1 /*
   2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/atomic.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/interfaceSupport.hpp"
  33 #include "runtime/mutexLocker.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/objectMonitor.inline.hpp"
  36 #include "runtime/orderAccess.inline.hpp"
  37 #include "runtime/osThread.hpp"
  38 #include "runtime/safepointMechanism.inline.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "services/threadService.hpp"
  42 #include "trace/tracing.hpp"
  43 #include "trace/traceMacros.hpp"
  44 #include "utilities/dtrace.hpp"
  45 #include "utilities/macros.hpp"
  46 #include "utilities/preserveException.hpp"
  47 
  48 #ifdef DTRACE_ENABLED
  49 
  50 // Only bother with this argument setup if dtrace is available
  51 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  52 
  53 
  54 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  55   char* bytes = NULL;                                                      \
  56   int len = 0;                                                             \
  57   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  58   Symbol* klassname = ((oop)obj)->klass()->name();                         \
  59   if (klassname != NULL) {                                                 \
  60     bytes = (char*)klassname->bytes();                                     \
  61     len = klassname->utf8_length();                                        \
  62   }
  63 
  64 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  65   {                                                                        \
  66     if (DTraceMonitorProbes) {                                             \
  67       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  68       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  69                            (monitor), bytes, len, (millis));               \
  70     }                                                                      \
  71   }
  72 
  73 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  74 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  75 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  76 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  77 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  78 
  79 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  80   {                                                                        \
  81     if (DTraceMonitorProbes) {                                             \
  82       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  83       HOTSPOT_MONITOR_##probe(jtid,                                        \
  84                               (uintptr_t)(monitor), bytes, len);           \
  85     }                                                                      \
  86   }
  87 
  88 #else //  ndef DTRACE_ENABLED
  89 
  90 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  91 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
  92 
  93 #endif // ndef DTRACE_ENABLED
  94 
  95 // Tunables ...
  96 // The knob* variables are effectively final.  Once set they should
  97 // never be modified hence.  Consider using __read_mostly with GCC.
  98 
  99 int ObjectMonitor::Knob_ExitRelease = 0;
 100 int ObjectMonitor::Knob_Verbose     = 0;
 101 int ObjectMonitor::Knob_VerifyInUse = 0;
 102 int ObjectMonitor::Knob_VerifyMatch = 0;
 103 int ObjectMonitor::Knob_SpinLimit   = 5000;    // derived by an external tool -
 104 static int Knob_LogSpins            = 0;       // enable jvmstat tally for spins
 105 static int Knob_HandOff             = 0;
 106 static int Knob_ReportSettings      = 0;
 107 
 108 static int Knob_SpinBase            = 0;       // Floor AKA SpinMin
 109 static int Knob_SpinBackOff         = 0;       // spin-loop backoff
 110 static int Knob_CASPenalty          = -1;      // Penalty for failed CAS
 111 static int Knob_OXPenalty           = -1;      // Penalty for observed _owner change
 112 static int Knob_SpinSetSucc         = 1;       // spinners set the _succ field
 113 static int Knob_SpinEarly           = 1;
 114 static int Knob_SuccEnabled         = 1;       // futile wake throttling
 115 static int Knob_SuccRestrict        = 0;       // Limit successors + spinners to at-most-one
 116 static int Knob_MaxSpinners         = -1;      // Should be a function of # CPUs
 117 static int Knob_Bonus               = 100;     // spin success bonus
 118 static int Knob_BonusB              = 100;     // spin success bonus
 119 static int Knob_Penalty             = 200;     // spin failure penalty
 120 static int Knob_Poverty             = 1000;
 121 static int Knob_SpinAfterFutile     = 1;       // Spin after returning from park()
 122 static int Knob_FixedSpin           = 0;
 123 static int Knob_OState              = 3;       // Spinner checks thread state of _owner
 124 static int Knob_UsePause            = 1;
 125 static int Knob_ExitPolicy          = 0;
 126 static int Knob_PreSpin             = 10;      // 20-100 likely better
 127 static int Knob_ResetEvent          = 0;
 128 static int BackOffMask              = 0;
 129 
 130 static int Knob_FastHSSEC           = 0;
 131 static int Knob_MoveNotifyee        = 2;       // notify() - disposition of notifyee
 132 static int Knob_QMode               = 0;       // EntryList-cxq policy - queue discipline
 133 static volatile int InitDone        = 0;
 134 
 135 // -----------------------------------------------------------------------------
 136 // Theory of operations -- Monitors lists, thread residency, etc:
 137 //
 138 // * A thread acquires ownership of a monitor by successfully
 139 //   CAS()ing the _owner field from null to non-null.
 140 //
 141 // * Invariant: A thread appears on at most one monitor list --
 142 //   cxq, EntryList or WaitSet -- at any one time.
 143 //
 144 // * Contending threads "push" themselves onto the cxq with CAS
 145 //   and then spin/park.
 146 //
 147 // * After a contending thread eventually acquires the lock it must
 148 //   dequeue itself from either the EntryList or the cxq.
 149 //
 150 // * The exiting thread identifies and unparks an "heir presumptive"
 151 //   tentative successor thread on the EntryList.  Critically, the
 152 //   exiting thread doesn't unlink the successor thread from the EntryList.
 153 //   After having been unparked, the wakee will recontend for ownership of
 154 //   the monitor.   The successor (wakee) will either acquire the lock or
 155 //   re-park itself.
 156 //
 157 //   Succession is provided for by a policy of competitive handoff.
 158 //   The exiting thread does _not_ grant or pass ownership to the
 159 //   successor thread.  (This is also referred to as "handoff" succession").
 160 //   Instead the exiting thread releases ownership and possibly wakes
 161 //   a successor, so the successor can (re)compete for ownership of the lock.
 162 //   If the EntryList is empty but the cxq is populated the exiting
 163 //   thread will drain the cxq into the EntryList.  It does so by
 164 //   by detaching the cxq (installing null with CAS) and folding
 165 //   the threads from the cxq into the EntryList.  The EntryList is
 166 //   doubly linked, while the cxq is singly linked because of the
 167 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 168 //
 169 // * Concurrency invariants:
 170 //
 171 //   -- only the monitor owner may access or mutate the EntryList.
 172 //      The mutex property of the monitor itself protects the EntryList
 173 //      from concurrent interference.
 174 //   -- Only the monitor owner may detach the cxq.
 175 //
 176 // * The monitor entry list operations avoid locks, but strictly speaking
 177 //   they're not lock-free.  Enter is lock-free, exit is not.
 178 //   For a description of 'Methods and apparatus providing non-blocking access
 179 //   to a resource,' see U.S. Pat. No. 7844973.
 180 //
 181 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 182 //   detaching thread.  This mechanism is immune from the ABA corruption.
 183 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 184 //
 185 // * Taken together, the cxq and the EntryList constitute or form a
 186 //   single logical queue of threads stalled trying to acquire the lock.
 187 //   We use two distinct lists to improve the odds of a constant-time
 188 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 189 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 190 //   A key desideratum is to minimize queue & monitor metadata manipulation
 191 //   that occurs while holding the monitor lock -- that is, we want to
 192 //   minimize monitor lock holds times.  Note that even a small amount of
 193 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 194 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 195 //   locks and monitor metadata.
 196 //
 197 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 198 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 199 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 200 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 201 //
 202 //   The EntryList is ordered by the prevailing queue discipline and
 203 //   can be organized in any convenient fashion, such as a doubly-linked list or
 204 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 205 //   to operate in constant-time.  If we need a priority queue then something akin
 206 //   to Solaris' sleepq would work nicely.  Viz.,
 207 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 208 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 209 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 210 //   EntryList accordingly.
 211 //
 212 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 213 //   somewhat similar to an elevator-scan.
 214 //
 215 // * The monitor synchronization subsystem avoids the use of native
 216 //   synchronization primitives except for the narrow platform-specific
 217 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 218 //   the semantics of park-unpark.  Put another way, this monitor implementation
 219 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 220 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 221 //   underlying OS manages the READY<->RUN transitions.
 222 //
 223 // * Waiting threads reside on the WaitSet list -- wait() puts
 224 //   the caller onto the WaitSet.
 225 //
 226 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 227 //   either the EntryList or cxq.  Subsequent exit() operations will
 228 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 229 //   it's likely the notifyee would simply impale itself on the lock held
 230 //   by the notifier.
 231 //
 232 // * An interesting alternative is to encode cxq as (List,LockByte) where
 233 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 234 //   variable, like _recursions, in the scheme.  The threads or Events that form
 235 //   the list would have to be aligned in 256-byte addresses.  A thread would
 236 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 237 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 238 //   Note that is is *not* word-tearing, but it does presume that full-word
 239 //   CAS operations are coherent with intermix with STB operations.  That's true
 240 //   on most common processors.
 241 //
 242 // * See also http://blogs.sun.com/dave
 243 
 244 
 245 // -----------------------------------------------------------------------------
 246 // Enter support
 247 
 248 void ObjectMonitor::enter(TRAPS) {
 249   // The following code is ordered to check the most common cases first
 250   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 251   Thread * const Self = THREAD;
 252 
 253   void * cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL);
 254   if (cur == NULL) {
 255     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 256     assert(_recursions == 0, "invariant");
 257     assert(_owner == Self, "invariant");
 258     return;
 259   }
 260 
 261   if (cur == Self) {
 262     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 263     _recursions++;
 264     return;
 265   }
 266 
 267   if (Self->is_lock_owned ((address)cur)) {
 268     assert(_recursions == 0, "internal state error");
 269     _recursions = 1;
 270     // Commute owner from a thread-specific on-stack BasicLockObject address to
 271     // a full-fledged "Thread *".
 272     _owner = Self;
 273     return;
 274   }
 275 
 276   // We've encountered genuine contention.
 277   assert(Self->_Stalled == 0, "invariant");
 278   Self->_Stalled = intptr_t(this);
 279 
 280   // Try one round of spinning *before* enqueueing Self
 281   // and before going through the awkward and expensive state
 282   // transitions.  The following spin is strictly optional ...
 283   // Note that if we acquire the monitor from an initial spin
 284   // we forgo posting JVMTI events and firing DTRACE probes.
 285   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 286     assert(_owner == Self, "invariant");
 287     assert(_recursions == 0, "invariant");
 288     assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 289     Self->_Stalled = 0;
 290     return;
 291   }
 292 
 293   assert(_owner != Self, "invariant");
 294   assert(_succ != Self, "invariant");
 295   assert(Self->is_Java_thread(), "invariant");
 296   JavaThread * jt = (JavaThread *) Self;
 297   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 298   assert(jt->thread_state() != _thread_blocked, "invariant");
 299   assert(this->object() != NULL, "invariant");
 300   assert(_count >= 0, "invariant");
 301 
 302   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 303   // Ensure the object-monitor relationship remains stable while there's contention.
 304   Atomic::inc(&_count);
 305 
 306   EventJavaMonitorEnter event;
 307 
 308   { // Change java thread status to indicate blocked on monitor enter.
 309     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 310 
 311     Self->set_current_pending_monitor(this);
 312 
 313     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 314     if (JvmtiExport::should_post_monitor_contended_enter()) {
 315       JvmtiExport::post_monitor_contended_enter(jt, this);
 316 
 317       // The current thread does not yet own the monitor and does not
 318       // yet appear on any queues that would get it made the successor.
 319       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 320       // handler cannot accidentally consume an unpark() meant for the
 321       // ParkEvent associated with this ObjectMonitor.
 322     }
 323 
 324     OSThreadContendState osts(Self->osthread());
 325     ThreadBlockInVM tbivm(jt);
 326 
 327     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 328     for (;;) {
 329       jt->set_suspend_equivalent();
 330       // cleared by handle_special_suspend_equivalent_condition()
 331       // or java_suspend_self()
 332 
 333       EnterI(THREAD);
 334 
 335       if (!ExitSuspendEquivalent(jt)) break;
 336 
 337       // We have acquired the contended monitor, but while we were
 338       // waiting another thread suspended us. We don't want to enter
 339       // the monitor while suspended because that would surprise the
 340       // thread that suspended us.
 341       //
 342       _recursions = 0;
 343       _succ = NULL;
 344       exit(false, Self);
 345 
 346       jt->java_suspend_self();
 347     }
 348     Self->set_current_pending_monitor(NULL);
 349 
 350     // We cleared the pending monitor info since we've just gotten past
 351     // the enter-check-for-suspend dance and we now own the monitor free
 352     // and clear, i.e., it is no longer pending. The ThreadBlockInVM
 353     // destructor can go to a safepoint at the end of this block. If we
 354     // do a thread dump during that safepoint, then this thread will show
 355     // as having "-locked" the monitor, but the OS and java.lang.Thread
 356     // states will still report that the thread is blocked trying to
 357     // acquire it.
 358   }
 359 
 360   Atomic::dec(&_count);
 361   assert(_count >= 0, "invariant");
 362   Self->_Stalled = 0;
 363 
 364   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 365   assert(_recursions == 0, "invariant");
 366   assert(_owner == Self, "invariant");
 367   assert(_succ != Self, "invariant");
 368   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 369 
 370   // The thread -- now the owner -- is back in vm mode.
 371   // Report the glorious news via TI,DTrace and jvmstat.
 372   // The probe effect is non-trivial.  All the reportage occurs
 373   // while we hold the monitor, increasing the length of the critical
 374   // section.  Amdahl's parallel speedup law comes vividly into play.
 375   //
 376   // Another option might be to aggregate the events (thread local or
 377   // per-monitor aggregation) and defer reporting until a more opportune
 378   // time -- such as next time some thread encounters contention but has
 379   // yet to acquire the lock.  While spinning that thread could
 380   // spinning we could increment JVMStat counters, etc.
 381 
 382   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 383   if (JvmtiExport::should_post_monitor_contended_entered()) {
 384     JvmtiExport::post_monitor_contended_entered(jt, this);
 385 
 386     // The current thread already owns the monitor and is not going to
 387     // call park() for the remainder of the monitor enter protocol. So
 388     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 389     // event handler consumed an unpark() issued by the thread that
 390     // just exited the monitor.
 391   }
 392 
 393   if (event.should_commit()) {
 394     event.set_monitorClass(((oop)this->object())->klass());
 395     event.set_previousOwner((TYPE_THREAD)_previous_owner_tid);
 396     event.set_address((TYPE_ADDRESS)(uintptr_t)(this->object_addr()));
 397     event.commit();
 398   }
 399 
 400   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 401 }
 402 
 403 
 404 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 405 // Callers must compensate as needed.
 406 
 407 int ObjectMonitor::TryLock(Thread * Self) {
 408   void * own = _owner;
 409   if (own != NULL) return 0;
 410   if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 411     // Either guarantee _recursions == 0 or set _recursions = 0.
 412     assert(_recursions == 0, "invariant");
 413     assert(_owner == Self, "invariant");
 414     return 1;
 415   }
 416   // The lock had been free momentarily, but we lost the race to the lock.
 417   // Interference -- the CAS failed.
 418   // We can either return -1 or retry.
 419   // Retry doesn't make as much sense because the lock was just acquired.
 420   return -1;
 421 }
 422 
 423 #define MAX_RECHECK_INTERVAL 1000
 424 
 425 void ObjectMonitor::EnterI(TRAPS) {
 426   Thread * const Self = THREAD;
 427   assert(Self->is_Java_thread(), "invariant");
 428   assert(((JavaThread *) Self)->thread_state() == _thread_blocked, "invariant");
 429 
 430   // Try the lock - TATAS
 431   if (TryLock (Self) > 0) {
 432     assert(_succ != Self, "invariant");
 433     assert(_owner == Self, "invariant");
 434     assert(_Responsible != Self, "invariant");
 435     return;
 436   }
 437 
 438   DeferredInitialize();
 439 
 440   // We try one round of spinning *before* enqueueing Self.
 441   //
 442   // If the _owner is ready but OFFPROC we could use a YieldTo()
 443   // operation to donate the remainder of this thread's quantum
 444   // to the owner.  This has subtle but beneficial affinity
 445   // effects.
 446 
 447   if (TrySpin (Self) > 0) {
 448     assert(_owner == Self, "invariant");
 449     assert(_succ != Self, "invariant");
 450     assert(_Responsible != Self, "invariant");
 451     return;
 452   }
 453 
 454   // The Spin failed -- Enqueue and park the thread ...
 455   assert(_succ != Self, "invariant");
 456   assert(_owner != Self, "invariant");
 457   assert(_Responsible != Self, "invariant");
 458 
 459   // Enqueue "Self" on ObjectMonitor's _cxq.
 460   //
 461   // Node acts as a proxy for Self.
 462   // As an aside, if were to ever rewrite the synchronization code mostly
 463   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 464   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 465   // as well as eliminate a subset of ABA issues.
 466   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 467 
 468   ObjectWaiter node(Self);
 469   Self->_ParkEvent->reset();
 470   node._prev   = (ObjectWaiter *) 0xBAD;
 471   node.TState  = ObjectWaiter::TS_CXQ;
 472 
 473   // Push "Self" onto the front of the _cxq.
 474   // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 475   // Note that spinning tends to reduce the rate at which threads
 476   // enqueue and dequeue on EntryList|cxq.
 477   ObjectWaiter * nxt;
 478   for (;;) {
 479     node._next = nxt = _cxq;
 480     if (Atomic::cmpxchg_ptr(&node, &_cxq, nxt) == nxt) break;
 481 
 482     // Interference - the CAS failed because _cxq changed.  Just retry.
 483     // As an optional optimization we retry the lock.
 484     if (TryLock (Self) > 0) {
 485       assert(_succ != Self, "invariant");
 486       assert(_owner == Self, "invariant");
 487       assert(_Responsible != Self, "invariant");
 488       return;
 489     }
 490   }
 491 
 492   // Check for cxq|EntryList edge transition to non-null.  This indicates
 493   // the onset of contention.  While contention persists exiting threads
 494   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 495   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 496   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 497   // arrange for one of the contending thread to use a timed park() operations
 498   // to detect and recover from the race.  (Stranding is form of progress failure
 499   // where the monitor is unlocked but all the contending threads remain parked).
 500   // That is, at least one of the contended threads will periodically poll _owner.
 501   // One of the contending threads will become the designated "Responsible" thread.
 502   // The Responsible thread uses a timed park instead of a normal indefinite park
 503   // operation -- it periodically wakes and checks for and recovers from potential
 504   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 505   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 506   // be responsible for a monitor.
 507   //
 508   // Currently, one of the contended threads takes on the added role of "Responsible".
 509   // A viable alternative would be to use a dedicated "stranding checker" thread
 510   // that periodically iterated over all the threads (or active monitors) and unparked
 511   // successors where there was risk of stranding.  This would help eliminate the
 512   // timer scalability issues we see on some platforms as we'd only have one thread
 513   // -- the checker -- parked on a timer.
 514 
 515   if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 516     // Try to assume the role of responsible thread for the monitor.
 517     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 518     Atomic::cmpxchg_ptr(Self, &_Responsible, NULL);
 519   }
 520 
 521   // The lock might have been released while this thread was occupied queueing
 522   // itself onto _cxq.  To close the race and avoid "stranding" and
 523   // progress-liveness failure we must resample-retry _owner before parking.
 524   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 525   // In this case the ST-MEMBAR is accomplished with CAS().
 526   //
 527   // TODO: Defer all thread state transitions until park-time.
 528   // Since state transitions are heavy and inefficient we'd like
 529   // to defer the state transitions until absolutely necessary,
 530   // and in doing so avoid some transitions ...
 531 
 532   TEVENT(Inflated enter - Contention);
 533   int nWakeups = 0;
 534   int recheckInterval = 1;
 535 
 536   for (;;) {
 537 
 538     if (TryLock(Self) > 0) break;
 539     assert(_owner != Self, "invariant");
 540 
 541     if ((SyncFlags & 2) && _Responsible == NULL) {
 542       Atomic::cmpxchg_ptr(Self, &_Responsible, NULL);
 543     }
 544 
 545     // park self
 546     if (_Responsible == Self || (SyncFlags & 1)) {
 547       TEVENT(Inflated enter - park TIMED);
 548       Self->_ParkEvent->park((jlong) recheckInterval);
 549       // Increase the recheckInterval, but clamp the value.
 550       recheckInterval *= 8;
 551       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 552         recheckInterval = MAX_RECHECK_INTERVAL;
 553       }
 554     } else {
 555       TEVENT(Inflated enter - park UNTIMED);
 556       Self->_ParkEvent->park();
 557     }
 558 
 559     if (TryLock(Self) > 0) break;
 560 
 561     // The lock is still contested.
 562     // Keep a tally of the # of futile wakeups.
 563     // Note that the counter is not protected by a lock or updated by atomics.
 564     // That is by design - we trade "lossy" counters which are exposed to
 565     // races during updates for a lower probe effect.
 566     TEVENT(Inflated enter - Futile wakeup);
 567     // This PerfData object can be used in parallel with a safepoint.
 568     // See the work around in PerfDataManager::destroy().
 569     OM_PERFDATA_OP(FutileWakeups, inc());
 570     ++nWakeups;
 571 
 572     // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 573     // We can defer clearing _succ until after the spin completes
 574     // TrySpin() must tolerate being called with _succ == Self.
 575     // Try yet another round of adaptive spinning.
 576     if ((Knob_SpinAfterFutile & 1) && TrySpin(Self) > 0) break;
 577 
 578     // We can find that we were unpark()ed and redesignated _succ while
 579     // we were spinning.  That's harmless.  If we iterate and call park(),
 580     // park() will consume the event and return immediately and we'll
 581     // just spin again.  This pattern can repeat, leaving _succ to simply
 582     // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 583     // Alternately, we can sample fired() here, and if set, forgo spinning
 584     // in the next iteration.
 585 
 586     if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 587       Self->_ParkEvent->reset();
 588       OrderAccess::fence();
 589     }
 590     if (_succ == Self) _succ = NULL;
 591 
 592     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 593     OrderAccess::fence();
 594   }
 595 
 596   // Egress :
 597   // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 598   // Normally we'll find Self on the EntryList .
 599   // From the perspective of the lock owner (this thread), the
 600   // EntryList is stable and cxq is prepend-only.
 601   // The head of cxq is volatile but the interior is stable.
 602   // In addition, Self.TState is stable.
 603 
 604   assert(_owner == Self, "invariant");
 605   assert(object() != NULL, "invariant");
 606   // I'd like to write:
 607   //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 608   // but as we're at a safepoint that's not safe.
 609 
 610   UnlinkAfterAcquire(Self, &node);
 611   if (_succ == Self) _succ = NULL;
 612 
 613   assert(_succ != Self, "invariant");
 614   if (_Responsible == Self) {
 615     _Responsible = NULL;
 616     OrderAccess::fence(); // Dekker pivot-point
 617 
 618     // We may leave threads on cxq|EntryList without a designated
 619     // "Responsible" thread.  This is benign.  When this thread subsequently
 620     // exits the monitor it can "see" such preexisting "old" threads --
 621     // threads that arrived on the cxq|EntryList before the fence, above --
 622     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 623     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 624     // non-null and elect a new "Responsible" timer thread.
 625     //
 626     // This thread executes:
 627     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 628     //    LD cxq|EntryList               (in subsequent exit)
 629     //
 630     // Entering threads in the slow/contended path execute:
 631     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 632     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 633     //
 634     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 635     // exit operation from floating above the ST Responsible=null.
 636   }
 637 
 638   // We've acquired ownership with CAS().
 639   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 640   // But since the CAS() this thread may have also stored into _succ,
 641   // EntryList, cxq or Responsible.  These meta-data updates must be
 642   // visible __before this thread subsequently drops the lock.
 643   // Consider what could occur if we didn't enforce this constraint --
 644   // STs to monitor meta-data and user-data could reorder with (become
 645   // visible after) the ST in exit that drops ownership of the lock.
 646   // Some other thread could then acquire the lock, but observe inconsistent
 647   // or old monitor meta-data and heap data.  That violates the JMM.
 648   // To that end, the 1-0 exit() operation must have at least STST|LDST
 649   // "release" barrier semantics.  Specifically, there must be at least a
 650   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 651   // the lock.   The barrier ensures that changes to monitor meta-data and data
 652   // protected by the lock will be visible before we release the lock, and
 653   // therefore before some other thread (CPU) has a chance to acquire the lock.
 654   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 655   //
 656   // Critically, any prior STs to _succ or EntryList must be visible before
 657   // the ST of null into _owner in the *subsequent* (following) corresponding
 658   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 659   // execute a serializing instruction.
 660 
 661   if (SyncFlags & 8) {
 662     OrderAccess::fence();
 663   }
 664   return;
 665 }
 666 
 667 // ReenterI() is a specialized inline form of the latter half of the
 668 // contended slow-path from EnterI().  We use ReenterI() only for
 669 // monitor reentry in wait().
 670 //
 671 // In the future we should reconcile EnterI() and ReenterI(), adding
 672 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 673 // loop accordingly.
 674 
 675 void ObjectMonitor::ReenterI(Thread * Self, ObjectWaiter * SelfNode) {
 676   assert(Self != NULL, "invariant");
 677   assert(SelfNode != NULL, "invariant");
 678   assert(SelfNode->_thread == Self, "invariant");
 679   assert(_waiters > 0, "invariant");
 680   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 681   assert(((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 682   JavaThread * jt = (JavaThread *) Self;
 683 
 684   int nWakeups = 0;
 685   for (;;) {
 686     ObjectWaiter::TStates v = SelfNode->TState;
 687     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 688     assert(_owner != Self, "invariant");
 689 
 690     if (TryLock(Self) > 0) break;
 691     if (TrySpin(Self) > 0) break;
 692 
 693     TEVENT(Wait Reentry - parking);
 694 
 695     // State transition wrappers around park() ...
 696     // ReenterI() wisely defers state transitions until
 697     // it's clear we must park the thread.
 698     {
 699       OSThreadContendState osts(Self->osthread());
 700       ThreadBlockInVM tbivm(jt);
 701 
 702       // cleared by handle_special_suspend_equivalent_condition()
 703       // or java_suspend_self()
 704       jt->set_suspend_equivalent();
 705       if (SyncFlags & 1) {
 706         Self->_ParkEvent->park((jlong)MAX_RECHECK_INTERVAL);
 707       } else {
 708         Self->_ParkEvent->park();
 709       }
 710 
 711       // were we externally suspended while we were waiting?
 712       for (;;) {
 713         if (!ExitSuspendEquivalent(jt)) break;
 714         if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 715         jt->java_suspend_self();
 716         jt->set_suspend_equivalent();
 717       }
 718     }
 719 
 720     // Try again, but just so we distinguish between futile wakeups and
 721     // successful wakeups.  The following test isn't algorithmically
 722     // necessary, but it helps us maintain sensible statistics.
 723     if (TryLock(Self) > 0) break;
 724 
 725     // The lock is still contested.
 726     // Keep a tally of the # of futile wakeups.
 727     // Note that the counter is not protected by a lock or updated by atomics.
 728     // That is by design - we trade "lossy" counters which are exposed to
 729     // races during updates for a lower probe effect.
 730     TEVENT(Wait Reentry - futile wakeup);
 731     ++nWakeups;
 732 
 733     // Assuming this is not a spurious wakeup we'll normally
 734     // find that _succ == Self.
 735     if (_succ == Self) _succ = NULL;
 736 
 737     // Invariant: after clearing _succ a contending thread
 738     // *must* retry  _owner before parking.
 739     OrderAccess::fence();
 740 
 741     // This PerfData object can be used in parallel with a safepoint.
 742     // See the work around in PerfDataManager::destroy().
 743     OM_PERFDATA_OP(FutileWakeups, inc());
 744   }
 745 
 746   // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 747   // Normally we'll find Self on the EntryList.
 748   // Unlinking from the EntryList is constant-time and atomic-free.
 749   // From the perspective of the lock owner (this thread), the
 750   // EntryList is stable and cxq is prepend-only.
 751   // The head of cxq is volatile but the interior is stable.
 752   // In addition, Self.TState is stable.
 753 
 754   assert(_owner == Self, "invariant");
 755   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
 756   UnlinkAfterAcquire(Self, SelfNode);
 757   if (_succ == Self) _succ = NULL;
 758   assert(_succ != Self, "invariant");
 759   SelfNode->TState = ObjectWaiter::TS_RUN;
 760   OrderAccess::fence();      // see comments at the end of EnterI()
 761 }
 762 
 763 // By convention we unlink a contending thread from EntryList|cxq immediately
 764 // after the thread acquires the lock in ::enter().  Equally, we could defer
 765 // unlinking the thread until ::exit()-time.
 766 
 767 void ObjectMonitor::UnlinkAfterAcquire(Thread *Self, ObjectWaiter *SelfNode) {
 768   assert(_owner == Self, "invariant");
 769   assert(SelfNode->_thread == Self, "invariant");
 770 
 771   if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 772     // Normal case: remove Self from the DLL EntryList .
 773     // This is a constant-time operation.
 774     ObjectWaiter * nxt = SelfNode->_next;
 775     ObjectWaiter * prv = SelfNode->_prev;
 776     if (nxt != NULL) nxt->_prev = prv;
 777     if (prv != NULL) prv->_next = nxt;
 778     if (SelfNode == _EntryList) _EntryList = nxt;
 779     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
 780     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
 781     TEVENT(Unlink from EntryList);
 782   } else {
 783     assert(SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant");
 784     // Inopportune interleaving -- Self is still on the cxq.
 785     // This usually means the enqueue of self raced an exiting thread.
 786     // Normally we'll find Self near the front of the cxq, so
 787     // dequeueing is typically fast.  If needbe we can accelerate
 788     // this with some MCS/CHL-like bidirectional list hints and advisory
 789     // back-links so dequeueing from the interior will normally operate
 790     // in constant-time.
 791     // Dequeue Self from either the head (with CAS) or from the interior
 792     // with a linear-time scan and normal non-atomic memory operations.
 793     // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 794     // and then unlink Self from EntryList.  We have to drain eventually,
 795     // so it might as well be now.
 796 
 797     ObjectWaiter * v = _cxq;
 798     assert(v != NULL, "invariant");
 799     if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 800       // The CAS above can fail from interference IFF a "RAT" arrived.
 801       // In that case Self must be in the interior and can no longer be
 802       // at the head of cxq.
 803       if (v == SelfNode) {
 804         assert(_cxq != v, "invariant");
 805         v = _cxq;          // CAS above failed - start scan at head of list
 806       }
 807       ObjectWaiter * p;
 808       ObjectWaiter * q = NULL;
 809       for (p = v; p != NULL && p != SelfNode; p = p->_next) {
 810         q = p;
 811         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
 812       }
 813       assert(v != SelfNode, "invariant");
 814       assert(p == SelfNode, "Node not found on cxq");
 815       assert(p != _cxq, "invariant");
 816       assert(q != NULL, "invariant");
 817       assert(q->_next == p, "invariant");
 818       q->_next = p->_next;
 819     }
 820     TEVENT(Unlink from cxq);
 821   }
 822 
 823 #ifdef ASSERT
 824   // Diagnostic hygiene ...
 825   SelfNode->_prev  = (ObjectWaiter *) 0xBAD;
 826   SelfNode->_next  = (ObjectWaiter *) 0xBAD;
 827   SelfNode->TState = ObjectWaiter::TS_RUN;
 828 #endif
 829 }
 830 
 831 // -----------------------------------------------------------------------------
 832 // Exit support
 833 //
 834 // exit()
 835 // ~~~~~~
 836 // Note that the collector can't reclaim the objectMonitor or deflate
 837 // the object out from underneath the thread calling ::exit() as the
 838 // thread calling ::exit() never transitions to a stable state.
 839 // This inhibits GC, which in turn inhibits asynchronous (and
 840 // inopportune) reclamation of "this".
 841 //
 842 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 843 // There's one exception to the claim above, however.  EnterI() can call
 844 // exit() to drop a lock if the acquirer has been externally suspended.
 845 // In that case exit() is called with _thread_state as _thread_blocked,
 846 // but the monitor's _count field is > 0, which inhibits reclamation.
 847 //
 848 // 1-0 exit
 849 // ~~~~~~~~
 850 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 851 // the fast-path operators have been optimized so the common ::exit()
 852 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
 853 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 854 // greatly improves latency -- MEMBAR and CAS having considerable local
 855 // latency on modern processors -- but at the cost of "stranding".  Absent the
 856 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 857 // ::enter() path, resulting in the entering thread being stranding
 858 // and a progress-liveness failure.   Stranding is extremely rare.
 859 // We use timers (timed park operations) & periodic polling to detect
 860 // and recover from stranding.  Potentially stranded threads periodically
 861 // wake up and poll the lock.  See the usage of the _Responsible variable.
 862 //
 863 // The CAS() in enter provides for safety and exclusion, while the CAS or
 864 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 865 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
 866 // We detect and recover from stranding with timers.
 867 //
 868 // If a thread transiently strands it'll park until (a) another
 869 // thread acquires the lock and then drops the lock, at which time the
 870 // exiting thread will notice and unpark the stranded thread, or, (b)
 871 // the timer expires.  If the lock is high traffic then the stranding latency
 872 // will be low due to (a).  If the lock is low traffic then the odds of
 873 // stranding are lower, although the worst-case stranding latency
 874 // is longer.  Critically, we don't want to put excessive load in the
 875 // platform's timer subsystem.  We want to minimize both the timer injection
 876 // rate (timers created/sec) as well as the number of timers active at
 877 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 878 // the integral of the # of active timers at any instant over time).
 879 // Both impinge on OS scalability.  Given that, at most one thread parked on
 880 // a monitor will use a timer.
 881 //
 882 // There is also the risk of a futile wake-up. If we drop the lock
 883 // another thread can reacquire the lock immediately, and we can
 884 // then wake a thread unnecessarily. This is benign, and we've
 885 // structured the code so the windows are short and the frequency
 886 // of such futile wakups is low.
 887 
 888 void ObjectMonitor::exit(bool not_suspended, TRAPS) {
 889   Thread * const Self = THREAD;
 890   if (THREAD != _owner) {
 891     if (THREAD->is_lock_owned((address) _owner)) {
 892       // Transmute _owner from a BasicLock pointer to a Thread address.
 893       // We don't need to hold _mutex for this transition.
 894       // Non-null to Non-null is safe as long as all readers can
 895       // tolerate either flavor.
 896       assert(_recursions == 0, "invariant");
 897       _owner = THREAD;
 898       _recursions = 0;
 899     } else {
 900       // Apparent unbalanced locking ...
 901       // Naively we'd like to throw IllegalMonitorStateException.
 902       // As a practical matter we can neither allocate nor throw an
 903       // exception as ::exit() can be called from leaf routines.
 904       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
 905       // Upon deeper reflection, however, in a properly run JVM the only
 906       // way we should encounter this situation is in the presence of
 907       // unbalanced JNI locking. TODO: CheckJNICalls.
 908       // See also: CR4414101
 909       TEVENT(Exit - Throw IMSX);
 910       assert(false, "Non-balanced monitor enter/exit! Likely JNI locking");
 911       return;
 912     }
 913   }
 914 
 915   if (_recursions != 0) {
 916     _recursions--;        // this is simple recursive enter
 917     TEVENT(Inflated exit - recursive);
 918     return;
 919   }
 920 
 921   // Invariant: after setting Responsible=null an thread must execute
 922   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 923   if ((SyncFlags & 4) == 0) {
 924     _Responsible = NULL;
 925   }
 926 
 927 #if INCLUDE_TRACE
 928   // get the owner's thread id for the MonitorEnter event
 929   // if it is enabled and the thread isn't suspended
 930   if (not_suspended && Tracing::is_event_enabled(TraceJavaMonitorEnterEvent)) {
 931     _previous_owner_tid = THREAD_TRACE_ID(Self);
 932   }
 933 #endif
 934 
 935   for (;;) {
 936     assert(THREAD == _owner, "invariant");
 937 
 938     if (Knob_ExitPolicy == 0) {
 939       // release semantics: prior loads and stores from within the critical section
 940       // must not float (reorder) past the following store that drops the lock.
 941       // On SPARC that requires MEMBAR #loadstore|#storestore.
 942       // But of course in TSO #loadstore|#storestore is not required.
 943       // I'd like to write one of the following:
 944       // A.  OrderAccess::release() ; _owner = NULL
 945       // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 946       // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 947       // store into a _dummy variable.  That store is not needed, but can result
 948       // in massive wasteful coherency traffic on classic SMP systems.
 949       // Instead, I use release_store(), which is implemented as just a simple
 950       // ST on x64, x86 and SPARC.
 951       OrderAccess::release_store_ptr(&_owner, NULL);   // drop the lock
 952       OrderAccess::storeload();                        // See if we need to wake a successor
 953       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 954         TEVENT(Inflated exit - simple egress);
 955         return;
 956       }
 957       TEVENT(Inflated exit - complex egress);
 958       // Other threads are blocked trying to acquire the lock.
 959 
 960       // Normally the exiting thread is responsible for ensuring succession,
 961       // but if other successors are ready or other entering threads are spinning
 962       // then this thread can simply store NULL into _owner and exit without
 963       // waking a successor.  The existence of spinners or ready successors
 964       // guarantees proper succession (liveness).  Responsibility passes to the
 965       // ready or running successors.  The exiting thread delegates the duty.
 966       // More precisely, if a successor already exists this thread is absolved
 967       // of the responsibility of waking (unparking) one.
 968       //
 969       // The _succ variable is critical to reducing futile wakeup frequency.
 970       // _succ identifies the "heir presumptive" thread that has been made
 971       // ready (unparked) but that has not yet run.  We need only one such
 972       // successor thread to guarantee progress.
 973       // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 974       // section 3.3 "Futile Wakeup Throttling" for details.
 975       //
 976       // Note that spinners in Enter() also set _succ non-null.
 977       // In the current implementation spinners opportunistically set
 978       // _succ so that exiting threads might avoid waking a successor.
 979       // Another less appealing alternative would be for the exiting thread
 980       // to drop the lock and then spin briefly to see if a spinner managed
 981       // to acquire the lock.  If so, the exiting thread could exit
 982       // immediately without waking a successor, otherwise the exiting
 983       // thread would need to dequeue and wake a successor.
 984       // (Note that we'd need to make the post-drop spin short, but no
 985       // shorter than the worst-case round-trip cache-line migration time.
 986       // The dropped lock needs to become visible to the spinner, and then
 987       // the acquisition of the lock by the spinner must become visible to
 988       // the exiting thread).
 989 
 990       // It appears that an heir-presumptive (successor) must be made ready.
 991       // Only the current lock owner can manipulate the EntryList or
 992       // drain _cxq, so we need to reacquire the lock.  If we fail
 993       // to reacquire the lock the responsibility for ensuring succession
 994       // falls to the new owner.
 995       //
 996       if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 997         return;
 998       }
 999       TEVENT(Exit - Reacquired);
1000     } else {
1001       if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1002         OrderAccess::release_store_ptr(&_owner, NULL);   // drop the lock
1003         OrderAccess::storeload();
1004         // Ratify the previously observed values.
1005         if (_cxq == NULL || _succ != NULL) {
1006           TEVENT(Inflated exit - simple egress);
1007           return;
1008         }
1009 
1010         // inopportune interleaving -- the exiting thread (this thread)
1011         // in the fast-exit path raced an entering thread in the slow-enter
1012         // path.
1013         // We have two choices:
1014         // A.  Try to reacquire the lock.
1015         //     If the CAS() fails return immediately, otherwise
1016         //     we either restart/rerun the exit operation, or simply
1017         //     fall-through into the code below which wakes a successor.
1018         // B.  If the elements forming the EntryList|cxq are TSM
1019         //     we could simply unpark() the lead thread and return
1020         //     without having set _succ.
1021         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
1022           TEVENT(Inflated exit - reacquired succeeded);
1023           return;
1024         }
1025         TEVENT(Inflated exit - reacquired failed);
1026       } else {
1027         TEVENT(Inflated exit - complex egress);
1028       }
1029     }
1030 
1031     guarantee(_owner == THREAD, "invariant");
1032 
1033     ObjectWaiter * w = NULL;
1034     int QMode = Knob_QMode;
1035 
1036     if (QMode == 2 && _cxq != NULL) {
1037       // QMode == 2 : cxq has precedence over EntryList.
1038       // Try to directly wake a successor from the cxq.
1039       // If successful, the successor will need to unlink itself from cxq.
1040       w = _cxq;
1041       assert(w != NULL, "invariant");
1042       assert(w->TState == ObjectWaiter::TS_CXQ, "Invariant");
1043       ExitEpilog(Self, w);
1044       return;
1045     }
1046 
1047     if (QMode == 3 && _cxq != NULL) {
1048       // Aggressively drain cxq into EntryList at the first opportunity.
1049       // This policy ensure that recently-run threads live at the head of EntryList.
1050       // Drain _cxq into EntryList - bulk transfer.
1051       // First, detach _cxq.
1052       // The following loop is tantamount to: w = swap(&cxq, NULL)
1053       w = _cxq;
1054       for (;;) {
1055         assert(w != NULL, "Invariant");
1056         ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr(NULL, &_cxq, w);
1057         if (u == w) break;
1058         w = u;
1059       }
1060       assert(w != NULL, "invariant");
1061 
1062       ObjectWaiter * q = NULL;
1063       ObjectWaiter * p;
1064       for (p = w; p != NULL; p = p->_next) {
1065         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1066         p->TState = ObjectWaiter::TS_ENTER;
1067         p->_prev = q;
1068         q = p;
1069       }
1070 
1071       // Append the RATs to the EntryList
1072       // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1073       ObjectWaiter * Tail;
1074       for (Tail = _EntryList; Tail != NULL && Tail->_next != NULL;
1075            Tail = Tail->_next)
1076         /* empty */;
1077       if (Tail == NULL) {
1078         _EntryList = w;
1079       } else {
1080         Tail->_next = w;
1081         w->_prev = Tail;
1082       }
1083 
1084       // Fall thru into code that tries to wake a successor from EntryList
1085     }
1086 
1087     if (QMode == 4 && _cxq != NULL) {
1088       // Aggressively drain cxq into EntryList at the first opportunity.
1089       // This policy ensure that recently-run threads live at the head of EntryList.
1090 
1091       // Drain _cxq into EntryList - bulk transfer.
1092       // First, detach _cxq.
1093       // The following loop is tantamount to: w = swap(&cxq, NULL)
1094       w = _cxq;
1095       for (;;) {
1096         assert(w != NULL, "Invariant");
1097         ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr(NULL, &_cxq, w);
1098         if (u == w) break;
1099         w = u;
1100       }
1101       assert(w != NULL, "invariant");
1102 
1103       ObjectWaiter * q = NULL;
1104       ObjectWaiter * p;
1105       for (p = w; p != NULL; p = p->_next) {
1106         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1107         p->TState = ObjectWaiter::TS_ENTER;
1108         p->_prev = q;
1109         q = p;
1110       }
1111 
1112       // Prepend the RATs to the EntryList
1113       if (_EntryList != NULL) {
1114         q->_next = _EntryList;
1115         _EntryList->_prev = q;
1116       }
1117       _EntryList = w;
1118 
1119       // Fall thru into code that tries to wake a successor from EntryList
1120     }
1121 
1122     w = _EntryList;
1123     if (w != NULL) {
1124       // I'd like to write: guarantee (w->_thread != Self).
1125       // But in practice an exiting thread may find itself on the EntryList.
1126       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1127       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1128       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1129       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1130       // release the lock "O".  T2 resumes immediately after the ST of null into
1131       // _owner, above.  T2 notices that the EntryList is populated, so it
1132       // reacquires the lock and then finds itself on the EntryList.
1133       // Given all that, we have to tolerate the circumstance where "w" is
1134       // associated with Self.
1135       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1136       ExitEpilog(Self, w);
1137       return;
1138     }
1139 
1140     // If we find that both _cxq and EntryList are null then just
1141     // re-run the exit protocol from the top.
1142     w = _cxq;
1143     if (w == NULL) continue;
1144 
1145     // Drain _cxq into EntryList - bulk transfer.
1146     // First, detach _cxq.
1147     // The following loop is tantamount to: w = swap(&cxq, NULL)
1148     for (;;) {
1149       assert(w != NULL, "Invariant");
1150       ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr(NULL, &_cxq, w);
1151       if (u == w) break;
1152       w = u;
1153     }
1154     TEVENT(Inflated exit - drain cxq into EntryList);
1155 
1156     assert(w != NULL, "invariant");
1157     assert(_EntryList == NULL, "invariant");
1158 
1159     // Convert the LIFO SLL anchored by _cxq into a DLL.
1160     // The list reorganization step operates in O(LENGTH(w)) time.
1161     // It's critical that this step operate quickly as
1162     // "Self" still holds the outer-lock, restricting parallelism
1163     // and effectively lengthening the critical section.
1164     // Invariant: s chases t chases u.
1165     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1166     // we have faster access to the tail.
1167 
1168     if (QMode == 1) {
1169       // QMode == 1 : drain cxq to EntryList, reversing order
1170       // We also reverse the order of the list.
1171       ObjectWaiter * s = NULL;
1172       ObjectWaiter * t = w;
1173       ObjectWaiter * u = NULL;
1174       while (t != NULL) {
1175         guarantee(t->TState == ObjectWaiter::TS_CXQ, "invariant");
1176         t->TState = ObjectWaiter::TS_ENTER;
1177         u = t->_next;
1178         t->_prev = u;
1179         t->_next = s;
1180         s = t;
1181         t = u;
1182       }
1183       _EntryList  = s;
1184       assert(s != NULL, "invariant");
1185     } else {
1186       // QMode == 0 or QMode == 2
1187       _EntryList = w;
1188       ObjectWaiter * q = NULL;
1189       ObjectWaiter * p;
1190       for (p = w; p != NULL; p = p->_next) {
1191         guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1192         p->TState = ObjectWaiter::TS_ENTER;
1193         p->_prev = q;
1194         q = p;
1195       }
1196     }
1197 
1198     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1199     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1200 
1201     // See if we can abdicate to a spinner instead of waking a thread.
1202     // A primary goal of the implementation is to reduce the
1203     // context-switch rate.
1204     if (_succ != NULL) continue;
1205 
1206     w = _EntryList;
1207     if (w != NULL) {
1208       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1209       ExitEpilog(Self, w);
1210       return;
1211     }
1212   }
1213 }
1214 
1215 // ExitSuspendEquivalent:
1216 // A faster alternate to handle_special_suspend_equivalent_condition()
1217 //
1218 // handle_special_suspend_equivalent_condition() unconditionally
1219 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1220 // operations have high latency.  Note that in ::enter() we call HSSEC
1221 // while holding the monitor, so we effectively lengthen the critical sections.
1222 //
1223 // There are a number of possible solutions:
1224 //
1225 // A.  To ameliorate the problem we might also defer state transitions
1226 //     to as late as possible -- just prior to parking.
1227 //     Given that, we'd call HSSEC after having returned from park(),
1228 //     but before attempting to acquire the monitor.  This is only a
1229 //     partial solution.  It avoids calling HSSEC while holding the
1230 //     monitor (good), but it still increases successor reacquisition latency --
1231 //     the interval between unparking a successor and the time the successor
1232 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1233 //     If we use this technique we can also avoid EnterI()-exit() loop
1234 //     in ::enter() where we iteratively drop the lock and then attempt
1235 //     to reacquire it after suspending.
1236 //
1237 // B.  In the future we might fold all the suspend bits into a
1238 //     composite per-thread suspend flag and then update it with CAS().
1239 //     Alternately, a Dekker-like mechanism with multiple variables
1240 //     would suffice:
1241 //       ST Self->_suspend_equivalent = false
1242 //       MEMBAR
1243 //       LD Self_>_suspend_flags
1244 //
1245 // UPDATE 2007-10-6: since I've replaced the native Mutex/Monitor subsystem
1246 // with a more efficient implementation, the need to use "FastHSSEC" has
1247 // decreased. - Dave
1248 
1249 
1250 bool ObjectMonitor::ExitSuspendEquivalent(JavaThread * jSelf) {
1251   const int Mode = Knob_FastHSSEC;
1252   if (Mode && !jSelf->is_external_suspend()) {
1253     assert(jSelf->is_suspend_equivalent(), "invariant");
1254     jSelf->clear_suspend_equivalent();
1255     if (2 == Mode) OrderAccess::storeload();
1256     if (!jSelf->is_external_suspend()) return false;
1257     // We raced a suspension -- fall thru into the slow path
1258     TEVENT(ExitSuspendEquivalent - raced);
1259     jSelf->set_suspend_equivalent();
1260   }
1261   return jSelf->handle_special_suspend_equivalent_condition();
1262 }
1263 
1264 
1265 void ObjectMonitor::ExitEpilog(Thread * Self, ObjectWaiter * Wakee) {
1266   assert(_owner == Self, "invariant");
1267 
1268   // Exit protocol:
1269   // 1. ST _succ = wakee
1270   // 2. membar #loadstore|#storestore;
1271   // 2. ST _owner = NULL
1272   // 3. unpark(wakee)
1273 
1274   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL;
1275   ParkEvent * Trigger = Wakee->_event;
1276 
1277   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1278   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1279   // out-of-scope (non-extant).
1280   Wakee  = NULL;
1281 
1282   // Drop the lock
1283   OrderAccess::release_store_ptr(&_owner, NULL);
1284   OrderAccess::fence();                               // ST _owner vs LD in unpark()
1285 
1286   if (SafepointMechanism::poll()) {
1287     TEVENT(unpark before SAFEPOINT);
1288   }
1289 
1290   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1291   Trigger->unpark();
1292 
1293   // Maintain stats and report events to JVMTI
1294   OM_PERFDATA_OP(Parks, inc());
1295 }
1296 
1297 
1298 // -----------------------------------------------------------------------------
1299 // Class Loader deadlock handling.
1300 //
1301 // complete_exit exits a lock returning recursion count
1302 // complete_exit/reenter operate as a wait without waiting
1303 // complete_exit requires an inflated monitor
1304 // The _owner field is not always the Thread addr even with an
1305 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1306 // thread due to contention.
1307 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1308   Thread * const Self = THREAD;
1309   assert(Self->is_Java_thread(), "Must be Java thread!");
1310   JavaThread *jt = (JavaThread *)THREAD;
1311 
1312   DeferredInitialize();
1313 
1314   if (THREAD != _owner) {
1315     if (THREAD->is_lock_owned ((address)_owner)) {
1316       assert(_recursions == 0, "internal state error");
1317       _owner = THREAD;   // Convert from basiclock addr to Thread addr
1318       _recursions = 0;
1319     }
1320   }
1321 
1322   guarantee(Self == _owner, "complete_exit not owner");
1323   intptr_t save = _recursions; // record the old recursion count
1324   _recursions = 0;        // set the recursion level to be 0
1325   exit(true, Self);           // exit the monitor
1326   guarantee(_owner != Self, "invariant");
1327   return save;
1328 }
1329 
1330 // reenter() enters a lock and sets recursion count
1331 // complete_exit/reenter operate as a wait without waiting
1332 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1333   Thread * const Self = THREAD;
1334   assert(Self->is_Java_thread(), "Must be Java thread!");
1335   JavaThread *jt = (JavaThread *)THREAD;
1336 
1337   guarantee(_owner != Self, "reenter already owner");
1338   enter(THREAD);       // enter the monitor
1339   guarantee(_recursions == 0, "reenter recursion");
1340   _recursions = recursions;
1341   return;
1342 }
1343 
1344 
1345 // -----------------------------------------------------------------------------
1346 // A macro is used below because there may already be a pending
1347 // exception which should not abort the execution of the routines
1348 // which use this (which is why we don't put this into check_slow and
1349 // call it with a CHECK argument).
1350 
1351 #define CHECK_OWNER()                                                       \
1352   do {                                                                      \
1353     if (THREAD != _owner) {                                                 \
1354       if (THREAD->is_lock_owned((address) _owner)) {                        \
1355         _owner = THREAD;  /* Convert from basiclock addr to Thread addr */  \
1356         _recursions = 0;                                                    \
1357       } else {                                                              \
1358         TEVENT(Throw IMSX);                                                 \
1359         THROW(vmSymbols::java_lang_IllegalMonitorStateException());         \
1360       }                                                                     \
1361     }                                                                       \
1362   } while (false)
1363 
1364 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1365 // TODO-FIXME: remove check_slow() -- it's likely dead.
1366 
1367 void ObjectMonitor::check_slow(TRAPS) {
1368   TEVENT(check_slow - throw IMSX);
1369   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1370   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1371 }
1372 
1373 static int Adjust(volatile int * adr, int dx) {
1374   int v;
1375   for (v = *adr; Atomic::cmpxchg(v + dx, adr, v) != v; v = *adr) /* empty */;
1376   return v;
1377 }
1378 
1379 // helper method for posting a monitor wait event
1380 void ObjectMonitor::post_monitor_wait_event(EventJavaMonitorWait* event,
1381                                             jlong notifier_tid,
1382                                             jlong timeout,
1383                                             bool timedout) {
1384   assert(event != NULL, "invariant");
1385   event->set_monitorClass(((oop)this->object())->klass());
1386   event->set_timeout(timeout);
1387   event->set_address((TYPE_ADDRESS)this->object_addr());
1388   event->set_notifier(notifier_tid);
1389   event->set_timedOut(timedout);
1390   event->commit();
1391 }
1392 
1393 // -----------------------------------------------------------------------------
1394 // Wait/Notify/NotifyAll
1395 //
1396 // Note: a subset of changes to ObjectMonitor::wait()
1397 // will need to be replicated in complete_exit
1398 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1399   Thread * const Self = THREAD;
1400   assert(Self->is_Java_thread(), "Must be Java thread!");
1401   JavaThread *jt = (JavaThread *)THREAD;
1402 
1403   DeferredInitialize();
1404 
1405   // Throw IMSX or IEX.
1406   CHECK_OWNER();
1407 
1408   EventJavaMonitorWait event;
1409 
1410   // check for a pending interrupt
1411   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1412     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1413     if (JvmtiExport::should_post_monitor_waited()) {
1414       // Note: 'false' parameter is passed here because the
1415       // wait was not timed out due to thread interrupt.
1416       JvmtiExport::post_monitor_waited(jt, this, false);
1417 
1418       // In this short circuit of the monitor wait protocol, the
1419       // current thread never drops ownership of the monitor and
1420       // never gets added to the wait queue so the current thread
1421       // cannot be made the successor. This means that the
1422       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1423       // consume an unpark() meant for the ParkEvent associated with
1424       // this ObjectMonitor.
1425     }
1426     if (event.should_commit()) {
1427       post_monitor_wait_event(&event, 0, millis, false);
1428     }
1429     TEVENT(Wait - Throw IEX);
1430     THROW(vmSymbols::java_lang_InterruptedException());
1431     return;
1432   }
1433 
1434   TEVENT(Wait);
1435 
1436   assert(Self->_Stalled == 0, "invariant");
1437   Self->_Stalled = intptr_t(this);
1438   jt->set_current_waiting_monitor(this);
1439 
1440   // create a node to be put into the queue
1441   // Critically, after we reset() the event but prior to park(), we must check
1442   // for a pending interrupt.
1443   ObjectWaiter node(Self);
1444   node.TState = ObjectWaiter::TS_WAIT;
1445   Self->_ParkEvent->reset();
1446   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1447 
1448   // Enter the waiting queue, which is a circular doubly linked list in this case
1449   // but it could be a priority queue or any data structure.
1450   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1451   // by the the owner of the monitor *except* in the case where park()
1452   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1453   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1454 
1455   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1456   AddWaiter(&node);
1457   Thread::SpinRelease(&_WaitSetLock);
1458 
1459   if ((SyncFlags & 4) == 0) {
1460     _Responsible = NULL;
1461   }
1462   intptr_t save = _recursions; // record the old recursion count
1463   _waiters++;                  // increment the number of waiters
1464   _recursions = 0;             // set the recursion level to be 1
1465   exit(true, Self);                    // exit the monitor
1466   guarantee(_owner != Self, "invariant");
1467 
1468   // The thread is on the WaitSet list - now park() it.
1469   // On MP systems it's conceivable that a brief spin before we park
1470   // could be profitable.
1471   //
1472   // TODO-FIXME: change the following logic to a loop of the form
1473   //   while (!timeout && !interrupted && _notified == 0) park()
1474 
1475   int ret = OS_OK;
1476   int WasNotified = 0;
1477   { // State transition wrappers
1478     OSThread* osthread = Self->osthread();
1479     OSThreadWaitState osts(osthread, true);
1480     {
1481       ThreadBlockInVM tbivm(jt);
1482       // Thread is in thread_blocked state and oop access is unsafe.
1483       jt->set_suspend_equivalent();
1484 
1485       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1486         // Intentionally empty
1487       } else if (node._notified == 0) {
1488         if (millis <= 0) {
1489           Self->_ParkEvent->park();
1490         } else {
1491           ret = Self->_ParkEvent->park(millis);
1492         }
1493       }
1494 
1495       // were we externally suspended while we were waiting?
1496       if (ExitSuspendEquivalent (jt)) {
1497         // TODO-FIXME: add -- if succ == Self then succ = null.
1498         jt->java_suspend_self();
1499       }
1500 
1501     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1502 
1503     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1504     // from the WaitSet to the EntryList.
1505     // See if we need to remove Node from the WaitSet.
1506     // We use double-checked locking to avoid grabbing _WaitSetLock
1507     // if the thread is not on the wait queue.
1508     //
1509     // Note that we don't need a fence before the fetch of TState.
1510     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1511     // written by the is thread. (perhaps the fetch might even be satisfied
1512     // by a look-aside into the processor's own store buffer, although given
1513     // the length of the code path between the prior ST and this load that's
1514     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1515     // then we'll acquire the lock and then re-fetch a fresh TState value.
1516     // That is, we fail toward safety.
1517 
1518     if (node.TState == ObjectWaiter::TS_WAIT) {
1519       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1520       if (node.TState == ObjectWaiter::TS_WAIT) {
1521         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1522         assert(node._notified == 0, "invariant");
1523         node.TState = ObjectWaiter::TS_RUN;
1524       }
1525       Thread::SpinRelease(&_WaitSetLock);
1526     }
1527 
1528     // The thread is now either on off-list (TS_RUN),
1529     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1530     // The Node's TState variable is stable from the perspective of this thread.
1531     // No other threads will asynchronously modify TState.
1532     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1533     OrderAccess::loadload();
1534     if (_succ == Self) _succ = NULL;
1535     WasNotified = node._notified;
1536 
1537     // Reentry phase -- reacquire the monitor.
1538     // re-enter contended monitor after object.wait().
1539     // retain OBJECT_WAIT state until re-enter successfully completes
1540     // Thread state is thread_in_vm and oop access is again safe,
1541     // although the raw address of the object may have changed.
1542     // (Don't cache naked oops over safepoints, of course).
1543 
1544     // post monitor waited event. Note that this is past-tense, we are done waiting.
1545     if (JvmtiExport::should_post_monitor_waited()) {
1546       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1547 
1548       if (node._notified != 0 && _succ == Self) {
1549         // In this part of the monitor wait-notify-reenter protocol it
1550         // is possible (and normal) for another thread to do a fastpath
1551         // monitor enter-exit while this thread is still trying to get
1552         // to the reenter portion of the protocol.
1553         //
1554         // The ObjectMonitor was notified and the current thread is
1555         // the successor which also means that an unpark() has already
1556         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1557         // consume the unpark() that was done when the successor was
1558         // set because the same ParkEvent is shared between Java
1559         // monitors and JVM/TI RawMonitors (for now).
1560         //
1561         // We redo the unpark() to ensure forward progress, i.e., we
1562         // don't want all pending threads hanging (parked) with none
1563         // entering the unlocked monitor.
1564         node._event->unpark();
1565       }
1566     }
1567 
1568     if (event.should_commit()) {
1569       post_monitor_wait_event(&event, node._notifier_tid, millis, ret == OS_TIMEOUT);
1570     }
1571 
1572     OrderAccess::fence();
1573 
1574     assert(Self->_Stalled != 0, "invariant");
1575     Self->_Stalled = 0;
1576 
1577     assert(_owner != Self, "invariant");
1578     ObjectWaiter::TStates v = node.TState;
1579     if (v == ObjectWaiter::TS_RUN) {
1580       enter(Self);
1581     } else {
1582       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1583       ReenterI(Self, &node);
1584       node.wait_reenter_end(this);
1585     }
1586 
1587     // Self has reacquired the lock.
1588     // Lifecycle - the node representing Self must not appear on any queues.
1589     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1590     // want residual elements associated with this thread left on any lists.
1591     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1592     assert(_owner == Self, "invariant");
1593     assert(_succ != Self, "invariant");
1594   } // OSThreadWaitState()
1595 
1596   jt->set_current_waiting_monitor(NULL);
1597 
1598   guarantee(_recursions == 0, "invariant");
1599   _recursions = save;     // restore the old recursion count
1600   _waiters--;             // decrement the number of waiters
1601 
1602   // Verify a few postconditions
1603   assert(_owner == Self, "invariant");
1604   assert(_succ != Self, "invariant");
1605   assert(((oop)(object()))->mark() == markOopDesc::encode(this), "invariant");
1606 
1607   if (SyncFlags & 32) {
1608     OrderAccess::fence();
1609   }
1610 
1611   // check if the notification happened
1612   if (!WasNotified) {
1613     // no, it could be timeout or Thread.interrupt() or both
1614     // check for interrupt event, otherwise it is timeout
1615     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1616       TEVENT(Wait - throw IEX from epilog);
1617       THROW(vmSymbols::java_lang_InterruptedException());
1618     }
1619   }
1620 
1621   // NOTE: Spurious wake up will be consider as timeout.
1622   // Monitor notify has precedence over thread interrupt.
1623 }
1624 
1625 
1626 // Consider:
1627 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1628 // then instead of transferring a thread from the WaitSet to the EntryList
1629 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1630 
1631 void ObjectMonitor::INotify(Thread * Self) {
1632   const int policy = Knob_MoveNotifyee;
1633 
1634   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1635   ObjectWaiter * iterator = DequeueWaiter();
1636   if (iterator != NULL) {
1637     TEVENT(Notify1 - Transfer);
1638     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1639     guarantee(iterator->_notified == 0, "invariant");
1640     // Disposition - what might we do with iterator ?
1641     // a.  add it directly to the EntryList - either tail (policy == 1)
1642     //     or head (policy == 0).
1643     // b.  push it onto the front of the _cxq (policy == 2).
1644     // For now we use (b).
1645     if (policy != 4) {
1646       iterator->TState = ObjectWaiter::TS_ENTER;
1647     }
1648     iterator->_notified = 1;
1649     iterator->_notifier_tid = THREAD_TRACE_ID(Self);
1650 
1651     ObjectWaiter * list = _EntryList;
1652     if (list != NULL) {
1653       assert(list->_prev == NULL, "invariant");
1654       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1655       assert(list != iterator, "invariant");
1656     }
1657 
1658     if (policy == 0) {       // prepend to EntryList
1659       if (list == NULL) {
1660         iterator->_next = iterator->_prev = NULL;
1661         _EntryList = iterator;
1662       } else {
1663         list->_prev = iterator;
1664         iterator->_next = list;
1665         iterator->_prev = NULL;
1666         _EntryList = iterator;
1667       }
1668     } else if (policy == 1) {      // append to EntryList
1669       if (list == NULL) {
1670         iterator->_next = iterator->_prev = NULL;
1671         _EntryList = iterator;
1672       } else {
1673         // CONSIDER:  finding the tail currently requires a linear-time walk of
1674         // the EntryList.  We can make tail access constant-time by converting to
1675         // a CDLL instead of using our current DLL.
1676         ObjectWaiter * tail;
1677         for (tail = list; tail->_next != NULL; tail = tail->_next) {}
1678         assert(tail != NULL && tail->_next == NULL, "invariant");
1679         tail->_next = iterator;
1680         iterator->_prev = tail;
1681         iterator->_next = NULL;
1682       }
1683     } else if (policy == 2) {      // prepend to cxq
1684       if (list == NULL) {
1685         iterator->_next = iterator->_prev = NULL;
1686         _EntryList = iterator;
1687       } else {
1688         iterator->TState = ObjectWaiter::TS_CXQ;
1689         for (;;) {
1690           ObjectWaiter * front = _cxq;
1691           iterator->_next = front;
1692           if (Atomic::cmpxchg_ptr(iterator, &_cxq, front) == front) {
1693             break;
1694           }
1695         }
1696       }
1697     } else if (policy == 3) {      // append to cxq
1698       iterator->TState = ObjectWaiter::TS_CXQ;
1699       for (;;) {
1700         ObjectWaiter * tail = _cxq;
1701         if (tail == NULL) {
1702           iterator->_next = NULL;
1703           if (Atomic::cmpxchg_ptr(iterator, &_cxq, NULL) == NULL) {
1704             break;
1705           }
1706         } else {
1707           while (tail->_next != NULL) tail = tail->_next;
1708           tail->_next = iterator;
1709           iterator->_prev = tail;
1710           iterator->_next = NULL;
1711           break;
1712         }
1713       }
1714     } else {
1715       ParkEvent * ev = iterator->_event;
1716       iterator->TState = ObjectWaiter::TS_RUN;
1717       OrderAccess::fence();
1718       ev->unpark();
1719     }
1720 
1721     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1722     // move the add-to-EntryList operation, above, outside the critical section
1723     // protected by _WaitSetLock.  In practice that's not useful.  With the
1724     // exception of  wait() timeouts and interrupts the monitor owner
1725     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1726     // on _WaitSetLock so it's not profitable to reduce the length of the
1727     // critical section.
1728 
1729     if (policy < 4) {
1730       iterator->wait_reenter_begin(this);
1731     }
1732   }
1733   Thread::SpinRelease(&_WaitSetLock);
1734 }
1735 
1736 // Consider: a not-uncommon synchronization bug is to use notify() when
1737 // notifyAll() is more appropriate, potentially resulting in stranded
1738 // threads; this is one example of a lost wakeup. A useful diagnostic
1739 // option is to force all notify() operations to behave as notifyAll().
1740 //
1741 // Note: We can also detect many such problems with a "minimum wait".
1742 // When the "minimum wait" is set to a small non-zero timeout value
1743 // and the program does not hang whereas it did absent "minimum wait",
1744 // that suggests a lost wakeup bug. The '-XX:SyncFlags=1' option uses
1745 // a "minimum wait" for all park() operations; see the recheckInterval
1746 // variable and MAX_RECHECK_INTERVAL.
1747 
1748 void ObjectMonitor::notify(TRAPS) {
1749   CHECK_OWNER();
1750   if (_WaitSet == NULL) {
1751     TEVENT(Empty-Notify);
1752     return;
1753   }
1754   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1755   INotify(THREAD);
1756   OM_PERFDATA_OP(Notifications, inc(1));
1757 }
1758 
1759 
1760 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1761 // from the waitset to the EntryList. This could be done more efficiently with a
1762 // single bulk transfer but in practice it's not time-critical. Beware too,
1763 // that in prepend-mode we invert the order of the waiters. Let's say that the
1764 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1765 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1766 
1767 void ObjectMonitor::notifyAll(TRAPS) {
1768   CHECK_OWNER();
1769   if (_WaitSet == NULL) {
1770     TEVENT(Empty-NotifyAll);
1771     return;
1772   }
1773 
1774   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1775   int tally = 0;
1776   while (_WaitSet != NULL) {
1777     tally++;
1778     INotify(THREAD);
1779   }
1780 
1781   OM_PERFDATA_OP(Notifications, inc(tally));
1782 }
1783 
1784 // -----------------------------------------------------------------------------
1785 // Adaptive Spinning Support
1786 //
1787 // Adaptive spin-then-block - rational spinning
1788 //
1789 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1790 // algorithm.  On high order SMP systems it would be better to start with
1791 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1792 // a contending thread could enqueue itself on the cxq and then spin locally
1793 // on a thread-specific variable such as its ParkEvent._Event flag.
1794 // That's left as an exercise for the reader.  Note that global spinning is
1795 // not problematic on Niagara, as the L2 cache serves the interconnect and
1796 // has both low latency and massive bandwidth.
1797 //
1798 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1799 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1800 // (duration) or we can fix the count at approximately the duration of
1801 // a context switch and vary the frequency.   Of course we could also
1802 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1803 // For a description of 'Adaptive spin-then-block mutual exclusion in
1804 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1805 //
1806 // This implementation varies the duration "D", where D varies with
1807 // the success rate of recent spin attempts. (D is capped at approximately
1808 // length of a round-trip context switch).  The success rate for recent
1809 // spin attempts is a good predictor of the success rate of future spin
1810 // attempts.  The mechanism adapts automatically to varying critical
1811 // section length (lock modality), system load and degree of parallelism.
1812 // D is maintained per-monitor in _SpinDuration and is initialized
1813 // optimistically.  Spin frequency is fixed at 100%.
1814 //
1815 // Note that _SpinDuration is volatile, but we update it without locks
1816 // or atomics.  The code is designed so that _SpinDuration stays within
1817 // a reasonable range even in the presence of races.  The arithmetic
1818 // operations on _SpinDuration are closed over the domain of legal values,
1819 // so at worst a race will install and older but still legal value.
1820 // At the very worst this introduces some apparent non-determinism.
1821 // We might spin when we shouldn't or vice-versa, but since the spin
1822 // count are relatively short, even in the worst case, the effect is harmless.
1823 //
1824 // Care must be taken that a low "D" value does not become an
1825 // an absorbing state.  Transient spinning failures -- when spinning
1826 // is overall profitable -- should not cause the system to converge
1827 // on low "D" values.  We want spinning to be stable and predictable
1828 // and fairly responsive to change and at the same time we don't want
1829 // it to oscillate, become metastable, be "too" non-deterministic,
1830 // or converge on or enter undesirable stable absorbing states.
1831 //
1832 // We implement a feedback-based control system -- using past behavior
1833 // to predict future behavior.  We face two issues: (a) if the
1834 // input signal is random then the spin predictor won't provide optimal
1835 // results, and (b) if the signal frequency is too high then the control
1836 // system, which has some natural response lag, will "chase" the signal.
1837 // (b) can arise from multimodal lock hold times.  Transient preemption
1838 // can also result in apparent bimodal lock hold times.
1839 // Although sub-optimal, neither condition is particularly harmful, as
1840 // in the worst-case we'll spin when we shouldn't or vice-versa.
1841 // The maximum spin duration is rather short so the failure modes aren't bad.
1842 // To be conservative, I've tuned the gain in system to bias toward
1843 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1844 // "rings" or oscillates between spinning and not spinning.  This happens
1845 // when spinning is just on the cusp of profitability, however, so the
1846 // situation is not dire.  The state is benign -- there's no need to add
1847 // hysteresis control to damp the transition rate between spinning and
1848 // not spinning.
1849 
1850 // Spinning: Fixed frequency (100%), vary duration
1851 int ObjectMonitor::TrySpin(Thread * Self) {
1852   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1853   int ctr = Knob_FixedSpin;
1854   if (ctr != 0) {
1855     while (--ctr >= 0) {
1856       if (TryLock(Self) > 0) return 1;
1857       SpinPause();
1858     }
1859     return 0;
1860   }
1861 
1862   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1863     if (TryLock(Self) > 0) {
1864       // Increase _SpinDuration ...
1865       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1866       // Raising _SpurDuration to the poverty line is key.
1867       int x = _SpinDuration;
1868       if (x < Knob_SpinLimit) {
1869         if (x < Knob_Poverty) x = Knob_Poverty;
1870         _SpinDuration = x + Knob_BonusB;
1871       }
1872       return 1;
1873     }
1874     SpinPause();
1875   }
1876 
1877   // Admission control - verify preconditions for spinning
1878   //
1879   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1880   // becoming an absorbing state.  Put another way, we spin briefly to
1881   // sample, just in case the system load, parallelism, contention, or lock
1882   // modality changed.
1883   //
1884   // Consider the following alternative:
1885   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1886   // spin attempt.  "Periodically" might mean after a tally of
1887   // the # of failed spin attempts (or iterations) reaches some threshold.
1888   // This takes us into the realm of 1-out-of-N spinning, where we
1889   // hold the duration constant but vary the frequency.
1890 
1891   ctr = _SpinDuration;
1892   if (ctr < Knob_SpinBase) ctr = Knob_SpinBase;
1893   if (ctr <= 0) return 0;
1894 
1895   if (Knob_SuccRestrict && _succ != NULL) return 0;
1896   if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1897     TEVENT(Spin abort - notrunnable [TOP]);
1898     return 0;
1899   }
1900 
1901   int MaxSpin = Knob_MaxSpinners;
1902   if (MaxSpin >= 0) {
1903     if (_Spinner > MaxSpin) {
1904       TEVENT(Spin abort -- too many spinners);
1905       return 0;
1906     }
1907     // Slightly racy, but benign ...
1908     Adjust(&_Spinner, 1);
1909   }
1910 
1911   // We're good to spin ... spin ingress.
1912   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1913   // when preparing to LD...CAS _owner, etc and the CAS is likely
1914   // to succeed.
1915   int hits    = 0;
1916   int msk     = 0;
1917   int caspty  = Knob_CASPenalty;
1918   int oxpty   = Knob_OXPenalty;
1919   int sss     = Knob_SpinSetSucc;
1920   if (sss && _succ == NULL) _succ = Self;
1921   Thread * prv = NULL;
1922 
1923   // There are three ways to exit the following loop:
1924   // 1.  A successful spin where this thread has acquired the lock.
1925   // 2.  Spin failure with prejudice
1926   // 3.  Spin failure without prejudice
1927 
1928   while (--ctr >= 0) {
1929 
1930     // Periodic polling -- Check for pending GC
1931     // Threads may spin while they're unsafe.
1932     // We don't want spinning threads to delay the JVM from reaching
1933     // a stop-the-world safepoint or to steal cycles from GC.
1934     // If we detect a pending safepoint we abort in order that
1935     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1936     // this thread, if safe, doesn't steal cycles from GC.
1937     // This is in keeping with the "no loitering in runtime" rule.
1938     // We periodically check to see if there's a safepoint pending.
1939     if ((ctr & 0xFF) == 0) {
1940       if (SafepointMechanism::poll()) {
1941         TEVENT(Spin: safepoint);
1942         goto Abort;           // abrupt spin egress
1943       }
1944       if (Knob_UsePause & 1) SpinPause();
1945     }
1946 
1947     if (Knob_UsePause & 2) SpinPause();
1948 
1949     // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
1950     // This is useful on classic SMP systems, but is of less utility on
1951     // N1-style CMT platforms.
1952     //
1953     // Trade-off: lock acquisition latency vs coherency bandwidth.
1954     // Lock hold times are typically short.  A histogram
1955     // of successful spin attempts shows that we usually acquire
1956     // the lock early in the spin.  That suggests we want to
1957     // sample _owner frequently in the early phase of the spin,
1958     // but then back-off and sample less frequently as the spin
1959     // progresses.  The back-off makes a good citizen on SMP big
1960     // SMP systems.  Oversampling _owner can consume excessive
1961     // coherency bandwidth.  Relatedly, if we _oversample _owner we
1962     // can inadvertently interfere with the the ST m->owner=null.
1963     // executed by the lock owner.
1964     if (ctr & msk) continue;
1965     ++hits;
1966     if ((hits & 0xF) == 0) {
1967       // The 0xF, above, corresponds to the exponent.
1968       // Consider: (msk+1)|msk
1969       msk = ((msk << 2)|3) & BackOffMask;
1970     }
1971 
1972     // Probe _owner with TATAS
1973     // If this thread observes the monitor transition or flicker
1974     // from locked to unlocked to locked, then the odds that this
1975     // thread will acquire the lock in this spin attempt go down
1976     // considerably.  The same argument applies if the CAS fails
1977     // or if we observe _owner change from one non-null value to
1978     // another non-null value.   In such cases we might abort
1979     // the spin without prejudice or apply a "penalty" to the
1980     // spin count-down variable "ctr", reducing it by 100, say.
1981 
1982     Thread * ox = (Thread *) _owner;
1983     if (ox == NULL) {
1984       ox = (Thread *) Atomic::cmpxchg_ptr(Self, &_owner, NULL);
1985       if (ox == NULL) {
1986         // The CAS succeeded -- this thread acquired ownership
1987         // Take care of some bookkeeping to exit spin state.
1988         if (sss && _succ == Self) {
1989           _succ = NULL;
1990         }
1991         if (MaxSpin > 0) Adjust(&_Spinner, -1);
1992 
1993         // Increase _SpinDuration :
1994         // The spin was successful (profitable) so we tend toward
1995         // longer spin attempts in the future.
1996         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1997         // If we acquired the lock early in the spin cycle it
1998         // makes sense to increase _SpinDuration proportionally.
1999         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2000         int x = _SpinDuration;
2001         if (x < Knob_SpinLimit) {
2002           if (x < Knob_Poverty) x = Knob_Poverty;
2003           _SpinDuration = x + Knob_Bonus;
2004         }
2005         return 1;
2006       }
2007 
2008       // The CAS failed ... we can take any of the following actions:
2009       // * penalize: ctr -= Knob_CASPenalty
2010       // * exit spin with prejudice -- goto Abort;
2011       // * exit spin without prejudice.
2012       // * Since CAS is high-latency, retry again immediately.
2013       prv = ox;
2014       TEVENT(Spin: cas failed);
2015       if (caspty == -2) break;
2016       if (caspty == -1) goto Abort;
2017       ctr -= caspty;
2018       continue;
2019     }
2020 
2021     // Did lock ownership change hands ?
2022     if (ox != prv && prv != NULL) {
2023       TEVENT(spin: Owner changed)
2024       if (oxpty == -2) break;
2025       if (oxpty == -1) goto Abort;
2026       ctr -= oxpty;
2027     }
2028     prv = ox;
2029 
2030     // Abort the spin if the owner is not executing.
2031     // The owner must be executing in order to drop the lock.
2032     // Spinning while the owner is OFFPROC is idiocy.
2033     // Consider: ctr -= RunnablePenalty ;
2034     if (Knob_OState && NotRunnable (Self, ox)) {
2035       TEVENT(Spin abort - notrunnable);
2036       goto Abort;
2037     }
2038     if (sss && _succ == NULL) _succ = Self;
2039   }
2040 
2041   // Spin failed with prejudice -- reduce _SpinDuration.
2042   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2043   // AIMD is globally stable.
2044   TEVENT(Spin failure);
2045   {
2046     int x = _SpinDuration;
2047     if (x > 0) {
2048       // Consider an AIMD scheme like: x -= (x >> 3) + 100
2049       // This is globally sample and tends to damp the response.
2050       x -= Knob_Penalty;
2051       if (x < 0) x = 0;
2052       _SpinDuration = x;
2053     }
2054   }
2055 
2056  Abort:
2057   if (MaxSpin >= 0) Adjust(&_Spinner, -1);
2058   if (sss && _succ == Self) {
2059     _succ = NULL;
2060     // Invariant: after setting succ=null a contending thread
2061     // must recheck-retry _owner before parking.  This usually happens
2062     // in the normal usage of TrySpin(), but it's safest
2063     // to make TrySpin() as foolproof as possible.
2064     OrderAccess::fence();
2065     if (TryLock(Self) > 0) return 1;
2066   }
2067   return 0;
2068 }
2069 
2070 // NotRunnable() -- informed spinning
2071 //
2072 // Don't bother spinning if the owner is not eligible to drop the lock.
2073 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2074 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2075 // The thread must be runnable in order to drop the lock in timely fashion.
2076 // If the _owner is not runnable then spinning will not likely be
2077 // successful (profitable).
2078 //
2079 // Beware -- the thread referenced by _owner could have died
2080 // so a simply fetch from _owner->_thread_state might trap.
2081 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2082 // Because of the lifecycle issues the schedctl and _thread_state values
2083 // observed by NotRunnable() might be garbage.  NotRunnable must
2084 // tolerate this and consider the observed _thread_state value
2085 // as advisory.
2086 //
2087 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2088 // a thread pointer.
2089 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2090 // with the LSB of _owner.  Another option would be to probablistically probe
2091 // the putative _owner->TypeTag value.
2092 //
2093 // Checking _thread_state isn't perfect.  Even if the thread is
2094 // in_java it might be blocked on a page-fault or have been preempted
2095 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2096 // with schedctl.sc_state gives us a good picture of what the
2097 // thread is doing, however.
2098 //
2099 // TODO: check schedctl.sc_state.
2100 // We'll need to use SafeFetch32() to read from the schedctl block.
2101 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2102 //
2103 // The return value from NotRunnable() is *advisory* -- the
2104 // result is based on sampling and is not necessarily coherent.
2105 // The caller must tolerate false-negative and false-positive errors.
2106 // Spinning, in general, is probabilistic anyway.
2107 
2108 
2109 int ObjectMonitor::NotRunnable(Thread * Self, Thread * ox) {
2110   // Check ox->TypeTag == 2BAD.
2111   if (ox == NULL) return 0;
2112 
2113   // Avoid transitive spinning ...
2114   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2115   // Immediately after T1 acquires L it's possible that T2, also
2116   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2117   // This occurs transiently after T1 acquired L but before
2118   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2119   // its spin in this circumstance.
2120   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2121 
2122   if (BlockedOn == 1) return 1;
2123   if (BlockedOn != 0) {
2124     return BlockedOn != intptr_t(this) && _owner == ox;
2125   }
2126 
2127   assert(sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant");
2128   int jst = SafeFetch32((int *) &((JavaThread *) ox)->_thread_state, -1);;
2129   // consider also: jst != _thread_in_Java -- but that's overspecific.
2130   return jst == _thread_blocked || jst == _thread_in_native;
2131 }
2132 
2133 
2134 // -----------------------------------------------------------------------------
2135 // WaitSet management ...
2136 
2137 ObjectWaiter::ObjectWaiter(Thread* thread) {
2138   _next     = NULL;
2139   _prev     = NULL;
2140   _notified = 0;
2141   TState    = TS_RUN;
2142   _thread   = thread;
2143   _event    = thread->_ParkEvent;
2144   _active   = false;
2145   assert(_event != NULL, "invariant");
2146 }
2147 
2148 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2149   JavaThread *jt = (JavaThread *)this->_thread;
2150   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2151 }
2152 
2153 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2154   JavaThread *jt = (JavaThread *)this->_thread;
2155   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2156 }
2157 
2158 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2159   assert(node != NULL, "should not add NULL node");
2160   assert(node->_prev == NULL, "node already in list");
2161   assert(node->_next == NULL, "node already in list");
2162   // put node at end of queue (circular doubly linked list)
2163   if (_WaitSet == NULL) {
2164     _WaitSet = node;
2165     node->_prev = node;
2166     node->_next = node;
2167   } else {
2168     ObjectWaiter* head = _WaitSet;
2169     ObjectWaiter* tail = head->_prev;
2170     assert(tail->_next == head, "invariant check");
2171     tail->_next = node;
2172     head->_prev = node;
2173     node->_next = head;
2174     node->_prev = tail;
2175   }
2176 }
2177 
2178 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2179   // dequeue the very first waiter
2180   ObjectWaiter* waiter = _WaitSet;
2181   if (waiter) {
2182     DequeueSpecificWaiter(waiter);
2183   }
2184   return waiter;
2185 }
2186 
2187 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2188   assert(node != NULL, "should not dequeue NULL node");
2189   assert(node->_prev != NULL, "node already removed from list");
2190   assert(node->_next != NULL, "node already removed from list");
2191   // when the waiter has woken up because of interrupt,
2192   // timeout or other spurious wake-up, dequeue the
2193   // waiter from waiting list
2194   ObjectWaiter* next = node->_next;
2195   if (next == node) {
2196     assert(node->_prev == node, "invariant check");
2197     _WaitSet = NULL;
2198   } else {
2199     ObjectWaiter* prev = node->_prev;
2200     assert(prev->_next == node, "invariant check");
2201     assert(next->_prev == node, "invariant check");
2202     next->_prev = prev;
2203     prev->_next = next;
2204     if (_WaitSet == node) {
2205       _WaitSet = next;
2206     }
2207   }
2208   node->_next = NULL;
2209   node->_prev = NULL;
2210 }
2211 
2212 // -----------------------------------------------------------------------------
2213 // PerfData support
2214 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2215 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2216 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2217 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL;
2218 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2219 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL;
2220 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL;
2221 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL;
2222 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL;
2223 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL;
2224 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL;
2225 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL;
2226 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL;
2227 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL;
2228 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL;
2229 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2230 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2231 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2232 
2233 // One-shot global initialization for the sync subsystem.
2234 // We could also defer initialization and initialize on-demand
2235 // the first time we call inflate().  Initialization would
2236 // be protected - like so many things - by the MonitorCache_lock.
2237 
2238 void ObjectMonitor::Initialize() {
2239   static int InitializationCompleted = 0;
2240   assert(InitializationCompleted == 0, "invariant");
2241   InitializationCompleted = 1;
2242   if (UsePerfData) {
2243     EXCEPTION_MARK;
2244 #define NEWPERFCOUNTER(n)                                                \
2245   {                                                                      \
2246     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2247                                         CHECK);                          \
2248   }
2249 #define NEWPERFVARIABLE(n)                                                \
2250   {                                                                       \
2251     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2252                                          CHECK);                          \
2253   }
2254     NEWPERFCOUNTER(_sync_Inflations);
2255     NEWPERFCOUNTER(_sync_Deflations);
2256     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2257     NEWPERFCOUNTER(_sync_FutileWakeups);
2258     NEWPERFCOUNTER(_sync_Parks);
2259     NEWPERFCOUNTER(_sync_EmptyNotifications);
2260     NEWPERFCOUNTER(_sync_Notifications);
2261     NEWPERFCOUNTER(_sync_SlowEnter);
2262     NEWPERFCOUNTER(_sync_SlowExit);
2263     NEWPERFCOUNTER(_sync_SlowNotify);
2264     NEWPERFCOUNTER(_sync_SlowNotifyAll);
2265     NEWPERFCOUNTER(_sync_FailedSpins);
2266     NEWPERFCOUNTER(_sync_SuccessfulSpins);
2267     NEWPERFCOUNTER(_sync_PrivateA);
2268     NEWPERFCOUNTER(_sync_PrivateB);
2269     NEWPERFCOUNTER(_sync_MonInCirculation);
2270     NEWPERFCOUNTER(_sync_MonScavenged);
2271     NEWPERFVARIABLE(_sync_MonExtant);
2272 #undef NEWPERFCOUNTER
2273 #undef NEWPERFVARIABLE
2274   }
2275 }
2276 
2277 static char * kvGet(char * kvList, const char * Key) {
2278   if (kvList == NULL) return NULL;
2279   size_t n = strlen(Key);
2280   char * Search;
2281   for (Search = kvList; *Search; Search += strlen(Search) + 1) {
2282     if (strncmp (Search, Key, n) == 0) {
2283       if (Search[n] == '=') return Search + n + 1;
2284       if (Search[n] == 0)   return(char *) "1";
2285     }
2286   }
2287   return NULL;
2288 }
2289 
2290 static int kvGetInt(char * kvList, const char * Key, int Default) {
2291   char * v = kvGet(kvList, Key);
2292   int rslt = v ? ::strtol(v, NULL, 0) : Default;
2293   if (Knob_ReportSettings && v != NULL) {
2294     tty->print_cr("INFO: SyncKnob: %s %d(%d)", Key, rslt, Default) ;
2295     tty->flush();
2296   }
2297   return rslt;
2298 }
2299 
2300 void ObjectMonitor::DeferredInitialize() {
2301   if (InitDone > 0) return;
2302   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2303     while (InitDone != 1) /* empty */;
2304     return;
2305   }
2306 
2307   // One-shot global initialization ...
2308   // The initialization is idempotent, so we don't need locks.
2309   // In the future consider doing this via os::init_2().
2310   // SyncKnobs consist of <Key>=<Value> pairs in the style
2311   // of environment variables.  Start by converting ':' to NUL.
2312 
2313   if (SyncKnobs == NULL) SyncKnobs = "";
2314 
2315   size_t sz = strlen(SyncKnobs);
2316   char * knobs = (char *) malloc(sz + 2);
2317   if (knobs == NULL) {
2318     vm_exit_out_of_memory(sz + 2, OOM_MALLOC_ERROR, "Parse SyncKnobs");
2319     guarantee(0, "invariant");
2320   }
2321   strcpy(knobs, SyncKnobs);
2322   knobs[sz+1] = 0;
2323   for (char * p = knobs; *p; p++) {
2324     if (*p == ':') *p = 0;
2325   }
2326 
2327   #define SETKNOB(x) { Knob_##x = kvGetInt(knobs, #x, Knob_##x); }
2328   SETKNOB(ReportSettings);
2329   SETKNOB(ExitRelease);
2330   SETKNOB(Verbose);
2331   SETKNOB(VerifyInUse);
2332   SETKNOB(VerifyMatch);
2333   SETKNOB(FixedSpin);
2334   SETKNOB(SpinLimit);
2335   SETKNOB(SpinBase);
2336   SETKNOB(SpinBackOff);
2337   SETKNOB(CASPenalty);
2338   SETKNOB(OXPenalty);
2339   SETKNOB(LogSpins);
2340   SETKNOB(SpinSetSucc);
2341   SETKNOB(SuccEnabled);
2342   SETKNOB(SuccRestrict);
2343   SETKNOB(Penalty);
2344   SETKNOB(Bonus);
2345   SETKNOB(BonusB);
2346   SETKNOB(Poverty);
2347   SETKNOB(SpinAfterFutile);
2348   SETKNOB(UsePause);
2349   SETKNOB(SpinEarly);
2350   SETKNOB(OState);
2351   SETKNOB(MaxSpinners);
2352   SETKNOB(PreSpin);
2353   SETKNOB(ExitPolicy);
2354   SETKNOB(QMode);
2355   SETKNOB(ResetEvent);
2356   SETKNOB(MoveNotifyee);
2357   SETKNOB(FastHSSEC);
2358   #undef SETKNOB
2359 
2360   if (Knob_Verbose) {
2361     sanity_checks();
2362   }
2363 
2364   if (os::is_MP()) {
2365     BackOffMask = (1 << Knob_SpinBackOff) - 1;
2366     if (Knob_ReportSettings) {
2367       tty->print_cr("INFO: BackOffMask=0x%X", BackOffMask);
2368     }
2369     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2370   } else {
2371     Knob_SpinLimit = 0;
2372     Knob_SpinBase  = 0;
2373     Knob_PreSpin   = 0;
2374     Knob_FixedSpin = -1;
2375   }
2376 
2377   if (Knob_LogSpins == 0) {
2378     ObjectMonitor::_sync_FailedSpins = NULL;
2379   }
2380 
2381   free(knobs);
2382   OrderAccess::fence();
2383   InitDone = 1;
2384 }
2385 
2386 void ObjectMonitor::sanity_checks() {
2387   int error_cnt = 0;
2388   int warning_cnt = 0;
2389   bool verbose = Knob_Verbose != 0 NOT_PRODUCT(|| VerboseInternalVMTests);
2390 
2391   if (verbose) {
2392     tty->print_cr("INFO: sizeof(ObjectMonitor)=" SIZE_FORMAT,
2393                   sizeof(ObjectMonitor));
2394     tty->print_cr("INFO: sizeof(PaddedEnd<ObjectMonitor>)=" SIZE_FORMAT,
2395                   sizeof(PaddedEnd<ObjectMonitor>));
2396   }
2397 
2398   uint cache_line_size = VM_Version::L1_data_cache_line_size();
2399   if (verbose) {
2400     tty->print_cr("INFO: L1_data_cache_line_size=%u", cache_line_size);
2401   }
2402 
2403   ObjectMonitor dummy;
2404   u_char *addr_begin  = (u_char*)&dummy;
2405   u_char *addr_header = (u_char*)&dummy._header;
2406   u_char *addr_owner  = (u_char*)&dummy._owner;
2407 
2408   uint offset_header = (uint)(addr_header - addr_begin);
2409   if (verbose) tty->print_cr("INFO: offset(_header)=%u", offset_header);
2410 
2411   uint offset_owner = (uint)(addr_owner - addr_begin);
2412   if (verbose) tty->print_cr("INFO: offset(_owner)=%u", offset_owner);
2413 
2414   if ((uint)(addr_header - addr_begin) != 0) {
2415     tty->print_cr("ERROR: offset(_header) must be zero (0).");
2416     error_cnt++;
2417   }
2418 
2419   if (cache_line_size != 0) {
2420     // We were able to determine the L1 data cache line size so
2421     // do some cache line specific sanity checks
2422 
2423     if ((offset_owner - offset_header) < cache_line_size) {
2424       tty->print_cr("WARNING: the _header and _owner fields are closer "
2425                     "than a cache line which permits false sharing.");
2426       warning_cnt++;
2427     }
2428 
2429     if ((sizeof(PaddedEnd<ObjectMonitor>) % cache_line_size) != 0) {
2430       tty->print_cr("WARNING: PaddedEnd<ObjectMonitor> size is not a "
2431                     "multiple of a cache line which permits false sharing.");
2432       warning_cnt++;
2433     }
2434   }
2435 
2436   ObjectSynchronizer::sanity_checks(verbose, cache_line_size, &error_cnt,
2437                                     &warning_cnt);
2438 
2439   if (verbose || error_cnt != 0 || warning_cnt != 0) {
2440     tty->print_cr("INFO: error_cnt=%d", error_cnt);
2441     tty->print_cr("INFO: warning_cnt=%d", warning_cnt);
2442   }
2443 
2444   guarantee(error_cnt == 0,
2445             "Fatal error(s) found in ObjectMonitor::sanity_checks()");
2446 }
2447 
2448 #ifndef PRODUCT
2449 void ObjectMonitor_test() {
2450   ObjectMonitor::sanity_checks();
2451 }
2452 #endif