     case Bytecodes::_f2i:{
 619       FloatRegister rsrc = op->in_opr()->as_float_reg();
 620       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 621       Label L;
 622       // result must be 0 if value is NaN; test by comparing value to itself
 623       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 624       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 625       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 626       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 627       // move integer result from float register to int register
 628       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 629       __ bind (L);
 630       break;
 631     }
 632     case Bytecodes::_l2i: {
 633       Register rlo  = op->in_opr()->as_register_lo();
 634       Register rhi  = op->in_opr()->as_register_hi();
 635       Register rdst = dst->as_register();
 636       __ sra(rlo, 0, rdst);
 637       break;
 638     }
 639     case Bytecodes::_d2f:
 640     case Bytecodes::_f2d: {
 641       bool is_double = (code == Bytecodes::_f2d);
 642       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 643       LIR_Opr val = op->in_opr();
 644       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 645       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 646       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 647       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 648       __ ftof(vw, dw, rval, rdst);
 649       break;
 650     }
 651     case Bytecodes::_i2s:
 652     case Bytecodes::_i2b: {
 653       Register rval = op->in_opr()->as_register();
 654       Register rdst = dst->as_register();
 655       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 656       __ sll (rval, shift, rdst);
 657       __ sra (rdst, shift, rdst);
 658       break;
 659     }
 660     case Bytecodes::_i2c: {
 661       Register rval = op->in_opr()->as_register();
 662       Register rdst = dst->as_register();
 663       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 664       __ sll (rval, shift, rdst);
 665       __ srl (rdst, shift, rdst);
 666       break;
 667     }
 668 
 669     default: ShouldNotReachHere();
 670   }
 671 }
 672 
 673 
 674 void LIR_Assembler::align_call(LIR_Code) {
 675   // do nothing since all instructions are word aligned on sparc
 676 }
 677 
 678 
 679 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 680   __ call(op->addr(), rtype);
 681   // The peephole pass fills the delay slot, add_call_info is done in
 682   // LIR_Assembler::emit_delay.
 683 }
 684 
 685 
 686 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 687   __ ic_call(op->addr(), false);
 688   // The peephole pass fills the delay slot, add_call_info is done in
 689   // LIR_Assembler::emit_delay.
 690 }
 691 
 692 
 693 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 694   add_debug_info_for_null_check_here(op->info());
 695   __ load_klass(O0, G3_scratch);
 696   if (Assembler::is_simm13(op->vtable_offset())) {
 697     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 698   } else {
 699     // This will generate 2 instructions
 700     __ set(op->vtable_offset(), G5_method);
 701     // ld_ptr, set_hi, set
 702     __ ld_ptr(G3_scratch, G5_method, G5_method);
 703   }
 704   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
 705   __ callr(G3_scratch, G0);
 706   // the peephole pass fills the delay slot
 707 }
 708 
 709 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
 710   int store_offset;
 711   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 712     assert(base != O7, "destroying register");
 713     assert(!unaligned, "can't handle this");
 714     // for offsets larger than a simm13 we setup the offset in O7
 715     __ set(offset, O7);
 716     store_offset = store(from_reg, base, O7, type, wide);
 717   } else {
 718     if (type == T_ARRAY || type == T_OBJECT) {
 719       __ verify_oop(from_reg->as_register());
 720     }
 721     store_offset = code_offset();
 722     switch (type) {
 723       case T_BOOLEAN: // fall through
 724       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 725       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 726       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 727       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 728       case T_LONG  :
 729         if (unaligned || PatchALot) {
 730           // Don't use O7 here because it may be equal to 'base' (see LIR_Assembler::reg2mem)
 731           assert(G3_scratch != base, "can't handle this");
 732           assert(G3_scratch != from_reg->as_register_lo(), "can't handle this");
 733           __ srax(from_reg->as_register_lo(), 32, G3_scratch);
 734           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 735           __ stw(G3_scratch,                 base, offset + hi_word_offset_in_bytes);
 736         } else {
 737           __ stx(from_reg->as_register_lo(), base, offset);
 738         }
 739         break;
 740       case T_ADDRESS:
 741       case T_METADATA:
 742         __ st_ptr(from_reg->as_register(), base, offset);
 743         break;
 744       case T_ARRAY : // fall through
 745       case T_OBJECT:
 746         {
 747           if (UseCompressedOops && !wide) {
 748             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 749             store_offset = code_offset();
 750             __ stw(G3_scratch, base, offset);
 751           } else {
 752             __ st_ptr(from_reg->as_register(), base, offset);
 753           }
 754           break;
 755         }
 756 
 757       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 758       case T_DOUBLE:
 759         {
 760           FloatRegister reg = from_reg->as_double_reg();
 761           // split unaligned stores
 762           if (unaligned || PatchALot) {
 763             assert(Assembler::is_simm13(offset + 4), "must be");
 764             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 765             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 766           } else {
 767             __ stf(FloatRegisterImpl::D, reg, base, offset);
 768           }
 769           break;
 770         }
 771       default      : ShouldNotReachHere();
 772     }
 773   }
 774   return store_offset;
 775 }
 776 
 777 
 778 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 779   if (type == T_ARRAY || type == T_OBJECT) {
 780     __ verify_oop(from_reg->as_register());
 781   }
 782   int store_offset = code_offset();
 783   switch (type) {
 784     case T_BOOLEAN: // fall through
 785     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 786     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 787     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 788     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 789     case T_LONG  :
 790       __ stx(from_reg->as_register_lo(), base, disp);
 791       break;
 792     case T_ADDRESS:
 793       __ st_ptr(from_reg->as_register(), base, disp);
 794       break;
 795     case T_ARRAY : // fall through
 796     case T_OBJECT:
 797       {
 798         if (UseCompressedOops && !wide) {
 799           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 800           store_offset = code_offset();
 801           __ stw(G3_scratch, base, disp);
 802         } else {
 803           __ st_ptr(from_reg->as_register(), base, disp);
 804         }
 805         break;
 806       }
 807     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 808     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 809     default      : ShouldNotReachHere();
 810   }
 811   return store_offset;
 812 }
 813 
 814 
 815 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 816   int load_offset;
 817   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 818     assert(base != O7, "destroying register");
 819     assert(!unaligned, "can't handle this");
 820     // for offsets larger than a simm13 we setup the offset in O7
 821     __ set(offset, O7);
 822     load_offset = load(base, O7, to_reg, type, wide);
 823   } else {
 824     load_offset = code_offset();
 825     switch(type) {
 826       case T_BOOLEAN: // fall through
 827       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 828       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 829       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 830       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 831       case T_LONG  :
 832         if (!unaligned && !PatchALot) {
 833           __ ldx(base, offset, to_reg->as_register_lo());
 834         } else {
 835           assert(base != to_reg->as_register_lo(), "can't handle this");
 836           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 837           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 838           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 839           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 840           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 841         }
 842         break;
 843       case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
 844       case T_ADDRESS:
 845         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
 846           __ lduw(base, offset, to_reg->as_register());
 847           __ decode_klass_not_null(to_reg->as_register());
 848         } else
 849         {
 850           __ ld_ptr(base, offset, to_reg->as_register());
 851         }
 852         break;
 853       case T_ARRAY : // fall through
 854       case T_OBJECT:
 855         {
 856           if (UseCompressedOops && !wide) {
 857             __ lduw(base, offset, to_reg->as_register());
 858             __ decode_heap_oop(to_reg->as_register());
 859           } else {
 860             __ ld_ptr(base, offset, to_reg->as_register());
 861           }
 862           break;
 863         }
 864       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 865       case T_DOUBLE:
 866         {
 867           FloatRegister reg = to_reg->as_double_reg();
 868           // split unaligned loads
 869           if (unaligned || PatchALot) {
 870             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 871             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 872           } else {
 873             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 874           }
 875           break;
 876         }
 877       default      : ShouldNotReachHere();
 878     }
 879     if (type == T_ARRAY || type == T_OBJECT) {
 880       __ verify_oop(to_reg->as_register());
 881     }
 882   }
 883   return load_offset;
 884 }
 885 
 886 
 887 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 888   int load_offset = code_offset();
 889   switch(type) {
 890     case T_BOOLEAN: // fall through
 891     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
 892     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
 893     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
 894     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
 895     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
 896     case T_ARRAY : // fall through
 897     case T_OBJECT:
 898       {
 899           if (UseCompressedOops && !wide) {
 900             __ lduw(base, disp, to_reg->as_register());
 901             __ decode_heap_oop(to_reg->as_register());
 902           } else {
 903             __ ld_ptr(base, disp, to_reg->as_register());
 904           }
 905           break;
 906       }
 907     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
 908     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
 909     case T_LONG  :
 910       __ ldx(base, disp, to_reg->as_register_lo());
 911       break;
 912     default      : ShouldNotReachHere();
 913   }
 914   if (type == T_ARRAY || type == T_OBJECT) {
 915     __ verify_oop(to_reg->as_register());
 916   }
 917   return load_offset;
 918 }
 919 
 920 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 921   LIR_Const* c = src->as_constant_ptr();
 922   switch (c->type()) {
 923     case T_INT:
 924     case T_FLOAT: {
 925       Register src_reg = O7;
 926       int value = c->as_jint_bits();
 927       if (value == 0) {
 928         src_reg = G0;
 929       } else {
 930         __ set(value, O7);
 931       }
 932       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 933       __ stw(src_reg, addr.base(), addr.disp());
 934       break;
 935     }
 936     case T_ADDRESS: {
 937       Register src_reg = O7;
 938       int value = c->as_jint_bits();
 939       if (value == 0) {
 940         src_reg = G0;
 941       } else {
 942         __ set(value, O7);
 943       }
 944       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 945       __ st_ptr(src_reg, addr.base(), addr.disp());
 946       break;
 947     }
 948     case T_OBJECT: {
 949       Register src_reg = O7;
 950       jobject2reg(c->as_jobject(), src_reg);
 951       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 952       __ st_ptr(src_reg, addr.base(), addr.disp());
 953       break;
 954     }
 955     case T_LONG:
 956     case T_DOUBLE: {
 957       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
 958 
 959       Register tmp = O7;
 960       int value_lo = c->as_jint_lo_bits();
 961       if (value_lo == 0) {
 962         tmp = G0;
 963       } else {
 964         __ set(value_lo, O7);
 965       }
 966       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
 967       int value_hi = c->as_jint_hi_bits();
 968       if (value_hi == 0) {
 969         tmp = G0;
 970       } else {
 971         __ set(value_hi, O7);
 972       }
 973       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
 974       break;
 975     }
 976     default:
 977       Unimplemented();
 978   }
 979 }
 980 
 981 
 982 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 983   LIR_Const* c = src->as_constant_ptr();
 984   LIR_Address* addr     = dest->as_address_ptr();
 985   Register base = addr->base()->as_pointer_register();
 986   int offset = -1;
 987 
 988   switch (c->type()) {
 989     case T_INT:
 990     case T_FLOAT:
 991     case T_ADDRESS: {
 992       LIR_Opr tmp = FrameMap::O7_opr;
 993       int value = c->as_jint_bits();
 994       if (value == 0) {
 995         tmp = FrameMap::G0_opr;
 996       } else if (Assembler::is_simm13(value)) {
 997         __ set(value, O7);
 998       }
 999       if (addr->index()->is_valid()) {
1000         assert(addr->disp() == 0, "must be zero");
1001         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1002       } else {
1003         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1004         offset = store(tmp, base, addr->disp(), type, wide, false);
1005       }
1006       break;
1007     }
1008     case T_LONG:
1009     case T_DOUBLE: {
1010       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1011       assert(Assembler::is_simm13(addr->disp()) &&
1012              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1013 
1014       LIR_Opr tmp = FrameMap::O7_opr;
1015       int value_lo = c->as_jint_lo_bits();
1016       if (value_lo == 0) {
1017         tmp = FrameMap::G0_opr;
1018       } else {
1019         __ set(value_lo, O7);
1020       }
1021       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1022       int value_hi = c->as_jint_hi_bits();
1023       if (value_hi == 0) {
1024         tmp = FrameMap::G0_opr;
1025       } else {
1026         __ set(value_hi, O7);
1027       }
1028       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1029       break;
1030     }
1031     case T_OBJECT: {
1032       jobject obj = c->as_jobject();
1033       LIR_Opr tmp;
1034       if (obj == NULL) {
1035         tmp = FrameMap::G0_opr;
1036       } else {
1037         tmp = FrameMap::O7_opr;
1038         jobject2reg(c->as_jobject(), O7);
1039       }
1040       // handle either reg+reg or reg+disp address
1041       if (addr->index()->is_valid()) {
1042         assert(addr->disp() == 0, "must be zero");
1043         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1044       } else {
1045         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1046         offset = store(tmp, base, addr->disp(), type, wide, false);
1047       }
1048 
1049       break;
1050     }
1051     default:
1052       Unimplemented();
1053   }
1054   if (info != NULL) {
1055     assert(offset != -1, "offset should've been set");
1056     add_debug_info_for_null_check(offset, info);
1057   }
1058 }
1059 
1060 
1061 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1062   LIR_Const* c = src->as_constant_ptr();
1063   LIR_Opr to_reg = dest;
1064 
1065   switch (c->type()) {
1066     case T_INT:
1067     case T_ADDRESS:
1068       {
1069         jint con = c->as_jint();
1070         if (to_reg->is_single_cpu()) {
1071           assert(patch_code == lir_patch_none, "no patching handled here");
1072           __ set(con, to_reg->as_register());
1073         } else {
1074           ShouldNotReachHere();
1075           assert(to_reg->is_single_fpu(), "wrong register kind");
1076 
1077           __ set(con, O7);
1078           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1079           __ st(O7, temp_slot);
1080           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1081         }
1082       }
1083       break;
1084 
1085     case T_LONG:
1086       {
1087         jlong con = c->as_jlong();
1088 
1089         if (to_reg->is_double_cpu()) {
1090           __ set(con,  to_reg->as_register_lo());
1091         } else if (to_reg->is_single_cpu()) {
1092           __ set(con, to_reg->as_register());
1093         } else {
1094           ShouldNotReachHere();
1095           assert(to_reg->is_double_fpu(), "wrong register kind");
1096           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1097           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1098           __ set(low(con),  O7);
1099           __ st(O7, temp_slot_lo);
1100           __ set(high(con), O7);
1101           __ st(O7, temp_slot_hi);
1102           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1103         }
1104       }
1105       break;
1106 
1107     case T_OBJECT:
1108       {
1109         if (patch_code == lir_patch_none) {
1110           jobject2reg(c->as_jobject(), to_reg->as_register());
1111         } else {
1112           jobject2reg_with_patching(to_reg->as_register(), info);
1113         }
1114       }
1115       break;
1116 
1117     case T_METADATA:
1118       {
1119         if (patch_code == lir_patch_none) {
1120           metadata2reg(c->as_metadata(), to_reg->as_register());
1121         } else {
1122           klass2reg_with_patching(to_reg->as_register(), info);
1123         }
1124       }
1125       break;
1126 
1127     case T_FLOAT:
1128       {
1129         address const_addr = __ float_constant(c->as_jfloat());
1130         if (const_addr == NULL) {
1131           bailout("const section overflow");
1132           break;
1133         }
1134         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1135         AddressLiteral const_addrlit(const_addr, rspec);
1136         if (to_reg->is_single_fpu()) {
1137           __ patchable_sethi(const_addrlit, O7);
1138           __ relocate(rspec);
1139           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1140 
1141         } else {
1142           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1143 
1144           __ set(const_addrlit, O7);
1145           __ ld(O7, 0, to_reg->as_register());
1146         }
1147       }
1148       break;
1149 
1150     case T_DOUBLE:
1151       {
1152         address const_addr = __ double_constant(c->as_jdouble());
1153         if (const_addr == NULL) {
1154           bailout("const section overflow");
1155           break;
1156         }
1157         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1158 
1159         if (to_reg->is_double_fpu()) {
1160           AddressLiteral const_addrlit(const_addr, rspec);
1161           __ patchable_sethi(const_addrlit, O7);
1162           __ relocate(rspec);
1163           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1164         } else {
1165           assert(to_reg->is_double_cpu(), "Must be a long register.");
1166           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1167         }
1168 
1169       }
1170       break;
1171 
1172     default:
1173       ShouldNotReachHere();
1174   }
1175 }
1176 
1177 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1178   Register reg = addr->base()->as_pointer_register();
1179   LIR_Opr index = addr->index();
1180   if (index->is_illegal()) {
1181     return Address(reg, addr->disp());
1182   } else {
1183     assert (addr->disp() == 0, "unsupported address mode");
1184     return Address(reg, index->as_pointer_register());
1185   }
1186 }
1187 
1188 
1189 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1190   switch (type) {
1191     case T_INT:
1192     case T_FLOAT: {
1193       Register tmp = O7;
1194       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1195       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1196       __ lduw(from.base(), from.disp(), tmp);
1197       __ stw(tmp, to.base(), to.disp());
1198       break;
1199     }
1200     case T_OBJECT: {
1201       Register tmp = O7;
1202       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1203       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1204       __ ld_ptr(from.base(), from.disp(), tmp);
1205       __ st_ptr(tmp, to.base(), to.disp());
1206       break;
1207     }
1208     case T_LONG:
1209     case T_DOUBLE: {
1210       Register tmp = O7;
1211       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1212       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1213       __ lduw(from.base(), from.disp(), tmp);
1214       __ stw(tmp, to.base(), to.disp());
1215       __ lduw(from.base(), from.disp() + 4, tmp);
1216       __ stw(tmp, to.base(), to.disp() + 4);
1217       break;
1218     }
1219 
1220     default:
1221       ShouldNotReachHere();
1222   }
1223 }
1224 
1225 
1226 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1227   Address base = as_Address(addr);
1228   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1229 }
1230 
1231 
1232 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1233   Address base = as_Address(addr);
1234   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1235 }
1236 
1237 
1238 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1239                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1240 
1241   assert(type != T_METADATA, "load of metadata ptr not supported");
1242   LIR_Address* addr = src_opr->as_address_ptr();
1243   LIR_Opr to_reg = dest;
1244 
1245   Register src = addr->base()->as_pointer_register();
1246   Register disp_reg = noreg;
1247   int disp_value = addr->disp();
1248   bool needs_patching = (patch_code != lir_patch_none);
1249 
1250   if (addr->base()->type() == T_OBJECT) {
1251     __ verify_oop(src);
1252   }
1253 
1254   PatchingStub* patch = NULL;
1255   if (needs_patching) {
1256     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1257     assert(!to_reg->is_double_cpu() ||
1258            patch_code == lir_patch_none ||
1259            patch_code == lir_patch_normal, "patching doesn't match register");
1260   }
1261 
1262   if (addr->index()->is_illegal()) {
1263     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1264       if (needs_patching) {
1265         __ patchable_set(0, O7);
1266       } else {
1267         __ set(disp_value, O7);
1268       }
1269       disp_reg = O7;
1270     }
1271   } else if (unaligned || PatchALot) {
1272     __ add(src, addr->index()->as_pointer_register(), O7);
1273     src = O7;
1274   } else {
1275     disp_reg = addr->index()->as_pointer_register();
1276     assert(disp_value == 0, "can't handle 3 operand addresses");
1277   }
1278 
1279   // remember the offset of the load.  The patching_epilog must be done
1280   // before the call to add_debug_info, otherwise the PcDescs don't get
1281   // entered in increasing order.
1282   int offset = code_offset();
1283 
1284   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1285   if (disp_reg == noreg) {
1286     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1287   } else {
1288     assert(!unaligned, "can't handle this");
1289     offset = load(src, disp_reg, to_reg, type, wide);
1290   }
1291 
1292   if (patch != NULL) {
1293     patching_epilog(patch, patch_code, src, info);
1294   }
1295   if (info != NULL) add_debug_info_for_null_check(offset, info);
1296 }
1297 
1298 
1299 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1300   Address addr;
1301   if (src->is_single_word()) {
1302     addr = frame_map()->address_for_slot(src->single_stack_ix());
1303   } else if (src->is_double_word())  {
1304     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1305   }
1306 
1307   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1308   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1309 }
1310 
1311 
1312 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1313   Address addr;
1314   if (dest->is_single_word()) {
1315     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1316   } else if (dest->is_double_word())  {
1317     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1318   }
1319   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1320   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1321 }
1322 
1323 
1324 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1325   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1326     if (from_reg->is_double_fpu()) {
1327       // double to double moves
1328       assert(to_reg->is_double_fpu(), "should match");
1329       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1330     } else {
1331       // float to float moves
1332       assert(to_reg->is_single_fpu(), "should match");
1333       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1334     }
1335   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1336     if (from_reg->is_double_cpu()) {
1337       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1338     } else if (to_reg->is_double_cpu()) {
1339       // int to int moves
1340       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1341     } else {
1342       // int to int moves
1343       __ mov(from_reg->as_register(), to_reg->as_register());
1344     }
1345   } else {
1346     ShouldNotReachHere();
1347   }
1348   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1349     __ verify_oop(to_reg->as_register());
1350   }
1351 }
1352 
1353 
1354 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1355                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1356                             bool wide, bool unaligned) {
1357   assert(type != T_METADATA, "store of metadata ptr not supported");
1358   LIR_Address* addr = dest->as_address_ptr();
1359 
1360   Register src = addr->base()->as_pointer_register();
1361   Register disp_reg = noreg;
1362   int disp_value = addr->disp();
1363   bool needs_patching = (patch_code != lir_patch_none);
1364 
1365   if (addr->base()->is_oop_register()) {
1366     __ verify_oop(src);
1367   }
1368 
1369   PatchingStub* patch = NULL;
1370   if (needs_patching) {
1371     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1372     assert(!from_reg->is_double_cpu() ||
1373            patch_code == lir_patch_none ||
1374            patch_code == lir_patch_normal, "patching doesn't match register");
1375   }
1376 
1377   if (addr->index()->is_illegal()) {
1378     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1379       if (needs_patching) {
1380         __ patchable_set(0, O7);
1381       } else {
1382         __ set(disp_value, O7);
1383       }
1384       disp_reg = O7;
1385     }
1386   } else if (unaligned || PatchALot) {
1387     __ add(src, addr->index()->as_pointer_register(), O7);
1388     src = O7;
1389   } else {
1390     disp_reg = addr->index()->as_pointer_register();
1391     assert(disp_value == 0, "can't handle 3 operand addresses");
1392   }
1393 
1394   // remember the offset of the store.  The patching_epilog must be done
1395   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1396   // entered in increasing order.
1397   int offset;
1398 
1399   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1400   if (disp_reg == noreg) {
1401     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1402   } else {
1403     assert(!unaligned, "can't handle this");
1404     offset = store(from_reg, src, disp_reg, type, wide);
1405   }
1406 
1407   if (patch != NULL) {
1408     patching_epilog(patch, patch_code, src, info);
1409   }
1410 
1411   if (info != NULL) add_debug_info_for_null_check(offset, info);
1412 }
1413 
1414 
1415 void LIR_Assembler::return_op(LIR_Opr result) {
1416   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1417     __ reserved_stack_check();
1418   }
1419   if (SafepointMechanism::uses_thread_local_poll()) {
1420     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), L0);
1421   } else {
1422     __ set((intptr_t)os::get_polling_page(), L0);
1423   }
1424   __ relocate(relocInfo::poll_return_type);
1425   __ ld_ptr(L0, 0, G0);
1426   __ ret();
1427   __ delayed()->restore();
1428 }
1429 
1430 
1431 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1432   if (SafepointMechanism::uses_thread_local_poll()) {
1433     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), tmp->as_register());
1434   } else {
1435     __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1436   }
1437   if (info != NULL) {
1438     add_debug_info_for_branch(info);
1439   }
1440   int offset = __ offset();
1441 
1442   __ relocate(relocInfo::poll_type);
1443   __ ld_ptr(tmp->as_register(), 0, G0);
1444   return offset;
1445 }
1446 
1447 
1448 void LIR_Assembler::emit_static_call_stub() {
1449   address call_pc = __ pc();
1450   address stub = __ start_a_stub(call_stub_size());
1451   if (stub == NULL) {
1452     bailout("static call stub overflow");
1453     return;
1454   }
1455 
1456   int start = __ offset();
1457   __ relocate(static_stub_Relocation::spec(call_pc));
1458 
1459   __ set_metadata(NULL, G5);
1460   // must be set to -1 at code generation time
1461   AddressLiteral addrlit(-1);
1462   __ jump_to(addrlit, G3);
1463   __ delayed()->nop();
1464 
1465   assert(__ offset() - start <= call_stub_size(), "stub too big");
1466   __ end_a_stub();
1467 }
1468 
1469 
1470 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1471   if (opr1->is_single_fpu()) {
1472     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1473   } else if (opr1->is_double_fpu()) {
1474     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1475   } else if (opr1->is_single_cpu()) {
1476     if (opr2->is_constant()) {
1477       switch (opr2->as_constant_ptr()->type()) {
1478         case T_INT:
1479           { jint con = opr2->as_constant_ptr()->as_jint();
1480             if (Assembler::is_simm13(con)) {
1481               __ cmp(opr1->as_register(), con);
1482             } else {
1483               __ set(con, O7);
1484               __ cmp(opr1->as_register(), O7);
1485             }
1486           }
1487           break;
1488 
1489         case T_OBJECT:
1490           // there are only equal/notequal comparisions on objects
1491           { jobject con = opr2->as_constant_ptr()->as_jobject();
1492             if (con == NULL) {
1493               __ cmp(opr1->as_register(), 0);
1494             } else {
1495               jobject2reg(con, O7);
1496               __ cmp(opr1->as_register(), O7);
1497             }
1498           }
1499           break;
1500 
1501         default:
1502           ShouldNotReachHere();
1503           break;
1504       }
1505     } else {
1506       if (opr2->is_address()) {
1507         LIR_Address * addr = opr2->as_address_ptr();
1508         BasicType type = addr->type();
1509         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1510         else                    __ ld(as_Address(addr), O7);
1511         __ cmp(opr1->as_register(), O7);
1512       } else {
1513         __ cmp(opr1->as_register(), opr2->as_register());
1514       }
1515     }
1516   } else if (opr1->is_double_cpu()) {
1517     Register xlo = opr1->as_register_lo();
1518     Register xhi = opr1->as_register_hi();
1519     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1520       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1521       __ orcc(xhi, G0, G0);
1522     } else if (opr2->is_register()) {
1523       Register ylo = opr2->as_register_lo();
1524       Register yhi = opr2->as_register_hi();
1525       __ cmp(xlo, ylo);
1526     } else {
1527       ShouldNotReachHere();
1528     }
1529   } else if (opr1->is_address()) {
1530     LIR_Address * addr = opr1->as_address_ptr();
1531     BasicType type = addr->type();
1532     assert (opr2->is_constant(), "Checking");
1533     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1534     else                    __ ld(as_Address(addr), O7);
1535     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1536   } else {
1537     ShouldNotReachHere();
1538   }
1539 }
1540 
1541 
1542 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1543   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1544     bool is_unordered_less = (code == lir_ucmp_fd2i);
1545     if (left->is_single_fpu()) {
1546       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1547     } else if (left->is_double_fpu()) {
1548       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1549     } else {
1550       ShouldNotReachHere();
1551     }
1552   } else if (code == lir_cmp_l2i) {
1553     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1554   } else {
1555     ShouldNotReachHere();
1556   }
1557 }
1558 
1559 
1560 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1561   Assembler::Condition acond;
1562   switch (condition) {
1563     case lir_cond_equal:        acond = Assembler::equal;        break;
1564     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1565     case lir_cond_less:         acond = Assembler::less;         break;
1566     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1567     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1568     case lir_cond_greater:      acond = Assembler::greater;      break;
1569     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1570     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1571     default:                         ShouldNotReachHere();
1572   };
1573 
1574   if (opr1->is_constant() && opr1->type() == T_INT) {
1575     Register dest = result->as_register();
1576     // load up first part of constant before branch
1577     // and do the rest in the delay slot.
1578     if (!Assembler::is_simm13(opr1->as_jint())) {
1579       __ sethi(opr1->as_jint(), dest);
1580     }
1581   } else if (opr1->is_constant()) {
1582     const2reg(opr1, result, lir_patch_none, NULL);
1583   } else if (opr1->is_register()) {
1584     reg2reg(opr1, result);
1585   } else if (opr1->is_stack()) {
1586     stack2reg(opr1, result, result->type());
1587   } else {
1588     ShouldNotReachHere();
1589   }
1590   Label skip;
1591     if  (type == T_INT) {
1592       __ br(acond, false, Assembler::pt, skip);
1593     } else {
1594       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1595     }
1596   if (opr1->is_constant() && opr1->type() == T_INT) {
1597     Register dest = result->as_register();
1598     if (Assembler::is_simm13(opr1->as_jint())) {
1599       __ delayed()->or3(G0, opr1->as_jint(), dest);
1600     } else {
1601       // the sethi has been done above, so just put in the low 10 bits
1602       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1603     }
1604   } else {
1605     // can't do anything useful in the delay slot
1606     __ delayed()->nop();
1607   }
1608   if (opr2->is_constant()) {
1609     const2reg(opr2, result, lir_patch_none, NULL);
1610   } else if (opr2->is_register()) {
1611     reg2reg(opr2, result);
1612   } else if (opr2->is_stack()) {
1613     stack2reg(opr2, result, result->type());
1614   } else {
1615     ShouldNotReachHere();
1616   }
1617   __ bind(skip);
1618 }
1619 
1620 
1621 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1622   assert(info == NULL, "unused on this code path");
1623   assert(left->is_register(), "wrong items state");
1624   assert(dest->is_register(), "wrong items state");
1625 
1626   if (right->is_register()) {
1627     if (dest->is_float_kind()) {
1628 
1629       FloatRegister lreg, rreg, res;
1630       FloatRegisterImpl::Width w;
1631       if (right->is_single_fpu()) {
1632         w = FloatRegisterImpl::S;
1633         lreg = left->as_float_reg();
1634         rreg = right->as_float_reg();
1635         res  = dest->as_float_reg();
1636       } else {
1637         w = FloatRegisterImpl::D;
1638         lreg = left->as_double_reg();
1639         rreg = right->as_double_reg();
1640         res  = dest->as_double_reg();
1641       }
1642 
1643       switch (code) {
1644         case lir_add: __ fadd(w, lreg, rreg, res); break;
1645         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1646         case lir_mul: // fall through
1647         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1648         case lir_div: // fall through
1649         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1650         default: ShouldNotReachHere();
1651       }
1652 
1653     } else if (dest->is_double_cpu()) {
1654       Register dst_lo = dest->as_register_lo();
1655       Register op1_lo = left->as_pointer_register();
1656       Register op2_lo = right->as_pointer_register();
1657 
1658       switch (code) {
1659         case lir_add:
1660           __ add(op1_lo, op2_lo, dst_lo);
1661           break;
1662 
1663         case lir_sub:
1664           __ sub(op1_lo, op2_lo, dst_lo);
1665           break;
1666 
1667         default: ShouldNotReachHere();
1668       }
1669     } else {
1670       assert (right->is_single_cpu(), "Just Checking");
1671 
1672       Register lreg = left->as_register();
1673       Register res  = dest->as_register();
1674       Register rreg = right->as_register();
1675       switch (code) {
1676         case lir_add:  __ add  (lreg, rreg, res); break;
1677         case lir_sub:  __ sub  (lreg, rreg, res); break;
1678         case lir_mul:  __ mulx (lreg, rreg, res); break;
1679         default: ShouldNotReachHere();
1680       }
1681     }
1682   } else {
1683     assert (right->is_constant(), "must be constant");
1684 
1685     if (dest->is_single_cpu()) {
1686       Register lreg = left->as_register();
1687       Register res  = dest->as_register();
1688       int    simm13 = right->as_constant_ptr()->as_jint();
1689 
1690       switch (code) {
1691         case lir_add:  __ add  (lreg, simm13, res); break;
1692         case lir_sub:  __ sub  (lreg, simm13, res); break;
1693         case lir_mul:  __ mulx (lreg, simm13, res); break;
1694         default: ShouldNotReachHere();
1695       }
1696     } else {
1697       Register lreg = left->as_pointer_register();
1698       Register res  = dest->as_register_lo();
1699       long con = right->as_constant_ptr()->as_jlong();
1700       assert(Assembler::is_simm13(con), "must be simm13");
1701 
1702       switch (code) {
1703         case lir_add:  __ add  (lreg, (int)con, res); break;
1704         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1705         case lir_mul:  __ mulx (lreg, (int)con, res); break;
1706         default: ShouldNotReachHere();
1707       }
1708     }
1709   }
1710 }
1711 
1712 
1713 void LIR_Assembler::fpop() {
1714   // do nothing
1715 }
1716 
1717 
1718 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1719   switch (code) {
1720     case lir_tan: {
1721       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1722       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1723       break;
1724     }
1725     case lir_sqrt: {
1726       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1727       FloatRegister src_reg = value->as_double_reg();
1728       FloatRegister dst_reg = dest->as_double_reg();
1729       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1730       break;
1731     }
1732     case lir_abs: {
1733       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1734       FloatRegister src_reg = value->as_double_reg();
1735       FloatRegister dst_reg = dest->as_double_reg();
1736       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1737       break;
1738     }
1739     default: {
1740       ShouldNotReachHere();
1741       break;
1742     }
1743   }
1744 }
1745 
1746 
1747 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1748   if (right->is_constant()) {
1749     if (dest->is_single_cpu()) {
1750       int simm13 = right->as_constant_ptr()->as_jint();
1751       switch (code) {
1752         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1753         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1754         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1755         default: ShouldNotReachHere();
1756       }
1757     } else {
1758       long c = right->as_constant_ptr()->as_jlong();
1759       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1760       int simm13 = (int)c;
1761       switch (code) {
1762         case lir_logic_and:
1763           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1764           break;
1765 
1766         case lir_logic_or:
1767           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1768           break;
1769 
1770         case lir_logic_xor:
1771           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1772           break;
1773 
1774         default: ShouldNotReachHere();
1775       }
1776     }
1777   } else {
1778     assert(right->is_register(), "right should be in register");
1779 
1780     if (dest->is_single_cpu()) {
1781       switch (code) {
1782         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1783         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1784         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1785         default: ShouldNotReachHere();
1786       }
1787     } else {
1788       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1789                                                                         left->as_register_lo();
1790       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1791                                                                           right->as_register_lo();
1792 
1793       switch (code) {
1794         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1795         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1796         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1797         default: ShouldNotReachHere();
1798       }
1799     }
1800   }
1801 }
1802 
1803 
1804 int LIR_Assembler::shift_amount(BasicType t) {
1805   int elem_size = type2aelembytes(t);
1806   switch (elem_size) {
1807     case 1 : return 0;
1808     case 2 : return 1;
1809     case 4 : return 2;
1810     case 8 : return 3;
1811   }
1812   ShouldNotReachHere();
1813   return -1;
1814 }
1815 
1816 
1817 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1818   assert(exceptionOop->as_register() == Oexception, "should match");
1819   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
1820 
1821   info->add_register_oop(exceptionOop);
1822 
1823   // reuse the debug info from the safepoint poll for the throw op itself
1824   address pc_for_athrow  = __ pc();
1825   int pc_for_athrow_offset = __ offset();
1826   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
1827   __ set(pc_for_athrow, Oissuing_pc, rspec);
1828   add_call_info(pc_for_athrow_offset, info); // for exception handler
1829 
1830   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
1831   __ delayed()->nop();
1832 }
1833 
1834 
1835 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1836   assert(exceptionOop->as_register() == Oexception, "should match");
1837 
1838   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
1839   __ delayed()->nop();
1840 }
1841 
1842 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1843   Register src = op->src()->as_register();
1844   Register dst = op->dst()->as_register();
1845   Register src_pos = op->src_pos()->as_register();
1846   Register dst_pos = op->dst_pos()->as_register();
1847   Register length  = op->length()->as_register();
1848   Register tmp = op->tmp()->as_register();
1849   Register tmp2 = O7;
1850 
1851   int flags = op->flags();
1852   ciArrayKlass* default_type = op->expected_type();
1853   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1854   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1855 
1856   // higher 32bits must be null
1857   __ sra(dst_pos, 0, dst_pos);
1858   __ sra(src_pos, 0, src_pos);
1859   __ sra(length, 0, length);
1860 
1861   // set up the arraycopy stub information
1862   ArrayCopyStub* stub = op->stub();
1863 
1864   // always do stub if no type information is available.  it's ok if
1865   // the known type isn't loaded since the code sanity checks
1866   // in debug mode and the type isn't required when we know the exact type
1867   // also check that the type is an array type.
1868   if (op->expected_type() == NULL) {
1869     __ mov(src,     O0);
1870     __ mov(src_pos, O1);
1871     __ mov(dst,     O2);
1872     __ mov(dst_pos, O3);
1873     __ mov(length,  O4);
1874     address copyfunc_addr = StubRoutines::generic_arraycopy();
1875 
1876     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
1877       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
1878     } else {
1879 #ifndef PRODUCT
1880       if (PrintC1Statistics) {
1881         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
1882         __ inc_counter(counter, G1, G3);
1883       }
1884 #endif
1885       __ call_VM_leaf(tmp, copyfunc_addr);
1886     }
1887 
1888     if (copyfunc_addr != NULL) {
1889       __ xor3(O0, -1, tmp);
1890       __ sub(length, tmp, length);
1891       __ add(src_pos, tmp, src_pos);
1892       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
1893       __ delayed()->add(dst_pos, tmp, dst_pos);
1894     } else {
1895       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
1896       __ delayed()->nop();
1897     }
1898     __ bind(*stub->continuation());
1899     return;
1900   }
1901 
1902   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
1903 
1904   // make sure src and dst are non-null and load array length
1905   if (flags & LIR_OpArrayCopy::src_null_check) {
1906     __ tst(src);
1907     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1908     __ delayed()->nop();
1909   }
1910 
1911   if (flags & LIR_OpArrayCopy::dst_null_check) {
1912     __ tst(dst);
1913     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1914     __ delayed()->nop();
1915   }
1916 
1917   // If the compiler was not able to prove that exact type of the source or the destination
1918   // of the arraycopy is an array type, check at runtime if the source or the destination is
1919   // an instance type.
1920   if (flags & LIR_OpArrayCopy::type_check) {
1921     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
1922       __ load_klass(dst, tmp);
1923       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1924       __ cmp(tmp2, Klass::_lh_neutral_value);
1925       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1926       __ delayed()->nop();
1927     }
1928 
1929     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
1930       __ load_klass(src, tmp);
1931       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1932       __ cmp(tmp2, Klass::_lh_neutral_value);
1933       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1934       __ delayed()->nop();
1935     }
1936   }
1937 
1938   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1939     // test src_pos register
1940     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
1941     __ delayed()->nop();
1942   }
1943 
1944   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1945     // test dst_pos register
1946     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
1947     __ delayed()->nop();
1948   }
1949 
1950   if (flags & LIR_OpArrayCopy::length_positive_check) {
1951     // make sure length isn't negative
1952     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
1953     __ delayed()->nop();
1954   }
1955 
1956   if (flags & LIR_OpArrayCopy::src_range_check) {
1957     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
1958     __ add(length, src_pos, tmp);
1959     __ cmp(tmp2, tmp);
1960     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1961     __ delayed()->nop();
1962   }
1963 
1964   if (flags & LIR_OpArrayCopy::dst_range_check) {
1965     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
1966     __ add(length, dst_pos, tmp);
1967     __ cmp(tmp2, tmp);
1968     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1969     __ delayed()->nop();
1970   }
1971 
1972   int shift = shift_amount(basic_type);
1973 
1974   if (flags & LIR_OpArrayCopy::type_check) {
1975     // We don't know the array types are compatible
1976     if (basic_type != T_OBJECT) {
1977       // Simple test for basic type arrays
1978       if (UseCompressedClassPointers) {
1979         // We don't need decode because we just need to compare
1980         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
1981         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1982         __ cmp(tmp, tmp2);
1983         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1984       } else {
1985         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
1986         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1987         __ cmp(tmp, tmp2);
1988         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1989       }
1990       __ delayed()->nop();
1991     } else {
1992       // For object arrays, if src is a sub class of dst then we can
1993       // safely do the copy.
1994       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
1995 
1996       Label cont, slow;
1997       assert_different_registers(tmp, tmp2, G3, G1);
1998 
1999       __ load_klass(src, G3);
2000       __ load_klass(dst, G1);
2001 
2002       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2003 
2004       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2005       __ delayed()->nop();
2006 
2007       __ cmp(G3, 0);
2008       if (copyfunc_addr != NULL) { // use stub if available
2009         // src is not a sub class of dst so we have to do a
2010         // per-element check.
2011         __ br(Assembler::notEqual, false, Assembler::pt, cont);
2012         __ delayed()->nop();
2013 
2014         __ bind(slow);
2015 
2016         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2017         if ((flags & mask) != mask) {
2018           // Check that at least both of them object arrays.
2019           assert(flags & mask, "one of the two should be known to be an object array");
2020 
2021           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2022             __ load_klass(src, tmp);
2023           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2024             __ load_klass(dst, tmp);
2025           }
2026           int lh_offset = in_bytes(Klass::layout_helper_offset());
2027 
2028           __ lduw(tmp, lh_offset, tmp2);
2029 
2030           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2031           __ set(objArray_lh, tmp);
2032           __ cmp(tmp, tmp2);
2033           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2034           __ delayed()->nop();
2035         }
2036 
2037         Register src_ptr = O0;
2038         Register dst_ptr = O1;
2039         Register len     = O2;
2040         Register chk_off = O3;
2041         Register super_k = O4;
2042 
2043         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2044         if (shift == 0) {
2045           __ add(src_ptr, src_pos, src_ptr);
2046         } else {
2047           __ sll(src_pos, shift, tmp);
2048           __ add(src_ptr, tmp, src_ptr);
2049         }
2050 
2051         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2052         if (shift == 0) {
2053           __ add(dst_ptr, dst_pos, dst_ptr);
2054         } else {
2055           __ sll(dst_pos, shift, tmp);
2056           __ add(dst_ptr, tmp, dst_ptr);
2057         }
2058         __ mov(length, len);
2059         __ load_klass(dst, tmp);
2060 
2061         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2062         __ ld_ptr(tmp, ek_offset, super_k);
2063 
2064         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2065         __ lduw(super_k, sco_offset, chk_off);
2066 
2067         __ call_VM_leaf(tmp, copyfunc_addr);
2068 
2069 #ifndef PRODUCT
2070         if (PrintC1Statistics) {
2071           Label failed;
2072           __ br_notnull_short(O0, Assembler::pn, failed);
2073           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2074           __ bind(failed);
2075         }
2076 #endif
2077 
2078         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2079         __ delayed()->xor3(O0, -1, tmp);
2080 
2081 #ifndef PRODUCT
2082         if (PrintC1Statistics) {
2083           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2084         }
2085 #endif
2086 
2087         __ sub(length, tmp, length);
2088         __ add(src_pos, tmp, src_pos);
2089         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2090         __ delayed()->add(dst_pos, tmp, dst_pos);
2091 
2092         __ bind(cont);
2093       } else {
2094         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2095         __ delayed()->nop();
2096         __ bind(cont);
2097       }
2098     }
2099   }
2100 
2101 #ifdef ASSERT
2102   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2103     // Sanity check the known type with the incoming class.  For the
2104     // primitive case the types must match exactly with src.klass and
2105     // dst.klass each exactly matching the default type.  For the
2106     // object array case, if no type check is needed then either the
2107     // dst type is exactly the expected type and the src type is a
2108     // subtype which we can't check or src is the same array as dst
2109     // but not necessarily exactly of type default_type.
2110     Label known_ok, halt;
2111     metadata2reg(op->expected_type()->constant_encoding(), tmp);
2112     if (UseCompressedClassPointers) {
2113       // tmp holds the default type. It currently comes uncompressed after the
2114       // load of a constant, so encode it.
2115       __ encode_klass_not_null(tmp);
2116       // load the raw value of the dst klass, since we will be comparing
2117       // uncompressed values directly.
2118       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2119       if (basic_type != T_OBJECT) {
2120         __ cmp(tmp, tmp2);
2121         __ br(Assembler::notEqual, false, Assembler::pn, halt);
2122         // load the raw value of the src klass.
2123         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2124         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2125       } else {
2126         __ cmp(tmp, tmp2);
2127         __ br(Assembler::equal, false, Assembler::pn, known_ok);
2128         __ delayed()->cmp(src, dst);
2129         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2130         __ delayed()->nop();
2131       }
2132     } else {
2133       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2134       if (basic_type != T_OBJECT) {
2135         __ cmp(tmp, tmp2);
2136         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2137         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2138         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2139       } else {
2140         __ cmp(tmp, tmp2);
2141         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2142         __ delayed()->cmp(src, dst);
2143         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2144         __ delayed()->nop();
2145       }
2146     }
2147     __ bind(halt);
2148     __ stop("incorrect type information in arraycopy");
2149     __ bind(known_ok);
2150   }
2151 #endif
2152 
2153 #ifndef PRODUCT
2154   if (PrintC1Statistics) {
2155     address counter = Runtime1::arraycopy_count_address(basic_type);
2156     __ inc_counter(counter, G1, G3);
2157   }
2158 #endif
2159 
2160   Register src_ptr = O0;
2161   Register dst_ptr = O1;
2162   Register len     = O2;
2163 
2164   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2165   if (shift == 0) {
2166     __ add(src_ptr, src_pos, src_ptr);
2167   } else {
2168     __ sll(src_pos, shift, tmp);
2169     __ add(src_ptr, tmp, src_ptr);
2170   }
2171 
2172   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2173   if (shift == 0) {
2174     __ add(dst_ptr, dst_pos, dst_ptr);
2175   } else {
2176     __ sll(dst_pos, shift, tmp);
2177     __ add(dst_ptr, tmp, dst_ptr);
2178   }
2179 
2180   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2181   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2182   const char *name;
2183   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2184 
2185   // arraycopy stubs takes a length in number of elements, so don't scale it.
2186   __ mov(length, len);
2187   __ call_VM_leaf(tmp, entry);
2188 
2189   __ bind(*stub->continuation());
2190 }
2191 
2192 
2193 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2194   if (dest->is_single_cpu()) {
2195     if (left->type() == T_OBJECT) {
2196       switch (code) {
2197         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2198         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2199         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2200         default: ShouldNotReachHere();
2201       }
2202     } else
2203       switch (code) {
2204         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2205         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2206         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2207         default: ShouldNotReachHere();
2208       }
2209   } else {
2210     switch (code) {
2211       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2212       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2213       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2214       default: ShouldNotReachHere();
2215     }
2216   }
2217 }
2218 
2219 
2220 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2221   if (left->type() == T_OBJECT) {
2222     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2223     Register l = left->as_register();
2224     Register d = dest->as_register_lo();
2225     switch (code) {
2226       case lir_shl:  __ sllx  (l, count, d); break;
2227       case lir_shr:  __ srax  (l, count, d); break;
2228       case lir_ushr: __ srlx  (l, count, d); break;
2229       default: ShouldNotReachHere();
2230     }
2231     return;
2232   }
2233 
2234   if (dest->is_single_cpu()) {
2235     count = count & 0x1F; // Java spec
2236     switch (code) {
2237       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2238       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2239       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2240       default: ShouldNotReachHere();
2241     }
2242   } else if (dest->is_double_cpu()) {
2243     count = count & 63; // Java spec
2244     switch (code) {
2245       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2246       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2247       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2248       default: ShouldNotReachHere();
2249     }
2250   } else {
2251     ShouldNotReachHere();
2252   }
2253 }
2254 
2255 
2256 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2257   assert(op->tmp1()->as_register()  == G1 &&
2258          op->tmp2()->as_register()  == G3 &&
2259          op->tmp3()->as_register()  == G4 &&
2260          op->obj()->as_register()   == O0 &&
2261          op->klass()->as_register() == G5, "must be");
2262   if (op->init_check()) {
2263     __ ldub(op->klass()->as_register(),
2264           in_bytes(InstanceKlass::init_state_offset()),
2265           op->tmp1()->as_register());
2266     add_debug_info_for_null_check_here(op->stub()->info());
2267     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2268     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2269     __ delayed()->nop();
2270   }
2271   __ allocate_object(op->obj()->as_register(),
2272                      op->tmp1()->as_register(),
2273                      op->tmp2()->as_register(),
2274                      op->tmp3()->as_register(),
2275                      op->header_size(),
2276                      op->object_size(),
2277                      op->klass()->as_register(),
2278                      *op->stub()->entry());
2279   __ bind(*op->stub()->continuation());
2280   __ verify_oop(op->obj()->as_register());
2281 }
2282 
2283 
2284 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2285   assert(op->tmp1()->as_register()  == G1 &&
2286          op->tmp2()->as_register()  == G3 &&
2287          op->tmp3()->as_register()  == G4 &&
2288          op->tmp4()->as_register()  == O1 &&
2289          op->klass()->as_register() == G5, "must be");
2290 
2291   __ signx(op->len()->as_register());
2292   if (UseSlowPath ||
2293       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2294       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2295     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2296     __ delayed()->nop();
2297   } else {
2298     __ allocate_array(op->obj()->as_register(),
2299                       op->len()->as_register(),
2300                       op->tmp1()->as_register(),
2301                       op->tmp2()->as_register(),
2302                       op->tmp3()->as_register(),
2303                       arrayOopDesc::header_size(op->type()),
2304                       type2aelembytes(op->type()),
2305                       op->klass()->as_register(),
2306                       *op->stub()->entry());
2307   }
2308   __ bind(*op->stub()->continuation());
2309 }
2310 
2311 
2312 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2313                                         ciMethodData *md, ciProfileData *data,
2314                                         Register recv, Register tmp1, Label* update_done) {
2315   uint i;
2316   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2317     Label next_test;
2318     // See if the receiver is receiver[n].
2319     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2320                           mdo_offset_bias);
2321     __ ld_ptr(receiver_addr, tmp1);
2322     __ verify_klass_ptr(tmp1);
2323     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2324     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2325                       mdo_offset_bias);
2326     __ ld_ptr(data_addr, tmp1);
2327     __ add(tmp1, DataLayout::counter_increment, tmp1);
2328     __ st_ptr(tmp1, data_addr);
2329     __ ba(*update_done);
2330     __ delayed()->nop();
2331     __ bind(next_test);
2332   }
2333 
2334   // Didn't find receiver; find next empty slot and fill it in
2335   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2336     Label next_test;
2337     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2338                       mdo_offset_bias);
2339     __ ld_ptr(recv_addr, tmp1);
2340     __ br_notnull_short(tmp1, Assembler::pt, next_test);
2341     __ st_ptr(recv, recv_addr);
2342     __ set(DataLayout::counter_increment, tmp1);
2343     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2344               mdo_offset_bias);
2345     __ ba(*update_done);
2346     __ delayed()->nop();
2347     __ bind(next_test);
2348   }
2349 }
2350 
2351 
2352 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2353                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2354   md = method->method_data_or_null();
2355   assert(md != NULL, "Sanity");
2356   data = md->bci_to_data(bci);
2357   assert(data != NULL,       "need data for checkcast");
2358   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2359   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2360     // The offset is large so bias the mdo by the base of the slot so
2361     // that the ld can use simm13s to reference the slots of the data
2362     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2363   }
2364 }
2365 
2366 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2367   // we always need a stub for the failure case.
2368   CodeStub* stub = op->stub();
2369   Register obj = op->object()->as_register();
2370   Register k_RInfo = op->tmp1()->as_register();
2371   Register klass_RInfo = op->tmp2()->as_register();
2372   Register dst = op->result_opr()->as_register();
2373   Register Rtmp1 = op->tmp3()->as_register();
2374   ciKlass* k = op->klass();
2375 
2376 
2377   if (obj == k_RInfo) {
2378     k_RInfo = klass_RInfo;
2379     klass_RInfo = obj;
2380   }
2381 
2382   ciMethodData* md;
2383   ciProfileData* data;
2384   int mdo_offset_bias = 0;
2385   if (op->should_profile()) {
2386     ciMethod* method = op->profiled_method();
2387     assert(method != NULL, "Should have method");
2388     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2389 
2390     Label not_null;
2391     __ br_notnull_short(obj, Assembler::pn, not_null);
2392     Register mdo      = k_RInfo;
2393     Register data_val = Rtmp1;
2394     metadata2reg(md->constant_encoding(), mdo);
2395     if (mdo_offset_bias > 0) {
2396       __ set(mdo_offset_bias, data_val);
2397       __ add(mdo, data_val, mdo);
2398     }
2399     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2400     __ ldub(flags_addr, data_val);
2401     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2402     __ stb(data_val, flags_addr);
2403     __ ba(*obj_is_null);
2404     __ delayed()->nop();
2405     __ bind(not_null);
2406   } else {
2407     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2408     __ delayed()->nop();
2409   }
2410 
2411   Label profile_cast_failure, profile_cast_success;
2412   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2413   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2414 
2415   // patching may screw with our temporaries on sparc,
2416   // so let's do it before loading the class
2417   if (k->is_loaded()) {
2418     metadata2reg(k->constant_encoding(), k_RInfo);
2419   } else {
2420     klass2reg_with_patching(k_RInfo, op->info_for_patch());
2421   }
2422   assert(obj != k_RInfo, "must be different");
2423 
2424   // get object class
2425   // not a safepoint as obj null check happens earlier
2426   __ load_klass(obj, klass_RInfo);
2427   if (op->fast_check()) {
2428     assert_different_registers(klass_RInfo, k_RInfo);
2429     __ cmp(k_RInfo, klass_RInfo);
2430     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2431     __ delayed()->nop();
2432   } else {
2433     bool need_slow_path = true;
2434     if (k->is_loaded()) {
2435       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2436         need_slow_path = false;
2437       // perform the fast part of the checking logic
2438       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2439                                        (need_slow_path ? success_target : NULL),
2440                                        failure_target, NULL,
2441                                        RegisterOrConstant(k->super_check_offset()));
2442     } else {
2443       // perform the fast part of the checking logic
2444       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2445                                        failure_target, NULL);
2446     }
2447     if (need_slow_path) {
2448       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2449       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2450       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2451       __ delayed()->nop();
2452       __ cmp(G3, 0);
2453       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2454       __ delayed()->nop();
2455       // Fall through to success case
2456     }
2457   }
2458 
2459   if (op->should_profile()) {
2460     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2461     assert_different_registers(obj, mdo, recv, tmp1);
2462     __ bind(profile_cast_success);
2463     metadata2reg(md->constant_encoding(), mdo);
2464     if (mdo_offset_bias > 0) {
2465       __ set(mdo_offset_bias, tmp1);
2466       __ add(mdo, tmp1, mdo);
2467     }
2468     __ load_klass(obj, recv);
2469     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2470     // Jump over the failure case
2471     __ ba(*success);
2472     __ delayed()->nop();
2473     // Cast failure case
2474     __ bind(profile_cast_failure);
2475     metadata2reg(md->constant_encoding(), mdo);
2476     if (mdo_offset_bias > 0) {
2477       __ set(mdo_offset_bias, tmp1);
2478       __ add(mdo, tmp1, mdo);
2479     }
2480     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2481     __ ld_ptr(data_addr, tmp1);
2482     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2483     __ st_ptr(tmp1, data_addr);
2484     __ ba(*failure);
2485     __ delayed()->nop();
2486   }
2487   __ ba(*success);
2488   __ delayed()->nop();
2489 }
2490 
2491 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2492   LIR_Code code = op->code();
2493   if (code == lir_store_check) {
2494     Register value = op->object()->as_register();
2495     Register array = op->array()->as_register();
2496     Register k_RInfo = op->tmp1()->as_register();
2497     Register klass_RInfo = op->tmp2()->as_register();
2498     Register Rtmp1 = op->tmp3()->as_register();
2499 
2500     __ verify_oop(value);
2501     CodeStub* stub = op->stub();
2502     // check if it needs to be profiled
2503     ciMethodData* md;
2504     ciProfileData* data;
2505     int mdo_offset_bias = 0;
2506     if (op->should_profile()) {
2507       ciMethod* method = op->profiled_method();
2508       assert(method != NULL, "Should have method");
2509       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2510     }
2511     Label profile_cast_success, profile_cast_failure, done;
2512     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2513     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2514 
2515     if (op->should_profile()) {
2516       Label not_null;
2517       __ br_notnull_short(value, Assembler::pn, not_null);
2518       Register mdo      = k_RInfo;
2519       Register data_val = Rtmp1;
2520       metadata2reg(md->constant_encoding(), mdo);
2521       if (mdo_offset_bias > 0) {
2522         __ set(mdo_offset_bias, data_val);
2523         __ add(mdo, data_val, mdo);
2524       }
2525       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2526       __ ldub(flags_addr, data_val);
2527       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2528       __ stb(data_val, flags_addr);
2529       __ ba_short(done);
2530       __ bind(not_null);
2531     } else {
2532       __ br_null_short(value, Assembler::pn, done);
2533     }
2534     add_debug_info_for_null_check_here(op->info_for_exception());
2535     __ load_klass(array, k_RInfo);
2536     __ load_klass(value, klass_RInfo);
2537 
2538     // get instance klass
2539     __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
2540     // perform the fast part of the checking logic
2541     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2542 
2543     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2544     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2545     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2546     __ delayed()->nop();
2547     __ cmp(G3, 0);
2548     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2549     __ delayed()->nop();
2550     // fall through to the success case
2551 
2552     if (op->should_profile()) {
2553       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2554       assert_different_registers(value, mdo, recv, tmp1);
2555       __ bind(profile_cast_success);
2556       metadata2reg(md->constant_encoding(), mdo);
2557       if (mdo_offset_bias > 0) {
2558         __ set(mdo_offset_bias, tmp1);
2559         __ add(mdo, tmp1, mdo);
2560       }
2561       __ load_klass(value, recv);
2562       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2563       __ ba_short(done);
2564       // Cast failure case
2565       __ bind(profile_cast_failure);
2566       metadata2reg(md->constant_encoding(), mdo);
2567       if (mdo_offset_bias > 0) {
2568         __ set(mdo_offset_bias, tmp1);
2569         __ add(mdo, tmp1, mdo);
2570       }
2571       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2572       __ ld_ptr(data_addr, tmp1);
2573       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2574       __ st_ptr(tmp1, data_addr);
2575       __ ba(*stub->entry());
2576       __ delayed()->nop();
2577     }
2578     __ bind(done);
2579   } else if (code == lir_checkcast) {
2580     Register obj = op->object()->as_register();
2581     Register dst = op->result_opr()->as_register();
2582     Label success;
2583     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2584     __ bind(success);
2585     __ mov(obj, dst);
2586   } else if (code == lir_instanceof) {
2587     Register obj = op->object()->as_register();
2588     Register dst = op->result_opr()->as_register();
2589     Label success, failure, done;
2590     emit_typecheck_helper(op, &success, &failure, &failure);
2591     __ bind(failure);
2592     __ set(0, dst);
2593     __ ba_short(done);
2594     __ bind(success);
2595     __ set(1, dst);
2596     __ bind(done);
2597   } else {
2598     ShouldNotReachHere();
2599   }
2600 
2601 }
2602 
2603 
2604 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2605   if (op->code() == lir_cas_long) {
2606     assert(VM_Version::supports_cx8(), "wrong machine");
2607     Register addr = op->addr()->as_pointer_register();
2608     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2609     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2610     Register new_value_lo = op->new_value()->as_register_lo();
2611     Register new_value_hi = op->new_value()->as_register_hi();
2612     Register t1 = op->tmp1()->as_register();
2613     Register t2 = op->tmp2()->as_register();
2614     __ mov(cmp_value_lo, t1);
2615     __ mov(new_value_lo, t2);
2616     // perform the compare and swap operation
2617     __ casx(addr, t1, t2);
2618     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2619     // overwritten with the original value in "addr" and will be equal to t1.
2620     __ cmp(t1, t2);
2621   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2622     Register addr = op->addr()->as_pointer_register();
2623     Register cmp_value = op->cmp_value()->as_register();
2624     Register new_value = op->new_value()->as_register();
2625     Register t1 = op->tmp1()->as_register();
2626     Register t2 = op->tmp2()->as_register();
2627     __ mov(cmp_value, t1);
2628     __ mov(new_value, t2);
2629     if (op->code() == lir_cas_obj) {
2630       if (UseCompressedOops) {
2631         __ encode_heap_oop(t1);
2632         __ encode_heap_oop(t2);
2633         __ cas(addr, t1, t2);
2634       } else {
2635         __ cas_ptr(addr, t1, t2);
2636       }
2637     } else {
2638       __ cas(addr, t1, t2);
2639     }
2640     __ cmp(t1, t2);
2641   } else {
2642     Unimplemented();
2643   }
2644 }
2645 
2646 void LIR_Assembler::set_24bit_FPU() {
2647   Unimplemented();
2648 }
2649 
2650 
2651 void LIR_Assembler::reset_FPU() {
2652   Unimplemented();
2653 }
2654 
2655 
2656 void LIR_Assembler::breakpoint() {
2657   __ breakpoint_trap();
2658 }
2659 
2660 
2661 void LIR_Assembler::push(LIR_Opr opr) {
2662   Unimplemented();
2663 }
2664 
2665 
2666 void LIR_Assembler::pop(LIR_Opr opr) {
2667   Unimplemented();
2668 }
2669 
2670 
2671 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2672   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2673   Register dst = dst_opr->as_register();
2674   Register reg = mon_addr.base();
2675   int offset = mon_addr.disp();
2676   // compute pointer to BasicLock
2677   if (mon_addr.is_simm13()) {
2678     __ add(reg, offset, dst);
2679   } else {
2680     __ set(offset, dst);
2681     __ add(dst, reg, dst);
2682   }
2683 }
2684 
2685 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2686   assert(op->crc()->is_single_cpu(),  "crc must be register");
2687   assert(op->val()->is_single_cpu(),  "byte value must be register");
2688   assert(op->result_opr()->is_single_cpu(), "result must be register");
2689   Register crc = op->crc()->as_register();
2690   Register val = op->val()->as_register();
2691   Register table = op->result_opr()->as_register();
2692   Register res   = op->result_opr()->as_register();
2693 
2694   assert_different_registers(val, crc, table);
2695 
2696   __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
2697   __ not1(crc);
2698   __ clruwu(crc);
2699   __ update_byte_crc32(crc, val, table);
2700   __ not1(crc);
2701 
2702   __ mov(crc, res);
2703 }
2704 
2705 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2706   Register obj = op->obj_opr()->as_register();
2707   Register hdr = op->hdr_opr()->as_register();
2708   Register lock = op->lock_opr()->as_register();
2709 
2710   // obj may not be an oop
2711   if (op->code() == lir_lock) {
2712     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2713     if (UseFastLocking) {
2714       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2715       // add debug info for NullPointerException only if one is possible
2716       if (op->info() != NULL) {
2717         add_debug_info_for_null_check_here(op->info());
2718       }
2719       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2720     } else {
2721       // always do slow locking
2722       // note: the slow locking code could be inlined here, however if we use
2723       //       slow locking, speed doesn't matter anyway and this solution is
2724       //       simpler and requires less duplicated code - additionally, the
2725       //       slow locking code is the same in either case which simplifies
2726       //       debugging
2727       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2728       __ delayed()->nop();
2729     }
2730   } else {
2731     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2732     if (UseFastLocking) {
2733       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2734       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2735     } else {
2736       // always do slow unlocking
2737       // note: the slow unlocking code could be inlined here, however if we use
2738       //       slow unlocking, speed doesn't matter anyway and this solution is
2739       //       simpler and requires less duplicated code - additionally, the
2740       //       slow unlocking code is the same in either case which simplifies
2741       //       debugging
2742       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2743       __ delayed()->nop();
2744     }
2745   }
2746   __ bind(*op->stub()->continuation());
2747 }
2748 
2749 
2750 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2751   ciMethod* method = op->profiled_method();
2752   int bci          = op->profiled_bci();
2753   ciMethod* callee = op->profiled_callee();
2754 
2755   // Update counter for all call types
2756   ciMethodData* md = method->method_data_or_null();
2757   assert(md != NULL, "Sanity");
2758   ciProfileData* data = md->bci_to_data(bci);
2759   assert(data->is_CounterData(), "need CounterData for calls");
2760   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2761   Register mdo  = op->mdo()->as_register();
2762   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2763   Register tmp1 = op->tmp1()->as_register_lo();
2764   metadata2reg(md->constant_encoding(), mdo);
2765   int mdo_offset_bias = 0;
2766   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2767                             data->size_in_bytes())) {
2768     // The offset is large so bias the mdo by the base of the slot so
2769     // that the ld can use simm13s to reference the slots of the data
2770     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2771     __ set(mdo_offset_bias, O7);
2772     __ add(mdo, O7, mdo);
2773   }
2774 
2775   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2776   Bytecodes::Code bc = method->java_code_at_bci(bci);
2777   const bool callee_is_static = callee->is_loaded() && callee->is_static();
2778   // Perform additional virtual call profiling for invokevirtual and
2779   // invokeinterface bytecodes
2780   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2781       !callee_is_static &&  // required for optimized MH invokes
2782       C1ProfileVirtualCalls) {
2783     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2784     Register recv = op->recv()->as_register();
2785     assert_different_registers(mdo, tmp1, recv);
2786     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2787     ciKlass* known_klass = op->known_holder();
2788     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2789       // We know the type that will be seen at this call site; we can
2790       // statically update the MethodData* rather than needing to do
2791       // dynamic tests on the receiver type
2792 
2793       // NOTE: we should probably put a lock around this search to
2794       // avoid collisions by concurrent compilations
2795       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2796       uint i;
2797       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2798         ciKlass* receiver = vc_data->receiver(i);
2799         if (known_klass->equals(receiver)) {
2800           Address data_addr(mdo, md->byte_offset_of_slot(data,
2801                                                          VirtualCallData::receiver_count_offset(i)) -
2802                             mdo_offset_bias);
2803           __ ld_ptr(data_addr, tmp1);
2804           __ add(tmp1, DataLayout::counter_increment, tmp1);
2805           __ st_ptr(tmp1, data_addr);
2806           return;
2807         }
2808       }
2809 
2810       // Receiver type not found in profile data; select an empty slot
2811 
2812       // Note that this is less efficient than it should be because it
2813       // always does a write to the receiver part of the
2814       // VirtualCallData rather than just the first time
2815       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2816         ciKlass* receiver = vc_data->receiver(i);
2817         if (receiver == NULL) {
2818           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2819                             mdo_offset_bias);
2820           metadata2reg(known_klass->constant_encoding(), tmp1);
2821           __ st_ptr(tmp1, recv_addr);
2822           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2823                             mdo_offset_bias);
2824           __ ld_ptr(data_addr, tmp1);
2825           __ add(tmp1, DataLayout::counter_increment, tmp1);
2826           __ st_ptr(tmp1, data_addr);
2827           return;
2828         }
2829       }
2830     } else {
2831       __ load_klass(recv, recv);
2832       Label update_done;
2833       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2834       // Receiver did not match any saved receiver and there is no empty row for it.
2835       // Increment total counter to indicate polymorphic case.
2836       __ ld_ptr(counter_addr, tmp1);
2837       __ add(tmp1, DataLayout::counter_increment, tmp1);
2838       __ st_ptr(tmp1, counter_addr);
2839 
2840       __ bind(update_done);
2841     }
2842   } else {
2843     // Static call
2844     __ ld_ptr(counter_addr, tmp1);
2845     __ add(tmp1, DataLayout::counter_increment, tmp1);
2846     __ st_ptr(tmp1, counter_addr);
2847   }
2848 }
2849 
2850 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2851   Register obj = op->obj()->as_register();
2852   Register tmp1 = op->tmp()->as_pointer_register();
2853   Register tmp2 = G1;
2854   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2855   ciKlass* exact_klass = op->exact_klass();
2856   intptr_t current_klass = op->current_klass();
2857   bool not_null = op->not_null();
2858   bool no_conflict = op->no_conflict();
2859 
2860   Label update, next, none;
2861 
2862   bool do_null = !not_null;
2863   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2864   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2865 
2866   assert(do_null || do_update, "why are we here?");
2867   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2868 
2869   __ verify_oop(obj);
2870 
2871   if (tmp1 != obj) {
2872     __ mov(obj, tmp1);
2873   }
2874   if (do_null) {
2875     __ br_notnull_short(tmp1, Assembler::pt, update);
2876     if (!TypeEntries::was_null_seen(current_klass)) {
2877       __ ld_ptr(mdo_addr, tmp1);
2878       __ or3(tmp1, TypeEntries::null_seen, tmp1);
2879       __ st_ptr(tmp1, mdo_addr);
2880     }
2881     if (do_update) {
2882       __ ba(next);
2883       __ delayed()->nop();
2884     }
2885 #ifdef ASSERT
2886   } else {
2887     __ br_notnull_short(tmp1, Assembler::pt, update);
2888     __ stop("unexpect null obj");
2889 #endif
2890   }
2891 
2892   __ bind(update);
2893 
2894   if (do_update) {
2895 #ifdef ASSERT
2896     if (exact_klass != NULL) {
2897       Label ok;
2898       __ load_klass(tmp1, tmp1);
2899       metadata2reg(exact_klass->constant_encoding(), tmp2);
2900       __ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
2901       __ stop("exact klass and actual klass differ");
2902       __ bind(ok);
2903     }
2904 #endif
2905 
2906     Label do_update;
2907     __ ld_ptr(mdo_addr, tmp2);
2908 
2909     if (!no_conflict) {
2910       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2911         if (exact_klass != NULL) {
2912           metadata2reg(exact_klass->constant_encoding(), tmp1);
2913         } else {
2914           __ load_klass(tmp1, tmp1);
2915         }
2916 
2917         __ xor3(tmp1, tmp2, tmp1);
2918         __ btst(TypeEntries::type_klass_mask, tmp1);
2919         // klass seen before, nothing to do. The unknown bit may have been
2920         // set already but no need to check.
2921         __ brx(Assembler::zero, false, Assembler::pt, next);
2922         __ delayed()->
2923 
2924            btst(TypeEntries::type_unknown, tmp1);
2925         // already unknown. Nothing to do anymore.
2926         __ brx(Assembler::notZero, false, Assembler::pt, next);
2927 
2928         if (TypeEntries::is_type_none(current_klass)) {
2929           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2930           __ brx(Assembler::zero, true, Assembler::pt, do_update);
2931           // first time here. Set profile type.
2932           __ delayed()->or3(tmp2, tmp1, tmp2);
2933         } else {
2934           __ delayed()->nop();
2935         }
2936       } else {
2937         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2938                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2939 
2940         __ btst(TypeEntries::type_unknown, tmp2);
2941         // already unknown. Nothing to do anymore.
2942         __ brx(Assembler::notZero, false, Assembler::pt, next);
2943         __ delayed()->nop();
2944       }
2945 
2946       // different than before. Cannot keep accurate profile.
2947       __ or3(tmp2, TypeEntries::type_unknown, tmp2);
2948     } else {
2949       // There's a single possible klass at this profile point
2950       assert(exact_klass != NULL, "should be");
2951       if (TypeEntries::is_type_none(current_klass)) {
2952         metadata2reg(exact_klass->constant_encoding(), tmp1);
2953         __ xor3(tmp1, tmp2, tmp1);
2954         __ btst(TypeEntries::type_klass_mask, tmp1);
2955         __ brx(Assembler::zero, false, Assembler::pt, next);
2956 #ifdef ASSERT
2957 
2958         {
2959           Label ok;
2960           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2961           __ brx(Assembler::zero, true, Assembler::pt, ok);
2962           __ delayed()->nop();
2963 
2964           __ stop("unexpected profiling mismatch");
2965           __ bind(ok);
2966         }
2967         // first time here. Set profile type.
2968         __ or3(tmp2, tmp1, tmp2);
2969 #else
2970         // first time here. Set profile type.
2971         __ delayed()->or3(tmp2, tmp1, tmp2);
2972 #endif
2973 
2974       } else {
2975         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2976                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2977 
2978         // already unknown. Nothing to do anymore.
2979         __ btst(TypeEntries::type_unknown, tmp2);
2980         __ brx(Assembler::notZero, false, Assembler::pt, next);
2981         __ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
2982       }
2983     }
2984 
2985     __ bind(do_update);
2986     __ st_ptr(tmp2, mdo_addr);
2987 
2988     __ bind(next);
2989   }
2990 }
2991 
2992 void LIR_Assembler::align_backward_branch_target() {
2993   __ align(OptoLoopAlignment);
2994 }
2995 
2996 
2997 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2998   // make sure we are expecting a delay
2999   // this has the side effect of clearing the delay state
3000   // so we can use _masm instead of _masm->delayed() to do the
3001   // code generation.
3002   __ delayed();
3003 
3004   // make sure we only emit one instruction
3005   int offset = code_offset();
3006   op->delay_op()->emit_code(this);
3007 #ifdef ASSERT
3008   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3009     op->delay_op()->print();
3010   }
3011   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3012          "only one instruction can go in a delay slot");
3013 #endif
3014 
3015   // we may also be emitting the call info for the instruction
3016   // which we are the delay slot of.
3017   CodeEmitInfo* call_info = op->call_info();
3018   if (call_info) {
3019     add_call_info(code_offset(), call_info);
3020   }
3021 
3022   if (VerifyStackAtCalls) {
3023     _masm->sub(FP, SP, O7);
3024     _masm->cmp(O7, initial_frame_size_in_bytes());
3025     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3026   }
3027 }
3028 
3029 
3030 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3031   assert(left->is_register(), "can only handle registers");
3032 
3033   if (left->is_single_cpu()) {
3034     __ neg(left->as_register(), dest->as_register());
3035   } else if (left->is_single_fpu()) {
3036     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3037   } else if (left->is_double_fpu()) {
3038     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3039   } else {
3040     assert (left->is_double_cpu(), "Must be a long");
3041     Register Rlow = left->as_register_lo();
3042     Register Rhi = left->as_register_hi();
3043     __ sub(G0, Rlow, dest->as_register_lo());
3044   }
3045 }
3046 
3047 
3048 void LIR_Assembler::fxch(int i) {
3049   Unimplemented();
3050 }
3051 
3052 void LIR_Assembler::fld(int i) {
3053   Unimplemented();
3054 }
3055 
3056 void LIR_Assembler::ffree(int i) {
3057   Unimplemented();
3058 }
3059 
3060 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3061                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3062 
3063   // if tmp is invalid, then the function being called doesn't destroy the thread
3064   if (tmp->is_valid()) {
3065     __ save_thread(tmp->as_pointer_register());
3066   }
3067   __ call(dest, relocInfo::runtime_call_type);
3068   __ delayed()->nop();
3069   if (info != NULL) {
3070     add_call_info_here(info);
3071   }
3072   if (tmp->is_valid()) {
3073     __ restore_thread(tmp->as_pointer_register());
3074   }
3075 
3076 #ifdef ASSERT
3077   __ verify_thread();
3078 #endif // ASSERT
3079 }
3080 
3081 
3082 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3083   ShouldNotReachHere();
3084 
3085   NEEDS_CLEANUP;
3086   if (type == T_LONG) {
3087     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3088 
3089     // (extended to allow indexed as well as constant displaced for JSR-166)
3090     Register idx = noreg; // contains either constant offset or index
3091 
3092     int disp = mem_addr->disp();
3093     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3094       if (!Assembler::is_simm13(disp)) {
3095         idx = O7;
3096         __ set(disp, idx);
3097       }
3098     } else {
3099       assert(disp == 0, "not both indexed and disp");
3100       idx = mem_addr->index()->as_register();
3101     }
3102 
3103     int null_check_offset = -1;
3104 
3105     Register base = mem_addr->base()->as_register();
3106     if (src->is_register() && dest->is_address()) {
3107       // G4 is high half, G5 is low half
3108       // clear the top bits of G5, and scale up G4
3109       __ srl (src->as_register_lo(),  0, G5);
3110       __ sllx(src->as_register_hi(), 32, G4);
3111       // combine the two halves into the 64 bits of G4
3112       __ or3(G4, G5, G4);
3113       null_check_offset = __ offset();
3114       if (idx == noreg) {
3115         __ stx(G4, base, disp);
3116       } else {
3117         __ stx(G4, base, idx);
3118       }
3119     } else if (src->is_address() && dest->is_register()) {
3120       null_check_offset = __ offset();
3121       if (idx == noreg) {
3122         __ ldx(base, disp, G5);
3123       } else {
3124         __ ldx(base, idx, G5);
3125       }
3126       __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3127       __ mov (G5, dest->as_register_lo());     // copy low half into lo
3128     } else {
3129       Unimplemented();
3130     }
3131     if (info != NULL) {
3132       add_debug_info_for_null_check(null_check_offset, info);
3133     }
3134 
3135   } else {
3136     // use normal move for all other volatiles since they don't need
3137     // special handling to remain atomic.
3138     move_op(src, dest, type, lir_patch_none, info, false, false, false);
3139   }
3140 }
3141 
3142 void LIR_Assembler::membar() {
3143   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3144   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3145 }
3146 
3147 void LIR_Assembler::membar_acquire() {
3148   // no-op on TSO
3149 }
3150 
3151 void LIR_Assembler::membar_release() {
3152   // no-op on TSO
3153 }
3154 
3155 void LIR_Assembler::membar_loadload() {
3156   // no-op
3157   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3158 }
3159 
3160 void LIR_Assembler::membar_storestore() {
3161   // no-op
3162   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3163 }
3164 
3165 void LIR_Assembler::membar_loadstore() {
3166   // no-op
3167   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3168 }
3169 
3170 void LIR_Assembler::membar_storeload() {
3171   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3172 }
3173 
3174 void LIR_Assembler::on_spin_wait() {
3175   Unimplemented();
3176 }
3177 
3178 // Pack two sequential registers containing 32 bit values
3179 // into a single 64 bit register.
3180 // src and src->successor() are packed into dst
3181 // src and dst may be the same register.
3182 // Note: src is destroyed
3183 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3184   Register rs = src->as_register();
3185   Register rd = dst->as_register_lo();
3186   __ sllx(rs, 32, rs);
3187   __ srl(rs->successor(), 0, rs->successor());
3188   __ or3(rs, rs->successor(), rd);
3189 }
3190 
3191 // Unpack a 64 bit value in a register into
3192 // two sequential registers.
3193 // src is unpacked into dst and dst->successor()
3194 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3195   Register rs = src->as_register_lo();
3196   Register rd = dst->as_register_hi();
3197   assert_different_registers(rs, rd, rd->successor());
3198   __ srlx(rs, 32, rd);
3199   __ srl (rs,  0, rd->successor());
3200 }
3201 
3202 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3203   const LIR_Address* addr = addr_opr->as_address_ptr();
3204   assert(addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
3205   const Register dest_reg = dest->as_pointer_register();
3206   const Register base_reg = addr->base()->as_pointer_register();
3207 
3208   if (Assembler::is_simm13(addr->disp())) {
3209     if (addr->index()->is_valid()) {
3210       const Register index_reg = addr->index()->as_pointer_register();
3211       assert(index_reg != G3_scratch, "invariant");
3212       __ add(base_reg, addr->disp(), G3_scratch);
3213       __ add(index_reg, G3_scratch, dest_reg);
3214     } else {
3215       __ add(base_reg, addr->disp(), dest_reg);
3216     }
3217   } else {
3218     __ set(addr->disp(), G3_scratch);
3219     if (addr->index()->is_valid()) {
3220       const Register index_reg = addr->index()->as_pointer_register();
3221       assert(index_reg != G3_scratch, "invariant");
3222       __ add(index_reg, G3_scratch, G3_scratch);
3223     }
3224     __ add(base_reg, G3_scratch, dest_reg);
3225   }
3226 }
3227 
3228 
3229 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3230   assert(result_reg->is_register(), "check");
3231   __ mov(G2_thread, result_reg->as_register());
3232 }
3233 
3234 #ifdef ASSERT
3235 // emit run-time assertion
3236 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3237   assert(op->code() == lir_assert, "must be");
3238 
3239   if (op->in_opr1()->is_valid()) {
3240     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3241     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3242   } else {
3243     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3244     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3245   }
3246 
3247   Label ok;
3248   if (op->condition() != lir_cond_always) {
3249     Assembler::Condition acond;
3250     switch (op->condition()) {
3251       case lir_cond_equal:        acond = Assembler::equal;                break;
3252       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
3253       case lir_cond_less:         acond = Assembler::less;                 break;
3254       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
3255       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
3256       case lir_cond_greater:      acond = Assembler::greater;              break;
3257       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
3258       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
3259       default:                         ShouldNotReachHere();
3260     };
3261     __ br(acond, false, Assembler::pt, ok);
3262     __ delayed()->nop();
3263   }
3264   if (op->halt()) {
3265     const char* str = __ code_string(op->msg());
3266     __ stop(str);
3267   } else {
3268     breakpoint();
3269   }
3270   __ bind(ok);
3271 }
3272 #endif
3273 
3274 void LIR_Assembler::peephole(LIR_List* lir) {
3275   LIR_OpList* inst = lir->instructions_list();
3276   for (int i = 0; i < inst->length(); i++) {
3277     LIR_Op* op = inst->at(i);
3278     switch (op->code()) {
3279       case lir_cond_float_branch:
3280       case lir_branch: {
3281         LIR_OpBranch* branch = op->as_OpBranch();
3282         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3283         LIR_Op* delay_op = NULL;
3284         // we'd like to be able to pull following instructions into
3285         // this slot but we don't know enough to do it safely yet so
3286         // only optimize block to block control flow.
3287         if (LIRFillDelaySlots && branch->block()) {
3288           LIR_Op* prev = inst->at(i - 1);
3289           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3290             // swap previous instruction into delay slot
3291             inst->at_put(i - 1, op);
3292             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3293 #ifndef PRODUCT
3294             if (LIRTracePeephole) {
3295               tty->print_cr("delayed");
3296               inst->at(i - 1)->print();
3297               inst->at(i)->print();
3298               tty->cr();
3299             }
3300 #endif
3301             continue;
3302           }
3303         }
3304 
3305         if (!delay_op) {
3306           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3307         }
3308         inst->insert_before(i + 1, delay_op);
3309         break;
3310       }
3311       case lir_static_call:
3312       case lir_virtual_call:
3313       case lir_icvirtual_call:
3314       case lir_optvirtual_call:
3315       case lir_dynamic_call: {
3316         LIR_Op* prev = inst->at(i - 1);
3317         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3318             (op->code() != lir_virtual_call ||
3319              !prev->result_opr()->is_single_cpu() ||
3320              prev->result_opr()->as_register() != O0) &&
3321             LIR_Assembler::is_single_instruction(prev)) {
3322           // Only moves without info can be put into the delay slot.
3323           // Also don't allow the setup of the receiver in the delay
3324           // slot for vtable calls.
3325           inst->at_put(i - 1, op);
3326           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3327 #ifndef PRODUCT
3328           if (LIRTracePeephole) {
3329             tty->print_cr("delayed");
3330             inst->at(i - 1)->print();
3331             inst->at(i)->print();
3332             tty->cr();
3333           }
3334 #endif
3335         } else {
3336           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3337           inst->insert_before(i + 1, delay_op);
3338           i++;
3339         }
3340         break;
3341       }
3342     }
3343   }
3344 }
3345 
3346 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3347   LIR_Address* addr = src->as_address_ptr();
3348 
3349   assert(data == dest, "swap uses only 2 operands");
3350   assert (code == lir_xchg, "no xadd on sparc");
3351 
3352   if (data->type() == T_INT) {
3353     __ swap(as_Address(addr), data->as_register());
3354   } else if (data->is_oop()) {
3355     Register obj = data->as_register();
3356     Register narrow = tmp->as_register();
3357     assert(UseCompressedOops, "swap is 32bit only");
3358     __ encode_heap_oop(obj, narrow);
3359     __ swap(as_Address(addr), narrow);
3360     __ decode_heap_oop(narrow, obj);
3361   } else {
3362     ShouldNotReachHere();
3363   }
3364 }
3365 
3366 #undef __