1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.inline.hpp"
  49 #include "oops/instanceKlass.hpp"
  50 #include "oops/objArrayOop.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/symbol.hpp"
  53 #include "oops/verifyOopClosure.hpp"
  54 #include "prims/jvm.h"
  55 #include "prims/jvm_misc.hpp"
  56 #include "prims/jvmtiExport.hpp"
  57 #include "prims/jvmtiThreadState.hpp"
  58 #include "prims/privilegedStack.hpp"
  59 #include "runtime/arguments.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/biasedLocking.hpp"
  62 #include "runtime/commandLineFlagConstraintList.hpp"
  63 #include "runtime/commandLineFlagWriteableList.hpp"
  64 #include "runtime/commandLineFlagRangeList.hpp"
  65 #include "runtime/deoptimization.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/jniPeriodicChecker.hpp"
  73 #include "runtime/timerTrace.hpp"
  74 #include "runtime/memprofiler.hpp"
  75 #include "runtime/mutexLocker.hpp"
  76 #include "runtime/objectMonitor.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/osThread.hpp"
  79 #include "runtime/safepoint.hpp"
  80 #include "runtime/safepointMechanism.inline.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/statSampler.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/sweeper.hpp"
  85 #include "runtime/task.hpp"
  86 #include "runtime/thread.inline.hpp"
  87 #include "runtime/threadCritical.hpp"
  88 #include "runtime/vframe.hpp"
  89 #include "runtime/vframeArray.hpp"
  90 #include "runtime/vframe_hp.hpp"
  91 #include "runtime/vmThread.hpp"
  92 #include "runtime/vm_operations.hpp"
  93 #include "runtime/vm_version.hpp"
  94 #include "services/attachListener.hpp"
  95 #include "services/management.hpp"
  96 #include "services/memTracker.hpp"
  97 #include "services/threadService.hpp"
  98 #include "trace/traceMacros.hpp"
  99 #include "trace/tracing.hpp"
 100 #include "utilities/align.hpp"
 101 #include "utilities/defaultStream.hpp"
 102 #include "utilities/dtrace.hpp"
 103 #include "utilities/events.hpp"
 104 #include "utilities/macros.hpp"
 105 #include "utilities/preserveException.hpp"
 106 #include "utilities/vmError.hpp"
 107 #if INCLUDE_ALL_GCS
 108 #include "gc/cms/concurrentMarkSweepThread.hpp"
 109 #include "gc/g1/concurrentMarkThread.inline.hpp"
 110 #include "gc/parallel/pcTasks.hpp"
 111 #endif // INCLUDE_ALL_GCS
 112 #if INCLUDE_JVMCI
 113 #include "jvmci/jvmciCompiler.hpp"
 114 #include "jvmci/jvmciRuntime.hpp"
 115 #include "logging/logHandle.hpp"
 116 #endif
 117 #ifdef COMPILER1
 118 #include "c1/c1_Compiler.hpp"
 119 #endif
 120 #ifdef COMPILER2
 121 #include "opto/c2compiler.hpp"
 122 #include "opto/idealGraphPrinter.hpp"
 123 #endif
 124 #if INCLUDE_RTM_OPT
 125 #include "runtime/rtmLocking.hpp"
 126 #endif
 127 
 128 // Initialization after module runtime initialization
 129 void universe_post_module_init();  // must happen after call_initPhase2
 130 
 131 #ifdef DTRACE_ENABLED
 132 
 133 // Only bother with this argument setup if dtrace is available
 134 
 135   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 136   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 137 
 138   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 139     {                                                                      \
 140       ResourceMark rm(this);                                               \
 141       int len = 0;                                                         \
 142       const char* name = (javathread)->get_thread_name();                  \
 143       len = strlen(name);                                                  \
 144       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 145         (char *) name, len,                                                \
 146         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 147         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 148         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 149     }
 150 
 151 #else //  ndef DTRACE_ENABLED
 152 
 153   #define DTRACE_THREAD_PROBE(probe, javathread)
 154 
 155 #endif // ndef DTRACE_ENABLED
 156 
 157 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 158 // Current thread is maintained as a thread-local variable
 159 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 160 #endif
 161 // Class hierarchy
 162 // - Thread
 163 //   - VMThread
 164 //   - WatcherThread
 165 //   - ConcurrentMarkSweepThread
 166 //   - JavaThread
 167 //     - CompilerThread
 168 
 169 // ======= Thread ========
 170 // Support for forcing alignment of thread objects for biased locking
 171 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 172   if (UseBiasedLocking) {
 173     const int alignment = markOopDesc::biased_lock_alignment;
 174     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 175     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 176                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 177                                                          AllocFailStrategy::RETURN_NULL);
 178     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 179     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 180            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 181            "JavaThread alignment code overflowed allocated storage");
 182     if (aligned_addr != real_malloc_addr) {
 183       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 184                               p2i(real_malloc_addr),
 185                               p2i(aligned_addr));
 186     }
 187     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 188     return aligned_addr;
 189   } else {
 190     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 191                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 192   }
 193 }
 194 
 195 void Thread::operator delete(void* p) {
 196   if (UseBiasedLocking) {
 197     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 198     FreeHeap(real_malloc_addr);
 199   } else {
 200     FreeHeap(p);
 201   }
 202 }
 203 
 204 
 205 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 206 // JavaThread
 207 
 208 
 209 Thread::Thread() {
 210   // stack and get_thread
 211   set_stack_base(NULL);
 212   set_stack_size(0);
 213   set_self_raw_id(0);
 214   set_lgrp_id(-1);
 215   DEBUG_ONLY(clear_suspendible_thread();)
 216 
 217   // allocated data structures
 218   set_osthread(NULL);
 219   set_resource_area(new (mtThread)ResourceArea());
 220   DEBUG_ONLY(_current_resource_mark = NULL;)
 221   set_handle_area(new (mtThread) HandleArea(NULL));
 222   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 223   set_active_handles(NULL);
 224   set_free_handle_block(NULL);
 225   set_last_handle_mark(NULL);
 226 
 227   // This initial value ==> never claimed.
 228   _oops_do_parity = 0;
 229 
 230   // the handle mark links itself to last_handle_mark
 231   new HandleMark(this);
 232 
 233   // plain initialization
 234   debug_only(_owned_locks = NULL;)
 235   debug_only(_allow_allocation_count = 0;)
 236   NOT_PRODUCT(_allow_safepoint_count = 0;)
 237   NOT_PRODUCT(_skip_gcalot = false;)
 238   _jvmti_env_iteration_count = 0;
 239   set_allocated_bytes(0);
 240   _vm_operation_started_count = 0;
 241   _vm_operation_completed_count = 0;
 242   _current_pending_monitor = NULL;
 243   _current_pending_monitor_is_from_java = true;
 244   _current_waiting_monitor = NULL;
 245   _num_nested_signal = 0;
 246   omFreeList = NULL;
 247   omFreeCount = 0;
 248   omFreeProvision = 32;
 249   omInUseList = NULL;
 250   omInUseCount = 0;
 251 
 252 #ifdef ASSERT
 253   _visited_for_critical_count = false;
 254 #endif
 255 
 256   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 257                          Monitor::_safepoint_check_sometimes);
 258   _suspend_flags = 0;
 259 
 260   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 261   _hashStateX = os::random();
 262   _hashStateY = 842502087;
 263   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 264   _hashStateW = 273326509;
 265 
 266   _OnTrap   = 0;
 267   _schedctl = NULL;
 268   _Stalled  = 0;
 269   _TypeTag  = 0x2BAD;
 270 
 271   // Many of the following fields are effectively final - immutable
 272   // Note that nascent threads can't use the Native Monitor-Mutex
 273   // construct until the _MutexEvent is initialized ...
 274   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 275   // we might instead use a stack of ParkEvents that we could provision on-demand.
 276   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 277   // and ::Release()
 278   _ParkEvent   = ParkEvent::Allocate(this);
 279   _SleepEvent  = ParkEvent::Allocate(this);
 280   _MutexEvent  = ParkEvent::Allocate(this);
 281   _MuxEvent    = ParkEvent::Allocate(this);
 282 
 283 #ifdef CHECK_UNHANDLED_OOPS
 284   if (CheckUnhandledOops) {
 285     _unhandled_oops = new UnhandledOops(this);
 286   }
 287 #endif // CHECK_UNHANDLED_OOPS
 288 #ifdef ASSERT
 289   if (UseBiasedLocking) {
 290     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 291     assert(this == _real_malloc_address ||
 292            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 293            "bug in forced alignment of thread objects");
 294   }
 295 #endif // ASSERT
 296 }
 297 
 298 void Thread::initialize_thread_current() {
 299 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 300   assert(_thr_current == NULL, "Thread::current already initialized");
 301   _thr_current = this;
 302 #endif
 303   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 304   ThreadLocalStorage::set_thread(this);
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 }
 307 
 308 void Thread::clear_thread_current() {
 309   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 310 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 311   _thr_current = NULL;
 312 #endif
 313   ThreadLocalStorage::set_thread(NULL);
 314 }
 315 
 316 void Thread::record_stack_base_and_size() {
 317   set_stack_base(os::current_stack_base());
 318   set_stack_size(os::current_stack_size());
 319   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 320   // in initialize_thread(). Without the adjustment, stack size is
 321   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 322   // So far, only Solaris has real implementation of initialize_thread().
 323   //
 324   // set up any platform-specific state.
 325   os::initialize_thread(this);
 326 
 327   // Set stack limits after thread is initialized.
 328   if (is_Java_thread()) {
 329     ((JavaThread*) this)->set_stack_overflow_limit();
 330     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 331   }
 332 #if INCLUDE_NMT
 333   // record thread's native stack, stack grows downward
 334   MemTracker::record_thread_stack(stack_end(), stack_size());
 335 #endif // INCLUDE_NMT
 336   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 337     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 338     os::current_thread_id(), p2i(stack_base() - stack_size()),
 339     p2i(stack_base()), stack_size()/1024);
 340 }
 341 
 342 
 343 Thread::~Thread() {
 344   EVENT_THREAD_DESTRUCT(this);
 345 
 346   // stack_base can be NULL if the thread is never started or exited before
 347   // record_stack_base_and_size called. Although, we would like to ensure
 348   // that all started threads do call record_stack_base_and_size(), there is
 349   // not proper way to enforce that.
 350 #if INCLUDE_NMT
 351   if (_stack_base != NULL) {
 352     MemTracker::release_thread_stack(stack_end(), stack_size());
 353 #ifdef ASSERT
 354     set_stack_base(NULL);
 355 #endif
 356   }
 357 #endif // INCLUDE_NMT
 358 
 359   // deallocate data structures
 360   delete resource_area();
 361   // since the handle marks are using the handle area, we have to deallocated the root
 362   // handle mark before deallocating the thread's handle area,
 363   assert(last_handle_mark() != NULL, "check we have an element");
 364   delete last_handle_mark();
 365   assert(last_handle_mark() == NULL, "check we have reached the end");
 366 
 367   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 368   // We NULL out the fields for good hygiene.
 369   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 370   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 371   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 372   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 373 
 374   delete handle_area();
 375   delete metadata_handles();
 376 
 377   // SR_handler uses this as a termination indicator -
 378   // needs to happen before os::free_thread()
 379   delete _SR_lock;
 380   _SR_lock = NULL;
 381 
 382   // osthread() can be NULL, if creation of thread failed.
 383   if (osthread() != NULL) os::free_thread(osthread());
 384 
 385   // clear Thread::current if thread is deleting itself.
 386   // Needed to ensure JNI correctly detects non-attached threads.
 387   if (this == Thread::current()) {
 388     clear_thread_current();
 389   }
 390 
 391   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 392 }
 393 
 394 // NOTE: dummy function for assertion purpose.
 395 void Thread::run() {
 396   ShouldNotReachHere();
 397 }
 398 
 399 #ifdef ASSERT
 400 // Private method to check for dangling thread pointer
 401 void check_for_dangling_thread_pointer(Thread *thread) {
 402   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 403          "possibility of dangling Thread pointer");
 404 }
 405 #endif
 406 
 407 ThreadPriority Thread::get_priority(const Thread* const thread) {
 408   ThreadPriority priority;
 409   // Can return an error!
 410   (void)os::get_priority(thread, priority);
 411   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 412   return priority;
 413 }
 414 
 415 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 416   debug_only(check_for_dangling_thread_pointer(thread);)
 417   // Can return an error!
 418   (void)os::set_priority(thread, priority);
 419 }
 420 
 421 
 422 void Thread::start(Thread* thread) {
 423   // Start is different from resume in that its safety is guaranteed by context or
 424   // being called from a Java method synchronized on the Thread object.
 425   if (!DisableStartThread) {
 426     if (thread->is_Java_thread()) {
 427       // Initialize the thread state to RUNNABLE before starting this thread.
 428       // Can not set it after the thread started because we do not know the
 429       // exact thread state at that time. It could be in MONITOR_WAIT or
 430       // in SLEEPING or some other state.
 431       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 432                                           java_lang_Thread::RUNNABLE);
 433     }
 434     os::start_thread(thread);
 435   }
 436 }
 437 
 438 // Enqueue a VM_Operation to do the job for us - sometime later
 439 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 440   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 441   VMThread::execute(vm_stop);
 442 }
 443 
 444 
 445 // Check if an external suspend request has completed (or has been
 446 // cancelled). Returns true if the thread is externally suspended and
 447 // false otherwise.
 448 //
 449 // The bits parameter returns information about the code path through
 450 // the routine. Useful for debugging:
 451 //
 452 // set in is_ext_suspend_completed():
 453 // 0x00000001 - routine was entered
 454 // 0x00000010 - routine return false at end
 455 // 0x00000100 - thread exited (return false)
 456 // 0x00000200 - suspend request cancelled (return false)
 457 // 0x00000400 - thread suspended (return true)
 458 // 0x00001000 - thread is in a suspend equivalent state (return true)
 459 // 0x00002000 - thread is native and walkable (return true)
 460 // 0x00004000 - thread is native_trans and walkable (needed retry)
 461 //
 462 // set in wait_for_ext_suspend_completion():
 463 // 0x00010000 - routine was entered
 464 // 0x00020000 - suspend request cancelled before loop (return false)
 465 // 0x00040000 - thread suspended before loop (return true)
 466 // 0x00080000 - suspend request cancelled in loop (return false)
 467 // 0x00100000 - thread suspended in loop (return true)
 468 // 0x00200000 - suspend not completed during retry loop (return false)
 469 
 470 // Helper class for tracing suspend wait debug bits.
 471 //
 472 // 0x00000100 indicates that the target thread exited before it could
 473 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 474 // 0x00080000 each indicate a cancelled suspend request so they don't
 475 // count as wait failures either.
 476 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 477 
 478 class TraceSuspendDebugBits : public StackObj {
 479  private:
 480   JavaThread * jt;
 481   bool         is_wait;
 482   bool         called_by_wait;  // meaningful when !is_wait
 483   uint32_t *   bits;
 484 
 485  public:
 486   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 487                         uint32_t *_bits) {
 488     jt             = _jt;
 489     is_wait        = _is_wait;
 490     called_by_wait = _called_by_wait;
 491     bits           = _bits;
 492   }
 493 
 494   ~TraceSuspendDebugBits() {
 495     if (!is_wait) {
 496 #if 1
 497       // By default, don't trace bits for is_ext_suspend_completed() calls.
 498       // That trace is very chatty.
 499       return;
 500 #else
 501       if (!called_by_wait) {
 502         // If tracing for is_ext_suspend_completed() is enabled, then only
 503         // trace calls to it from wait_for_ext_suspend_completion()
 504         return;
 505       }
 506 #endif
 507     }
 508 
 509     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 510       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 511         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 512         ResourceMark rm;
 513 
 514         tty->print_cr(
 515                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 516                       jt->get_thread_name(), *bits);
 517 
 518         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 519       }
 520     }
 521   }
 522 };
 523 #undef DEBUG_FALSE_BITS
 524 
 525 
 526 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 527                                           uint32_t *bits) {
 528   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 529 
 530   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 531   bool do_trans_retry;           // flag to force the retry
 532 
 533   *bits |= 0x00000001;
 534 
 535   do {
 536     do_trans_retry = false;
 537 
 538     if (is_exiting()) {
 539       // Thread is in the process of exiting. This is always checked
 540       // first to reduce the risk of dereferencing a freed JavaThread.
 541       *bits |= 0x00000100;
 542       return false;
 543     }
 544 
 545     if (!is_external_suspend()) {
 546       // Suspend request is cancelled. This is always checked before
 547       // is_ext_suspended() to reduce the risk of a rogue resume
 548       // confusing the thread that made the suspend request.
 549       *bits |= 0x00000200;
 550       return false;
 551     }
 552 
 553     if (is_ext_suspended()) {
 554       // thread is suspended
 555       *bits |= 0x00000400;
 556       return true;
 557     }
 558 
 559     // Now that we no longer do hard suspends of threads running
 560     // native code, the target thread can be changing thread state
 561     // while we are in this routine:
 562     //
 563     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 564     //
 565     // We save a copy of the thread state as observed at this moment
 566     // and make our decision about suspend completeness based on the
 567     // copy. This closes the race where the thread state is seen as
 568     // _thread_in_native_trans in the if-thread_blocked check, but is
 569     // seen as _thread_blocked in if-thread_in_native_trans check.
 570     JavaThreadState save_state = thread_state();
 571 
 572     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 573       // If the thread's state is _thread_blocked and this blocking
 574       // condition is known to be equivalent to a suspend, then we can
 575       // consider the thread to be externally suspended. This means that
 576       // the code that sets _thread_blocked has been modified to do
 577       // self-suspension if the blocking condition releases. We also
 578       // used to check for CONDVAR_WAIT here, but that is now covered by
 579       // the _thread_blocked with self-suspension check.
 580       //
 581       // Return true since we wouldn't be here unless there was still an
 582       // external suspend request.
 583       *bits |= 0x00001000;
 584       return true;
 585     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 586       // Threads running native code will self-suspend on native==>VM/Java
 587       // transitions. If its stack is walkable (should always be the case
 588       // unless this function is called before the actual java_suspend()
 589       // call), then the wait is done.
 590       *bits |= 0x00002000;
 591       return true;
 592     } else if (!called_by_wait && !did_trans_retry &&
 593                save_state == _thread_in_native_trans &&
 594                frame_anchor()->walkable()) {
 595       // The thread is transitioning from thread_in_native to another
 596       // thread state. check_safepoint_and_suspend_for_native_trans()
 597       // will force the thread to self-suspend. If it hasn't gotten
 598       // there yet we may have caught the thread in-between the native
 599       // code check above and the self-suspend. Lucky us. If we were
 600       // called by wait_for_ext_suspend_completion(), then it
 601       // will be doing the retries so we don't have to.
 602       //
 603       // Since we use the saved thread state in the if-statement above,
 604       // there is a chance that the thread has already transitioned to
 605       // _thread_blocked by the time we get here. In that case, we will
 606       // make a single unnecessary pass through the logic below. This
 607       // doesn't hurt anything since we still do the trans retry.
 608 
 609       *bits |= 0x00004000;
 610 
 611       // Once the thread leaves thread_in_native_trans for another
 612       // thread state, we break out of this retry loop. We shouldn't
 613       // need this flag to prevent us from getting back here, but
 614       // sometimes paranoia is good.
 615       did_trans_retry = true;
 616 
 617       // We wait for the thread to transition to a more usable state.
 618       for (int i = 1; i <= SuspendRetryCount; i++) {
 619         // We used to do an "os::yield_all(i)" call here with the intention
 620         // that yielding would increase on each retry. However, the parameter
 621         // is ignored on Linux which means the yield didn't scale up. Waiting
 622         // on the SR_lock below provides a much more predictable scale up for
 623         // the delay. It also provides a simple/direct point to check for any
 624         // safepoint requests from the VMThread
 625 
 626         // temporarily drops SR_lock while doing wait with safepoint check
 627         // (if we're a JavaThread - the WatcherThread can also call this)
 628         // and increase delay with each retry
 629         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 630 
 631         // check the actual thread state instead of what we saved above
 632         if (thread_state() != _thread_in_native_trans) {
 633           // the thread has transitioned to another thread state so
 634           // try all the checks (except this one) one more time.
 635           do_trans_retry = true;
 636           break;
 637         }
 638       } // end retry loop
 639 
 640 
 641     }
 642   } while (do_trans_retry);
 643 
 644   *bits |= 0x00000010;
 645   return false;
 646 }
 647 
 648 // Wait for an external suspend request to complete (or be cancelled).
 649 // Returns true if the thread is externally suspended and false otherwise.
 650 //
 651 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 652                                                  uint32_t *bits) {
 653   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 654                              false /* !called_by_wait */, bits);
 655 
 656   // local flag copies to minimize SR_lock hold time
 657   bool is_suspended;
 658   bool pending;
 659   uint32_t reset_bits;
 660 
 661   // set a marker so is_ext_suspend_completed() knows we are the caller
 662   *bits |= 0x00010000;
 663 
 664   // We use reset_bits to reinitialize the bits value at the top of
 665   // each retry loop. This allows the caller to make use of any
 666   // unused bits for their own marking purposes.
 667   reset_bits = *bits;
 668 
 669   {
 670     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 671     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 672                                             delay, bits);
 673     pending = is_external_suspend();
 674   }
 675   // must release SR_lock to allow suspension to complete
 676 
 677   if (!pending) {
 678     // A cancelled suspend request is the only false return from
 679     // is_ext_suspend_completed() that keeps us from entering the
 680     // retry loop.
 681     *bits |= 0x00020000;
 682     return false;
 683   }
 684 
 685   if (is_suspended) {
 686     *bits |= 0x00040000;
 687     return true;
 688   }
 689 
 690   for (int i = 1; i <= retries; i++) {
 691     *bits = reset_bits;  // reinit to only track last retry
 692 
 693     // We used to do an "os::yield_all(i)" call here with the intention
 694     // that yielding would increase on each retry. However, the parameter
 695     // is ignored on Linux which means the yield didn't scale up. Waiting
 696     // on the SR_lock below provides a much more predictable scale up for
 697     // the delay. It also provides a simple/direct point to check for any
 698     // safepoint requests from the VMThread
 699 
 700     {
 701       MutexLocker ml(SR_lock());
 702       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 703       // can also call this)  and increase delay with each retry
 704       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 705 
 706       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 707                                               delay, bits);
 708 
 709       // It is possible for the external suspend request to be cancelled
 710       // (by a resume) before the actual suspend operation is completed.
 711       // Refresh our local copy to see if we still need to wait.
 712       pending = is_external_suspend();
 713     }
 714 
 715     if (!pending) {
 716       // A cancelled suspend request is the only false return from
 717       // is_ext_suspend_completed() that keeps us from staying in the
 718       // retry loop.
 719       *bits |= 0x00080000;
 720       return false;
 721     }
 722 
 723     if (is_suspended) {
 724       *bits |= 0x00100000;
 725       return true;
 726     }
 727   } // end retry loop
 728 
 729   // thread did not suspend after all our retries
 730   *bits |= 0x00200000;
 731   return false;
 732 }
 733 
 734 #ifndef PRODUCT
 735 void JavaThread::record_jump(address target, address instr, const char* file,
 736                              int line) {
 737 
 738   // This should not need to be atomic as the only way for simultaneous
 739   // updates is via interrupts. Even then this should be rare or non-existent
 740   // and we don't care that much anyway.
 741 
 742   int index = _jmp_ring_index;
 743   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 744   _jmp_ring[index]._target = (intptr_t) target;
 745   _jmp_ring[index]._instruction = (intptr_t) instr;
 746   _jmp_ring[index]._file = file;
 747   _jmp_ring[index]._line = line;
 748 }
 749 #endif // PRODUCT
 750 
 751 void Thread::interrupt(Thread* thread) {
 752   debug_only(check_for_dangling_thread_pointer(thread);)
 753   os::interrupt(thread);
 754 }
 755 
 756 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 757   debug_only(check_for_dangling_thread_pointer(thread);)
 758   // Note:  If clear_interrupted==false, this simply fetches and
 759   // returns the value of the field osthread()->interrupted().
 760   return os::is_interrupted(thread, clear_interrupted);
 761 }
 762 
 763 
 764 // GC Support
 765 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 766   jint thread_parity = _oops_do_parity;
 767   if (thread_parity != strong_roots_parity) {
 768     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 769     if (res == thread_parity) {
 770       return true;
 771     } else {
 772       guarantee(res == strong_roots_parity, "Or else what?");
 773       return false;
 774     }
 775   }
 776   return false;
 777 }
 778 
 779 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 780   active_handles()->oops_do(f);
 781   // Do oop for ThreadShadow
 782   f->do_oop((oop*)&_pending_exception);
 783   handle_area()->oops_do(f);
 784 
 785   if (MonitorInUseLists) {
 786     // When using thread local monitor lists, we scan them here,
 787     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 788     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 789   }
 790 }
 791 
 792 void Thread::metadata_handles_do(void f(Metadata*)) {
 793   // Only walk the Handles in Thread.
 794   if (metadata_handles() != NULL) {
 795     for (int i = 0; i< metadata_handles()->length(); i++) {
 796       f(metadata_handles()->at(i));
 797     }
 798   }
 799 }
 800 
 801 void Thread::print_on(outputStream* st) const {
 802   // get_priority assumes osthread initialized
 803   if (osthread() != NULL) {
 804     int os_prio;
 805     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 806       st->print("os_prio=%d ", os_prio);
 807     }
 808     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 809     ext().print_on(st);
 810     osthread()->print_on(st);
 811   }
 812   debug_only(if (WizardMode) print_owned_locks_on(st);)
 813 }
 814 
 815 // Thread::print_on_error() is called by fatal error handler. Don't use
 816 // any lock or allocate memory.
 817 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 818   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 819 
 820   if (is_VM_thread())                 { st->print("VMThread"); }
 821   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 822   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 823   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 824   else                                { st->print("Thread"); }
 825 
 826   if (is_Named_thread()) {
 827     st->print(" \"%s\"", name());
 828   }
 829 
 830   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 831             p2i(stack_end()), p2i(stack_base()));
 832 
 833   if (osthread()) {
 834     st->print(" [id=%d]", osthread()->thread_id());
 835   }
 836 }
 837 
 838 void Thread::print_value_on(outputStream* st) const {
 839   if (is_Named_thread()) {
 840     st->print(" \"%s\" ", name());
 841   }
 842   st->print(INTPTR_FORMAT, p2i(this));   // print address
 843 }
 844 
 845 #ifdef ASSERT
 846 void Thread::print_owned_locks_on(outputStream* st) const {
 847   Monitor *cur = _owned_locks;
 848   if (cur == NULL) {
 849     st->print(" (no locks) ");
 850   } else {
 851     st->print_cr(" Locks owned:");
 852     while (cur) {
 853       cur->print_on(st);
 854       cur = cur->next();
 855     }
 856   }
 857 }
 858 
 859 static int ref_use_count  = 0;
 860 
 861 bool Thread::owns_locks_but_compiled_lock() const {
 862   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 863     if (cur != Compile_lock) return true;
 864   }
 865   return false;
 866 }
 867 
 868 
 869 #endif
 870 
 871 #ifndef PRODUCT
 872 
 873 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 874 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 875 // no threads which allow_vm_block's are held
 876 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 877   // Check if current thread is allowed to block at a safepoint
 878   if (!(_allow_safepoint_count == 0)) {
 879     fatal("Possible safepoint reached by thread that does not allow it");
 880   }
 881   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 882     fatal("LEAF method calling lock?");
 883   }
 884 
 885 #ifdef ASSERT
 886   if (potential_vm_operation && is_Java_thread()
 887       && !Universe::is_bootstrapping()) {
 888     // Make sure we do not hold any locks that the VM thread also uses.
 889     // This could potentially lead to deadlocks
 890     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 891       // Threads_lock is special, since the safepoint synchronization will not start before this is
 892       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 893       // since it is used to transfer control between JavaThreads and the VMThread
 894       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 895       if ((cur->allow_vm_block() &&
 896            cur != Threads_lock &&
 897            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 898            cur != VMOperationRequest_lock &&
 899            cur != VMOperationQueue_lock) ||
 900            cur->rank() == Mutex::special) {
 901         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 902       }
 903     }
 904   }
 905 
 906   if (GCALotAtAllSafepoints) {
 907     // We could enter a safepoint here and thus have a gc
 908     InterfaceSupport::check_gc_alot();
 909   }
 910 #endif
 911 }
 912 #endif
 913 
 914 bool Thread::is_in_stack(address adr) const {
 915   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 916   address end = os::current_stack_pointer();
 917   // Allow non Java threads to call this without stack_base
 918   if (_stack_base == NULL) return true;
 919   if (stack_base() >= adr && adr >= end) return true;
 920 
 921   return false;
 922 }
 923 
 924 bool Thread::is_in_usable_stack(address adr) const {
 925   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 926   size_t usable_stack_size = _stack_size - stack_guard_size;
 927 
 928   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 929 }
 930 
 931 
 932 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 933 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 934 // used for compilation in the future. If that change is made, the need for these methods
 935 // should be revisited, and they should be removed if possible.
 936 
 937 bool Thread::is_lock_owned(address adr) const {
 938   return on_local_stack(adr);
 939 }
 940 
 941 bool Thread::set_as_starting_thread() {
 942   // NOTE: this must be called inside the main thread.
 943   return os::create_main_thread((JavaThread*)this);
 944 }
 945 
 946 static void initialize_class(Symbol* class_name, TRAPS) {
 947   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 948   InstanceKlass::cast(klass)->initialize(CHECK);
 949 }
 950 
 951 
 952 // Creates the initial ThreadGroup
 953 static Handle create_initial_thread_group(TRAPS) {
 954   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 955   InstanceKlass* ik = InstanceKlass::cast(k);
 956 
 957   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
 958   {
 959     JavaValue result(T_VOID);
 960     JavaCalls::call_special(&result,
 961                             system_instance,
 962                             ik,
 963                             vmSymbols::object_initializer_name(),
 964                             vmSymbols::void_method_signature(),
 965                             CHECK_NH);
 966   }
 967   Universe::set_system_thread_group(system_instance());
 968 
 969   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
 970   {
 971     JavaValue result(T_VOID);
 972     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 973     JavaCalls::call_special(&result,
 974                             main_instance,
 975                             ik,
 976                             vmSymbols::object_initializer_name(),
 977                             vmSymbols::threadgroup_string_void_signature(),
 978                             system_instance,
 979                             string,
 980                             CHECK_NH);
 981   }
 982   return main_instance;
 983 }
 984 
 985 // Creates the initial Thread
 986 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 987                                  TRAPS) {
 988   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 989   InstanceKlass* ik = InstanceKlass::cast(k);
 990   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
 991 
 992   java_lang_Thread::set_thread(thread_oop(), thread);
 993   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 994   thread->set_threadObj(thread_oop());
 995 
 996   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 997 
 998   JavaValue result(T_VOID);
 999   JavaCalls::call_special(&result, thread_oop,
1000                           ik,
1001                           vmSymbols::object_initializer_name(),
1002                           vmSymbols::threadgroup_string_void_signature(),
1003                           thread_group,
1004                           string,
1005                           CHECK_NULL);
1006   return thread_oop();
1007 }
1008 
1009 char java_runtime_name[128] = "";
1010 char java_runtime_version[128] = "";
1011 
1012 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1013 static const char* get_java_runtime_name(TRAPS) {
1014   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1015                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1016   fieldDescriptor fd;
1017   bool found = k != NULL &&
1018                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1019                                                         vmSymbols::string_signature(), &fd);
1020   if (found) {
1021     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1022     if (name_oop == NULL) {
1023       return NULL;
1024     }
1025     const char* name = java_lang_String::as_utf8_string(name_oop,
1026                                                         java_runtime_name,
1027                                                         sizeof(java_runtime_name));
1028     return name;
1029   } else {
1030     return NULL;
1031   }
1032 }
1033 
1034 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1035 static const char* get_java_runtime_version(TRAPS) {
1036   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1037                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1038   fieldDescriptor fd;
1039   bool found = k != NULL &&
1040                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1041                                                         vmSymbols::string_signature(), &fd);
1042   if (found) {
1043     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1044     if (name_oop == NULL) {
1045       return NULL;
1046     }
1047     const char* name = java_lang_String::as_utf8_string(name_oop,
1048                                                         java_runtime_version,
1049                                                         sizeof(java_runtime_version));
1050     return name;
1051   } else {
1052     return NULL;
1053   }
1054 }
1055 
1056 // General purpose hook into Java code, run once when the VM is initialized.
1057 // The Java library method itself may be changed independently from the VM.
1058 static void call_postVMInitHook(TRAPS) {
1059   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1060   if (klass != NULL) {
1061     JavaValue result(T_VOID);
1062     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1063                            vmSymbols::void_method_signature(),
1064                            CHECK);
1065   }
1066 }
1067 
1068 static void reset_vm_info_property(TRAPS) {
1069   // the vm info string
1070   ResourceMark rm(THREAD);
1071   const char *vm_info = VM_Version::vm_info_string();
1072 
1073   // java.lang.System class
1074   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1075 
1076   // setProperty arguments
1077   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1078   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1079 
1080   // return value
1081   JavaValue r(T_OBJECT);
1082 
1083   // public static String setProperty(String key, String value);
1084   JavaCalls::call_static(&r,
1085                          klass,
1086                          vmSymbols::setProperty_name(),
1087                          vmSymbols::string_string_string_signature(),
1088                          key_str,
1089                          value_str,
1090                          CHECK);
1091 }
1092 
1093 
1094 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1095                                     bool daemon, TRAPS) {
1096   assert(thread_group.not_null(), "thread group should be specified");
1097   assert(threadObj() == NULL, "should only create Java thread object once");
1098 
1099   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1100   InstanceKlass* ik = InstanceKlass::cast(k);
1101   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1102 
1103   java_lang_Thread::set_thread(thread_oop(), this);
1104   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1105   set_threadObj(thread_oop());
1106 
1107   JavaValue result(T_VOID);
1108   if (thread_name != NULL) {
1109     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1110     // Thread gets assigned specified name and null target
1111     JavaCalls::call_special(&result,
1112                             thread_oop,
1113                             ik,
1114                             vmSymbols::object_initializer_name(),
1115                             vmSymbols::threadgroup_string_void_signature(),
1116                             thread_group, // Argument 1
1117                             name,         // Argument 2
1118                             THREAD);
1119   } else {
1120     // Thread gets assigned name "Thread-nnn" and null target
1121     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1122     JavaCalls::call_special(&result,
1123                             thread_oop,
1124                             ik,
1125                             vmSymbols::object_initializer_name(),
1126                             vmSymbols::threadgroup_runnable_void_signature(),
1127                             thread_group, // Argument 1
1128                             Handle(),     // Argument 2
1129                             THREAD);
1130   }
1131 
1132 
1133   if (daemon) {
1134     java_lang_Thread::set_daemon(thread_oop());
1135   }
1136 
1137   if (HAS_PENDING_EXCEPTION) {
1138     return;
1139   }
1140 
1141   Klass* group =  SystemDictionary::ThreadGroup_klass();
1142   Handle threadObj(THREAD, this->threadObj());
1143 
1144   JavaCalls::call_special(&result,
1145                           thread_group,
1146                           group,
1147                           vmSymbols::add_method_name(),
1148                           vmSymbols::thread_void_signature(),
1149                           threadObj,          // Arg 1
1150                           THREAD);
1151 }
1152 
1153 // NamedThread --  non-JavaThread subclasses with multiple
1154 // uniquely named instances should derive from this.
1155 NamedThread::NamedThread() : Thread() {
1156   _name = NULL;
1157   _processed_thread = NULL;
1158   _gc_id = GCId::undefined();
1159 }
1160 
1161 NamedThread::~NamedThread() {
1162   if (_name != NULL) {
1163     FREE_C_HEAP_ARRAY(char, _name);
1164     _name = NULL;
1165   }
1166 }
1167 
1168 void NamedThread::set_name(const char* format, ...) {
1169   guarantee(_name == NULL, "Only get to set name once.");
1170   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1171   guarantee(_name != NULL, "alloc failure");
1172   va_list ap;
1173   va_start(ap, format);
1174   jio_vsnprintf(_name, max_name_len, format, ap);
1175   va_end(ap);
1176 }
1177 
1178 void NamedThread::initialize_named_thread() {
1179   set_native_thread_name(name());
1180 }
1181 
1182 void NamedThread::print_on(outputStream* st) const {
1183   st->print("\"%s\" ", name());
1184   Thread::print_on(st);
1185   st->cr();
1186 }
1187 
1188 
1189 // ======= WatcherThread ========
1190 
1191 // The watcher thread exists to simulate timer interrupts.  It should
1192 // be replaced by an abstraction over whatever native support for
1193 // timer interrupts exists on the platform.
1194 
1195 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1196 bool WatcherThread::_startable = false;
1197 volatile bool  WatcherThread::_should_terminate = false;
1198 
1199 WatcherThread::WatcherThread() : Thread() {
1200   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1201   if (os::create_thread(this, os::watcher_thread)) {
1202     _watcher_thread = this;
1203 
1204     // Set the watcher thread to the highest OS priority which should not be
1205     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1206     // is created. The only normal thread using this priority is the reference
1207     // handler thread, which runs for very short intervals only.
1208     // If the VMThread's priority is not lower than the WatcherThread profiling
1209     // will be inaccurate.
1210     os::set_priority(this, MaxPriority);
1211     if (!DisableStartThread) {
1212       os::start_thread(this);
1213     }
1214   }
1215 }
1216 
1217 int WatcherThread::sleep() const {
1218   // The WatcherThread does not participate in the safepoint protocol
1219   // for the PeriodicTask_lock because it is not a JavaThread.
1220   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1221 
1222   if (_should_terminate) {
1223     // check for termination before we do any housekeeping or wait
1224     return 0;  // we did not sleep.
1225   }
1226 
1227   // remaining will be zero if there are no tasks,
1228   // causing the WatcherThread to sleep until a task is
1229   // enrolled
1230   int remaining = PeriodicTask::time_to_wait();
1231   int time_slept = 0;
1232 
1233   // we expect this to timeout - we only ever get unparked when
1234   // we should terminate or when a new task has been enrolled
1235   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1236 
1237   jlong time_before_loop = os::javaTimeNanos();
1238 
1239   while (true) {
1240     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1241                                             remaining);
1242     jlong now = os::javaTimeNanos();
1243 
1244     if (remaining == 0) {
1245       // if we didn't have any tasks we could have waited for a long time
1246       // consider the time_slept zero and reset time_before_loop
1247       time_slept = 0;
1248       time_before_loop = now;
1249     } else {
1250       // need to recalculate since we might have new tasks in _tasks
1251       time_slept = (int) ((now - time_before_loop) / 1000000);
1252     }
1253 
1254     // Change to task list or spurious wakeup of some kind
1255     if (timedout || _should_terminate) {
1256       break;
1257     }
1258 
1259     remaining = PeriodicTask::time_to_wait();
1260     if (remaining == 0) {
1261       // Last task was just disenrolled so loop around and wait until
1262       // another task gets enrolled
1263       continue;
1264     }
1265 
1266     remaining -= time_slept;
1267     if (remaining <= 0) {
1268       break;
1269     }
1270   }
1271 
1272   return time_slept;
1273 }
1274 
1275 void WatcherThread::run() {
1276   assert(this == watcher_thread(), "just checking");
1277 
1278   this->record_stack_base_and_size();
1279   this->set_native_thread_name(this->name());
1280   this->set_active_handles(JNIHandleBlock::allocate_block());
1281   while (true) {
1282     assert(watcher_thread() == Thread::current(), "thread consistency check");
1283     assert(watcher_thread() == this, "thread consistency check");
1284 
1285     // Calculate how long it'll be until the next PeriodicTask work
1286     // should be done, and sleep that amount of time.
1287     int time_waited = sleep();
1288 
1289     if (VMError::is_error_reported()) {
1290       // A fatal error has happened, the error handler(VMError::report_and_die)
1291       // should abort JVM after creating an error log file. However in some
1292       // rare cases, the error handler itself might deadlock. Here periodically
1293       // check for error reporting timeouts, and if it happens, just proceed to
1294       // abort the VM.
1295 
1296       // This code is in WatcherThread because WatcherThread wakes up
1297       // periodically so the fatal error handler doesn't need to do anything;
1298       // also because the WatcherThread is less likely to crash than other
1299       // threads.
1300 
1301       for (;;) {
1302         // Note: we use naked sleep in this loop because we want to avoid using
1303         // any kind of VM infrastructure which may be broken at this point.
1304         if (VMError::check_timeout()) {
1305           // We hit error reporting timeout. Error reporting was interrupted and
1306           // will be wrapping things up now (closing files etc). Give it some more
1307           // time, then quit the VM.
1308           os::naked_short_sleep(200);
1309           // Print a message to stderr.
1310           fdStream err(defaultStream::output_fd());
1311           err.print_raw_cr("# [ timer expired, abort... ]");
1312           // skip atexit/vm_exit/vm_abort hooks
1313           os::die();
1314         }
1315 
1316         // Wait a second, then recheck for timeout.
1317         os::naked_short_sleep(999);
1318       }
1319     }
1320 
1321     if (_should_terminate) {
1322       // check for termination before posting the next tick
1323       break;
1324     }
1325 
1326     PeriodicTask::real_time_tick(time_waited);
1327   }
1328 
1329   // Signal that it is terminated
1330   {
1331     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1332     _watcher_thread = NULL;
1333     Terminator_lock->notify();
1334   }
1335 }
1336 
1337 void WatcherThread::start() {
1338   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1339 
1340   if (watcher_thread() == NULL && _startable) {
1341     _should_terminate = false;
1342     // Create the single instance of WatcherThread
1343     new WatcherThread();
1344   }
1345 }
1346 
1347 void WatcherThread::make_startable() {
1348   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1349   _startable = true;
1350 }
1351 
1352 void WatcherThread::stop() {
1353   {
1354     // Follow normal safepoint aware lock enter protocol since the
1355     // WatcherThread is stopped by another JavaThread.
1356     MutexLocker ml(PeriodicTask_lock);
1357     _should_terminate = true;
1358 
1359     WatcherThread* watcher = watcher_thread();
1360     if (watcher != NULL) {
1361       // unpark the WatcherThread so it can see that it should terminate
1362       watcher->unpark();
1363     }
1364   }
1365 
1366   MutexLocker mu(Terminator_lock);
1367 
1368   while (watcher_thread() != NULL) {
1369     // This wait should make safepoint checks, wait without a timeout,
1370     // and wait as a suspend-equivalent condition.
1371     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1372                           Mutex::_as_suspend_equivalent_flag);
1373   }
1374 }
1375 
1376 void WatcherThread::unpark() {
1377   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1378   PeriodicTask_lock->notify();
1379 }
1380 
1381 void WatcherThread::print_on(outputStream* st) const {
1382   st->print("\"%s\" ", name());
1383   Thread::print_on(st);
1384   st->cr();
1385 }
1386 
1387 // ======= JavaThread ========
1388 
1389 #if INCLUDE_JVMCI
1390 
1391 jlong* JavaThread::_jvmci_old_thread_counters;
1392 
1393 bool jvmci_counters_include(JavaThread* thread) {
1394   oop threadObj = thread->threadObj();
1395   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1396 }
1397 
1398 void JavaThread::collect_counters(typeArrayOop array) {
1399   if (JVMCICounterSize > 0) {
1400     MutexLocker tl(Threads_lock);
1401     for (int i = 0; i < array->length(); i++) {
1402       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1403     }
1404     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1405       if (jvmci_counters_include(tp)) {
1406         for (int i = 0; i < array->length(); i++) {
1407           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1408         }
1409       }
1410     }
1411   }
1412 }
1413 
1414 #endif // INCLUDE_JVMCI
1415 
1416 // A JavaThread is a normal Java thread
1417 
1418 void JavaThread::initialize() {
1419   // Initialize fields
1420 
1421   set_saved_exception_pc(NULL);
1422   set_threadObj(NULL);
1423   _anchor.clear();
1424   set_entry_point(NULL);
1425   set_jni_functions(jni_functions());
1426   set_callee_target(NULL);
1427   set_vm_result(NULL);
1428   set_vm_result_2(NULL);
1429   set_vframe_array_head(NULL);
1430   set_vframe_array_last(NULL);
1431   set_deferred_locals(NULL);
1432   set_deopt_mark(NULL);
1433   set_deopt_compiled_method(NULL);
1434   clear_must_deopt_id();
1435   set_monitor_chunks(NULL);
1436   set_next(NULL);
1437   set_thread_state(_thread_new);
1438   _terminated = _not_terminated;
1439   _privileged_stack_top = NULL;
1440   _array_for_gc = NULL;
1441   _suspend_equivalent = false;
1442   _in_deopt_handler = 0;
1443   _doing_unsafe_access = false;
1444   _stack_guard_state = stack_guard_unused;
1445 #if INCLUDE_JVMCI
1446   _pending_monitorenter = false;
1447   _pending_deoptimization = -1;
1448   _pending_failed_speculation = NULL;
1449   _pending_transfer_to_interpreter = false;
1450   _adjusting_comp_level = false;
1451   _jvmci._alternate_call_target = NULL;
1452   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1453   if (JVMCICounterSize > 0) {
1454     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1455     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1456   } else {
1457     _jvmci_counters = NULL;
1458   }
1459 #endif // INCLUDE_JVMCI
1460   _reserved_stack_activation = NULL;  // stack base not known yet
1461   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1462   _exception_pc  = 0;
1463   _exception_handler_pc = 0;
1464   _is_method_handle_return = 0;
1465   _jvmti_thread_state= NULL;
1466   _should_post_on_exceptions_flag = JNI_FALSE;
1467   _jvmti_get_loaded_classes_closure = NULL;
1468   _interp_only_mode    = 0;
1469   _special_runtime_exit_condition = _no_async_condition;
1470   _pending_async_exception = NULL;
1471   _thread_stat = NULL;
1472   _thread_stat = new ThreadStatistics();
1473   _blocked_on_compilation = false;
1474   _jni_active_critical = 0;
1475   _pending_jni_exception_check_fn = NULL;
1476   _do_not_unlock_if_synchronized = false;
1477   _cached_monitor_info = NULL;
1478   _parker = Parker::Allocate(this);
1479 
1480 #ifndef PRODUCT
1481   _jmp_ring_index = 0;
1482   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1483     record_jump(NULL, NULL, NULL, 0);
1484   }
1485 #endif // PRODUCT
1486 
1487   // Setup safepoint state info for this thread
1488   ThreadSafepointState::create(this);
1489 
1490   debug_only(_java_call_counter = 0);
1491 
1492   // JVMTI PopFrame support
1493   _popframe_condition = popframe_inactive;
1494   _popframe_preserved_args = NULL;
1495   _popframe_preserved_args_size = 0;
1496   _frames_to_pop_failed_realloc = 0;
1497 
1498   pd_initialize();
1499 }
1500 
1501 #if INCLUDE_ALL_GCS
1502 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1503 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1504 #endif // INCLUDE_ALL_GCS
1505 
1506 JavaThread::JavaThread(bool is_attaching_via_jni) :
1507                        Thread()
1508 #if INCLUDE_ALL_GCS
1509                        , _satb_mark_queue(&_satb_mark_queue_set),
1510                        _dirty_card_queue(&_dirty_card_queue_set)
1511 #endif // INCLUDE_ALL_GCS
1512 {
1513   initialize();
1514   if (is_attaching_via_jni) {
1515     _jni_attach_state = _attaching_via_jni;
1516   } else {
1517     _jni_attach_state = _not_attaching_via_jni;
1518   }
1519   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1520 }
1521 
1522 bool JavaThread::reguard_stack(address cur_sp) {
1523   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1524       && _stack_guard_state != stack_guard_reserved_disabled) {
1525     return true; // Stack already guarded or guard pages not needed.
1526   }
1527 
1528   if (register_stack_overflow()) {
1529     // For those architectures which have separate register and
1530     // memory stacks, we must check the register stack to see if
1531     // it has overflowed.
1532     return false;
1533   }
1534 
1535   // Java code never executes within the yellow zone: the latter is only
1536   // there to provoke an exception during stack banging.  If java code
1537   // is executing there, either StackShadowPages should be larger, or
1538   // some exception code in c1, c2 or the interpreter isn't unwinding
1539   // when it should.
1540   guarantee(cur_sp > stack_reserved_zone_base(),
1541             "not enough space to reguard - increase StackShadowPages");
1542   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1543     enable_stack_yellow_reserved_zone();
1544     if (reserved_stack_activation() != stack_base()) {
1545       set_reserved_stack_activation(stack_base());
1546     }
1547   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1548     set_reserved_stack_activation(stack_base());
1549     enable_stack_reserved_zone();
1550   }
1551   return true;
1552 }
1553 
1554 bool JavaThread::reguard_stack(void) {
1555   return reguard_stack(os::current_stack_pointer());
1556 }
1557 
1558 
1559 void JavaThread::block_if_vm_exited() {
1560   if (_terminated == _vm_exited) {
1561     // _vm_exited is set at safepoint, and Threads_lock is never released
1562     // we will block here forever
1563     Threads_lock->lock_without_safepoint_check();
1564     ShouldNotReachHere();
1565   }
1566 }
1567 
1568 
1569 // Remove this ifdef when C1 is ported to the compiler interface.
1570 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1571 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1572 
1573 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1574                        Thread()
1575 #if INCLUDE_ALL_GCS
1576                        , _satb_mark_queue(&_satb_mark_queue_set),
1577                        _dirty_card_queue(&_dirty_card_queue_set)
1578 #endif // INCLUDE_ALL_GCS
1579 {
1580   initialize();
1581   _jni_attach_state = _not_attaching_via_jni;
1582   set_entry_point(entry_point);
1583   // Create the native thread itself.
1584   // %note runtime_23
1585   os::ThreadType thr_type = os::java_thread;
1586   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1587                                                      os::java_thread;
1588   os::create_thread(this, thr_type, stack_sz);
1589   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1590   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1591   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1592   // the exception consists of creating the exception object & initializing it, initialization
1593   // will leave the VM via a JavaCall and then all locks must be unlocked).
1594   //
1595   // The thread is still suspended when we reach here. Thread must be explicit started
1596   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1597   // by calling Threads:add. The reason why this is not done here, is because the thread
1598   // object must be fully initialized (take a look at JVM_Start)
1599 }
1600 
1601 JavaThread::~JavaThread() {
1602 
1603   // JSR166 -- return the parker to the free list
1604   Parker::Release(_parker);
1605   _parker = NULL;
1606 
1607   // Free any remaining  previous UnrollBlock
1608   vframeArray* old_array = vframe_array_last();
1609 
1610   if (old_array != NULL) {
1611     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1612     old_array->set_unroll_block(NULL);
1613     delete old_info;
1614     delete old_array;
1615   }
1616 
1617   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1618   if (deferred != NULL) {
1619     // This can only happen if thread is destroyed before deoptimization occurs.
1620     assert(deferred->length() != 0, "empty array!");
1621     do {
1622       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1623       deferred->remove_at(0);
1624       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1625       delete dlv;
1626     } while (deferred->length() != 0);
1627     delete deferred;
1628   }
1629 
1630   // All Java related clean up happens in exit
1631   ThreadSafepointState::destroy(this);
1632   if (_thread_stat != NULL) delete _thread_stat;
1633 
1634 #if INCLUDE_JVMCI
1635   if (JVMCICounterSize > 0) {
1636     if (jvmci_counters_include(this)) {
1637       for (int i = 0; i < JVMCICounterSize; i++) {
1638         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1639       }
1640     }
1641     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1642   }
1643 #endif // INCLUDE_JVMCI
1644 }
1645 
1646 
1647 // The first routine called by a new Java thread
1648 void JavaThread::run() {
1649   // initialize thread-local alloc buffer related fields
1650   this->initialize_tlab();
1651 
1652   // used to test validity of stack trace backs
1653   this->record_base_of_stack_pointer();
1654 
1655   // Record real stack base and size.
1656   this->record_stack_base_and_size();
1657 
1658   this->create_stack_guard_pages();
1659 
1660   this->cache_global_variables();
1661 
1662   // Thread is now sufficient initialized to be handled by the safepoint code as being
1663   // in the VM. Change thread state from _thread_new to _thread_in_vm
1664   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1665 
1666   assert(JavaThread::current() == this, "sanity check");
1667   assert(!Thread::current()->owns_locks(), "sanity check");
1668 
1669   DTRACE_THREAD_PROBE(start, this);
1670 
1671   // This operation might block. We call that after all safepoint checks for a new thread has
1672   // been completed.
1673   this->set_active_handles(JNIHandleBlock::allocate_block());
1674 
1675   if (JvmtiExport::should_post_thread_life()) {
1676     JvmtiExport::post_thread_start(this);
1677   }
1678 
1679   EventThreadStart event;
1680   if (event.should_commit()) {
1681     event.set_thread(THREAD_TRACE_ID(this));
1682     event.commit();
1683   }
1684 
1685   // We call another function to do the rest so we are sure that the stack addresses used
1686   // from there will be lower than the stack base just computed
1687   thread_main_inner();
1688 
1689   // Note, thread is no longer valid at this point!
1690 }
1691 
1692 
1693 void JavaThread::thread_main_inner() {
1694   assert(JavaThread::current() == this, "sanity check");
1695   assert(this->threadObj() != NULL, "just checking");
1696 
1697   // Execute thread entry point unless this thread has a pending exception
1698   // or has been stopped before starting.
1699   // Note: Due to JVM_StopThread we can have pending exceptions already!
1700   if (!this->has_pending_exception() &&
1701       !java_lang_Thread::is_stillborn(this->threadObj())) {
1702     {
1703       ResourceMark rm(this);
1704       this->set_native_thread_name(this->get_thread_name());
1705     }
1706     HandleMark hm(this);
1707     this->entry_point()(this, this);
1708   }
1709 
1710   DTRACE_THREAD_PROBE(stop, this);
1711 
1712   this->exit(false);
1713   delete this;
1714 }
1715 
1716 
1717 static void ensure_join(JavaThread* thread) {
1718   // We do not need to grap the Threads_lock, since we are operating on ourself.
1719   Handle threadObj(thread, thread->threadObj());
1720   assert(threadObj.not_null(), "java thread object must exist");
1721   ObjectLocker lock(threadObj, thread);
1722   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1723   thread->clear_pending_exception();
1724   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1725   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1726   // Clear the native thread instance - this makes isAlive return false and allows the join()
1727   // to complete once we've done the notify_all below
1728   java_lang_Thread::set_thread(threadObj(), NULL);
1729   lock.notify_all(thread);
1730   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1731   thread->clear_pending_exception();
1732 }
1733 
1734 
1735 // For any new cleanup additions, please check to see if they need to be applied to
1736 // cleanup_failed_attach_current_thread as well.
1737 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1738   assert(this == JavaThread::current(), "thread consistency check");
1739 
1740   HandleMark hm(this);
1741   Handle uncaught_exception(this, this->pending_exception());
1742   this->clear_pending_exception();
1743   Handle threadObj(this, this->threadObj());
1744   assert(threadObj.not_null(), "Java thread object should be created");
1745 
1746   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1747   {
1748     EXCEPTION_MARK;
1749 
1750     CLEAR_PENDING_EXCEPTION;
1751   }
1752   if (!destroy_vm) {
1753     if (uncaught_exception.not_null()) {
1754       EXCEPTION_MARK;
1755       // Call method Thread.dispatchUncaughtException().
1756       Klass* thread_klass = SystemDictionary::Thread_klass();
1757       JavaValue result(T_VOID);
1758       JavaCalls::call_virtual(&result,
1759                               threadObj, thread_klass,
1760                               vmSymbols::dispatchUncaughtException_name(),
1761                               vmSymbols::throwable_void_signature(),
1762                               uncaught_exception,
1763                               THREAD);
1764       if (HAS_PENDING_EXCEPTION) {
1765         ResourceMark rm(this);
1766         jio_fprintf(defaultStream::error_stream(),
1767                     "\nException: %s thrown from the UncaughtExceptionHandler"
1768                     " in thread \"%s\"\n",
1769                     pending_exception()->klass()->external_name(),
1770                     get_thread_name());
1771         CLEAR_PENDING_EXCEPTION;
1772       }
1773     }
1774 
1775     // Called before the java thread exit since we want to read info
1776     // from java_lang_Thread object
1777     EventThreadEnd event;
1778     if (event.should_commit()) {
1779       event.set_thread(THREAD_TRACE_ID(this));
1780       event.commit();
1781     }
1782 
1783     // Call after last event on thread
1784     EVENT_THREAD_EXIT(this);
1785 
1786     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1787     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1788     // is deprecated anyhow.
1789     if (!is_Compiler_thread()) {
1790       int count = 3;
1791       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1792         EXCEPTION_MARK;
1793         JavaValue result(T_VOID);
1794         Klass* thread_klass = SystemDictionary::Thread_klass();
1795         JavaCalls::call_virtual(&result,
1796                                 threadObj, thread_klass,
1797                                 vmSymbols::exit_method_name(),
1798                                 vmSymbols::void_method_signature(),
1799                                 THREAD);
1800         CLEAR_PENDING_EXCEPTION;
1801       }
1802     }
1803     // notify JVMTI
1804     if (JvmtiExport::should_post_thread_life()) {
1805       JvmtiExport::post_thread_end(this);
1806     }
1807 
1808     // We have notified the agents that we are exiting, before we go on,
1809     // we must check for a pending external suspend request and honor it
1810     // in order to not surprise the thread that made the suspend request.
1811     while (true) {
1812       {
1813         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1814         if (!is_external_suspend()) {
1815           set_terminated(_thread_exiting);
1816           ThreadService::current_thread_exiting(this);
1817           break;
1818         }
1819         // Implied else:
1820         // Things get a little tricky here. We have a pending external
1821         // suspend request, but we are holding the SR_lock so we
1822         // can't just self-suspend. So we temporarily drop the lock
1823         // and then self-suspend.
1824       }
1825 
1826       ThreadBlockInVM tbivm(this);
1827       java_suspend_self();
1828 
1829       // We're done with this suspend request, but we have to loop around
1830       // and check again. Eventually we will get SR_lock without a pending
1831       // external suspend request and will be able to mark ourselves as
1832       // exiting.
1833     }
1834     // no more external suspends are allowed at this point
1835   } else {
1836     // before_exit() has already posted JVMTI THREAD_END events
1837   }
1838 
1839   // Notify waiters on thread object. This has to be done after exit() is called
1840   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1841   // group should have the destroyed bit set before waiters are notified).
1842   ensure_join(this);
1843   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1844 
1845   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1846   // held by this thread must be released. The spec does not distinguish
1847   // between JNI-acquired and regular Java monitors. We can only see
1848   // regular Java monitors here if monitor enter-exit matching is broken.
1849   //
1850   // Optionally release any monitors for regular JavaThread exits. This
1851   // is provided as a work around for any bugs in monitor enter-exit
1852   // matching. This can be expensive so it is not enabled by default.
1853   //
1854   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1855   // ObjectSynchronizer::release_monitors_owned_by_thread().
1856   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1857     // Sanity check even though JNI DetachCurrentThread() would have
1858     // returned JNI_ERR if there was a Java frame. JavaThread exit
1859     // should be done executing Java code by the time we get here.
1860     assert(!this->has_last_Java_frame(),
1861            "should not have a Java frame when detaching or exiting");
1862     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1863     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1864   }
1865 
1866   // These things needs to be done while we are still a Java Thread. Make sure that thread
1867   // is in a consistent state, in case GC happens
1868   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1869 
1870   if (active_handles() != NULL) {
1871     JNIHandleBlock* block = active_handles();
1872     set_active_handles(NULL);
1873     JNIHandleBlock::release_block(block);
1874   }
1875 
1876   if (free_handle_block() != NULL) {
1877     JNIHandleBlock* block = free_handle_block();
1878     set_free_handle_block(NULL);
1879     JNIHandleBlock::release_block(block);
1880   }
1881 
1882   // These have to be removed while this is still a valid thread.
1883   remove_stack_guard_pages();
1884 
1885   if (UseTLAB) {
1886     tlab().make_parsable(true);  // retire TLAB
1887   }
1888 
1889   if (JvmtiEnv::environments_might_exist()) {
1890     JvmtiExport::cleanup_thread(this);
1891   }
1892 
1893   // We must flush any deferred card marks before removing a thread from
1894   // the list of active threads.
1895   Universe::heap()->flush_deferred_store_barrier(this);
1896   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1897 
1898 #if INCLUDE_ALL_GCS
1899   // We must flush the G1-related buffers before removing a thread
1900   // from the list of active threads. We must do this after any deferred
1901   // card marks have been flushed (above) so that any entries that are
1902   // added to the thread's dirty card queue as a result are not lost.
1903   if (UseG1GC) {
1904     flush_barrier_queues();
1905   }
1906 #endif // INCLUDE_ALL_GCS
1907 
1908   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1909     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1910     os::current_thread_id());
1911 
1912   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1913   Threads::remove(this);
1914 }
1915 
1916 #if INCLUDE_ALL_GCS
1917 // Flush G1-related queues.
1918 void JavaThread::flush_barrier_queues() {
1919   satb_mark_queue().flush();
1920   dirty_card_queue().flush();
1921 }
1922 
1923 void JavaThread::initialize_queues() {
1924   assert(!SafepointSynchronize::is_at_safepoint(),
1925          "we should not be at a safepoint");
1926 
1927   SATBMarkQueue& satb_queue = satb_mark_queue();
1928   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1929   // The SATB queue should have been constructed with its active
1930   // field set to false.
1931   assert(!satb_queue.is_active(), "SATB queue should not be active");
1932   assert(satb_queue.is_empty(), "SATB queue should be empty");
1933   // If we are creating the thread during a marking cycle, we should
1934   // set the active field of the SATB queue to true.
1935   if (satb_queue_set.is_active()) {
1936     satb_queue.set_active(true);
1937   }
1938 
1939   DirtyCardQueue& dirty_queue = dirty_card_queue();
1940   // The dirty card queue should have been constructed with its
1941   // active field set to true.
1942   assert(dirty_queue.is_active(), "dirty card queue should be active");
1943 }
1944 #endif // INCLUDE_ALL_GCS
1945 
1946 void JavaThread::cleanup_failed_attach_current_thread() {
1947   if (active_handles() != NULL) {
1948     JNIHandleBlock* block = active_handles();
1949     set_active_handles(NULL);
1950     JNIHandleBlock::release_block(block);
1951   }
1952 
1953   if (free_handle_block() != NULL) {
1954     JNIHandleBlock* block = free_handle_block();
1955     set_free_handle_block(NULL);
1956     JNIHandleBlock::release_block(block);
1957   }
1958 
1959   // These have to be removed while this is still a valid thread.
1960   remove_stack_guard_pages();
1961 
1962   if (UseTLAB) {
1963     tlab().make_parsable(true);  // retire TLAB, if any
1964   }
1965 
1966 #if INCLUDE_ALL_GCS
1967   if (UseG1GC) {
1968     flush_barrier_queues();
1969   }
1970 #endif // INCLUDE_ALL_GCS
1971 
1972   Threads::remove(this);
1973   delete this;
1974 }
1975 
1976 
1977 
1978 
1979 JavaThread* JavaThread::active() {
1980   Thread* thread = Thread::current();
1981   if (thread->is_Java_thread()) {
1982     return (JavaThread*) thread;
1983   } else {
1984     assert(thread->is_VM_thread(), "this must be a vm thread");
1985     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1986     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1987     assert(ret->is_Java_thread(), "must be a Java thread");
1988     return ret;
1989   }
1990 }
1991 
1992 bool JavaThread::is_lock_owned(address adr) const {
1993   if (Thread::is_lock_owned(adr)) return true;
1994 
1995   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1996     if (chunk->contains(adr)) return true;
1997   }
1998 
1999   return false;
2000 }
2001 
2002 
2003 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2004   chunk->set_next(monitor_chunks());
2005   set_monitor_chunks(chunk);
2006 }
2007 
2008 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2009   guarantee(monitor_chunks() != NULL, "must be non empty");
2010   if (monitor_chunks() == chunk) {
2011     set_monitor_chunks(chunk->next());
2012   } else {
2013     MonitorChunk* prev = monitor_chunks();
2014     while (prev->next() != chunk) prev = prev->next();
2015     prev->set_next(chunk->next());
2016   }
2017 }
2018 
2019 // JVM support.
2020 
2021 // Note: this function shouldn't block if it's called in
2022 // _thread_in_native_trans state (such as from
2023 // check_special_condition_for_native_trans()).
2024 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2025 
2026   if (has_last_Java_frame() && has_async_condition()) {
2027     // If we are at a polling page safepoint (not a poll return)
2028     // then we must defer async exception because live registers
2029     // will be clobbered by the exception path. Poll return is
2030     // ok because the call we a returning from already collides
2031     // with exception handling registers and so there is no issue.
2032     // (The exception handling path kills call result registers but
2033     //  this is ok since the exception kills the result anyway).
2034 
2035     if (is_at_poll_safepoint()) {
2036       // if the code we are returning to has deoptimized we must defer
2037       // the exception otherwise live registers get clobbered on the
2038       // exception path before deoptimization is able to retrieve them.
2039       //
2040       RegisterMap map(this, false);
2041       frame caller_fr = last_frame().sender(&map);
2042       assert(caller_fr.is_compiled_frame(), "what?");
2043       if (caller_fr.is_deoptimized_frame()) {
2044         log_info(exceptions)("deferred async exception at compiled safepoint");
2045         return;
2046       }
2047     }
2048   }
2049 
2050   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2051   if (condition == _no_async_condition) {
2052     // Conditions have changed since has_special_runtime_exit_condition()
2053     // was called:
2054     // - if we were here only because of an external suspend request,
2055     //   then that was taken care of above (or cancelled) so we are done
2056     // - if we were here because of another async request, then it has
2057     //   been cleared between the has_special_runtime_exit_condition()
2058     //   and now so again we are done
2059     return;
2060   }
2061 
2062   // Check for pending async. exception
2063   if (_pending_async_exception != NULL) {
2064     // Only overwrite an already pending exception, if it is not a threadDeath.
2065     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2066 
2067       // We cannot call Exceptions::_throw(...) here because we cannot block
2068       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2069 
2070       LogTarget(Info, exceptions) lt;
2071       if (lt.is_enabled()) {
2072         ResourceMark rm;
2073         LogStream ls(lt);
2074         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2075           if (has_last_Java_frame()) {
2076             frame f = last_frame();
2077            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2078           }
2079         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2080       }
2081       _pending_async_exception = NULL;
2082       clear_has_async_exception();
2083     }
2084   }
2085 
2086   if (check_unsafe_error &&
2087       condition == _async_unsafe_access_error && !has_pending_exception()) {
2088     condition = _no_async_condition;  // done
2089     switch (thread_state()) {
2090     case _thread_in_vm: {
2091       JavaThread* THREAD = this;
2092       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2093     }
2094     case _thread_in_native: {
2095       ThreadInVMfromNative tiv(this);
2096       JavaThread* THREAD = this;
2097       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2098     }
2099     case _thread_in_Java: {
2100       ThreadInVMfromJava tiv(this);
2101       JavaThread* THREAD = this;
2102       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2103     }
2104     default:
2105       ShouldNotReachHere();
2106     }
2107   }
2108 
2109   assert(condition == _no_async_condition || has_pending_exception() ||
2110          (!check_unsafe_error && condition == _async_unsafe_access_error),
2111          "must have handled the async condition, if no exception");
2112 }
2113 
2114 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2115   //
2116   // Check for pending external suspend. Internal suspend requests do
2117   // not use handle_special_runtime_exit_condition().
2118   // If JNIEnv proxies are allowed, don't self-suspend if the target
2119   // thread is not the current thread. In older versions of jdbx, jdbx
2120   // threads could call into the VM with another thread's JNIEnv so we
2121   // can be here operating on behalf of a suspended thread (4432884).
2122   bool do_self_suspend = is_external_suspend_with_lock();
2123   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2124     //
2125     // Because thread is external suspended the safepoint code will count
2126     // thread as at a safepoint. This can be odd because we can be here
2127     // as _thread_in_Java which would normally transition to _thread_blocked
2128     // at a safepoint. We would like to mark the thread as _thread_blocked
2129     // before calling java_suspend_self like all other callers of it but
2130     // we must then observe proper safepoint protocol. (We can't leave
2131     // _thread_blocked with a safepoint in progress). However we can be
2132     // here as _thread_in_native_trans so we can't use a normal transition
2133     // constructor/destructor pair because they assert on that type of
2134     // transition. We could do something like:
2135     //
2136     // JavaThreadState state = thread_state();
2137     // set_thread_state(_thread_in_vm);
2138     // {
2139     //   ThreadBlockInVM tbivm(this);
2140     //   java_suspend_self()
2141     // }
2142     // set_thread_state(_thread_in_vm_trans);
2143     // if (safepoint) block;
2144     // set_thread_state(state);
2145     //
2146     // but that is pretty messy. Instead we just go with the way the
2147     // code has worked before and note that this is the only path to
2148     // java_suspend_self that doesn't put the thread in _thread_blocked
2149     // mode.
2150 
2151     frame_anchor()->make_walkable(this);
2152     java_suspend_self();
2153 
2154     // We might be here for reasons in addition to the self-suspend request
2155     // so check for other async requests.
2156   }
2157 
2158   if (check_asyncs) {
2159     check_and_handle_async_exceptions();
2160   }
2161 #if INCLUDE_TRACE
2162   if (is_trace_suspend()) {
2163     TRACE_SUSPEND_THREAD(this);
2164   }
2165 #endif
2166 }
2167 
2168 void JavaThread::send_thread_stop(oop java_throwable)  {
2169   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2170   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2171   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2172 
2173   // Do not throw asynchronous exceptions against the compiler thread
2174   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2175   if (!can_call_java()) return;
2176 
2177   {
2178     // Actually throw the Throwable against the target Thread - however
2179     // only if there is no thread death exception installed already.
2180     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2181       // If the topmost frame is a runtime stub, then we are calling into
2182       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2183       // must deoptimize the caller before continuing, as the compiled  exception handler table
2184       // may not be valid
2185       if (has_last_Java_frame()) {
2186         frame f = last_frame();
2187         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2188           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2189           RegisterMap reg_map(this, UseBiasedLocking);
2190           frame compiled_frame = f.sender(&reg_map);
2191           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2192             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2193           }
2194         }
2195       }
2196 
2197       // Set async. pending exception in thread.
2198       set_pending_async_exception(java_throwable);
2199 
2200       if (log_is_enabled(Info, exceptions)) {
2201          ResourceMark rm;
2202         log_info(exceptions)("Pending Async. exception installed of type: %s",
2203                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2204       }
2205       // for AbortVMOnException flag
2206       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2207     }
2208   }
2209 
2210 
2211   // Interrupt thread so it will wake up from a potential wait()
2212   Thread::interrupt(this);
2213 }
2214 
2215 // External suspension mechanism.
2216 //
2217 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2218 // to any VM_locks and it is at a transition
2219 // Self-suspension will happen on the transition out of the vm.
2220 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2221 //
2222 // Guarantees on return:
2223 //   + Target thread will not execute any new bytecode (that's why we need to
2224 //     force a safepoint)
2225 //   + Target thread will not enter any new monitors
2226 //
2227 void JavaThread::java_suspend() {
2228   { MutexLocker mu(Threads_lock);
2229     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2230       return;
2231     }
2232   }
2233 
2234   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2235     if (!is_external_suspend()) {
2236       // a racing resume has cancelled us; bail out now
2237       return;
2238     }
2239 
2240     // suspend is done
2241     uint32_t debug_bits = 0;
2242     // Warning: is_ext_suspend_completed() may temporarily drop the
2243     // SR_lock to allow the thread to reach a stable thread state if
2244     // it is currently in a transient thread state.
2245     if (is_ext_suspend_completed(false /* !called_by_wait */,
2246                                  SuspendRetryDelay, &debug_bits)) {
2247       return;
2248     }
2249   }
2250 
2251   VM_ThreadSuspend vm_suspend;
2252   VMThread::execute(&vm_suspend);
2253 }
2254 
2255 // Part II of external suspension.
2256 // A JavaThread self suspends when it detects a pending external suspend
2257 // request. This is usually on transitions. It is also done in places
2258 // where continuing to the next transition would surprise the caller,
2259 // e.g., monitor entry.
2260 //
2261 // Returns the number of times that the thread self-suspended.
2262 //
2263 // Note: DO NOT call java_suspend_self() when you just want to block current
2264 //       thread. java_suspend_self() is the second stage of cooperative
2265 //       suspension for external suspend requests and should only be used
2266 //       to complete an external suspend request.
2267 //
2268 int JavaThread::java_suspend_self() {
2269   int ret = 0;
2270 
2271   // we are in the process of exiting so don't suspend
2272   if (is_exiting()) {
2273     clear_external_suspend();
2274     return ret;
2275   }
2276 
2277   assert(_anchor.walkable() ||
2278          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2279          "must have walkable stack");
2280 
2281   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2282 
2283   assert(!this->is_ext_suspended(),
2284          "a thread trying to self-suspend should not already be suspended");
2285 
2286   if (this->is_suspend_equivalent()) {
2287     // If we are self-suspending as a result of the lifting of a
2288     // suspend equivalent condition, then the suspend_equivalent
2289     // flag is not cleared until we set the ext_suspended flag so
2290     // that wait_for_ext_suspend_completion() returns consistent
2291     // results.
2292     this->clear_suspend_equivalent();
2293   }
2294 
2295   // A racing resume may have cancelled us before we grabbed SR_lock
2296   // above. Or another external suspend request could be waiting for us
2297   // by the time we return from SR_lock()->wait(). The thread
2298   // that requested the suspension may already be trying to walk our
2299   // stack and if we return now, we can change the stack out from under
2300   // it. This would be a "bad thing (TM)" and cause the stack walker
2301   // to crash. We stay self-suspended until there are no more pending
2302   // external suspend requests.
2303   while (is_external_suspend()) {
2304     ret++;
2305     this->set_ext_suspended();
2306 
2307     // _ext_suspended flag is cleared by java_resume()
2308     while (is_ext_suspended()) {
2309       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2310     }
2311   }
2312 
2313   return ret;
2314 }
2315 
2316 #ifdef ASSERT
2317 // verify the JavaThread has not yet been published in the Threads::list, and
2318 // hence doesn't need protection from concurrent access at this stage
2319 void JavaThread::verify_not_published() {
2320   if (!Threads_lock->owned_by_self()) {
2321     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2322     assert(!Threads::includes(this),
2323            "java thread shouldn't have been published yet!");
2324   } else {
2325     assert(!Threads::includes(this),
2326            "java thread shouldn't have been published yet!");
2327   }
2328 }
2329 #endif
2330 
2331 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2332 // progress or when _suspend_flags is non-zero.
2333 // Current thread needs to self-suspend if there is a suspend request and/or
2334 // block if a safepoint is in progress.
2335 // Async exception ISN'T checked.
2336 // Note only the ThreadInVMfromNative transition can call this function
2337 // directly and when thread state is _thread_in_native_trans
2338 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2339   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2340 
2341   JavaThread *curJT = JavaThread::current();
2342   bool do_self_suspend = thread->is_external_suspend();
2343 
2344   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2345 
2346   // If JNIEnv proxies are allowed, don't self-suspend if the target
2347   // thread is not the current thread. In older versions of jdbx, jdbx
2348   // threads could call into the VM with another thread's JNIEnv so we
2349   // can be here operating on behalf of a suspended thread (4432884).
2350   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2351     JavaThreadState state = thread->thread_state();
2352 
2353     // We mark this thread_blocked state as a suspend-equivalent so
2354     // that a caller to is_ext_suspend_completed() won't be confused.
2355     // The suspend-equivalent state is cleared by java_suspend_self().
2356     thread->set_suspend_equivalent();
2357 
2358     // If the safepoint code sees the _thread_in_native_trans state, it will
2359     // wait until the thread changes to other thread state. There is no
2360     // guarantee on how soon we can obtain the SR_lock and complete the
2361     // self-suspend request. It would be a bad idea to let safepoint wait for
2362     // too long. Temporarily change the state to _thread_blocked to
2363     // let the VM thread know that this thread is ready for GC. The problem
2364     // of changing thread state is that safepoint could happen just after
2365     // java_suspend_self() returns after being resumed, and VM thread will
2366     // see the _thread_blocked state. We must check for safepoint
2367     // after restoring the state and make sure we won't leave while a safepoint
2368     // is in progress.
2369     thread->set_thread_state(_thread_blocked);
2370     thread->java_suspend_self();
2371     thread->set_thread_state(state);
2372 
2373     InterfaceSupport::serialize_thread_state_with_handler(thread);
2374   }
2375 
2376   SafepointMechanism::block_if_requested(curJT);
2377 
2378   if (thread->is_deopt_suspend()) {
2379     thread->clear_deopt_suspend();
2380     RegisterMap map(thread, false);
2381     frame f = thread->last_frame();
2382     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2383       f = f.sender(&map);
2384     }
2385     if (f.id() == thread->must_deopt_id()) {
2386       thread->clear_must_deopt_id();
2387       f.deoptimize(thread);
2388     } else {
2389       fatal("missed deoptimization!");
2390     }
2391   }
2392 #if INCLUDE_TRACE
2393   if (thread->is_trace_suspend()) {
2394     TRACE_SUSPEND_THREAD(thread);
2395   }
2396 #endif
2397 }
2398 
2399 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2400 // progress or when _suspend_flags is non-zero.
2401 // Current thread needs to self-suspend if there is a suspend request and/or
2402 // block if a safepoint is in progress.
2403 // Also check for pending async exception (not including unsafe access error).
2404 // Note only the native==>VM/Java barriers can call this function and when
2405 // thread state is _thread_in_native_trans.
2406 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2407   check_safepoint_and_suspend_for_native_trans(thread);
2408 
2409   if (thread->has_async_exception()) {
2410     // We are in _thread_in_native_trans state, don't handle unsafe
2411     // access error since that may block.
2412     thread->check_and_handle_async_exceptions(false);
2413   }
2414 }
2415 
2416 // This is a variant of the normal
2417 // check_special_condition_for_native_trans with slightly different
2418 // semantics for use by critical native wrappers.  It does all the
2419 // normal checks but also performs the transition back into
2420 // thread_in_Java state.  This is required so that critical natives
2421 // can potentially block and perform a GC if they are the last thread
2422 // exiting the GCLocker.
2423 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2424   check_special_condition_for_native_trans(thread);
2425 
2426   // Finish the transition
2427   thread->set_thread_state(_thread_in_Java);
2428 
2429   if (thread->do_critical_native_unlock()) {
2430     ThreadInVMfromJavaNoAsyncException tiv(thread);
2431     GCLocker::unlock_critical(thread);
2432     thread->clear_critical_native_unlock();
2433   }
2434 }
2435 
2436 // We need to guarantee the Threads_lock here, since resumes are not
2437 // allowed during safepoint synchronization
2438 // Can only resume from an external suspension
2439 void JavaThread::java_resume() {
2440   assert_locked_or_safepoint(Threads_lock);
2441 
2442   // Sanity check: thread is gone, has started exiting or the thread
2443   // was not externally suspended.
2444   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2445     return;
2446   }
2447 
2448   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2449 
2450   clear_external_suspend();
2451 
2452   if (is_ext_suspended()) {
2453     clear_ext_suspended();
2454     SR_lock()->notify_all();
2455   }
2456 }
2457 
2458 size_t JavaThread::_stack_red_zone_size = 0;
2459 size_t JavaThread::_stack_yellow_zone_size = 0;
2460 size_t JavaThread::_stack_reserved_zone_size = 0;
2461 size_t JavaThread::_stack_shadow_zone_size = 0;
2462 
2463 void JavaThread::create_stack_guard_pages() {
2464   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2465   address low_addr = stack_end();
2466   size_t len = stack_guard_zone_size();
2467 
2468   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2469   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2470 
2471   int must_commit = os::must_commit_stack_guard_pages();
2472   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2473 
2474   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2475     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2476     return;
2477   }
2478 
2479   if (os::guard_memory((char *) low_addr, len)) {
2480     _stack_guard_state = stack_guard_enabled;
2481   } else {
2482     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2483       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2484     if (os::uncommit_memory((char *) low_addr, len)) {
2485       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2486     }
2487     return;
2488   }
2489 
2490   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2491     PTR_FORMAT "-" PTR_FORMAT ".",
2492     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2493 }
2494 
2495 void JavaThread::remove_stack_guard_pages() {
2496   assert(Thread::current() == this, "from different thread");
2497   if (_stack_guard_state == stack_guard_unused) return;
2498   address low_addr = stack_end();
2499   size_t len = stack_guard_zone_size();
2500 
2501   if (os::must_commit_stack_guard_pages()) {
2502     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2503       _stack_guard_state = stack_guard_unused;
2504     } else {
2505       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2506         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2507       return;
2508     }
2509   } else {
2510     if (_stack_guard_state == stack_guard_unused) return;
2511     if (os::unguard_memory((char *) low_addr, len)) {
2512       _stack_guard_state = stack_guard_unused;
2513     } else {
2514       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2515         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2516       return;
2517     }
2518   }
2519 
2520   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2521     PTR_FORMAT "-" PTR_FORMAT ".",
2522     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2523 }
2524 
2525 void JavaThread::enable_stack_reserved_zone() {
2526   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2527   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2528 
2529   // The base notation is from the stack's point of view, growing downward.
2530   // We need to adjust it to work correctly with guard_memory()
2531   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2532 
2533   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2534   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2535 
2536   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2537     _stack_guard_state = stack_guard_enabled;
2538   } else {
2539     warning("Attempt to guard stack reserved zone failed.");
2540   }
2541   enable_register_stack_guard();
2542 }
2543 
2544 void JavaThread::disable_stack_reserved_zone() {
2545   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2546   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2547 
2548   // Simply return if called for a thread that does not use guard pages.
2549   if (_stack_guard_state == stack_guard_unused) return;
2550 
2551   // The base notation is from the stack's point of view, growing downward.
2552   // We need to adjust it to work correctly with guard_memory()
2553   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2554 
2555   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2556     _stack_guard_state = stack_guard_reserved_disabled;
2557   } else {
2558     warning("Attempt to unguard stack reserved zone failed.");
2559   }
2560   disable_register_stack_guard();
2561 }
2562 
2563 void JavaThread::enable_stack_yellow_reserved_zone() {
2564   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2565   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2566 
2567   // The base notation is from the stacks point of view, growing downward.
2568   // We need to adjust it to work correctly with guard_memory()
2569   address base = stack_red_zone_base();
2570 
2571   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2572   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2573 
2574   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2575     _stack_guard_state = stack_guard_enabled;
2576   } else {
2577     warning("Attempt to guard stack yellow zone failed.");
2578   }
2579   enable_register_stack_guard();
2580 }
2581 
2582 void JavaThread::disable_stack_yellow_reserved_zone() {
2583   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2584   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2585 
2586   // Simply return if called for a thread that does not use guard pages.
2587   if (_stack_guard_state == stack_guard_unused) return;
2588 
2589   // The base notation is from the stacks point of view, growing downward.
2590   // We need to adjust it to work correctly with guard_memory()
2591   address base = stack_red_zone_base();
2592 
2593   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2594     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2595   } else {
2596     warning("Attempt to unguard stack yellow zone failed.");
2597   }
2598   disable_register_stack_guard();
2599 }
2600 
2601 void JavaThread::enable_stack_red_zone() {
2602   // The base notation is from the stacks point of view, growing downward.
2603   // We need to adjust it to work correctly with guard_memory()
2604   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2605   address base = stack_red_zone_base() - stack_red_zone_size();
2606 
2607   guarantee(base < stack_base(), "Error calculating stack red zone");
2608   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2609 
2610   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2611     warning("Attempt to guard stack red zone failed.");
2612   }
2613 }
2614 
2615 void JavaThread::disable_stack_red_zone() {
2616   // The base notation is from the stacks point of view, growing downward.
2617   // We need to adjust it to work correctly with guard_memory()
2618   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2619   address base = stack_red_zone_base() - stack_red_zone_size();
2620   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2621     warning("Attempt to unguard stack red zone failed.");
2622   }
2623 }
2624 
2625 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2626   // ignore is there is no stack
2627   if (!has_last_Java_frame()) return;
2628   // traverse the stack frames. Starts from top frame.
2629   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2630     frame* fr = fst.current();
2631     f(fr, fst.register_map());
2632   }
2633 }
2634 
2635 
2636 #ifndef PRODUCT
2637 // Deoptimization
2638 // Function for testing deoptimization
2639 void JavaThread::deoptimize() {
2640   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2641   StackFrameStream fst(this, UseBiasedLocking);
2642   bool deopt = false;           // Dump stack only if a deopt actually happens.
2643   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2644   // Iterate over all frames in the thread and deoptimize
2645   for (; !fst.is_done(); fst.next()) {
2646     if (fst.current()->can_be_deoptimized()) {
2647 
2648       if (only_at) {
2649         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2650         // consists of comma or carriage return separated numbers so
2651         // search for the current bci in that string.
2652         address pc = fst.current()->pc();
2653         nmethod* nm =  (nmethod*) fst.current()->cb();
2654         ScopeDesc* sd = nm->scope_desc_at(pc);
2655         char buffer[8];
2656         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2657         size_t len = strlen(buffer);
2658         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2659         while (found != NULL) {
2660           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2661               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2662             // Check that the bci found is bracketed by terminators.
2663             break;
2664           }
2665           found = strstr(found + 1, buffer);
2666         }
2667         if (!found) {
2668           continue;
2669         }
2670       }
2671 
2672       if (DebugDeoptimization && !deopt) {
2673         deopt = true; // One-time only print before deopt
2674         tty->print_cr("[BEFORE Deoptimization]");
2675         trace_frames();
2676         trace_stack();
2677       }
2678       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2679     }
2680   }
2681 
2682   if (DebugDeoptimization && deopt) {
2683     tty->print_cr("[AFTER Deoptimization]");
2684     trace_frames();
2685   }
2686 }
2687 
2688 
2689 // Make zombies
2690 void JavaThread::make_zombies() {
2691   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2692     if (fst.current()->can_be_deoptimized()) {
2693       // it is a Java nmethod
2694       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2695       nm->make_not_entrant();
2696     }
2697   }
2698 }
2699 #endif // PRODUCT
2700 
2701 
2702 void JavaThread::deoptimized_wrt_marked_nmethods() {
2703   if (!has_last_Java_frame()) return;
2704   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2705   StackFrameStream fst(this, UseBiasedLocking);
2706   for (; !fst.is_done(); fst.next()) {
2707     if (fst.current()->should_be_deoptimized()) {
2708       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2709     }
2710   }
2711 }
2712 
2713 
2714 // If the caller is a NamedThread, then remember, in the current scope,
2715 // the given JavaThread in its _processed_thread field.
2716 class RememberProcessedThread: public StackObj {
2717   NamedThread* _cur_thr;
2718  public:
2719   RememberProcessedThread(JavaThread* jthr) {
2720     Thread* thread = Thread::current();
2721     if (thread->is_Named_thread()) {
2722       _cur_thr = (NamedThread *)thread;
2723       _cur_thr->set_processed_thread(jthr);
2724     } else {
2725       _cur_thr = NULL;
2726     }
2727   }
2728 
2729   ~RememberProcessedThread() {
2730     if (_cur_thr) {
2731       _cur_thr->set_processed_thread(NULL);
2732     }
2733   }
2734 };
2735 
2736 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2737   // Verify that the deferred card marks have been flushed.
2738   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2739 
2740   // Traverse the GCHandles
2741   Thread::oops_do(f, cf);
2742 
2743   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2744 
2745   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2746          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2747 
2748   if (has_last_Java_frame()) {
2749     // Record JavaThread to GC thread
2750     RememberProcessedThread rpt(this);
2751 
2752     // Traverse the privileged stack
2753     if (_privileged_stack_top != NULL) {
2754       _privileged_stack_top->oops_do(f);
2755     }
2756 
2757     // traverse the registered growable array
2758     if (_array_for_gc != NULL) {
2759       for (int index = 0; index < _array_for_gc->length(); index++) {
2760         f->do_oop(_array_for_gc->adr_at(index));
2761       }
2762     }
2763 
2764     // Traverse the monitor chunks
2765     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2766       chunk->oops_do(f);
2767     }
2768 
2769     // Traverse the execution stack
2770     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2771       fst.current()->oops_do(f, cf, fst.register_map());
2772     }
2773   }
2774 
2775   // callee_target is never live across a gc point so NULL it here should
2776   // it still contain a methdOop.
2777 
2778   set_callee_target(NULL);
2779 
2780   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2781   // If we have deferred set_locals there might be oops waiting to be
2782   // written
2783   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2784   if (list != NULL) {
2785     for (int i = 0; i < list->length(); i++) {
2786       list->at(i)->oops_do(f);
2787     }
2788   }
2789 
2790   // Traverse instance variables at the end since the GC may be moving things
2791   // around using this function
2792   f->do_oop((oop*) &_threadObj);
2793   f->do_oop((oop*) &_vm_result);
2794   f->do_oop((oop*) &_exception_oop);
2795   f->do_oop((oop*) &_pending_async_exception);
2796 
2797   if (jvmti_thread_state() != NULL) {
2798     jvmti_thread_state()->oops_do(f);
2799   }
2800 }
2801 
2802 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2803   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2804          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2805 
2806   if (has_last_Java_frame()) {
2807     // Traverse the execution stack
2808     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2809       fst.current()->nmethods_do(cf);
2810     }
2811   }
2812 }
2813 
2814 void JavaThread::metadata_do(void f(Metadata*)) {
2815   if (has_last_Java_frame()) {
2816     // Traverse the execution stack to call f() on the methods in the stack
2817     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2818       fst.current()->metadata_do(f);
2819     }
2820   } else if (is_Compiler_thread()) {
2821     // need to walk ciMetadata in current compile tasks to keep alive.
2822     CompilerThread* ct = (CompilerThread*)this;
2823     if (ct->env() != NULL) {
2824       ct->env()->metadata_do(f);
2825     }
2826     if (ct->task() != NULL) {
2827       ct->task()->metadata_do(f);
2828     }
2829   }
2830 }
2831 
2832 // Printing
2833 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2834   switch (_thread_state) {
2835   case _thread_uninitialized:     return "_thread_uninitialized";
2836   case _thread_new:               return "_thread_new";
2837   case _thread_new_trans:         return "_thread_new_trans";
2838   case _thread_in_native:         return "_thread_in_native";
2839   case _thread_in_native_trans:   return "_thread_in_native_trans";
2840   case _thread_in_vm:             return "_thread_in_vm";
2841   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2842   case _thread_in_Java:           return "_thread_in_Java";
2843   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2844   case _thread_blocked:           return "_thread_blocked";
2845   case _thread_blocked_trans:     return "_thread_blocked_trans";
2846   default:                        return "unknown thread state";
2847   }
2848 }
2849 
2850 #ifndef PRODUCT
2851 void JavaThread::print_thread_state_on(outputStream *st) const {
2852   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2853 };
2854 void JavaThread::print_thread_state() const {
2855   print_thread_state_on(tty);
2856 }
2857 #endif // PRODUCT
2858 
2859 // Called by Threads::print() for VM_PrintThreads operation
2860 void JavaThread::print_on(outputStream *st) const {
2861   st->print_raw("\"");
2862   st->print_raw(get_thread_name());
2863   st->print_raw("\" ");
2864   oop thread_oop = threadObj();
2865   if (thread_oop != NULL) {
2866     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2867     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2868     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2869   }
2870   Thread::print_on(st);
2871   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2872   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2873   if (thread_oop != NULL) {
2874     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2875   }
2876 #ifndef PRODUCT
2877   print_thread_state_on(st);
2878   _safepoint_state->print_on(st);
2879 #endif // PRODUCT
2880   if (is_Compiler_thread()) {
2881     CompilerThread* ct = (CompilerThread*)this;
2882     if (ct->task() != NULL) {
2883       st->print("   Compiling: ");
2884       ct->task()->print(st, NULL, true, false);
2885     } else {
2886       st->print("   No compile task");
2887     }
2888     st->cr();
2889   }
2890 }
2891 
2892 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2893   st->print("%s", get_thread_name_string(buf, buflen));
2894 }
2895 
2896 // Called by fatal error handler. The difference between this and
2897 // JavaThread::print() is that we can't grab lock or allocate memory.
2898 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2899   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2900   oop thread_obj = threadObj();
2901   if (thread_obj != NULL) {
2902     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2903   }
2904   st->print(" [");
2905   st->print("%s", _get_thread_state_name(_thread_state));
2906   if (osthread()) {
2907     st->print(", id=%d", osthread()->thread_id());
2908   }
2909   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2910             p2i(stack_end()), p2i(stack_base()));
2911   st->print("]");
2912   return;
2913 }
2914 
2915 // Verification
2916 
2917 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2918 
2919 void JavaThread::verify() {
2920   // Verify oops in the thread.
2921   oops_do(&VerifyOopClosure::verify_oop, NULL);
2922 
2923   // Verify the stack frames.
2924   frames_do(frame_verify);
2925 }
2926 
2927 // CR 6300358 (sub-CR 2137150)
2928 // Most callers of this method assume that it can't return NULL but a
2929 // thread may not have a name whilst it is in the process of attaching to
2930 // the VM - see CR 6412693, and there are places where a JavaThread can be
2931 // seen prior to having it's threadObj set (eg JNI attaching threads and
2932 // if vm exit occurs during initialization). These cases can all be accounted
2933 // for such that this method never returns NULL.
2934 const char* JavaThread::get_thread_name() const {
2935 #ifdef ASSERT
2936   // early safepoints can hit while current thread does not yet have TLS
2937   if (!SafepointSynchronize::is_at_safepoint()) {
2938     Thread *cur = Thread::current();
2939     if (!(cur->is_Java_thread() && cur == this)) {
2940       // Current JavaThreads are allowed to get their own name without
2941       // the Threads_lock.
2942       assert_locked_or_safepoint(Threads_lock);
2943     }
2944   }
2945 #endif // ASSERT
2946   return get_thread_name_string();
2947 }
2948 
2949 // Returns a non-NULL representation of this thread's name, or a suitable
2950 // descriptive string if there is no set name
2951 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2952   const char* name_str;
2953   oop thread_obj = threadObj();
2954   if (thread_obj != NULL) {
2955     oop name = java_lang_Thread::name(thread_obj);
2956     if (name != NULL) {
2957       if (buf == NULL) {
2958         name_str = java_lang_String::as_utf8_string(name);
2959       } else {
2960         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2961       }
2962     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2963       name_str = "<no-name - thread is attaching>";
2964     } else {
2965       name_str = Thread::name();
2966     }
2967   } else {
2968     name_str = Thread::name();
2969   }
2970   assert(name_str != NULL, "unexpected NULL thread name");
2971   return name_str;
2972 }
2973 
2974 
2975 const char* JavaThread::get_threadgroup_name() const {
2976   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2977   oop thread_obj = threadObj();
2978   if (thread_obj != NULL) {
2979     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2980     if (thread_group != NULL) {
2981       // ThreadGroup.name can be null
2982       return java_lang_ThreadGroup::name(thread_group);
2983     }
2984   }
2985   return NULL;
2986 }
2987 
2988 const char* JavaThread::get_parent_name() const {
2989   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2990   oop thread_obj = threadObj();
2991   if (thread_obj != NULL) {
2992     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2993     if (thread_group != NULL) {
2994       oop parent = java_lang_ThreadGroup::parent(thread_group);
2995       if (parent != NULL) {
2996         // ThreadGroup.name can be null
2997         return java_lang_ThreadGroup::name(parent);
2998       }
2999     }
3000   }
3001   return NULL;
3002 }
3003 
3004 ThreadPriority JavaThread::java_priority() const {
3005   oop thr_oop = threadObj();
3006   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3007   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3008   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3009   return priority;
3010 }
3011 
3012 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3013 
3014   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3015   // Link Java Thread object <-> C++ Thread
3016 
3017   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3018   // and put it into a new Handle.  The Handle "thread_oop" can then
3019   // be used to pass the C++ thread object to other methods.
3020 
3021   // Set the Java level thread object (jthread) field of the
3022   // new thread (a JavaThread *) to C++ thread object using the
3023   // "thread_oop" handle.
3024 
3025   // Set the thread field (a JavaThread *) of the
3026   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3027 
3028   Handle thread_oop(Thread::current(),
3029                     JNIHandles::resolve_non_null(jni_thread));
3030   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3031          "must be initialized");
3032   set_threadObj(thread_oop());
3033   java_lang_Thread::set_thread(thread_oop(), this);
3034 
3035   if (prio == NoPriority) {
3036     prio = java_lang_Thread::priority(thread_oop());
3037     assert(prio != NoPriority, "A valid priority should be present");
3038   }
3039 
3040   // Push the Java priority down to the native thread; needs Threads_lock
3041   Thread::set_priority(this, prio);
3042 
3043   prepare_ext();
3044 
3045   // Add the new thread to the Threads list and set it in motion.
3046   // We must have threads lock in order to call Threads::add.
3047   // It is crucial that we do not block before the thread is
3048   // added to the Threads list for if a GC happens, then the java_thread oop
3049   // will not be visited by GC.
3050   Threads::add(this);
3051 }
3052 
3053 oop JavaThread::current_park_blocker() {
3054   // Support for JSR-166 locks
3055   oop thread_oop = threadObj();
3056   if (thread_oop != NULL &&
3057       JDK_Version::current().supports_thread_park_blocker()) {
3058     return java_lang_Thread::park_blocker(thread_oop);
3059   }
3060   return NULL;
3061 }
3062 
3063 
3064 void JavaThread::print_stack_on(outputStream* st) {
3065   if (!has_last_Java_frame()) return;
3066   ResourceMark rm;
3067   HandleMark   hm;
3068 
3069   RegisterMap reg_map(this);
3070   vframe* start_vf = last_java_vframe(&reg_map);
3071   int count = 0;
3072   for (vframe* f = start_vf; f; f = f->sender()) {
3073     if (f->is_java_frame()) {
3074       javaVFrame* jvf = javaVFrame::cast(f);
3075       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3076 
3077       // Print out lock information
3078       if (JavaMonitorsInStackTrace) {
3079         jvf->print_lock_info_on(st, count);
3080       }
3081     } else {
3082       // Ignore non-Java frames
3083     }
3084 
3085     // Bail-out case for too deep stacks
3086     count++;
3087     if (MaxJavaStackTraceDepth == count) return;
3088   }
3089 }
3090 
3091 
3092 // JVMTI PopFrame support
3093 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3094   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3095   if (in_bytes(size_in_bytes) != 0) {
3096     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3097     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3098     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3099   }
3100 }
3101 
3102 void* JavaThread::popframe_preserved_args() {
3103   return _popframe_preserved_args;
3104 }
3105 
3106 ByteSize JavaThread::popframe_preserved_args_size() {
3107   return in_ByteSize(_popframe_preserved_args_size);
3108 }
3109 
3110 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3111   int sz = in_bytes(popframe_preserved_args_size());
3112   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3113   return in_WordSize(sz / wordSize);
3114 }
3115 
3116 void JavaThread::popframe_free_preserved_args() {
3117   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3118   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3119   _popframe_preserved_args = NULL;
3120   _popframe_preserved_args_size = 0;
3121 }
3122 
3123 #ifndef PRODUCT
3124 
3125 void JavaThread::trace_frames() {
3126   tty->print_cr("[Describe stack]");
3127   int frame_no = 1;
3128   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3129     tty->print("  %d. ", frame_no++);
3130     fst.current()->print_value_on(tty, this);
3131     tty->cr();
3132   }
3133 }
3134 
3135 class PrintAndVerifyOopClosure: public OopClosure {
3136  protected:
3137   template <class T> inline void do_oop_work(T* p) {
3138     oop obj = oopDesc::load_decode_heap_oop(p);
3139     if (obj == NULL) return;
3140     tty->print(INTPTR_FORMAT ": ", p2i(p));
3141     if (oopDesc::is_oop_or_null(obj)) {
3142       if (obj->is_objArray()) {
3143         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3144       } else {
3145         obj->print();
3146       }
3147     } else {
3148       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3149     }
3150     tty->cr();
3151   }
3152  public:
3153   virtual void do_oop(oop* p) { do_oop_work(p); }
3154   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3155 };
3156 
3157 
3158 static void oops_print(frame* f, const RegisterMap *map) {
3159   PrintAndVerifyOopClosure print;
3160   f->print_value();
3161   f->oops_do(&print, NULL, (RegisterMap*)map);
3162 }
3163 
3164 // Print our all the locations that contain oops and whether they are
3165 // valid or not.  This useful when trying to find the oldest frame
3166 // where an oop has gone bad since the frame walk is from youngest to
3167 // oldest.
3168 void JavaThread::trace_oops() {
3169   tty->print_cr("[Trace oops]");
3170   frames_do(oops_print);
3171 }
3172 
3173 
3174 #ifdef ASSERT
3175 // Print or validate the layout of stack frames
3176 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3177   ResourceMark rm;
3178   PRESERVE_EXCEPTION_MARK;
3179   FrameValues values;
3180   int frame_no = 0;
3181   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3182     fst.current()->describe(values, ++frame_no);
3183     if (depth == frame_no) break;
3184   }
3185   if (validate_only) {
3186     values.validate();
3187   } else {
3188     tty->print_cr("[Describe stack layout]");
3189     values.print(this);
3190   }
3191 }
3192 #endif
3193 
3194 void JavaThread::trace_stack_from(vframe* start_vf) {
3195   ResourceMark rm;
3196   int vframe_no = 1;
3197   for (vframe* f = start_vf; f; f = f->sender()) {
3198     if (f->is_java_frame()) {
3199       javaVFrame::cast(f)->print_activation(vframe_no++);
3200     } else {
3201       f->print();
3202     }
3203     if (vframe_no > StackPrintLimit) {
3204       tty->print_cr("...<more frames>...");
3205       return;
3206     }
3207   }
3208 }
3209 
3210 
3211 void JavaThread::trace_stack() {
3212   if (!has_last_Java_frame()) return;
3213   ResourceMark rm;
3214   HandleMark   hm;
3215   RegisterMap reg_map(this);
3216   trace_stack_from(last_java_vframe(&reg_map));
3217 }
3218 
3219 
3220 #endif // PRODUCT
3221 
3222 
3223 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3224   assert(reg_map != NULL, "a map must be given");
3225   frame f = last_frame();
3226   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3227     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3228   }
3229   return NULL;
3230 }
3231 
3232 
3233 Klass* JavaThread::security_get_caller_class(int depth) {
3234   vframeStream vfst(this);
3235   vfst.security_get_caller_frame(depth);
3236   if (!vfst.at_end()) {
3237     return vfst.method()->method_holder();
3238   }
3239   return NULL;
3240 }
3241 
3242 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3243   assert(thread->is_Compiler_thread(), "must be compiler thread");
3244   CompileBroker::compiler_thread_loop();
3245 }
3246 
3247 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3248   NMethodSweeper::sweeper_loop();
3249 }
3250 
3251 // Create a CompilerThread
3252 CompilerThread::CompilerThread(CompileQueue* queue,
3253                                CompilerCounters* counters)
3254                                : JavaThread(&compiler_thread_entry) {
3255   _env   = NULL;
3256   _log   = NULL;
3257   _task  = NULL;
3258   _queue = queue;
3259   _counters = counters;
3260   _buffer_blob = NULL;
3261   _compiler = NULL;
3262 
3263   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3264   resource_area()->bias_to(mtCompiler);
3265 
3266 #ifndef PRODUCT
3267   _ideal_graph_printer = NULL;
3268 #endif
3269 }
3270 
3271 bool CompilerThread::can_call_java() const {
3272   return _compiler != NULL && _compiler->is_jvmci();
3273 }
3274 
3275 // Create sweeper thread
3276 CodeCacheSweeperThread::CodeCacheSweeperThread()
3277 : JavaThread(&sweeper_thread_entry) {
3278   _scanned_compiled_method = NULL;
3279 }
3280 
3281 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3282   JavaThread::oops_do(f, cf);
3283   if (_scanned_compiled_method != NULL && cf != NULL) {
3284     // Safepoints can occur when the sweeper is scanning an nmethod so
3285     // process it here to make sure it isn't unloaded in the middle of
3286     // a scan.
3287     cf->do_code_blob(_scanned_compiled_method);
3288   }
3289 }
3290 
3291 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3292   JavaThread::nmethods_do(cf);
3293   if (_scanned_compiled_method != NULL && cf != NULL) {
3294     // Safepoints can occur when the sweeper is scanning an nmethod so
3295     // process it here to make sure it isn't unloaded in the middle of
3296     // a scan.
3297     cf->do_code_blob(_scanned_compiled_method);
3298   }
3299 }
3300 
3301 
3302 // ======= Threads ========
3303 
3304 // The Threads class links together all active threads, and provides
3305 // operations over all threads.  It is protected by its own Mutex
3306 // lock, which is also used in other contexts to protect thread
3307 // operations from having the thread being operated on from exiting
3308 // and going away unexpectedly (e.g., safepoint synchronization)
3309 
3310 JavaThread* Threads::_thread_list = NULL;
3311 int         Threads::_number_of_threads = 0;
3312 int         Threads::_number_of_non_daemon_threads = 0;
3313 int         Threads::_return_code = 0;
3314 int         Threads::_thread_claim_parity = 0;
3315 size_t      JavaThread::_stack_size_at_create = 0;
3316 #ifdef ASSERT
3317 bool        Threads::_vm_complete = false;
3318 #endif
3319 
3320 // All JavaThreads
3321 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3322 
3323 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3324 void Threads::threads_do(ThreadClosure* tc) {
3325   assert_locked_or_safepoint(Threads_lock);
3326   // ALL_JAVA_THREADS iterates through all JavaThreads
3327   ALL_JAVA_THREADS(p) {
3328     tc->do_thread(p);
3329   }
3330   // Someday we could have a table or list of all non-JavaThreads.
3331   // For now, just manually iterate through them.
3332   tc->do_thread(VMThread::vm_thread());
3333   Universe::heap()->gc_threads_do(tc);
3334   WatcherThread *wt = WatcherThread::watcher_thread();
3335   // Strictly speaking, the following NULL check isn't sufficient to make sure
3336   // the data for WatcherThread is still valid upon being examined. However,
3337   // considering that WatchThread terminates when the VM is on the way to
3338   // exit at safepoint, the chance of the above is extremely small. The right
3339   // way to prevent termination of WatcherThread would be to acquire
3340   // Terminator_lock, but we can't do that without violating the lock rank
3341   // checking in some cases.
3342   if (wt != NULL) {
3343     tc->do_thread(wt);
3344   }
3345 
3346   // If CompilerThreads ever become non-JavaThreads, add them here
3347 }
3348 
3349 void Threads::parallel_java_threads_do(ThreadClosure* tc) {
3350   int cp = Threads::thread_claim_parity();
3351   ALL_JAVA_THREADS(p) {
3352     if (p->claim_oops_do(true, cp)) {
3353       tc->do_thread(p);
3354     }
3355   }
3356   // Thread claiming protocol requires us to claim the same interesting
3357   // threads on all paths. Notably, Threads::possibly_parallel_threads_do
3358   // claims all Java threads *and* the VMThread. To avoid breaking the
3359   // claiming protocol, we have to claim VMThread on this path too, even
3360   // if we do not apply the closure to the VMThread.
3361   VMThread* vmt = VMThread::vm_thread();
3362   (void)vmt->claim_oops_do(true, cp);
3363 }
3364 
3365 // The system initialization in the library has three phases.
3366 //
3367 // Phase 1: java.lang.System class initialization
3368 //     java.lang.System is a primordial class loaded and initialized
3369 //     by the VM early during startup.  java.lang.System.<clinit>
3370 //     only does registerNatives and keeps the rest of the class
3371 //     initialization work later until thread initialization completes.
3372 //
3373 //     System.initPhase1 initializes the system properties, the static
3374 //     fields in, out, and err. Set up java signal handlers, OS-specific
3375 //     system settings, and thread group of the main thread.
3376 static void call_initPhase1(TRAPS) {
3377   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3378   JavaValue result(T_VOID);
3379   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3380                                          vmSymbols::void_method_signature(), CHECK);
3381 }
3382 
3383 // Phase 2. Module system initialization
3384 //     This will initialize the module system.  Only java.base classes
3385 //     can be loaded until phase 2 completes.
3386 //
3387 //     Call System.initPhase2 after the compiler initialization and jsr292
3388 //     classes get initialized because module initialization runs a lot of java
3389 //     code, that for performance reasons, should be compiled.  Also, this will
3390 //     enable the startup code to use lambda and other language features in this
3391 //     phase and onward.
3392 //
3393 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3394 static void call_initPhase2(TRAPS) {
3395   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3396 
3397   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3398 
3399   JavaValue result(T_INT);
3400   JavaCallArguments args;
3401   args.push_int(DisplayVMOutputToStderr);
3402   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3403   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3404                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3405   if (result.get_jint() != JNI_OK) {
3406     vm_exit_during_initialization(); // no message or exception
3407   }
3408 
3409   universe_post_module_init();
3410 }
3411 
3412 // Phase 3. final setup - set security manager, system class loader and TCCL
3413 //
3414 //     This will instantiate and set the security manager, set the system class
3415 //     loader as well as the thread context class loader.  The security manager
3416 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3417 //     other modules or the application's classpath.
3418 static void call_initPhase3(TRAPS) {
3419   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3420   JavaValue result(T_VOID);
3421   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3422                                          vmSymbols::void_method_signature(), CHECK);
3423 }
3424 
3425 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3426   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3427 
3428   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3429     create_vm_init_libraries();
3430   }
3431 
3432   initialize_class(vmSymbols::java_lang_String(), CHECK);
3433 
3434   // Inject CompactStrings value after the static initializers for String ran.
3435   java_lang_String::set_compact_strings(CompactStrings);
3436 
3437   // Initialize java_lang.System (needed before creating the thread)
3438   initialize_class(vmSymbols::java_lang_System(), CHECK);
3439   // The VM creates & returns objects of this class. Make sure it's initialized.
3440   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3441   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3442   Handle thread_group = create_initial_thread_group(CHECK);
3443   Universe::set_main_thread_group(thread_group());
3444   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3445   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3446   main_thread->set_threadObj(thread_object);
3447   // Set thread status to running since main thread has
3448   // been started and running.
3449   java_lang_Thread::set_thread_status(thread_object,
3450                                       java_lang_Thread::RUNNABLE);
3451 
3452   // The VM creates objects of this class.
3453   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3454 
3455   // The VM preresolves methods to these classes. Make sure that they get initialized
3456   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3457   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3458 
3459   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3460   call_initPhase1(CHECK);
3461 
3462   // get the Java runtime name after java.lang.System is initialized
3463   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3464   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3465 
3466   // an instance of OutOfMemory exception has been allocated earlier
3467   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3468   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3469   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3470   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3471   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3472   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3473   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3474   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3475 }
3476 
3477 void Threads::initialize_jsr292_core_classes(TRAPS) {
3478   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3479 
3480   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3481   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3482   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3483   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3484 }
3485 
3486 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3487   extern void JDK_Version_init();
3488 
3489   // Preinitialize version info.
3490   VM_Version::early_initialize();
3491 
3492   // Check version
3493   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3494 
3495   // Initialize library-based TLS
3496   ThreadLocalStorage::init();
3497 
3498   // Initialize the output stream module
3499   ostream_init();
3500 
3501   // Process java launcher properties.
3502   Arguments::process_sun_java_launcher_properties(args);
3503 
3504   // Initialize the os module
3505   os::init();
3506 
3507   // Record VM creation timing statistics
3508   TraceVmCreationTime create_vm_timer;
3509   create_vm_timer.start();
3510 
3511   // Initialize system properties.
3512   Arguments::init_system_properties();
3513 
3514   // So that JDK version can be used as a discriminator when parsing arguments
3515   JDK_Version_init();
3516 
3517   // Update/Initialize System properties after JDK version number is known
3518   Arguments::init_version_specific_system_properties();
3519 
3520   // Make sure to initialize log configuration *before* parsing arguments
3521   LogConfiguration::initialize(create_vm_timer.begin_time());
3522 
3523   // Parse arguments
3524   jint parse_result = Arguments::parse(args);
3525   if (parse_result != JNI_OK) return parse_result;
3526 
3527   os::init_before_ergo();
3528 
3529   jint ergo_result = Arguments::apply_ergo();
3530   if (ergo_result != JNI_OK) return ergo_result;
3531 
3532   // Final check of all ranges after ergonomics which may change values.
3533   if (!CommandLineFlagRangeList::check_ranges()) {
3534     return JNI_EINVAL;
3535   }
3536 
3537   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3538   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3539   if (!constraint_result) {
3540     return JNI_EINVAL;
3541   }
3542 
3543   CommandLineFlagWriteableList::mark_startup();
3544 
3545   if (PauseAtStartup) {
3546     os::pause();
3547   }
3548 
3549   HOTSPOT_VM_INIT_BEGIN();
3550 
3551   // Timing (must come after argument parsing)
3552   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3553 
3554   SafepointMechanism::initialize();
3555 
3556   // Initialize the os module after parsing the args
3557   jint os_init_2_result = os::init_2();
3558   if (os_init_2_result != JNI_OK) return os_init_2_result;
3559 
3560   jint adjust_after_os_result = Arguments::adjust_after_os();
3561   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3562 
3563   // Initialize output stream logging
3564   ostream_init_log();
3565 
3566   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3567   // Must be before create_vm_init_agents()
3568   if (Arguments::init_libraries_at_startup()) {
3569     convert_vm_init_libraries_to_agents();
3570   }
3571 
3572   // Launch -agentlib/-agentpath and converted -Xrun agents
3573   if (Arguments::init_agents_at_startup()) {
3574     create_vm_init_agents();
3575   }
3576 
3577   // Initialize Threads state
3578   _thread_list = NULL;
3579   _number_of_threads = 0;
3580   _number_of_non_daemon_threads = 0;
3581 
3582   // Initialize global data structures and create system classes in heap
3583   vm_init_globals();
3584 
3585 #if INCLUDE_JVMCI
3586   if (JVMCICounterSize > 0) {
3587     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3588     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3589   } else {
3590     JavaThread::_jvmci_old_thread_counters = NULL;
3591   }
3592 #endif // INCLUDE_JVMCI
3593 
3594   // Attach the main thread to this os thread
3595   JavaThread* main_thread = new JavaThread();
3596   main_thread->set_thread_state(_thread_in_vm);
3597   main_thread->initialize_thread_current();
3598   // must do this before set_active_handles
3599   main_thread->record_stack_base_and_size();
3600   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3601 
3602   if (!main_thread->set_as_starting_thread()) {
3603     vm_shutdown_during_initialization(
3604                                       "Failed necessary internal allocation. Out of swap space");
3605     delete main_thread;
3606     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3607     return JNI_ENOMEM;
3608   }
3609 
3610   // Enable guard page *after* os::create_main_thread(), otherwise it would
3611   // crash Linux VM, see notes in os_linux.cpp.
3612   main_thread->create_stack_guard_pages();
3613 
3614   // Initialize Java-Level synchronization subsystem
3615   ObjectMonitor::Initialize();
3616 
3617   // Initialize global modules
3618   jint status = init_globals();
3619   if (status != JNI_OK) {
3620     delete main_thread;
3621     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3622     return status;
3623   }
3624 
3625   if (TRACE_INITIALIZE() != JNI_OK) {
3626     vm_exit_during_initialization("Failed to initialize tracing backend");
3627   }
3628 
3629   // Should be done after the heap is fully created
3630   main_thread->cache_global_variables();
3631 
3632   HandleMark hm;
3633 
3634   { MutexLocker mu(Threads_lock);
3635     Threads::add(main_thread);
3636   }
3637 
3638   // Any JVMTI raw monitors entered in onload will transition into
3639   // real raw monitor. VM is setup enough here for raw monitor enter.
3640   JvmtiExport::transition_pending_onload_raw_monitors();
3641 
3642   // Create the VMThread
3643   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3644 
3645   VMThread::create();
3646     Thread* vmthread = VMThread::vm_thread();
3647 
3648     if (!os::create_thread(vmthread, os::vm_thread)) {
3649       vm_exit_during_initialization("Cannot create VM thread. "
3650                                     "Out of system resources.");
3651     }
3652 
3653     // Wait for the VM thread to become ready, and VMThread::run to initialize
3654     // Monitors can have spurious returns, must always check another state flag
3655     {
3656       MutexLocker ml(Notify_lock);
3657       os::start_thread(vmthread);
3658       while (vmthread->active_handles() == NULL) {
3659         Notify_lock->wait();
3660       }
3661     }
3662   }
3663 
3664   assert(Universe::is_fully_initialized(), "not initialized");
3665   if (VerifyDuringStartup) {
3666     // Make sure we're starting with a clean slate.
3667     VM_Verify verify_op;
3668     VMThread::execute(&verify_op);
3669   }
3670 
3671   Thread* THREAD = Thread::current();
3672 
3673   // Always call even when there are not JVMTI environments yet, since environments
3674   // may be attached late and JVMTI must track phases of VM execution
3675   JvmtiExport::enter_early_start_phase();
3676 
3677   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3678   JvmtiExport::post_early_vm_start();
3679 
3680   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3681 
3682   // We need this for ClassDataSharing - the initial vm.info property is set
3683   // with the default value of CDS "sharing" which may be reset through
3684   // command line options.
3685   reset_vm_info_property(CHECK_JNI_ERR);
3686 
3687   quicken_jni_functions();
3688 
3689   // No more stub generation allowed after that point.
3690   StubCodeDesc::freeze();
3691 
3692   // Set flag that basic initialization has completed. Used by exceptions and various
3693   // debug stuff, that does not work until all basic classes have been initialized.
3694   set_init_completed();
3695 
3696   LogConfiguration::post_initialize();
3697   Metaspace::post_initialize();
3698 
3699   HOTSPOT_VM_INIT_END();
3700 
3701   // record VM initialization completion time
3702 #if INCLUDE_MANAGEMENT
3703   Management::record_vm_init_completed();
3704 #endif // INCLUDE_MANAGEMENT
3705 
3706   // Signal Dispatcher needs to be started before VMInit event is posted
3707   os::signal_init(CHECK_JNI_ERR);
3708 
3709   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3710   if (!DisableAttachMechanism) {
3711     AttachListener::vm_start();
3712     if (StartAttachListener || AttachListener::init_at_startup()) {
3713       AttachListener::init();
3714     }
3715   }
3716 
3717   // Launch -Xrun agents
3718   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3719   // back-end can launch with -Xdebug -Xrunjdwp.
3720   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3721     create_vm_init_libraries();
3722   }
3723 
3724   if (CleanChunkPoolAsync) {
3725     Chunk::start_chunk_pool_cleaner_task();
3726   }
3727 
3728   // initialize compiler(s)
3729 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3730   CompileBroker::compilation_init(CHECK_JNI_ERR);
3731 #endif
3732 
3733   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3734   // It is done after compilers are initialized, because otherwise compilations of
3735   // signature polymorphic MH intrinsics can be missed
3736   // (see SystemDictionary::find_method_handle_intrinsic).
3737   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3738 
3739   // This will initialize the module system.  Only java.base classes can be
3740   // loaded until phase 2 completes
3741   call_initPhase2(CHECK_JNI_ERR);
3742 
3743   // Always call even when there are not JVMTI environments yet, since environments
3744   // may be attached late and JVMTI must track phases of VM execution
3745   JvmtiExport::enter_start_phase();
3746 
3747   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3748   JvmtiExport::post_vm_start();
3749 
3750   // Final system initialization including security manager and system class loader
3751   call_initPhase3(CHECK_JNI_ERR);
3752 
3753   // cache the system and platform class loaders
3754   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3755 
3756 #if INCLUDE_JVMCI
3757   if (EnableJVMCI) {
3758     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3759     // The JVMCI Java initialization code will read this flag and
3760     // do the printing if it's set.
3761     bool init = JVMCIPrintProperties;
3762 
3763     if (!init) {
3764       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3765       // compilations via JVMCI will not actually block until JVMCI is initialized.
3766       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3767     }
3768 
3769     if (init) {
3770       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3771     }
3772   }
3773 #endif
3774 
3775   // Always call even when there are not JVMTI environments yet, since environments
3776   // may be attached late and JVMTI must track phases of VM execution
3777   JvmtiExport::enter_live_phase();
3778 
3779   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3780   JvmtiExport::post_vm_initialized();
3781 
3782   if (TRACE_START() != JNI_OK) {
3783     vm_exit_during_initialization("Failed to start tracing backend.");
3784   }
3785 
3786 #if INCLUDE_MANAGEMENT
3787   Management::initialize(THREAD);
3788 
3789   if (HAS_PENDING_EXCEPTION) {
3790     // management agent fails to start possibly due to
3791     // configuration problem and is responsible for printing
3792     // stack trace if appropriate. Simply exit VM.
3793     vm_exit(1);
3794   }
3795 #endif // INCLUDE_MANAGEMENT
3796 
3797   if (MemProfiling)                   MemProfiler::engage();
3798   StatSampler::engage();
3799   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3800 
3801   BiasedLocking::init();
3802 
3803 #if INCLUDE_RTM_OPT
3804   RTMLockingCounters::init();
3805 #endif
3806 
3807   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3808     call_postVMInitHook(THREAD);
3809     // The Java side of PostVMInitHook.run must deal with all
3810     // exceptions and provide means of diagnosis.
3811     if (HAS_PENDING_EXCEPTION) {
3812       CLEAR_PENDING_EXCEPTION;
3813     }
3814   }
3815 
3816   {
3817     MutexLocker ml(PeriodicTask_lock);
3818     // Make sure the WatcherThread can be started by WatcherThread::start()
3819     // or by dynamic enrollment.
3820     WatcherThread::make_startable();
3821     // Start up the WatcherThread if there are any periodic tasks
3822     // NOTE:  All PeriodicTasks should be registered by now. If they
3823     //   aren't, late joiners might appear to start slowly (we might
3824     //   take a while to process their first tick).
3825     if (PeriodicTask::num_tasks() > 0) {
3826       WatcherThread::start();
3827     }
3828   }
3829 
3830   create_vm_timer.end();
3831 #ifdef ASSERT
3832   _vm_complete = true;
3833 #endif
3834 
3835   if (DumpSharedSpaces) {
3836     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3837     ShouldNotReachHere();
3838   }
3839 
3840   return JNI_OK;
3841 }
3842 
3843 // type for the Agent_OnLoad and JVM_OnLoad entry points
3844 extern "C" {
3845   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3846 }
3847 // Find a command line agent library and return its entry point for
3848 //         -agentlib:  -agentpath:   -Xrun
3849 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3850 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3851                                     const char *on_load_symbols[],
3852                                     size_t num_symbol_entries) {
3853   OnLoadEntry_t on_load_entry = NULL;
3854   void *library = NULL;
3855 
3856   if (!agent->valid()) {
3857     char buffer[JVM_MAXPATHLEN];
3858     char ebuf[1024] = "";
3859     const char *name = agent->name();
3860     const char *msg = "Could not find agent library ";
3861 
3862     // First check to see if agent is statically linked into executable
3863     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3864       library = agent->os_lib();
3865     } else if (agent->is_absolute_path()) {
3866       library = os::dll_load(name, ebuf, sizeof ebuf);
3867       if (library == NULL) {
3868         const char *sub_msg = " in absolute path, with error: ";
3869         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3870         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3871         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3872         // If we can't find the agent, exit.
3873         vm_exit_during_initialization(buf, NULL);
3874         FREE_C_HEAP_ARRAY(char, buf);
3875       }
3876     } else {
3877       // Try to load the agent from the standard dll directory
3878       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3879                              name)) {
3880         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3881       }
3882       if (library == NULL) { // Try the library path directory.
3883         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
3884           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3885         }
3886         if (library == NULL) {
3887           const char *sub_msg = " on the library path, with error: ";
3888           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3889           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3890           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3891           // If we can't find the agent, exit.
3892           vm_exit_during_initialization(buf, NULL);
3893           FREE_C_HEAP_ARRAY(char, buf);
3894         }
3895       }
3896     }
3897     agent->set_os_lib(library);
3898     agent->set_valid();
3899   }
3900 
3901   // Find the OnLoad function.
3902   on_load_entry =
3903     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3904                                                           false,
3905                                                           on_load_symbols,
3906                                                           num_symbol_entries));
3907   return on_load_entry;
3908 }
3909 
3910 // Find the JVM_OnLoad entry point
3911 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3912   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3913   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3914 }
3915 
3916 // Find the Agent_OnLoad entry point
3917 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3918   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3919   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3920 }
3921 
3922 // For backwards compatibility with -Xrun
3923 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3924 // treated like -agentpath:
3925 // Must be called before agent libraries are created
3926 void Threads::convert_vm_init_libraries_to_agents() {
3927   AgentLibrary* agent;
3928   AgentLibrary* next;
3929 
3930   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3931     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3932     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3933 
3934     // If there is an JVM_OnLoad function it will get called later,
3935     // otherwise see if there is an Agent_OnLoad
3936     if (on_load_entry == NULL) {
3937       on_load_entry = lookup_agent_on_load(agent);
3938       if (on_load_entry != NULL) {
3939         // switch it to the agent list -- so that Agent_OnLoad will be called,
3940         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3941         Arguments::convert_library_to_agent(agent);
3942       } else {
3943         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3944       }
3945     }
3946   }
3947 }
3948 
3949 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3950 // Invokes Agent_OnLoad
3951 // Called very early -- before JavaThreads exist
3952 void Threads::create_vm_init_agents() {
3953   extern struct JavaVM_ main_vm;
3954   AgentLibrary* agent;
3955 
3956   JvmtiExport::enter_onload_phase();
3957 
3958   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3959     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3960 
3961     if (on_load_entry != NULL) {
3962       // Invoke the Agent_OnLoad function
3963       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3964       if (err != JNI_OK) {
3965         vm_exit_during_initialization("agent library failed to init", agent->name());
3966       }
3967     } else {
3968       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3969     }
3970   }
3971   JvmtiExport::enter_primordial_phase();
3972 }
3973 
3974 extern "C" {
3975   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3976 }
3977 
3978 void Threads::shutdown_vm_agents() {
3979   // Send any Agent_OnUnload notifications
3980   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3981   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3982   extern struct JavaVM_ main_vm;
3983   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3984 
3985     // Find the Agent_OnUnload function.
3986     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3987                                                    os::find_agent_function(agent,
3988                                                    false,
3989                                                    on_unload_symbols,
3990                                                    num_symbol_entries));
3991 
3992     // Invoke the Agent_OnUnload function
3993     if (unload_entry != NULL) {
3994       JavaThread* thread = JavaThread::current();
3995       ThreadToNativeFromVM ttn(thread);
3996       HandleMark hm(thread);
3997       (*unload_entry)(&main_vm);
3998     }
3999   }
4000 }
4001 
4002 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4003 // Invokes JVM_OnLoad
4004 void Threads::create_vm_init_libraries() {
4005   extern struct JavaVM_ main_vm;
4006   AgentLibrary* agent;
4007 
4008   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4009     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4010 
4011     if (on_load_entry != NULL) {
4012       // Invoke the JVM_OnLoad function
4013       JavaThread* thread = JavaThread::current();
4014       ThreadToNativeFromVM ttn(thread);
4015       HandleMark hm(thread);
4016       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4017       if (err != JNI_OK) {
4018         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4019       }
4020     } else {
4021       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4022     }
4023   }
4024 }
4025 
4026 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4027   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4028 
4029   JavaThread* java_thread = NULL;
4030   // Sequential search for now.  Need to do better optimization later.
4031   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4032     oop tobj = thread->threadObj();
4033     if (!thread->is_exiting() &&
4034         tobj != NULL &&
4035         java_tid == java_lang_Thread::thread_id(tobj)) {
4036       java_thread = thread;
4037       break;
4038     }
4039   }
4040   return java_thread;
4041 }
4042 
4043 
4044 // Last thread running calls java.lang.Shutdown.shutdown()
4045 void JavaThread::invoke_shutdown_hooks() {
4046   HandleMark hm(this);
4047 
4048   // We could get here with a pending exception, if so clear it now.
4049   if (this->has_pending_exception()) {
4050     this->clear_pending_exception();
4051   }
4052 
4053   EXCEPTION_MARK;
4054   Klass* shutdown_klass =
4055     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4056                                       THREAD);
4057   if (shutdown_klass != NULL) {
4058     // SystemDictionary::resolve_or_null will return null if there was
4059     // an exception.  If we cannot load the Shutdown class, just don't
4060     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4061     // and finalizers (if runFinalizersOnExit is set) won't be run.
4062     // Note that if a shutdown hook was registered or runFinalizersOnExit
4063     // was called, the Shutdown class would have already been loaded
4064     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4065     JavaValue result(T_VOID);
4066     JavaCalls::call_static(&result,
4067                            shutdown_klass,
4068                            vmSymbols::shutdown_method_name(),
4069                            vmSymbols::void_method_signature(),
4070                            THREAD);
4071   }
4072   CLEAR_PENDING_EXCEPTION;
4073 }
4074 
4075 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4076 // the program falls off the end of main(). Another VM exit path is through
4077 // vm_exit() when the program calls System.exit() to return a value or when
4078 // there is a serious error in VM. The two shutdown paths are not exactly
4079 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4080 // and VM_Exit op at VM level.
4081 //
4082 // Shutdown sequence:
4083 //   + Shutdown native memory tracking if it is on
4084 //   + Wait until we are the last non-daemon thread to execute
4085 //     <-- every thing is still working at this moment -->
4086 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4087 //        shutdown hooks, run finalizers if finalization-on-exit
4088 //   + Call before_exit(), prepare for VM exit
4089 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4090 //        currently the only user of this mechanism is File.deleteOnExit())
4091 //      > stop StatSampler, watcher thread, CMS threads,
4092 //        post thread end and vm death events to JVMTI,
4093 //        stop signal thread
4094 //   + Call JavaThread::exit(), it will:
4095 //      > release JNI handle blocks, remove stack guard pages
4096 //      > remove this thread from Threads list
4097 //     <-- no more Java code from this thread after this point -->
4098 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4099 //     the compiler threads at safepoint
4100 //     <-- do not use anything that could get blocked by Safepoint -->
4101 //   + Disable tracing at JNI/JVM barriers
4102 //   + Set _vm_exited flag for threads that are still running native code
4103 //   + Delete this thread
4104 //   + Call exit_globals()
4105 //      > deletes tty
4106 //      > deletes PerfMemory resources
4107 //   + Return to caller
4108 
4109 bool Threads::destroy_vm() {
4110   JavaThread* thread = JavaThread::current();
4111 
4112 #ifdef ASSERT
4113   _vm_complete = false;
4114 #endif
4115   // Wait until we are the last non-daemon thread to execute
4116   { MutexLocker nu(Threads_lock);
4117     while (Threads::number_of_non_daemon_threads() > 1)
4118       // This wait should make safepoint checks, wait without a timeout,
4119       // and wait as a suspend-equivalent condition.
4120       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4121                          Mutex::_as_suspend_equivalent_flag);
4122   }
4123 
4124   // Hang forever on exit if we are reporting an error.
4125   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4126     os::infinite_sleep();
4127   }
4128   os::wait_for_keypress_at_exit();
4129 
4130   // run Java level shutdown hooks
4131   thread->invoke_shutdown_hooks();
4132 
4133   before_exit(thread);
4134 
4135   thread->exit(true);
4136 
4137   // Stop VM thread.
4138   {
4139     // 4945125 The vm thread comes to a safepoint during exit.
4140     // GC vm_operations can get caught at the safepoint, and the
4141     // heap is unparseable if they are caught. Grab the Heap_lock
4142     // to prevent this. The GC vm_operations will not be able to
4143     // queue until after the vm thread is dead. After this point,
4144     // we'll never emerge out of the safepoint before the VM exits.
4145 
4146     MutexLocker ml(Heap_lock);
4147 
4148     VMThread::wait_for_vm_thread_exit();
4149     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4150     VMThread::destroy();
4151   }
4152 
4153   // clean up ideal graph printers
4154 #if defined(COMPILER2) && !defined(PRODUCT)
4155   IdealGraphPrinter::clean_up();
4156 #endif
4157 
4158   // Now, all Java threads are gone except daemon threads. Daemon threads
4159   // running Java code or in VM are stopped by the Safepoint. However,
4160   // daemon threads executing native code are still running.  But they
4161   // will be stopped at native=>Java/VM barriers. Note that we can't
4162   // simply kill or suspend them, as it is inherently deadlock-prone.
4163 
4164   VM_Exit::set_vm_exited();
4165 
4166   notify_vm_shutdown();
4167 
4168   delete thread;
4169 
4170 #if INCLUDE_JVMCI
4171   if (JVMCICounterSize > 0) {
4172     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4173   }
4174 #endif
4175 
4176   // exit_globals() will delete tty
4177   exit_globals();
4178 
4179   LogConfiguration::finalize();
4180 
4181   return true;
4182 }
4183 
4184 
4185 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4186   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4187   return is_supported_jni_version(version);
4188 }
4189 
4190 
4191 jboolean Threads::is_supported_jni_version(jint version) {
4192   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4193   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4194   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4195   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4196   if (version == JNI_VERSION_9) return JNI_TRUE;
4197   if (version == JNI_VERSION_10) return JNI_TRUE;
4198   return JNI_FALSE;
4199 }
4200 
4201 
4202 void Threads::add(JavaThread* p, bool force_daemon) {
4203   // The threads lock must be owned at this point
4204   assert_locked_or_safepoint(Threads_lock);
4205 
4206   // See the comment for this method in thread.hpp for its purpose and
4207   // why it is called here.
4208   p->initialize_queues();
4209   p->set_next(_thread_list);
4210   _thread_list = p;
4211   _number_of_threads++;
4212   oop threadObj = p->threadObj();
4213   bool daemon = true;
4214   // Bootstrapping problem: threadObj can be null for initial
4215   // JavaThread (or for threads attached via JNI)
4216   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4217     _number_of_non_daemon_threads++;
4218     daemon = false;
4219   }
4220 
4221   ThreadService::add_thread(p, daemon);
4222 
4223   // Possible GC point.
4224   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4225 }
4226 
4227 void Threads::remove(JavaThread* p) {
4228 
4229   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4230   ObjectSynchronizer::omFlush(p);
4231 
4232   // Extra scope needed for Thread_lock, so we can check
4233   // that we do not remove thread without safepoint code notice
4234   { MutexLocker ml(Threads_lock);
4235 
4236     assert(includes(p), "p must be present");
4237 
4238     JavaThread* current = _thread_list;
4239     JavaThread* prev    = NULL;
4240 
4241     while (current != p) {
4242       prev    = current;
4243       current = current->next();
4244     }
4245 
4246     if (prev) {
4247       prev->set_next(current->next());
4248     } else {
4249       _thread_list = p->next();
4250     }
4251     _number_of_threads--;
4252     oop threadObj = p->threadObj();
4253     bool daemon = true;
4254     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4255       _number_of_non_daemon_threads--;
4256       daemon = false;
4257 
4258       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4259       // on destroy_vm will wake up.
4260       if (number_of_non_daemon_threads() == 1) {
4261         Threads_lock->notify_all();
4262       }
4263     }
4264     ThreadService::remove_thread(p, daemon);
4265 
4266     // Make sure that safepoint code disregard this thread. This is needed since
4267     // the thread might mess around with locks after this point. This can cause it
4268     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4269     // of this thread since it is removed from the queue.
4270     p->set_terminated_value();
4271   } // unlock Threads_lock
4272 
4273   // Since Events::log uses a lock, we grab it outside the Threads_lock
4274   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4275 }
4276 
4277 // Threads_lock must be held when this is called (or must be called during a safepoint)
4278 bool Threads::includes(JavaThread* p) {
4279   assert(Threads_lock->is_locked(), "sanity check");
4280   ALL_JAVA_THREADS(q) {
4281     if (q == p) {
4282       return true;
4283     }
4284   }
4285   return false;
4286 }
4287 
4288 // Operations on the Threads list for GC.  These are not explicitly locked,
4289 // but the garbage collector must provide a safe context for them to run.
4290 // In particular, these things should never be called when the Threads_lock
4291 // is held by some other thread. (Note: the Safepoint abstraction also
4292 // uses the Threads_lock to guarantee this property. It also makes sure that
4293 // all threads gets blocked when exiting or starting).
4294 
4295 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4296   ALL_JAVA_THREADS(p) {
4297     p->oops_do(f, cf);
4298   }
4299   VMThread::vm_thread()->oops_do(f, cf);
4300 }
4301 
4302 void Threads::change_thread_claim_parity() {
4303   // Set the new claim parity.
4304   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4305          "Not in range.");
4306   _thread_claim_parity++;
4307   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4308   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4309          "Not in range.");
4310 }
4311 
4312 #ifdef ASSERT
4313 void Threads::assert_all_threads_claimed() {
4314   ALL_JAVA_THREADS(p) {
4315     const int thread_parity = p->oops_do_parity();
4316     assert((thread_parity == _thread_claim_parity),
4317            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4318   }
4319   VMThread* vmt = VMThread::vm_thread();
4320   const int thread_parity = vmt->oops_do_parity();
4321   assert((thread_parity == _thread_claim_parity),
4322          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4323 }
4324 #endif // ASSERT
4325 
4326 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4327   int cp = Threads::thread_claim_parity();
4328   ALL_JAVA_THREADS(p) {
4329     if (p->claim_oops_do(is_par, cp)) {
4330       p->oops_do(f, cf);
4331     }
4332   }
4333   VMThread* vmt = VMThread::vm_thread();
4334   if (vmt->claim_oops_do(is_par, cp)) {
4335     vmt->oops_do(f, cf);
4336   }
4337 }
4338 
4339 #if INCLUDE_ALL_GCS
4340 // Used by ParallelScavenge
4341 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4342   ALL_JAVA_THREADS(p) {
4343     q->enqueue(new ThreadRootsTask(p));
4344   }
4345   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4346 }
4347 
4348 // Used by Parallel Old
4349 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4350   ALL_JAVA_THREADS(p) {
4351     q->enqueue(new ThreadRootsMarkingTask(p));
4352   }
4353   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4354 }
4355 #endif // INCLUDE_ALL_GCS
4356 
4357 void Threads::nmethods_do(CodeBlobClosure* cf) {
4358   ALL_JAVA_THREADS(p) {
4359     // This is used by the code cache sweeper to mark nmethods that are active
4360     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4361     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4362     if(!p->is_Code_cache_sweeper_thread()) {
4363       p->nmethods_do(cf);
4364     }
4365   }
4366 }
4367 
4368 void Threads::metadata_do(void f(Metadata*)) {
4369   ALL_JAVA_THREADS(p) {
4370     p->metadata_do(f);
4371   }
4372 }
4373 
4374 class ThreadHandlesClosure : public ThreadClosure {
4375   void (*_f)(Metadata*);
4376  public:
4377   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4378   virtual void do_thread(Thread* thread) {
4379     thread->metadata_handles_do(_f);
4380   }
4381 };
4382 
4383 void Threads::metadata_handles_do(void f(Metadata*)) {
4384   // Only walk the Handles in Thread.
4385   ThreadHandlesClosure handles_closure(f);
4386   threads_do(&handles_closure);
4387 }
4388 
4389 void Threads::deoptimized_wrt_marked_nmethods() {
4390   ALL_JAVA_THREADS(p) {
4391     p->deoptimized_wrt_marked_nmethods();
4392   }
4393 }
4394 
4395 
4396 // Get count Java threads that are waiting to enter the specified monitor.
4397 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4398                                                          address monitor,
4399                                                          bool doLock) {
4400   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4401          "must grab Threads_lock or be at safepoint");
4402   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4403 
4404   int i = 0;
4405   {
4406     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4407     ALL_JAVA_THREADS(p) {
4408       if (!p->can_call_java()) continue;
4409 
4410       address pending = (address)p->current_pending_monitor();
4411       if (pending == monitor) {             // found a match
4412         if (i < count) result->append(p);   // save the first count matches
4413         i++;
4414       }
4415     }
4416   }
4417   return result;
4418 }
4419 
4420 
4421 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4422                                                       bool doLock) {
4423   assert(doLock ||
4424          Threads_lock->owned_by_self() ||
4425          SafepointSynchronize::is_at_safepoint(),
4426          "must grab Threads_lock or be at safepoint");
4427 
4428   // NULL owner means not locked so we can skip the search
4429   if (owner == NULL) return NULL;
4430 
4431   {
4432     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4433     ALL_JAVA_THREADS(p) {
4434       // first, see if owner is the address of a Java thread
4435       if (owner == (address)p) return p;
4436     }
4437   }
4438   // Cannot assert on lack of success here since this function may be
4439   // used by code that is trying to report useful problem information
4440   // like deadlock detection.
4441   if (UseHeavyMonitors) return NULL;
4442 
4443   // If we didn't find a matching Java thread and we didn't force use of
4444   // heavyweight monitors, then the owner is the stack address of the
4445   // Lock Word in the owning Java thread's stack.
4446   //
4447   JavaThread* the_owner = NULL;
4448   {
4449     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4450     ALL_JAVA_THREADS(q) {
4451       if (q->is_lock_owned(owner)) {
4452         the_owner = q;
4453         break;
4454       }
4455     }
4456   }
4457   // cannot assert on lack of success here; see above comment
4458   return the_owner;
4459 }
4460 
4461 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4462 void Threads::print_on(outputStream* st, bool print_stacks,
4463                        bool internal_format, bool print_concurrent_locks) {
4464   char buf[32];
4465   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4466 
4467   st->print_cr("Full thread dump %s (%s %s):",
4468                Abstract_VM_Version::vm_name(),
4469                Abstract_VM_Version::vm_release(),
4470                Abstract_VM_Version::vm_info_string());
4471   st->cr();
4472 
4473 #if INCLUDE_SERVICES
4474   // Dump concurrent locks
4475   ConcurrentLocksDump concurrent_locks;
4476   if (print_concurrent_locks) {
4477     concurrent_locks.dump_at_safepoint();
4478   }
4479 #endif // INCLUDE_SERVICES
4480 
4481   ALL_JAVA_THREADS(p) {
4482     ResourceMark rm;
4483     p->print_on(st);
4484     if (print_stacks) {
4485       if (internal_format) {
4486         p->trace_stack();
4487       } else {
4488         p->print_stack_on(st);
4489       }
4490     }
4491     st->cr();
4492 #if INCLUDE_SERVICES
4493     if (print_concurrent_locks) {
4494       concurrent_locks.print_locks_on(p, st);
4495     }
4496 #endif // INCLUDE_SERVICES
4497   }
4498 
4499   VMThread::vm_thread()->print_on(st);
4500   st->cr();
4501   Universe::heap()->print_gc_threads_on(st);
4502   WatcherThread* wt = WatcherThread::watcher_thread();
4503   if (wt != NULL) {
4504     wt->print_on(st);
4505     st->cr();
4506   }
4507   st->flush();
4508 }
4509 
4510 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4511                              int buflen, bool* found_current) {
4512   if (this_thread != NULL) {
4513     bool is_current = (current == this_thread);
4514     *found_current = *found_current || is_current;
4515     st->print("%s", is_current ? "=>" : "  ");
4516 
4517     st->print(PTR_FORMAT, p2i(this_thread));
4518     st->print(" ");
4519     this_thread->print_on_error(st, buf, buflen);
4520     st->cr();
4521   }
4522 }
4523 
4524 class PrintOnErrorClosure : public ThreadClosure {
4525   outputStream* _st;
4526   Thread* _current;
4527   char* _buf;
4528   int _buflen;
4529   bool* _found_current;
4530  public:
4531   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4532                       int buflen, bool* found_current) :
4533    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4534 
4535   virtual void do_thread(Thread* thread) {
4536     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4537   }
4538 };
4539 
4540 // Threads::print_on_error() is called by fatal error handler. It's possible
4541 // that VM is not at safepoint and/or current thread is inside signal handler.
4542 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4543 // memory (even in resource area), it might deadlock the error handler.
4544 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4545                              int buflen) {
4546   bool found_current = false;
4547   st->print_cr("Java Threads: ( => current thread )");
4548   ALL_JAVA_THREADS(thread) {
4549     print_on_error(thread, st, current, buf, buflen, &found_current);
4550   }
4551   st->cr();
4552 
4553   st->print_cr("Other Threads:");
4554   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4555   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4556 
4557   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4558   Universe::heap()->gc_threads_do(&print_closure);
4559 
4560   if (!found_current) {
4561     st->cr();
4562     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4563     current->print_on_error(st, buf, buflen);
4564     st->cr();
4565   }
4566   st->cr();
4567   st->print_cr("Threads with active compile tasks:");
4568   print_threads_compiling(st, buf, buflen);
4569 }
4570 
4571 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4572   ALL_JAVA_THREADS(thread) {
4573     if (thread->is_Compiler_thread()) {
4574       CompilerThread* ct = (CompilerThread*) thread;
4575       if (ct->task() != NULL) {
4576         thread->print_name_on_error(st, buf, buflen);
4577         ct->task()->print(st, NULL, true, true);
4578       }
4579     }
4580   }
4581 }
4582 
4583 
4584 // Internal SpinLock and Mutex
4585 // Based on ParkEvent
4586 
4587 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4588 //
4589 // We employ SpinLocks _only for low-contention, fixed-length
4590 // short-duration critical sections where we're concerned
4591 // about native mutex_t or HotSpot Mutex:: latency.
4592 // The mux construct provides a spin-then-block mutual exclusion
4593 // mechanism.
4594 //
4595 // Testing has shown that contention on the ListLock guarding gFreeList
4596 // is common.  If we implement ListLock as a simple SpinLock it's common
4597 // for the JVM to devolve to yielding with little progress.  This is true
4598 // despite the fact that the critical sections protected by ListLock are
4599 // extremely short.
4600 //
4601 // TODO-FIXME: ListLock should be of type SpinLock.
4602 // We should make this a 1st-class type, integrated into the lock
4603 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4604 // should have sufficient padding to avoid false-sharing and excessive
4605 // cache-coherency traffic.
4606 
4607 
4608 typedef volatile int SpinLockT;
4609 
4610 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4611   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4612     return;   // normal fast-path return
4613   }
4614 
4615   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4616   TEVENT(SpinAcquire - ctx);
4617   int ctr = 0;
4618   int Yields = 0;
4619   for (;;) {
4620     while (*adr != 0) {
4621       ++ctr;
4622       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4623         if (Yields > 5) {
4624           os::naked_short_sleep(1);
4625         } else {
4626           os::naked_yield();
4627           ++Yields;
4628         }
4629       } else {
4630         SpinPause();
4631       }
4632     }
4633     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4634   }
4635 }
4636 
4637 void Thread::SpinRelease(volatile int * adr) {
4638   assert(*adr != 0, "invariant");
4639   OrderAccess::fence();      // guarantee at least release consistency.
4640   // Roach-motel semantics.
4641   // It's safe if subsequent LDs and STs float "up" into the critical section,
4642   // but prior LDs and STs within the critical section can't be allowed
4643   // to reorder or float past the ST that releases the lock.
4644   // Loads and stores in the critical section - which appear in program
4645   // order before the store that releases the lock - must also appear
4646   // before the store that releases the lock in memory visibility order.
4647   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4648   // the ST of 0 into the lock-word which releases the lock, so fence
4649   // more than covers this on all platforms.
4650   *adr = 0;
4651 }
4652 
4653 // muxAcquire and muxRelease:
4654 //
4655 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4656 //    The LSB of the word is set IFF the lock is held.
4657 //    The remainder of the word points to the head of a singly-linked list
4658 //    of threads blocked on the lock.
4659 //
4660 // *  The current implementation of muxAcquire-muxRelease uses its own
4661 //    dedicated Thread._MuxEvent instance.  If we're interested in
4662 //    minimizing the peak number of extant ParkEvent instances then
4663 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4664 //    as certain invariants were satisfied.  Specifically, care would need
4665 //    to be taken with regards to consuming unpark() "permits".
4666 //    A safe rule of thumb is that a thread would never call muxAcquire()
4667 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4668 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4669 //    consume an unpark() permit intended for monitorenter, for instance.
4670 //    One way around this would be to widen the restricted-range semaphore
4671 //    implemented in park().  Another alternative would be to provide
4672 //    multiple instances of the PlatformEvent() for each thread.  One
4673 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4674 //
4675 // *  Usage:
4676 //    -- Only as leaf locks
4677 //    -- for short-term locking only as muxAcquire does not perform
4678 //       thread state transitions.
4679 //
4680 // Alternatives:
4681 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4682 //    but with parking or spin-then-park instead of pure spinning.
4683 // *  Use Taura-Oyama-Yonenzawa locks.
4684 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4685 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4686 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4687 //    acquiring threads use timers (ParkTimed) to detect and recover from
4688 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4689 //    boundaries by using placement-new.
4690 // *  Augment MCS with advisory back-link fields maintained with CAS().
4691 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4692 //    The validity of the backlinks must be ratified before we trust the value.
4693 //    If the backlinks are invalid the exiting thread must back-track through the
4694 //    the forward links, which are always trustworthy.
4695 // *  Add a successor indication.  The LockWord is currently encoded as
4696 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4697 //    to provide the usual futile-wakeup optimization.
4698 //    See RTStt for details.
4699 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4700 //
4701 
4702 
4703 typedef volatile intptr_t MutexT;      // Mux Lock-word
4704 enum MuxBits { LOCKBIT = 1 };
4705 
4706 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4707   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4708   if (w == 0) return;
4709   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4710     return;
4711   }
4712 
4713   TEVENT(muxAcquire - Contention);
4714   ParkEvent * const Self = Thread::current()->_MuxEvent;
4715   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4716   for (;;) {
4717     int its = (os::is_MP() ? 100 : 0) + 1;
4718 
4719     // Optional spin phase: spin-then-park strategy
4720     while (--its >= 0) {
4721       w = *Lock;
4722       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4723         return;
4724       }
4725     }
4726 
4727     Self->reset();
4728     Self->OnList = intptr_t(Lock);
4729     // The following fence() isn't _strictly necessary as the subsequent
4730     // CAS() both serializes execution and ratifies the fetched *Lock value.
4731     OrderAccess::fence();
4732     for (;;) {
4733       w = *Lock;
4734       if ((w & LOCKBIT) == 0) {
4735         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4736           Self->OnList = 0;   // hygiene - allows stronger asserts
4737           return;
4738         }
4739         continue;      // Interference -- *Lock changed -- Just retry
4740       }
4741       assert(w & LOCKBIT, "invariant");
4742       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4743       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4744     }
4745 
4746     while (Self->OnList != 0) {
4747       Self->park();
4748     }
4749   }
4750 }
4751 
4752 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4753   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4754   if (w == 0) return;
4755   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4756     return;
4757   }
4758 
4759   TEVENT(muxAcquire - Contention);
4760   ParkEvent * ReleaseAfter = NULL;
4761   if (ev == NULL) {
4762     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4763   }
4764   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4765   for (;;) {
4766     guarantee(ev->OnList == 0, "invariant");
4767     int its = (os::is_MP() ? 100 : 0) + 1;
4768 
4769     // Optional spin phase: spin-then-park strategy
4770     while (--its >= 0) {
4771       w = *Lock;
4772       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4773         if (ReleaseAfter != NULL) {
4774           ParkEvent::Release(ReleaseAfter);
4775         }
4776         return;
4777       }
4778     }
4779 
4780     ev->reset();
4781     ev->OnList = intptr_t(Lock);
4782     // The following fence() isn't _strictly necessary as the subsequent
4783     // CAS() both serializes execution and ratifies the fetched *Lock value.
4784     OrderAccess::fence();
4785     for (;;) {
4786       w = *Lock;
4787       if ((w & LOCKBIT) == 0) {
4788         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4789           ev->OnList = 0;
4790           // We call ::Release while holding the outer lock, thus
4791           // artificially lengthening the critical section.
4792           // Consider deferring the ::Release() until the subsequent unlock(),
4793           // after we've dropped the outer lock.
4794           if (ReleaseAfter != NULL) {
4795             ParkEvent::Release(ReleaseAfter);
4796           }
4797           return;
4798         }
4799         continue;      // Interference -- *Lock changed -- Just retry
4800       }
4801       assert(w & LOCKBIT, "invariant");
4802       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4803       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4804     }
4805 
4806     while (ev->OnList != 0) {
4807       ev->park();
4808     }
4809   }
4810 }
4811 
4812 // Release() must extract a successor from the list and then wake that thread.
4813 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4814 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4815 // Release() would :
4816 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4817 // (B) Extract a successor from the private list "in-hand"
4818 // (C) attempt to CAS() the residual back into *Lock over null.
4819 //     If there were any newly arrived threads and the CAS() would fail.
4820 //     In that case Release() would detach the RATs, re-merge the list in-hand
4821 //     with the RATs and repeat as needed.  Alternately, Release() might
4822 //     detach and extract a successor, but then pass the residual list to the wakee.
4823 //     The wakee would be responsible for reattaching and remerging before it
4824 //     competed for the lock.
4825 //
4826 // Both "pop" and DMR are immune from ABA corruption -- there can be
4827 // multiple concurrent pushers, but only one popper or detacher.
4828 // This implementation pops from the head of the list.  This is unfair,
4829 // but tends to provide excellent throughput as hot threads remain hot.
4830 // (We wake recently run threads first).
4831 //
4832 // All paths through muxRelease() will execute a CAS.
4833 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4834 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4835 // executed within the critical section are complete and globally visible before the
4836 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4837 void Thread::muxRelease(volatile intptr_t * Lock)  {
4838   for (;;) {
4839     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4840     assert(w & LOCKBIT, "invariant");
4841     if (w == LOCKBIT) return;
4842     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4843     assert(List != NULL, "invariant");
4844     assert(List->OnList == intptr_t(Lock), "invariant");
4845     ParkEvent * const nxt = List->ListNext;
4846     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4847 
4848     // The following CAS() releases the lock and pops the head element.
4849     // The CAS() also ratifies the previously fetched lock-word value.
4850     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4851       continue;
4852     }
4853     List->OnList = 0;
4854     OrderAccess::fence();
4855     List->unpark();
4856     return;
4857   }
4858 }
4859 
4860 
4861 void Threads::verify() {
4862   ALL_JAVA_THREADS(p) {
4863     p->verify();
4864   }
4865   VMThread* thread = VMThread::vm_thread();
4866   if (thread != NULL) thread->verify();
4867 }