1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/cardTableModRefBS.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "nativeInst_sparc.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 #define __ _masm->
  41 
  42 
  43 //------------------------------------------------------------
  44 
  45 
  46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  47   if (opr->is_constant()) {
  48     LIR_Const* constant = opr->as_constant_ptr();
  49     switch (constant->type()) {
  50       case T_INT: {
  51         jint value = constant->as_jint();
  52         return Assembler::is_simm13(value);
  53       }
  54 
  55       default:
  56         return false;
  57     }
  58   }
  59   return false;
  60 }
  61 
  62 
  63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  64   switch (op->code()) {
  65     case lir_null_check:
  66     return true;
  67 
  68 
  69     case lir_add:
  70     case lir_ushr:
  71     case lir_shr:
  72     case lir_shl:
  73       // integer shifts and adds are always one instruction
  74       return op->result_opr()->is_single_cpu();
  75 
  76 
  77     case lir_move: {
  78       LIR_Op1* op1 = op->as_Op1();
  79       LIR_Opr src = op1->in_opr();
  80       LIR_Opr dst = op1->result_opr();
  81 
  82       if (src == dst) {
  83         NEEDS_CLEANUP;
  84         // this works around a problem where moves with the same src and dst
  85         // end up in the delay slot and then the assembler swallows the mov
  86         // since it has no effect and then it complains because the delay slot
  87         // is empty.  returning false stops the optimizer from putting this in
  88         // the delay slot
  89         return false;
  90       }
  91 
  92       // don't put moves involving oops into the delay slot since the VerifyOops code
  93       // will make it much larger than a single instruction.
  94       if (VerifyOops) {
  95         return false;
  96       }
  97 
  98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 100         return false;
 101       }
 102 
 103       if (UseCompressedOops) {
 104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
 105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
 106       }
 107 
 108       if (UseCompressedClassPointers) {
 109         if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
 110             src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
 111       }
 112 
 113       if (dst->is_register()) {
 114         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 115           return !PatchALot;
 116         } else if (src->is_single_stack()) {
 117           return true;
 118         }
 119       }
 120 
 121       if (src->is_register()) {
 122         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 123           return !PatchALot;
 124         } else if (dst->is_single_stack()) {
 125           return true;
 126         }
 127       }
 128 
 129       if (dst->is_register() &&
 130           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 131            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 132         return true;
 133       }
 134 
 135       return false;
 136     }
 137 
 138     default:
 139       return false;
 140   }
 141   ShouldNotReachHere();
 142 }
 143 
 144 
 145 LIR_Opr LIR_Assembler::receiverOpr() {
 146   return FrameMap::O0_oop_opr;
 147 }
 148 
 149 
 150 LIR_Opr LIR_Assembler::osrBufferPointer() {
 151   return FrameMap::I0_opr;
 152 }
 153 
 154 
 155 int LIR_Assembler::initial_frame_size_in_bytes() const {
 156   return in_bytes(frame_map()->framesize_in_bytes());
 157 }
 158 
 159 
 160 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 161 // we fetch the class of the receiver (O0) and compare it with the cached class.
 162 // If they do not match we jump to slow case.
 163 int LIR_Assembler::check_icache() {
 164   int offset = __ offset();
 165   __ inline_cache_check(O0, G5_inline_cache_reg);
 166   return offset;
 167 }
 168 
 169 
 170 void LIR_Assembler::osr_entry() {
 171   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 172   //
 173   //   1. Create a new compiled activation.
 174   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 175   //      at the osr_bci; it is not initialized.
 176   //   3. Jump to the continuation address in compiled code to resume execution.
 177 
 178   // OSR entry point
 179   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 180   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 181   ValueStack* entry_state = osr_entry->end()->state();
 182   int number_of_locks = entry_state->locks_size();
 183 
 184   // Create a frame for the compiled activation.
 185   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 186 
 187   // OSR buffer is
 188   //
 189   // locals[nlocals-1..0]
 190   // monitors[number_of_locks-1..0]
 191   //
 192   // locals is a direct copy of the interpreter frame so in the osr buffer
 193   // so first slot in the local array is the last local from the interpreter
 194   // and last slot is local[0] (receiver) from the interpreter
 195   //
 196   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 197   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 198   // in the interpreter frame (the method lock if a sync method)
 199 
 200   // Initialize monitors in the compiled activation.
 201   //   I0: pointer to osr buffer
 202   //
 203   // All other registers are dead at this point and the locals will be
 204   // copied into place by code emitted in the IR.
 205 
 206   Register OSR_buf = osrBufferPointer()->as_register();
 207   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 208     int monitor_offset = BytesPerWord * method()->max_locals() +
 209       (2 * BytesPerWord) * (number_of_locks - 1);
 210     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 211     // the OSR buffer using 2 word entries: first the lock and then
 212     // the oop.
 213     for (int i = 0; i < number_of_locks; i++) {
 214       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 215 #ifdef ASSERT
 216       // verify the interpreter's monitor has a non-null object
 217       {
 218         Label L;
 219         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 220         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
 221         __ stop("locked object is NULL");
 222         __ bind(L);
 223       }
 224 #endif // ASSERT
 225       // Copy the lock field into the compiled activation.
 226       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 227       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 228       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 229       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 230     }
 231   }
 232 }
 233 
 234 
 235 // --------------------------------------------------------------------------------------------
 236 
 237 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 238   if (!GenerateSynchronizationCode) return;
 239 
 240   Register obj_reg = obj_opr->as_register();
 241   Register lock_reg = lock_opr->as_register();
 242 
 243   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 244   Register reg = mon_addr.base();
 245   int offset = mon_addr.disp();
 246   // compute pointer to BasicLock
 247   if (mon_addr.is_simm13()) {
 248     __ add(reg, offset, lock_reg);
 249   }
 250   else {
 251     __ set(offset, lock_reg);
 252     __ add(reg, lock_reg, lock_reg);
 253   }
 254   // unlock object
 255   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 256   // _slow_case_stubs->append(slow_case);
 257   // temporary fix: must be created after exceptionhandler, therefore as call stub
 258   _slow_case_stubs->append(slow_case);
 259   if (UseFastLocking) {
 260     // try inlined fast unlocking first, revert to slow locking if it fails
 261     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 262     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 263     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 264   } else {
 265     // always do slow unlocking
 266     // note: the slow unlocking code could be inlined here, however if we use
 267     //       slow unlocking, speed doesn't matter anyway and this solution is
 268     //       simpler and requires less duplicated code - additionally, the
 269     //       slow unlocking code is the same in either case which simplifies
 270     //       debugging
 271     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 272     __ delayed()->nop();
 273   }
 274   // done
 275   __ bind(*slow_case->continuation());
 276 }
 277 
 278 
 279 int LIR_Assembler::emit_exception_handler() {
 280   // if the last instruction is a call (typically to do a throw which
 281   // is coming at the end after block reordering) the return address
 282   // must still point into the code area in order to avoid assertion
 283   // failures when searching for the corresponding bci => add a nop
 284   // (was bug 5/14/1999 - gri)
 285   __ nop();
 286 
 287   // generate code for exception handler
 288   ciMethod* method = compilation()->method();
 289 
 290   address handler_base = __ start_a_stub(exception_handler_size());
 291 
 292   if (handler_base == NULL) {
 293     // not enough space left for the handler
 294     bailout("exception handler overflow");
 295     return -1;
 296   }
 297 
 298   int offset = code_offset();
 299 
 300   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
 301   __ delayed()->nop();
 302   __ should_not_reach_here();
 303   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 304   __ end_a_stub();
 305 
 306   return offset;
 307 }
 308 
 309 
 310 // Emit the code to remove the frame from the stack in the exception
 311 // unwind path.
 312 int LIR_Assembler::emit_unwind_handler() {
 313 #ifndef PRODUCT
 314   if (CommentedAssembly) {
 315     _masm->block_comment("Unwind handler");
 316   }
 317 #endif
 318 
 319   int offset = code_offset();
 320 
 321   // Fetch the exception from TLS and clear out exception related thread state
 322   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
 323   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
 324   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
 325 
 326   __ bind(_unwind_handler_entry);
 327   __ verify_not_null_oop(O0);
 328   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 329     __ mov(O0, I0);  // Preserve the exception
 330   }
 331 
 332   // Preform needed unlocking
 333   MonitorExitStub* stub = NULL;
 334   if (method()->is_synchronized()) {
 335     monitor_address(0, FrameMap::I1_opr);
 336     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
 337     __ unlock_object(I3, I2, I1, *stub->entry());
 338     __ bind(*stub->continuation());
 339   }
 340 
 341   if (compilation()->env()->dtrace_method_probes()) {
 342     __ mov(G2_thread, O0);
 343     __ save_thread(I1); // need to preserve thread in G2 across
 344                         // runtime call
 345     metadata2reg(method()->constant_encoding(), O1);
 346     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
 347     __ delayed()->nop();
 348     __ restore_thread(I1);
 349   }
 350 
 351   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 352     __ mov(I0, O0);  // Restore the exception
 353   }
 354 
 355   // dispatch to the unwind logic
 356   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 357   __ delayed()->nop();
 358 
 359   // Emit the slow path assembly
 360   if (stub != NULL) {
 361     stub->emit_code(this);
 362   }
 363 
 364   return offset;
 365 }
 366 
 367 
 368 int LIR_Assembler::emit_deopt_handler() {
 369   // if the last instruction is a call (typically to do a throw which
 370   // is coming at the end after block reordering) the return address
 371   // must still point into the code area in order to avoid assertion
 372   // failures when searching for the corresponding bci => add a nop
 373   // (was bug 5/14/1999 - gri)
 374   __ nop();
 375 
 376   // generate code for deopt handler
 377   ciMethod* method = compilation()->method();
 378   address handler_base = __ start_a_stub(deopt_handler_size());
 379   if (handler_base == NULL) {
 380     // not enough space left for the handler
 381     bailout("deopt handler overflow");
 382     return -1;
 383   }
 384 
 385   int offset = code_offset();
 386   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 387   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 388   __ delayed()->nop();
 389   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 390   __ end_a_stub();
 391 
 392   return offset;
 393 }
 394 
 395 
 396 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 397   if (o == NULL) {
 398     __ set(NULL_WORD, reg);
 399   } else {
 400     int oop_index = __ oop_recorder()->find_index(o);
 401     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
 402     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 403     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 404   }
 405 }
 406 
 407 
 408 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 409   // Allocate a new index in table to hold the object once it's been patched
 410   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
 411   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
 412 
 413   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 414   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 415   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 416   // NULL will be dynamically patched later and the patched value may be large.  We must
 417   // therefore generate the sethi/add as a placeholders
 418   __ patchable_set(addrlit, reg);
 419 
 420   patching_epilog(patch, lir_patch_normal, reg, info);
 421 }
 422 
 423 
 424 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
 425   __ set_metadata_constant(o, reg);
 426 }
 427 
 428 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
 429   // Allocate a new index in table to hold the klass once it's been patched
 430   int index = __ oop_recorder()->allocate_metadata_index(NULL);
 431   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 432   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
 433   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
 434   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 435   // NULL will be dynamically patched later and the patched value may be large.  We must
 436   // therefore generate the sethi/add as a placeholders
 437   __ patchable_set(addrlit, reg);
 438 
 439   patching_epilog(patch, lir_patch_normal, reg, info);
 440 }
 441 
 442 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 443   switch (op->code()) {
 444     case lir_idiv:
 445     case lir_irem:  // Both idiv & irem are handled after the switch (below).
 446       break;
 447     case lir_fmaf:
 448       __ fmadd(FloatRegisterImpl::S,
 449                op->in_opr1()->as_float_reg(),
 450                op->in_opr2()->as_float_reg(),
 451                op->in_opr3()->as_float_reg(),
 452                op->result_opr()->as_float_reg());
 453       return;
 454     case lir_fmad:
 455       __ fmadd(FloatRegisterImpl::D,
 456                op->in_opr1()->as_double_reg(),
 457                op->in_opr2()->as_double_reg(),
 458                op->in_opr3()->as_double_reg(),
 459                op->result_opr()->as_double_reg());
 460       return;
 461     default:
 462       ShouldNotReachHere();
 463       break;
 464   }
 465 
 466   // Handle idiv & irem:
 467 
 468   Register Rdividend = op->in_opr1()->as_register();
 469   Register Rdivisor  = noreg;
 470   Register Rscratch  = op->in_opr3()->as_register();
 471   Register Rresult   = op->result_opr()->as_register();
 472   int divisor = -1;
 473 
 474   if (op->in_opr2()->is_register()) {
 475     Rdivisor = op->in_opr2()->as_register();
 476   } else {
 477     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 478     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 479   }
 480 
 481   assert(Rdividend != Rscratch, "");
 482   assert(Rdivisor  != Rscratch, "");
 483   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 484 
 485   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 486     // convert division by a power of two into some shifts and logical operations
 487     if (op->code() == lir_idiv) {
 488       if (divisor == 2) {
 489         __ srl(Rdividend, 31, Rscratch);
 490       } else {
 491         __ sra(Rdividend, 31, Rscratch);
 492         __ and3(Rscratch, divisor - 1, Rscratch);
 493       }
 494       __ add(Rdividend, Rscratch, Rscratch);
 495       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 496       return;
 497     } else {
 498       if (divisor == 2) {
 499         __ srl(Rdividend, 31, Rscratch);
 500       } else {
 501         __ sra(Rdividend, 31, Rscratch);
 502         __ and3(Rscratch, divisor - 1,Rscratch);
 503       }
 504       __ add(Rdividend, Rscratch, Rscratch);
 505       __ andn(Rscratch, divisor - 1,Rscratch);
 506       __ sub(Rdividend, Rscratch, Rresult);
 507       return;
 508     }
 509   }
 510 
 511   __ sra(Rdividend, 31, Rscratch);
 512   __ wry(Rscratch);
 513 
 514   add_debug_info_for_div0_here(op->info());
 515 
 516   if (Rdivisor != noreg) {
 517     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 518   } else {
 519     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 520     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 521   }
 522 
 523   Label skip;
 524   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 525   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 526   __ bind(skip);
 527 
 528   if (op->code() == lir_irem) {
 529     if (Rdivisor != noreg) {
 530       __ smul(Rscratch, Rdivisor, Rscratch);
 531     } else {
 532       __ smul(Rscratch, divisor, Rscratch);
 533     }
 534     __ sub(Rdividend, Rscratch, Rresult);
 535   }
 536 }
 537 
 538 
 539 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 540 #ifdef ASSERT
 541   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 542   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 543   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 544 #endif
 545   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 546 
 547   if (op->cond() == lir_cond_always) {
 548     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 549   } else if (op->code() == lir_cond_float_branch) {
 550     assert(op->ublock() != NULL, "must have unordered successor");
 551     bool is_unordered = (op->ublock() == op->block());
 552     Assembler::Condition acond;
 553     switch (op->cond()) {
 554       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 555       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 556       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 557       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 558       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 559       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 560       default :                         ShouldNotReachHere();
 561     }
 562     __ fb( acond, false, Assembler::pn, *(op->label()));
 563   } else {
 564     assert (op->code() == lir_branch, "just checking");
 565 
 566     Assembler::Condition acond;
 567     switch (op->cond()) {
 568       case lir_cond_equal:        acond = Assembler::equal;                break;
 569       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 570       case lir_cond_less:         acond = Assembler::less;                 break;
 571       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 572       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 573       case lir_cond_greater:      acond = Assembler::greater;              break;
 574       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 575       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 576       default:                         ShouldNotReachHere();
 577     };
 578 
 579     // sparc has different condition codes for testing 32-bit
 580     // vs. 64-bit values.  We could always test xcc is we could
 581     // guarantee that 32-bit loads always sign extended but that isn't
 582     // true and since sign extension isn't free, it would impose a
 583     // slight cost.
 584     if  (op->type() == T_INT) {
 585       __ br(acond, false, Assembler::pn, *(op->label()));
 586     } else
 587       __ brx(acond, false, Assembler::pn, *(op->label()));
 588   }
 589   // The peephole pass fills the delay slot
 590 }
 591 
 592 
 593 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 594   Bytecodes::Code code = op->bytecode();
 595   LIR_Opr dst = op->result_opr();
 596 
 597   switch(code) {
 598     case Bytecodes::_i2l: {
 599       Register rlo  = dst->as_register_lo();
 600       Register rhi  = dst->as_register_hi();
 601       Register rval = op->in_opr()->as_register();
 602       __ sra(rval, 0, rlo);
 603       break;
 604     }
 605     case Bytecodes::_i2d:
 606     case Bytecodes::_i2f: {
 607       bool is_double = (code == Bytecodes::_i2d);
 608       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 609       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 610       FloatRegister rsrc = op->in_opr()->as_float_reg();
 611       if (rsrc != rdst) {
 612         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 613       }
 614       __ fitof(w, rdst, rdst);
 615       break;
 616     }
 617     case Bytecodes::_f2i:{
 618       FloatRegister rsrc = op->in_opr()->as_float_reg();
 619       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 620       Label L;
 621       // result must be 0 if value is NaN; test by comparing value to itself
 622       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 623       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 624       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 625       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 626       // move integer result from float register to int register
 627       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 628       __ bind (L);
 629       break;
 630     }
 631     case Bytecodes::_l2i: {
 632       Register rlo  = op->in_opr()->as_register_lo();
 633       Register rhi  = op->in_opr()->as_register_hi();
 634       Register rdst = dst->as_register();
 635       __ sra(rlo, 0, rdst);
 636       break;
 637     }
 638     case Bytecodes::_d2f:
 639     case Bytecodes::_f2d: {
 640       bool is_double = (code == Bytecodes::_f2d);
 641       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 642       LIR_Opr val = op->in_opr();
 643       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 644       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 645       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 646       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 647       __ ftof(vw, dw, rval, rdst);
 648       break;
 649     }
 650     case Bytecodes::_i2s:
 651     case Bytecodes::_i2b: {
 652       Register rval = op->in_opr()->as_register();
 653       Register rdst = dst->as_register();
 654       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 655       __ sll (rval, shift, rdst);
 656       __ sra (rdst, shift, rdst);
 657       break;
 658     }
 659     case Bytecodes::_i2c: {
 660       Register rval = op->in_opr()->as_register();
 661       Register rdst = dst->as_register();
 662       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 663       __ sll (rval, shift, rdst);
 664       __ srl (rdst, shift, rdst);
 665       break;
 666     }
 667 
 668     default: ShouldNotReachHere();
 669   }
 670 }
 671 
 672 
 673 void LIR_Assembler::align_call(LIR_Code) {
 674   // do nothing since all instructions are word aligned on sparc
 675 }
 676 
 677 
 678 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 679   __ call(op->addr(), rtype);
 680   // The peephole pass fills the delay slot, add_call_info is done in
 681   // LIR_Assembler::emit_delay.
 682 }
 683 
 684 
 685 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 686   __ ic_call(op->addr(), false);
 687   // The peephole pass fills the delay slot, add_call_info is done in
 688   // LIR_Assembler::emit_delay.
 689 }
 690 
 691 
 692 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 693   add_debug_info_for_null_check_here(op->info());
 694   __ load_klass(O0, G3_scratch);
 695   if (Assembler::is_simm13(op->vtable_offset())) {
 696     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 697   } else {
 698     // This will generate 2 instructions
 699     __ set(op->vtable_offset(), G5_method);
 700     // ld_ptr, set_hi, set
 701     __ ld_ptr(G3_scratch, G5_method, G5_method);
 702   }
 703   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
 704   __ callr(G3_scratch, G0);
 705   // the peephole pass fills the delay slot
 706 }
 707 
 708 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
 709   int store_offset;
 710   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 711     assert(base != O7, "destroying register");
 712     assert(!unaligned, "can't handle this");
 713     // for offsets larger than a simm13 we setup the offset in O7
 714     __ set(offset, O7);
 715     store_offset = store(from_reg, base, O7, type, wide);
 716   } else {
 717     if (type == T_ARRAY || type == T_OBJECT) {
 718       __ verify_oop(from_reg->as_register());
 719     }
 720     store_offset = code_offset();
 721     switch (type) {
 722       case T_BOOLEAN: // fall through
 723       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 724       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 725       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 726       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 727       case T_LONG  :
 728         if (unaligned || PatchALot) {
 729           // Don't use O7 here because it may be equal to 'base' (see LIR_Assembler::reg2mem)
 730           assert(G3_scratch != base, "can't handle this");
 731           assert(G3_scratch != from_reg->as_register_lo(), "can't handle this");
 732           __ srax(from_reg->as_register_lo(), 32, G3_scratch);
 733           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 734           __ stw(G3_scratch,                 base, offset + hi_word_offset_in_bytes);
 735         } else {
 736           __ stx(from_reg->as_register_lo(), base, offset);
 737         }
 738         break;
 739       case T_ADDRESS:
 740       case T_METADATA:
 741         __ st_ptr(from_reg->as_register(), base, offset);
 742         break;
 743       case T_ARRAY : // fall through
 744       case T_OBJECT:
 745         {
 746           if (UseCompressedOops && !wide) {
 747             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 748             store_offset = code_offset();
 749             __ stw(G3_scratch, base, offset);
 750           } else {
 751             __ st_ptr(from_reg->as_register(), base, offset);
 752           }
 753           break;
 754         }
 755 
 756       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 757       case T_DOUBLE:
 758         {
 759           FloatRegister reg = from_reg->as_double_reg();
 760           // split unaligned stores
 761           if (unaligned || PatchALot) {
 762             assert(Assembler::is_simm13(offset + 4), "must be");
 763             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 764             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 765           } else {
 766             __ stf(FloatRegisterImpl::D, reg, base, offset);
 767           }
 768           break;
 769         }
 770       default      : ShouldNotReachHere();
 771     }
 772   }
 773   return store_offset;
 774 }
 775 
 776 
 777 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 778   if (type == T_ARRAY || type == T_OBJECT) {
 779     __ verify_oop(from_reg->as_register());
 780   }
 781   int store_offset = code_offset();
 782   switch (type) {
 783     case T_BOOLEAN: // fall through
 784     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 785     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 786     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 787     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 788     case T_LONG  :
 789       __ stx(from_reg->as_register_lo(), base, disp);
 790       break;
 791     case T_ADDRESS:
 792       __ st_ptr(from_reg->as_register(), base, disp);
 793       break;
 794     case T_ARRAY : // fall through
 795     case T_OBJECT:
 796       {
 797         if (UseCompressedOops && !wide) {
 798           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 799           store_offset = code_offset();
 800           __ stw(G3_scratch, base, disp);
 801         } else {
 802           __ st_ptr(from_reg->as_register(), base, disp);
 803         }
 804         break;
 805       }
 806     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 807     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 808     default      : ShouldNotReachHere();
 809   }
 810   return store_offset;
 811 }
 812 
 813 
 814 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 815   int load_offset;
 816   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 817     assert(base != O7, "destroying register");
 818     assert(!unaligned, "can't handle this");
 819     // for offsets larger than a simm13 we setup the offset in O7
 820     __ set(offset, O7);
 821     load_offset = load(base, O7, to_reg, type, wide);
 822   } else {
 823     load_offset = code_offset();
 824     switch(type) {
 825       case T_BOOLEAN: // fall through
 826       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 827       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 828       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 829       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 830       case T_LONG  :
 831         if (!unaligned && !PatchALot) {
 832           __ ldx(base, offset, to_reg->as_register_lo());
 833         } else {
 834           assert(base != to_reg->as_register_lo(), "can't handle this");
 835           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 836           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 837           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 838           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 839           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 840         }
 841         break;
 842       case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
 843       case T_ADDRESS:
 844         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
 845           __ lduw(base, offset, to_reg->as_register());
 846           __ decode_klass_not_null(to_reg->as_register());
 847         } else
 848         {
 849           __ ld_ptr(base, offset, to_reg->as_register());
 850         }
 851         break;
 852       case T_ARRAY : // fall through
 853       case T_OBJECT:
 854         {
 855           if (UseCompressedOops && !wide) {
 856             __ lduw(base, offset, to_reg->as_register());
 857             __ decode_heap_oop(to_reg->as_register());
 858           } else {
 859             __ ld_ptr(base, offset, to_reg->as_register());
 860           }
 861           break;
 862         }
 863       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 864       case T_DOUBLE:
 865         {
 866           FloatRegister reg = to_reg->as_double_reg();
 867           // split unaligned loads
 868           if (unaligned || PatchALot) {
 869             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 870             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 871           } else {
 872             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 873           }
 874           break;
 875         }
 876       default      : ShouldNotReachHere();
 877     }
 878     if (type == T_ARRAY || type == T_OBJECT) {
 879       __ verify_oop(to_reg->as_register());
 880     }
 881   }
 882   return load_offset;
 883 }
 884 
 885 
 886 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 887   int load_offset = code_offset();
 888   switch(type) {
 889     case T_BOOLEAN: // fall through
 890     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
 891     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
 892     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
 893     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
 894     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
 895     case T_ARRAY : // fall through
 896     case T_OBJECT:
 897       {
 898           if (UseCompressedOops && !wide) {
 899             __ lduw(base, disp, to_reg->as_register());
 900             __ decode_heap_oop(to_reg->as_register());
 901           } else {
 902             __ ld_ptr(base, disp, to_reg->as_register());
 903           }
 904           break;
 905       }
 906     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
 907     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
 908     case T_LONG  :
 909       __ ldx(base, disp, to_reg->as_register_lo());
 910       break;
 911     default      : ShouldNotReachHere();
 912   }
 913   if (type == T_ARRAY || type == T_OBJECT) {
 914     __ verify_oop(to_reg->as_register());
 915   }
 916   return load_offset;
 917 }
 918 
 919 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 920   LIR_Const* c = src->as_constant_ptr();
 921   switch (c->type()) {
 922     case T_INT:
 923     case T_FLOAT: {
 924       Register src_reg = O7;
 925       int value = c->as_jint_bits();
 926       if (value == 0) {
 927         src_reg = G0;
 928       } else {
 929         __ set(value, O7);
 930       }
 931       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 932       __ stw(src_reg, addr.base(), addr.disp());
 933       break;
 934     }
 935     case T_ADDRESS: {
 936       Register src_reg = O7;
 937       int value = c->as_jint_bits();
 938       if (value == 0) {
 939         src_reg = G0;
 940       } else {
 941         __ set(value, O7);
 942       }
 943       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 944       __ st_ptr(src_reg, addr.base(), addr.disp());
 945       break;
 946     }
 947     case T_OBJECT: {
 948       Register src_reg = O7;
 949       jobject2reg(c->as_jobject(), src_reg);
 950       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 951       __ st_ptr(src_reg, addr.base(), addr.disp());
 952       break;
 953     }
 954     case T_LONG:
 955     case T_DOUBLE: {
 956       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
 957 
 958       Register tmp = O7;
 959       int value_lo = c->as_jint_lo_bits();
 960       if (value_lo == 0) {
 961         tmp = G0;
 962       } else {
 963         __ set(value_lo, O7);
 964       }
 965       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
 966       int value_hi = c->as_jint_hi_bits();
 967       if (value_hi == 0) {
 968         tmp = G0;
 969       } else {
 970         __ set(value_hi, O7);
 971       }
 972       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
 973       break;
 974     }
 975     default:
 976       Unimplemented();
 977   }
 978 }
 979 
 980 
 981 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 982   LIR_Const* c = src->as_constant_ptr();
 983   LIR_Address* addr     = dest->as_address_ptr();
 984   Register base = addr->base()->as_pointer_register();
 985   int offset = -1;
 986 
 987   switch (c->type()) {
 988     case T_INT:
 989     case T_FLOAT:
 990     case T_ADDRESS: {
 991       LIR_Opr tmp = FrameMap::O7_opr;
 992       int value = c->as_jint_bits();
 993       if (value == 0) {
 994         tmp = FrameMap::G0_opr;
 995       } else if (Assembler::is_simm13(value)) {
 996         __ set(value, O7);
 997       }
 998       if (addr->index()->is_valid()) {
 999         assert(addr->disp() == 0, "must be zero");
1000         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1001       } else {
1002         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1003         offset = store(tmp, base, addr->disp(), type, wide, false);
1004       }
1005       break;
1006     }
1007     case T_LONG:
1008     case T_DOUBLE: {
1009       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1010       assert(Assembler::is_simm13(addr->disp()) &&
1011              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1012 
1013       LIR_Opr tmp = FrameMap::O7_opr;
1014       int value_lo = c->as_jint_lo_bits();
1015       if (value_lo == 0) {
1016         tmp = FrameMap::G0_opr;
1017       } else {
1018         __ set(value_lo, O7);
1019       }
1020       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1021       int value_hi = c->as_jint_hi_bits();
1022       if (value_hi == 0) {
1023         tmp = FrameMap::G0_opr;
1024       } else {
1025         __ set(value_hi, O7);
1026       }
1027       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1028       break;
1029     }
1030     case T_OBJECT: {
1031       jobject obj = c->as_jobject();
1032       LIR_Opr tmp;
1033       if (obj == NULL) {
1034         tmp = FrameMap::G0_opr;
1035       } else {
1036         tmp = FrameMap::O7_opr;
1037         jobject2reg(c->as_jobject(), O7);
1038       }
1039       // handle either reg+reg or reg+disp address
1040       if (addr->index()->is_valid()) {
1041         assert(addr->disp() == 0, "must be zero");
1042         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1043       } else {
1044         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1045         offset = store(tmp, base, addr->disp(), type, wide, false);
1046       }
1047 
1048       break;
1049     }
1050     default:
1051       Unimplemented();
1052   }
1053   if (info != NULL) {
1054     assert(offset != -1, "offset should've been set");
1055     add_debug_info_for_null_check(offset, info);
1056   }
1057 }
1058 
1059 
1060 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1061   LIR_Const* c = src->as_constant_ptr();
1062   LIR_Opr to_reg = dest;
1063 
1064   switch (c->type()) {
1065     case T_INT:
1066     case T_ADDRESS:
1067       {
1068         jint con = c->as_jint();
1069         if (to_reg->is_single_cpu()) {
1070           assert(patch_code == lir_patch_none, "no patching handled here");
1071           __ set(con, to_reg->as_register());
1072         } else {
1073           ShouldNotReachHere();
1074           assert(to_reg->is_single_fpu(), "wrong register kind");
1075 
1076           __ set(con, O7);
1077           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1078           __ st(O7, temp_slot);
1079           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1080         }
1081       }
1082       break;
1083 
1084     case T_LONG:
1085       {
1086         jlong con = c->as_jlong();
1087 
1088         if (to_reg->is_double_cpu()) {
1089           __ set(con,  to_reg->as_register_lo());
1090         } else if (to_reg->is_single_cpu()) {
1091           __ set(con, to_reg->as_register());
1092         } else {
1093           ShouldNotReachHere();
1094           assert(to_reg->is_double_fpu(), "wrong register kind");
1095           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1096           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1097           __ set(low(con),  O7);
1098           __ st(O7, temp_slot_lo);
1099           __ set(high(con), O7);
1100           __ st(O7, temp_slot_hi);
1101           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1102         }
1103       }
1104       break;
1105 
1106     case T_OBJECT:
1107       {
1108         if (patch_code == lir_patch_none) {
1109           jobject2reg(c->as_jobject(), to_reg->as_register());
1110         } else {
1111           jobject2reg_with_patching(to_reg->as_register(), info);
1112         }
1113       }
1114       break;
1115 
1116     case T_METADATA:
1117       {
1118         if (patch_code == lir_patch_none) {
1119           metadata2reg(c->as_metadata(), to_reg->as_register());
1120         } else {
1121           klass2reg_with_patching(to_reg->as_register(), info);
1122         }
1123       }
1124       break;
1125 
1126     case T_FLOAT:
1127       {
1128         address const_addr = __ float_constant(c->as_jfloat());
1129         if (const_addr == NULL) {
1130           bailout("const section overflow");
1131           break;
1132         }
1133         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1134         AddressLiteral const_addrlit(const_addr, rspec);
1135         if (to_reg->is_single_fpu()) {
1136           __ patchable_sethi(const_addrlit, O7);
1137           __ relocate(rspec);
1138           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1139 
1140         } else {
1141           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1142 
1143           __ set(const_addrlit, O7);
1144           __ ld(O7, 0, to_reg->as_register());
1145         }
1146       }
1147       break;
1148 
1149     case T_DOUBLE:
1150       {
1151         address const_addr = __ double_constant(c->as_jdouble());
1152         if (const_addr == NULL) {
1153           bailout("const section overflow");
1154           break;
1155         }
1156         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1157 
1158         if (to_reg->is_double_fpu()) {
1159           AddressLiteral const_addrlit(const_addr, rspec);
1160           __ patchable_sethi(const_addrlit, O7);
1161           __ relocate(rspec);
1162           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1163         } else {
1164           assert(to_reg->is_double_cpu(), "Must be a long register.");
1165           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1166         }
1167 
1168       }
1169       break;
1170 
1171     default:
1172       ShouldNotReachHere();
1173   }
1174 }
1175 
1176 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1177   Register reg = addr->base()->as_pointer_register();
1178   LIR_Opr index = addr->index();
1179   if (index->is_illegal()) {
1180     return Address(reg, addr->disp());
1181   } else {
1182     assert (addr->disp() == 0, "unsupported address mode");
1183     return Address(reg, index->as_pointer_register());
1184   }
1185 }
1186 
1187 
1188 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1189   switch (type) {
1190     case T_INT:
1191     case T_FLOAT: {
1192       Register tmp = O7;
1193       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1194       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1195       __ lduw(from.base(), from.disp(), tmp);
1196       __ stw(tmp, to.base(), to.disp());
1197       break;
1198     }
1199     case T_OBJECT: {
1200       Register tmp = O7;
1201       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1202       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1203       __ ld_ptr(from.base(), from.disp(), tmp);
1204       __ st_ptr(tmp, to.base(), to.disp());
1205       break;
1206     }
1207     case T_LONG:
1208     case T_DOUBLE: {
1209       Register tmp = O7;
1210       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1211       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1212       __ lduw(from.base(), from.disp(), tmp);
1213       __ stw(tmp, to.base(), to.disp());
1214       __ lduw(from.base(), from.disp() + 4, tmp);
1215       __ stw(tmp, to.base(), to.disp() + 4);
1216       break;
1217     }
1218 
1219     default:
1220       ShouldNotReachHere();
1221   }
1222 }
1223 
1224 
1225 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1226   Address base = as_Address(addr);
1227   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1228 }
1229 
1230 
1231 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1232   Address base = as_Address(addr);
1233   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1234 }
1235 
1236 
1237 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1238                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1239 
1240   assert(type != T_METADATA, "load of metadata ptr not supported");
1241   LIR_Address* addr = src_opr->as_address_ptr();
1242   LIR_Opr to_reg = dest;
1243 
1244   Register src = addr->base()->as_pointer_register();
1245   Register disp_reg = noreg;
1246   int disp_value = addr->disp();
1247   bool needs_patching = (patch_code != lir_patch_none);
1248 
1249   if (addr->base()->type() == T_OBJECT) {
1250     __ verify_oop(src);
1251   }
1252 
1253   PatchingStub* patch = NULL;
1254   if (needs_patching) {
1255     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1256     assert(!to_reg->is_double_cpu() ||
1257            patch_code == lir_patch_none ||
1258            patch_code == lir_patch_normal, "patching doesn't match register");
1259   }
1260 
1261   if (addr->index()->is_illegal()) {
1262     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1263       if (needs_patching) {
1264         __ patchable_set(0, O7);
1265       } else {
1266         __ set(disp_value, O7);
1267       }
1268       disp_reg = O7;
1269     }
1270   } else if (unaligned || PatchALot) {
1271     __ add(src, addr->index()->as_pointer_register(), O7);
1272     src = O7;
1273   } else {
1274     disp_reg = addr->index()->as_pointer_register();
1275     assert(disp_value == 0, "can't handle 3 operand addresses");
1276   }
1277 
1278   // remember the offset of the load.  The patching_epilog must be done
1279   // before the call to add_debug_info, otherwise the PcDescs don't get
1280   // entered in increasing order.
1281   int offset = code_offset();
1282 
1283   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1284   if (disp_reg == noreg) {
1285     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1286   } else {
1287     assert(!unaligned, "can't handle this");
1288     offset = load(src, disp_reg, to_reg, type, wide);
1289   }
1290 
1291   if (patch != NULL) {
1292     patching_epilog(patch, patch_code, src, info);
1293   }
1294   if (info != NULL) add_debug_info_for_null_check(offset, info);
1295 }
1296 
1297 
1298 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1299   Address addr;
1300   if (src->is_single_word()) {
1301     addr = frame_map()->address_for_slot(src->single_stack_ix());
1302   } else if (src->is_double_word())  {
1303     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1304   }
1305 
1306   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1307   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1308 }
1309 
1310 
1311 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1312   Address addr;
1313   if (dest->is_single_word()) {
1314     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1315   } else if (dest->is_double_word())  {
1316     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1317   }
1318   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1319   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1320 }
1321 
1322 
1323 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1324   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1325     if (from_reg->is_double_fpu()) {
1326       // double to double moves
1327       assert(to_reg->is_double_fpu(), "should match");
1328       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1329     } else {
1330       // float to float moves
1331       assert(to_reg->is_single_fpu(), "should match");
1332       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1333     }
1334   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1335     if (from_reg->is_double_cpu()) {
1336       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1337     } else if (to_reg->is_double_cpu()) {
1338       // int to int moves
1339       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1340     } else {
1341       // int to int moves
1342       __ mov(from_reg->as_register(), to_reg->as_register());
1343     }
1344   } else {
1345     ShouldNotReachHere();
1346   }
1347   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1348     __ verify_oop(to_reg->as_register());
1349   }
1350 }
1351 
1352 
1353 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1354                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1355                             bool wide, bool unaligned) {
1356   assert(type != T_METADATA, "store of metadata ptr not supported");
1357   LIR_Address* addr = dest->as_address_ptr();
1358 
1359   Register src = addr->base()->as_pointer_register();
1360   Register disp_reg = noreg;
1361   int disp_value = addr->disp();
1362   bool needs_patching = (patch_code != lir_patch_none);
1363 
1364   if (addr->base()->is_oop_register()) {
1365     __ verify_oop(src);
1366   }
1367 
1368   PatchingStub* patch = NULL;
1369   if (needs_patching) {
1370     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1371     assert(!from_reg->is_double_cpu() ||
1372            patch_code == lir_patch_none ||
1373            patch_code == lir_patch_normal, "patching doesn't match register");
1374   }
1375 
1376   if (addr->index()->is_illegal()) {
1377     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1378       if (needs_patching) {
1379         __ patchable_set(0, O7);
1380       } else {
1381         __ set(disp_value, O7);
1382       }
1383       disp_reg = O7;
1384     }
1385   } else if (unaligned || PatchALot) {
1386     __ add(src, addr->index()->as_pointer_register(), O7);
1387     src = O7;
1388   } else {
1389     disp_reg = addr->index()->as_pointer_register();
1390     assert(disp_value == 0, "can't handle 3 operand addresses");
1391   }
1392 
1393   // remember the offset of the store.  The patching_epilog must be done
1394   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1395   // entered in increasing order.
1396   int offset;
1397 
1398   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1399   if (disp_reg == noreg) {
1400     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1401   } else {
1402     assert(!unaligned, "can't handle this");
1403     offset = store(from_reg, src, disp_reg, type, wide);
1404   }
1405 
1406   if (patch != NULL) {
1407     patching_epilog(patch, patch_code, src, info);
1408   }
1409 
1410   if (info != NULL) add_debug_info_for_null_check(offset, info);
1411 }
1412 
1413 
1414 void LIR_Assembler::return_op(LIR_Opr result) {
1415   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1416     __ reserved_stack_check();
1417   }
1418   __ set((intptr_t)os::get_polling_page(), L0);
1419   __ relocate(relocInfo::poll_return_type);
1420   __ ld_ptr(L0, 0, G0);
1421   __ ret();
1422   __ delayed()->restore();
1423 }
1424 
1425 
1426 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1427   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1428   if (info != NULL) {
1429     add_debug_info_for_branch(info);
1430   }
1431   int offset = __ offset();
1432   __ relocate(relocInfo::poll_type);
1433   __ ld_ptr(tmp->as_register(), 0, G0);
1434   return offset;
1435 }
1436 
1437 
1438 void LIR_Assembler::emit_static_call_stub() {
1439   address call_pc = __ pc();
1440   address stub = __ start_a_stub(call_stub_size());
1441   if (stub == NULL) {
1442     bailout("static call stub overflow");
1443     return;
1444   }
1445 
1446   int start = __ offset();
1447   __ relocate(static_stub_Relocation::spec(call_pc));
1448 
1449   __ set_metadata(NULL, G5);
1450   // must be set to -1 at code generation time
1451   AddressLiteral addrlit(-1);
1452   __ jump_to(addrlit, G3);
1453   __ delayed()->nop();
1454 
1455   assert(__ offset() - start <= call_stub_size(), "stub too big");
1456   __ end_a_stub();
1457 }
1458 
1459 
1460 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1461   if (opr1->is_single_fpu()) {
1462     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1463   } else if (opr1->is_double_fpu()) {
1464     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1465   } else if (opr1->is_single_cpu()) {
1466     if (opr2->is_constant()) {
1467       switch (opr2->as_constant_ptr()->type()) {
1468         case T_INT:
1469           { jint con = opr2->as_constant_ptr()->as_jint();
1470             if (Assembler::is_simm13(con)) {
1471               __ cmp(opr1->as_register(), con);
1472             } else {
1473               __ set(con, O7);
1474               __ cmp(opr1->as_register(), O7);
1475             }
1476           }
1477           break;
1478 
1479         case T_OBJECT:
1480           // there are only equal/notequal comparisions on objects
1481           { jobject con = opr2->as_constant_ptr()->as_jobject();
1482             if (con == NULL) {
1483               __ cmp(opr1->as_register(), 0);
1484             } else {
1485               jobject2reg(con, O7);
1486               __ cmp(opr1->as_register(), O7);
1487             }
1488           }
1489           break;
1490 
1491         default:
1492           ShouldNotReachHere();
1493           break;
1494       }
1495     } else {
1496       if (opr2->is_address()) {
1497         LIR_Address * addr = opr2->as_address_ptr();
1498         BasicType type = addr->type();
1499         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1500         else                    __ ld(as_Address(addr), O7);
1501         __ cmp(opr1->as_register(), O7);
1502       } else {
1503         __ cmp(opr1->as_register(), opr2->as_register());
1504       }
1505     }
1506   } else if (opr1->is_double_cpu()) {
1507     Register xlo = opr1->as_register_lo();
1508     Register xhi = opr1->as_register_hi();
1509     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1510       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1511       __ orcc(xhi, G0, G0);
1512     } else if (opr2->is_register()) {
1513       Register ylo = opr2->as_register_lo();
1514       Register yhi = opr2->as_register_hi();
1515       __ cmp(xlo, ylo);
1516     } else {
1517       ShouldNotReachHere();
1518     }
1519   } else if (opr1->is_address()) {
1520     LIR_Address * addr = opr1->as_address_ptr();
1521     BasicType type = addr->type();
1522     assert (opr2->is_constant(), "Checking");
1523     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1524     else                    __ ld(as_Address(addr), O7);
1525     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1526   } else {
1527     ShouldNotReachHere();
1528   }
1529 }
1530 
1531 
1532 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1533   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1534     bool is_unordered_less = (code == lir_ucmp_fd2i);
1535     if (left->is_single_fpu()) {
1536       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1537     } else if (left->is_double_fpu()) {
1538       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1539     } else {
1540       ShouldNotReachHere();
1541     }
1542   } else if (code == lir_cmp_l2i) {
1543     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1544   } else {
1545     ShouldNotReachHere();
1546   }
1547 }
1548 
1549 
1550 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1551   Assembler::Condition acond;
1552   switch (condition) {
1553     case lir_cond_equal:        acond = Assembler::equal;        break;
1554     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1555     case lir_cond_less:         acond = Assembler::less;         break;
1556     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1557     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1558     case lir_cond_greater:      acond = Assembler::greater;      break;
1559     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1560     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1561     default:                         ShouldNotReachHere();
1562   };
1563 
1564   if (opr1->is_constant() && opr1->type() == T_INT) {
1565     Register dest = result->as_register();
1566     // load up first part of constant before branch
1567     // and do the rest in the delay slot.
1568     if (!Assembler::is_simm13(opr1->as_jint())) {
1569       __ sethi(opr1->as_jint(), dest);
1570     }
1571   } else if (opr1->is_constant()) {
1572     const2reg(opr1, result, lir_patch_none, NULL);
1573   } else if (opr1->is_register()) {
1574     reg2reg(opr1, result);
1575   } else if (opr1->is_stack()) {
1576     stack2reg(opr1, result, result->type());
1577   } else {
1578     ShouldNotReachHere();
1579   }
1580   Label skip;
1581     if  (type == T_INT) {
1582       __ br(acond, false, Assembler::pt, skip);
1583     } else {
1584       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1585     }
1586   if (opr1->is_constant() && opr1->type() == T_INT) {
1587     Register dest = result->as_register();
1588     if (Assembler::is_simm13(opr1->as_jint())) {
1589       __ delayed()->or3(G0, opr1->as_jint(), dest);
1590     } else {
1591       // the sethi has been done above, so just put in the low 10 bits
1592       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1593     }
1594   } else {
1595     // can't do anything useful in the delay slot
1596     __ delayed()->nop();
1597   }
1598   if (opr2->is_constant()) {
1599     const2reg(opr2, result, lir_patch_none, NULL);
1600   } else if (opr2->is_register()) {
1601     reg2reg(opr2, result);
1602   } else if (opr2->is_stack()) {
1603     stack2reg(opr2, result, result->type());
1604   } else {
1605     ShouldNotReachHere();
1606   }
1607   __ bind(skip);
1608 }
1609 
1610 
1611 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1612   assert(info == NULL, "unused on this code path");
1613   assert(left->is_register(), "wrong items state");
1614   assert(dest->is_register(), "wrong items state");
1615 
1616   if (right->is_register()) {
1617     if (dest->is_float_kind()) {
1618 
1619       FloatRegister lreg, rreg, res;
1620       FloatRegisterImpl::Width w;
1621       if (right->is_single_fpu()) {
1622         w = FloatRegisterImpl::S;
1623         lreg = left->as_float_reg();
1624         rreg = right->as_float_reg();
1625         res  = dest->as_float_reg();
1626       } else {
1627         w = FloatRegisterImpl::D;
1628         lreg = left->as_double_reg();
1629         rreg = right->as_double_reg();
1630         res  = dest->as_double_reg();
1631       }
1632 
1633       switch (code) {
1634         case lir_add: __ fadd(w, lreg, rreg, res); break;
1635         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1636         case lir_mul: // fall through
1637         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1638         case lir_div: // fall through
1639         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1640         default: ShouldNotReachHere();
1641       }
1642 
1643     } else if (dest->is_double_cpu()) {
1644       Register dst_lo = dest->as_register_lo();
1645       Register op1_lo = left->as_pointer_register();
1646       Register op2_lo = right->as_pointer_register();
1647 
1648       switch (code) {
1649         case lir_add:
1650           __ add(op1_lo, op2_lo, dst_lo);
1651           break;
1652 
1653         case lir_sub:
1654           __ sub(op1_lo, op2_lo, dst_lo);
1655           break;
1656 
1657         default: ShouldNotReachHere();
1658       }
1659     } else {
1660       assert (right->is_single_cpu(), "Just Checking");
1661 
1662       Register lreg = left->as_register();
1663       Register res  = dest->as_register();
1664       Register rreg = right->as_register();
1665       switch (code) {
1666         case lir_add:  __ add  (lreg, rreg, res); break;
1667         case lir_sub:  __ sub  (lreg, rreg, res); break;
1668         case lir_mul:  __ mulx (lreg, rreg, res); break;
1669         default: ShouldNotReachHere();
1670       }
1671     }
1672   } else {
1673     assert (right->is_constant(), "must be constant");
1674 
1675     if (dest->is_single_cpu()) {
1676       Register lreg = left->as_register();
1677       Register res  = dest->as_register();
1678       int    simm13 = right->as_constant_ptr()->as_jint();
1679 
1680       switch (code) {
1681         case lir_add:  __ add  (lreg, simm13, res); break;
1682         case lir_sub:  __ sub  (lreg, simm13, res); break;
1683         case lir_mul:  __ mulx (lreg, simm13, res); break;
1684         default: ShouldNotReachHere();
1685       }
1686     } else {
1687       Register lreg = left->as_pointer_register();
1688       Register res  = dest->as_register_lo();
1689       long con = right->as_constant_ptr()->as_jlong();
1690       assert(Assembler::is_simm13(con), "must be simm13");
1691 
1692       switch (code) {
1693         case lir_add:  __ add  (lreg, (int)con, res); break;
1694         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1695         case lir_mul:  __ mulx (lreg, (int)con, res); break;
1696         default: ShouldNotReachHere();
1697       }
1698     }
1699   }
1700 }
1701 
1702 
1703 void LIR_Assembler::fpop() {
1704   // do nothing
1705 }
1706 
1707 
1708 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1709   switch (code) {
1710     case lir_tan: {
1711       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1712       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1713       break;
1714     }
1715     case lir_sqrt: {
1716       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1717       FloatRegister src_reg = value->as_double_reg();
1718       FloatRegister dst_reg = dest->as_double_reg();
1719       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1720       break;
1721     }
1722     case lir_abs: {
1723       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1724       FloatRegister src_reg = value->as_double_reg();
1725       FloatRegister dst_reg = dest->as_double_reg();
1726       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1727       break;
1728     }
1729     default: {
1730       ShouldNotReachHere();
1731       break;
1732     }
1733   }
1734 }
1735 
1736 
1737 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1738   if (right->is_constant()) {
1739     if (dest->is_single_cpu()) {
1740       int simm13 = right->as_constant_ptr()->as_jint();
1741       switch (code) {
1742         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1743         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1744         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1745         default: ShouldNotReachHere();
1746       }
1747     } else {
1748       long c = right->as_constant_ptr()->as_jlong();
1749       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1750       int simm13 = (int)c;
1751       switch (code) {
1752         case lir_logic_and:
1753           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1754           break;
1755 
1756         case lir_logic_or:
1757           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1758           break;
1759 
1760         case lir_logic_xor:
1761           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1762           break;
1763 
1764         default: ShouldNotReachHere();
1765       }
1766     }
1767   } else {
1768     assert(right->is_register(), "right should be in register");
1769 
1770     if (dest->is_single_cpu()) {
1771       switch (code) {
1772         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1773         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1774         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1775         default: ShouldNotReachHere();
1776       }
1777     } else {
1778       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1779                                                                         left->as_register_lo();
1780       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1781                                                                           right->as_register_lo();
1782 
1783       switch (code) {
1784         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1785         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1786         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1787         default: ShouldNotReachHere();
1788       }
1789     }
1790   }
1791 }
1792 
1793 
1794 int LIR_Assembler::shift_amount(BasicType t) {
1795   int elem_size = type2aelembytes(t);
1796   switch (elem_size) {
1797     case 1 : return 0;
1798     case 2 : return 1;
1799     case 4 : return 2;
1800     case 8 : return 3;
1801   }
1802   ShouldNotReachHere();
1803   return -1;
1804 }
1805 
1806 
1807 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1808   assert(exceptionOop->as_register() == Oexception, "should match");
1809   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
1810 
1811   info->add_register_oop(exceptionOop);
1812 
1813   // reuse the debug info from the safepoint poll for the throw op itself
1814   address pc_for_athrow  = __ pc();
1815   int pc_for_athrow_offset = __ offset();
1816   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
1817   __ set(pc_for_athrow, Oissuing_pc, rspec);
1818   add_call_info(pc_for_athrow_offset, info); // for exception handler
1819 
1820   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
1821   __ delayed()->nop();
1822 }
1823 
1824 
1825 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1826   assert(exceptionOop->as_register() == Oexception, "should match");
1827 
1828   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
1829   __ delayed()->nop();
1830 }
1831 
1832 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1833   Register src = op->src()->as_register();
1834   Register dst = op->dst()->as_register();
1835   Register src_pos = op->src_pos()->as_register();
1836   Register dst_pos = op->dst_pos()->as_register();
1837   Register length  = op->length()->as_register();
1838   Register tmp = op->tmp()->as_register();
1839   Register tmp2 = O7;
1840 
1841   int flags = op->flags();
1842   ciArrayKlass* default_type = op->expected_type();
1843   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1844   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1845 
1846   // higher 32bits must be null
1847   __ sra(dst_pos, 0, dst_pos);
1848   __ sra(src_pos, 0, src_pos);
1849   __ sra(length, 0, length);
1850 
1851   // set up the arraycopy stub information
1852   ArrayCopyStub* stub = op->stub();
1853 
1854   // always do stub if no type information is available.  it's ok if
1855   // the known type isn't loaded since the code sanity checks
1856   // in debug mode and the type isn't required when we know the exact type
1857   // also check that the type is an array type.
1858   if (op->expected_type() == NULL) {
1859     __ mov(src,     O0);
1860     __ mov(src_pos, O1);
1861     __ mov(dst,     O2);
1862     __ mov(dst_pos, O3);
1863     __ mov(length,  O4);
1864     address copyfunc_addr = StubRoutines::generic_arraycopy();
1865 
1866     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
1867       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
1868     } else {
1869 #ifndef PRODUCT
1870       if (PrintC1Statistics) {
1871         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
1872         __ inc_counter(counter, G1, G3);
1873       }
1874 #endif
1875       __ call_VM_leaf(tmp, copyfunc_addr);
1876     }
1877 
1878     if (copyfunc_addr != NULL) {
1879       __ xor3(O0, -1, tmp);
1880       __ sub(length, tmp, length);
1881       __ add(src_pos, tmp, src_pos);
1882       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
1883       __ delayed()->add(dst_pos, tmp, dst_pos);
1884     } else {
1885       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
1886       __ delayed()->nop();
1887     }
1888     __ bind(*stub->continuation());
1889     return;
1890   }
1891 
1892   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
1893 
1894   // make sure src and dst are non-null and load array length
1895   if (flags & LIR_OpArrayCopy::src_null_check) {
1896     __ tst(src);
1897     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1898     __ delayed()->nop();
1899   }
1900 
1901   if (flags & LIR_OpArrayCopy::dst_null_check) {
1902     __ tst(dst);
1903     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1904     __ delayed()->nop();
1905   }
1906 
1907   // If the compiler was not able to prove that exact type of the source or the destination
1908   // of the arraycopy is an array type, check at runtime if the source or the destination is
1909   // an instance type.
1910   if (flags & LIR_OpArrayCopy::type_check) {
1911     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
1912       __ load_klass(dst, tmp);
1913       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1914       __ cmp(tmp2, Klass::_lh_neutral_value);
1915       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1916       __ delayed()->nop();
1917     }
1918 
1919     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
1920       __ load_klass(src, tmp);
1921       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1922       __ cmp(tmp2, Klass::_lh_neutral_value);
1923       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1924       __ delayed()->nop();
1925     }
1926   }
1927 
1928   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1929     // test src_pos register
1930     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
1931     __ delayed()->nop();
1932   }
1933 
1934   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1935     // test dst_pos register
1936     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
1937     __ delayed()->nop();
1938   }
1939 
1940   if (flags & LIR_OpArrayCopy::length_positive_check) {
1941     // make sure length isn't negative
1942     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
1943     __ delayed()->nop();
1944   }
1945 
1946   if (flags & LIR_OpArrayCopy::src_range_check) {
1947     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
1948     __ add(length, src_pos, tmp);
1949     __ cmp(tmp2, tmp);
1950     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1951     __ delayed()->nop();
1952   }
1953 
1954   if (flags & LIR_OpArrayCopy::dst_range_check) {
1955     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
1956     __ add(length, dst_pos, tmp);
1957     __ cmp(tmp2, tmp);
1958     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1959     __ delayed()->nop();
1960   }
1961 
1962   int shift = shift_amount(basic_type);
1963 
1964   if (flags & LIR_OpArrayCopy::type_check) {
1965     // We don't know the array types are compatible
1966     if (basic_type != T_OBJECT) {
1967       // Simple test for basic type arrays
1968       if (UseCompressedClassPointers) {
1969         // We don't need decode because we just need to compare
1970         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
1971         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1972         __ cmp(tmp, tmp2);
1973         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1974       } else {
1975         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
1976         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1977         __ cmp(tmp, tmp2);
1978         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1979       }
1980       __ delayed()->nop();
1981     } else {
1982       // For object arrays, if src is a sub class of dst then we can
1983       // safely do the copy.
1984       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
1985 
1986       Label cont, slow;
1987       assert_different_registers(tmp, tmp2, G3, G1);
1988 
1989       __ load_klass(src, G3);
1990       __ load_klass(dst, G1);
1991 
1992       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
1993 
1994       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1995       __ delayed()->nop();
1996 
1997       __ cmp(G3, 0);
1998       if (copyfunc_addr != NULL) { // use stub if available
1999         // src is not a sub class of dst so we have to do a
2000         // per-element check.
2001         __ br(Assembler::notEqual, false, Assembler::pt, cont);
2002         __ delayed()->nop();
2003 
2004         __ bind(slow);
2005 
2006         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2007         if ((flags & mask) != mask) {
2008           // Check that at least both of them object arrays.
2009           assert(flags & mask, "one of the two should be known to be an object array");
2010 
2011           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2012             __ load_klass(src, tmp);
2013           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2014             __ load_klass(dst, tmp);
2015           }
2016           int lh_offset = in_bytes(Klass::layout_helper_offset());
2017 
2018           __ lduw(tmp, lh_offset, tmp2);
2019 
2020           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2021           __ set(objArray_lh, tmp);
2022           __ cmp(tmp, tmp2);
2023           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2024           __ delayed()->nop();
2025         }
2026 
2027         Register src_ptr = O0;
2028         Register dst_ptr = O1;
2029         Register len     = O2;
2030         Register chk_off = O3;
2031         Register super_k = O4;
2032 
2033         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2034         if (shift == 0) {
2035           __ add(src_ptr, src_pos, src_ptr);
2036         } else {
2037           __ sll(src_pos, shift, tmp);
2038           __ add(src_ptr, tmp, src_ptr);
2039         }
2040 
2041         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2042         if (shift == 0) {
2043           __ add(dst_ptr, dst_pos, dst_ptr);
2044         } else {
2045           __ sll(dst_pos, shift, tmp);
2046           __ add(dst_ptr, tmp, dst_ptr);
2047         }
2048         __ mov(length, len);
2049         __ load_klass(dst, tmp);
2050 
2051         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2052         __ ld_ptr(tmp, ek_offset, super_k);
2053 
2054         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2055         __ lduw(super_k, sco_offset, chk_off);
2056 
2057         __ call_VM_leaf(tmp, copyfunc_addr);
2058 
2059 #ifndef PRODUCT
2060         if (PrintC1Statistics) {
2061           Label failed;
2062           __ br_notnull_short(O0, Assembler::pn, failed);
2063           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2064           __ bind(failed);
2065         }
2066 #endif
2067 
2068         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2069         __ delayed()->xor3(O0, -1, tmp);
2070 
2071 #ifndef PRODUCT
2072         if (PrintC1Statistics) {
2073           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2074         }
2075 #endif
2076 
2077         __ sub(length, tmp, length);
2078         __ add(src_pos, tmp, src_pos);
2079         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2080         __ delayed()->add(dst_pos, tmp, dst_pos);
2081 
2082         __ bind(cont);
2083       } else {
2084         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2085         __ delayed()->nop();
2086         __ bind(cont);
2087       }
2088     }
2089   }
2090 
2091 #ifdef ASSERT
2092   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2093     // Sanity check the known type with the incoming class.  For the
2094     // primitive case the types must match exactly with src.klass and
2095     // dst.klass each exactly matching the default type.  For the
2096     // object array case, if no type check is needed then either the
2097     // dst type is exactly the expected type and the src type is a
2098     // subtype which we can't check or src is the same array as dst
2099     // but not necessarily exactly of type default_type.
2100     Label known_ok, halt;
2101     metadata2reg(op->expected_type()->constant_encoding(), tmp);
2102     if (UseCompressedClassPointers) {
2103       // tmp holds the default type. It currently comes uncompressed after the
2104       // load of a constant, so encode it.
2105       __ encode_klass_not_null(tmp);
2106       // load the raw value of the dst klass, since we will be comparing
2107       // uncompressed values directly.
2108       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2109       if (basic_type != T_OBJECT) {
2110         __ cmp(tmp, tmp2);
2111         __ br(Assembler::notEqual, false, Assembler::pn, halt);
2112         // load the raw value of the src klass.
2113         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2114         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2115       } else {
2116         __ cmp(tmp, tmp2);
2117         __ br(Assembler::equal, false, Assembler::pn, known_ok);
2118         __ delayed()->cmp(src, dst);
2119         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2120         __ delayed()->nop();
2121       }
2122     } else {
2123       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2124       if (basic_type != T_OBJECT) {
2125         __ cmp(tmp, tmp2);
2126         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2127         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2128         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2129       } else {
2130         __ cmp(tmp, tmp2);
2131         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2132         __ delayed()->cmp(src, dst);
2133         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2134         __ delayed()->nop();
2135       }
2136     }
2137     __ bind(halt);
2138     __ stop("incorrect type information in arraycopy");
2139     __ bind(known_ok);
2140   }
2141 #endif
2142 
2143 #ifndef PRODUCT
2144   if (PrintC1Statistics) {
2145     address counter = Runtime1::arraycopy_count_address(basic_type);
2146     __ inc_counter(counter, G1, G3);
2147   }
2148 #endif
2149 
2150   Register src_ptr = O0;
2151   Register dst_ptr = O1;
2152   Register len     = O2;
2153 
2154   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2155   if (shift == 0) {
2156     __ add(src_ptr, src_pos, src_ptr);
2157   } else {
2158     __ sll(src_pos, shift, tmp);
2159     __ add(src_ptr, tmp, src_ptr);
2160   }
2161 
2162   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2163   if (shift == 0) {
2164     __ add(dst_ptr, dst_pos, dst_ptr);
2165   } else {
2166     __ sll(dst_pos, shift, tmp);
2167     __ add(dst_ptr, tmp, dst_ptr);
2168   }
2169 
2170   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2171   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2172   const char *name;
2173   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2174 
2175   // arraycopy stubs takes a length in number of elements, so don't scale it.
2176   __ mov(length, len);
2177   __ call_VM_leaf(tmp, entry);
2178 
2179   __ bind(*stub->continuation());
2180 }
2181 
2182 
2183 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2184   if (dest->is_single_cpu()) {
2185     if (left->type() == T_OBJECT) {
2186       switch (code) {
2187         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2188         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2189         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2190         default: ShouldNotReachHere();
2191       }
2192     } else
2193       switch (code) {
2194         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2195         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2196         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2197         default: ShouldNotReachHere();
2198       }
2199   } else {
2200     switch (code) {
2201       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2202       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2203       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2204       default: ShouldNotReachHere();
2205     }
2206   }
2207 }
2208 
2209 
2210 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2211   if (left->type() == T_OBJECT) {
2212     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2213     Register l = left->as_register();
2214     Register d = dest->as_register_lo();
2215     switch (code) {
2216       case lir_shl:  __ sllx  (l, count, d); break;
2217       case lir_shr:  __ srax  (l, count, d); break;
2218       case lir_ushr: __ srlx  (l, count, d); break;
2219       default: ShouldNotReachHere();
2220     }
2221     return;
2222   }
2223 
2224   if (dest->is_single_cpu()) {
2225     count = count & 0x1F; // Java spec
2226     switch (code) {
2227       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2228       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2229       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2230       default: ShouldNotReachHere();
2231     }
2232   } else if (dest->is_double_cpu()) {
2233     count = count & 63; // Java spec
2234     switch (code) {
2235       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2236       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2237       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2238       default: ShouldNotReachHere();
2239     }
2240   } else {
2241     ShouldNotReachHere();
2242   }
2243 }
2244 
2245 
2246 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2247   assert(op->tmp1()->as_register()  == G1 &&
2248          op->tmp2()->as_register()  == G3 &&
2249          op->tmp3()->as_register()  == G4 &&
2250          op->obj()->as_register()   == O0 &&
2251          op->klass()->as_register() == G5, "must be");
2252   if (op->init_check()) {
2253     __ ldub(op->klass()->as_register(),
2254           in_bytes(InstanceKlass::init_state_offset()),
2255           op->tmp1()->as_register());
2256     add_debug_info_for_null_check_here(op->stub()->info());
2257     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2258     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2259     __ delayed()->nop();
2260   }
2261   __ allocate_object(op->obj()->as_register(),
2262                      op->tmp1()->as_register(),
2263                      op->tmp2()->as_register(),
2264                      op->tmp3()->as_register(),
2265                      op->header_size(),
2266                      op->object_size(),
2267                      op->klass()->as_register(),
2268                      *op->stub()->entry());
2269   __ bind(*op->stub()->continuation());
2270   __ verify_oop(op->obj()->as_register());
2271 }
2272 
2273 
2274 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2275   assert(op->tmp1()->as_register()  == G1 &&
2276          op->tmp2()->as_register()  == G3 &&
2277          op->tmp3()->as_register()  == G4 &&
2278          op->tmp4()->as_register()  == O1 &&
2279          op->klass()->as_register() == G5, "must be");
2280 
2281   __ signx(op->len()->as_register());
2282   if (UseSlowPath ||
2283       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2284       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2285     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2286     __ delayed()->nop();
2287   } else {
2288     __ allocate_array(op->obj()->as_register(),
2289                       op->len()->as_register(),
2290                       op->tmp1()->as_register(),
2291                       op->tmp2()->as_register(),
2292                       op->tmp3()->as_register(),
2293                       arrayOopDesc::header_size(op->type()),
2294                       type2aelembytes(op->type()),
2295                       op->klass()->as_register(),
2296                       *op->stub()->entry());
2297   }
2298   __ bind(*op->stub()->continuation());
2299 }
2300 
2301 
2302 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2303                                         ciMethodData *md, ciProfileData *data,
2304                                         Register recv, Register tmp1, Label* update_done) {
2305   uint i;
2306   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2307     Label next_test;
2308     // See if the receiver is receiver[n].
2309     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2310                           mdo_offset_bias);
2311     __ ld_ptr(receiver_addr, tmp1);
2312     __ verify_klass_ptr(tmp1);
2313     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2314     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2315                       mdo_offset_bias);
2316     __ ld_ptr(data_addr, tmp1);
2317     __ add(tmp1, DataLayout::counter_increment, tmp1);
2318     __ st_ptr(tmp1, data_addr);
2319     __ ba(*update_done);
2320     __ delayed()->nop();
2321     __ bind(next_test);
2322   }
2323 
2324   // Didn't find receiver; find next empty slot and fill it in
2325   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2326     Label next_test;
2327     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2328                       mdo_offset_bias);
2329     __ ld_ptr(recv_addr, tmp1);
2330     __ br_notnull_short(tmp1, Assembler::pt, next_test);
2331     __ st_ptr(recv, recv_addr);
2332     __ set(DataLayout::counter_increment, tmp1);
2333     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2334               mdo_offset_bias);
2335     __ ba(*update_done);
2336     __ delayed()->nop();
2337     __ bind(next_test);
2338   }
2339 }
2340 
2341 
2342 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2343                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2344   md = method->method_data_or_null();
2345   assert(md != NULL, "Sanity");
2346   data = md->bci_to_data(bci);
2347   assert(data != NULL,       "need data for checkcast");
2348   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2349   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2350     // The offset is large so bias the mdo by the base of the slot so
2351     // that the ld can use simm13s to reference the slots of the data
2352     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2353   }
2354 }
2355 
2356 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2357   // we always need a stub for the failure case.
2358   CodeStub* stub = op->stub();
2359   Register obj = op->object()->as_register();
2360   Register k_RInfo = op->tmp1()->as_register();
2361   Register klass_RInfo = op->tmp2()->as_register();
2362   Register dst = op->result_opr()->as_register();
2363   Register Rtmp1 = op->tmp3()->as_register();
2364   ciKlass* k = op->klass();
2365 
2366 
2367   if (obj == k_RInfo) {
2368     k_RInfo = klass_RInfo;
2369     klass_RInfo = obj;
2370   }
2371 
2372   ciMethodData* md;
2373   ciProfileData* data;
2374   int mdo_offset_bias = 0;
2375   if (op->should_profile()) {
2376     ciMethod* method = op->profiled_method();
2377     assert(method != NULL, "Should have method");
2378     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2379 
2380     Label not_null;
2381     __ br_notnull_short(obj, Assembler::pn, not_null);
2382     Register mdo      = k_RInfo;
2383     Register data_val = Rtmp1;
2384     metadata2reg(md->constant_encoding(), mdo);
2385     if (mdo_offset_bias > 0) {
2386       __ set(mdo_offset_bias, data_val);
2387       __ add(mdo, data_val, mdo);
2388     }
2389     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2390     __ ldub(flags_addr, data_val);
2391     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2392     __ stb(data_val, flags_addr);
2393     __ ba(*obj_is_null);
2394     __ delayed()->nop();
2395     __ bind(not_null);
2396   } else {
2397     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2398     __ delayed()->nop();
2399   }
2400 
2401   Label profile_cast_failure, profile_cast_success;
2402   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2403   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2404 
2405   // patching may screw with our temporaries on sparc,
2406   // so let's do it before loading the class
2407   if (k->is_loaded()) {
2408     metadata2reg(k->constant_encoding(), k_RInfo);
2409   } else {
2410     klass2reg_with_patching(k_RInfo, op->info_for_patch());
2411   }
2412   assert(obj != k_RInfo, "must be different");
2413 
2414   // get object class
2415   // not a safepoint as obj null check happens earlier
2416   __ load_klass(obj, klass_RInfo);
2417   if (op->fast_check()) {
2418     assert_different_registers(klass_RInfo, k_RInfo);
2419     __ cmp(k_RInfo, klass_RInfo);
2420     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2421     __ delayed()->nop();
2422   } else {
2423     bool need_slow_path = true;
2424     if (k->is_loaded()) {
2425       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2426         need_slow_path = false;
2427       // perform the fast part of the checking logic
2428       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2429                                        (need_slow_path ? success_target : NULL),
2430                                        failure_target, NULL,
2431                                        RegisterOrConstant(k->super_check_offset()));
2432     } else {
2433       // perform the fast part of the checking logic
2434       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2435                                        failure_target, NULL);
2436     }
2437     if (need_slow_path) {
2438       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2439       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2440       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2441       __ delayed()->nop();
2442       __ cmp(G3, 0);
2443       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2444       __ delayed()->nop();
2445       // Fall through to success case
2446     }
2447   }
2448 
2449   if (op->should_profile()) {
2450     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2451     assert_different_registers(obj, mdo, recv, tmp1);
2452     __ bind(profile_cast_success);
2453     metadata2reg(md->constant_encoding(), mdo);
2454     if (mdo_offset_bias > 0) {
2455       __ set(mdo_offset_bias, tmp1);
2456       __ add(mdo, tmp1, mdo);
2457     }
2458     __ load_klass(obj, recv);
2459     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2460     // Jump over the failure case
2461     __ ba(*success);
2462     __ delayed()->nop();
2463     // Cast failure case
2464     __ bind(profile_cast_failure);
2465     metadata2reg(md->constant_encoding(), mdo);
2466     if (mdo_offset_bias > 0) {
2467       __ set(mdo_offset_bias, tmp1);
2468       __ add(mdo, tmp1, mdo);
2469     }
2470     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2471     __ ld_ptr(data_addr, tmp1);
2472     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2473     __ st_ptr(tmp1, data_addr);
2474     __ ba(*failure);
2475     __ delayed()->nop();
2476   }
2477   __ ba(*success);
2478   __ delayed()->nop();
2479 }
2480 
2481 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2482   LIR_Code code = op->code();
2483   if (code == lir_store_check) {
2484     Register value = op->object()->as_register();
2485     Register array = op->array()->as_register();
2486     Register k_RInfo = op->tmp1()->as_register();
2487     Register klass_RInfo = op->tmp2()->as_register();
2488     Register Rtmp1 = op->tmp3()->as_register();
2489 
2490     __ verify_oop(value);
2491     CodeStub* stub = op->stub();
2492     // check if it needs to be profiled
2493     ciMethodData* md;
2494     ciProfileData* data;
2495     int mdo_offset_bias = 0;
2496     if (op->should_profile()) {
2497       ciMethod* method = op->profiled_method();
2498       assert(method != NULL, "Should have method");
2499       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2500     }
2501     Label profile_cast_success, profile_cast_failure, done;
2502     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2503     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2504 
2505     if (op->should_profile()) {
2506       Label not_null;
2507       __ br_notnull_short(value, Assembler::pn, not_null);
2508       Register mdo      = k_RInfo;
2509       Register data_val = Rtmp1;
2510       metadata2reg(md->constant_encoding(), mdo);
2511       if (mdo_offset_bias > 0) {
2512         __ set(mdo_offset_bias, data_val);
2513         __ add(mdo, data_val, mdo);
2514       }
2515       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2516       __ ldub(flags_addr, data_val);
2517       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2518       __ stb(data_val, flags_addr);
2519       __ ba_short(done);
2520       __ bind(not_null);
2521     } else {
2522       __ br_null_short(value, Assembler::pn, done);
2523     }
2524     add_debug_info_for_null_check_here(op->info_for_exception());
2525     __ load_klass(array, k_RInfo);
2526     __ load_klass(value, klass_RInfo);
2527 
2528     // get instance klass
2529     __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
2530     // perform the fast part of the checking logic
2531     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2532 
2533     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2534     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2535     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2536     __ delayed()->nop();
2537     __ cmp(G3, 0);
2538     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2539     __ delayed()->nop();
2540     // fall through to the success case
2541 
2542     if (op->should_profile()) {
2543       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2544       assert_different_registers(value, mdo, recv, tmp1);
2545       __ bind(profile_cast_success);
2546       metadata2reg(md->constant_encoding(), mdo);
2547       if (mdo_offset_bias > 0) {
2548         __ set(mdo_offset_bias, tmp1);
2549         __ add(mdo, tmp1, mdo);
2550       }
2551       __ load_klass(value, recv);
2552       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2553       __ ba_short(done);
2554       // Cast failure case
2555       __ bind(profile_cast_failure);
2556       metadata2reg(md->constant_encoding(), mdo);
2557       if (mdo_offset_bias > 0) {
2558         __ set(mdo_offset_bias, tmp1);
2559         __ add(mdo, tmp1, mdo);
2560       }
2561       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2562       __ ld_ptr(data_addr, tmp1);
2563       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2564       __ st_ptr(tmp1, data_addr);
2565       __ ba(*stub->entry());
2566       __ delayed()->nop();
2567     }
2568     __ bind(done);
2569   } else if (code == lir_checkcast) {
2570     Register obj = op->object()->as_register();
2571     Register dst = op->result_opr()->as_register();
2572     Label success;
2573     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2574     __ bind(success);
2575     __ mov(obj, dst);
2576   } else if (code == lir_instanceof) {
2577     Register obj = op->object()->as_register();
2578     Register dst = op->result_opr()->as_register();
2579     Label success, failure, done;
2580     emit_typecheck_helper(op, &success, &failure, &failure);
2581     __ bind(failure);
2582     __ set(0, dst);
2583     __ ba_short(done);
2584     __ bind(success);
2585     __ set(1, dst);
2586     __ bind(done);
2587   } else {
2588     ShouldNotReachHere();
2589   }
2590 
2591 }
2592 
2593 
2594 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2595   if (op->code() == lir_cas_long) {
2596     assert(VM_Version::supports_cx8(), "wrong machine");
2597     Register addr = op->addr()->as_pointer_register();
2598     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2599     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2600     Register new_value_lo = op->new_value()->as_register_lo();
2601     Register new_value_hi = op->new_value()->as_register_hi();
2602     Register t1 = op->tmp1()->as_register();
2603     Register t2 = op->tmp2()->as_register();
2604     __ mov(cmp_value_lo, t1);
2605     __ mov(new_value_lo, t2);
2606     // perform the compare and swap operation
2607     __ casx(addr, t1, t2);
2608     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2609     // overwritten with the original value in "addr" and will be equal to t1.
2610     __ cmp(t1, t2);
2611   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2612     Register addr = op->addr()->as_pointer_register();
2613     Register cmp_value = op->cmp_value()->as_register();
2614     Register new_value = op->new_value()->as_register();
2615     Register t1 = op->tmp1()->as_register();
2616     Register t2 = op->tmp2()->as_register();
2617     __ mov(cmp_value, t1);
2618     __ mov(new_value, t2);
2619     if (op->code() == lir_cas_obj) {
2620       if (UseCompressedOops) {
2621         __ encode_heap_oop(t1);
2622         __ encode_heap_oop(t2);
2623         __ cas(addr, t1, t2);
2624       } else {
2625         __ cas_ptr(addr, t1, t2);
2626       }
2627     } else {
2628       __ cas(addr, t1, t2);
2629     }
2630     __ cmp(t1, t2);
2631   } else {
2632     Unimplemented();
2633   }
2634 }
2635 
2636 void LIR_Assembler::set_24bit_FPU() {
2637   Unimplemented();
2638 }
2639 
2640 
2641 void LIR_Assembler::reset_FPU() {
2642   Unimplemented();
2643 }
2644 
2645 
2646 void LIR_Assembler::breakpoint() {
2647   __ breakpoint_trap();
2648 }
2649 
2650 
2651 void LIR_Assembler::push(LIR_Opr opr) {
2652   Unimplemented();
2653 }
2654 
2655 
2656 void LIR_Assembler::pop(LIR_Opr opr) {
2657   Unimplemented();
2658 }
2659 
2660 
2661 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2662   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2663   Register dst = dst_opr->as_register();
2664   Register reg = mon_addr.base();
2665   int offset = mon_addr.disp();
2666   // compute pointer to BasicLock
2667   if (mon_addr.is_simm13()) {
2668     __ add(reg, offset, dst);
2669   } else {
2670     __ set(offset, dst);
2671     __ add(dst, reg, dst);
2672   }
2673 }
2674 
2675 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2676   assert(op->crc()->is_single_cpu(),  "crc must be register");
2677   assert(op->val()->is_single_cpu(),  "byte value must be register");
2678   assert(op->result_opr()->is_single_cpu(), "result must be register");
2679   Register crc = op->crc()->as_register();
2680   Register val = op->val()->as_register();
2681   Register table = op->result_opr()->as_register();
2682   Register res   = op->result_opr()->as_register();
2683 
2684   assert_different_registers(val, crc, table);
2685 
2686   __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
2687   __ not1(crc);
2688   __ clruwu(crc);
2689   __ update_byte_crc32(crc, val, table);
2690   __ not1(crc);
2691 
2692   __ mov(crc, res);
2693 }
2694 
2695 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2696   Register obj = op->obj_opr()->as_register();
2697   Register hdr = op->hdr_opr()->as_register();
2698   Register lock = op->lock_opr()->as_register();
2699 
2700   // obj may not be an oop
2701   if (op->code() == lir_lock) {
2702     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2703     if (UseFastLocking) {
2704       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2705       // add debug info for NullPointerException only if one is possible
2706       if (op->info() != NULL) {
2707         add_debug_info_for_null_check_here(op->info());
2708       }
2709       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2710     } else {
2711       // always do slow locking
2712       // note: the slow locking code could be inlined here, however if we use
2713       //       slow locking, speed doesn't matter anyway and this solution is
2714       //       simpler and requires less duplicated code - additionally, the
2715       //       slow locking code is the same in either case which simplifies
2716       //       debugging
2717       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2718       __ delayed()->nop();
2719     }
2720   } else {
2721     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2722     if (UseFastLocking) {
2723       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2724       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2725     } else {
2726       // always do slow unlocking
2727       // note: the slow unlocking code could be inlined here, however if we use
2728       //       slow unlocking, speed doesn't matter anyway and this solution is
2729       //       simpler and requires less duplicated code - additionally, the
2730       //       slow unlocking code is the same in either case which simplifies
2731       //       debugging
2732       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2733       __ delayed()->nop();
2734     }
2735   }
2736   __ bind(*op->stub()->continuation());
2737 }
2738 
2739 
2740 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2741   ciMethod* method = op->profiled_method();
2742   int bci          = op->profiled_bci();
2743   ciMethod* callee = op->profiled_callee();
2744 
2745   // Update counter for all call types
2746   ciMethodData* md = method->method_data_or_null();
2747   assert(md != NULL, "Sanity");
2748   ciProfileData* data = md->bci_to_data(bci);
2749   assert(data->is_CounterData(), "need CounterData for calls");
2750   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2751   Register mdo  = op->mdo()->as_register();
2752   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2753   Register tmp1 = op->tmp1()->as_register_lo();
2754   metadata2reg(md->constant_encoding(), mdo);
2755   int mdo_offset_bias = 0;
2756   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2757                             data->size_in_bytes())) {
2758     // The offset is large so bias the mdo by the base of the slot so
2759     // that the ld can use simm13s to reference the slots of the data
2760     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2761     __ set(mdo_offset_bias, O7);
2762     __ add(mdo, O7, mdo);
2763   }
2764 
2765   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2766   Bytecodes::Code bc = method->java_code_at_bci(bci);
2767   const bool callee_is_static = callee->is_loaded() && callee->is_static();
2768   // Perform additional virtual call profiling for invokevirtual and
2769   // invokeinterface bytecodes
2770   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2771       !callee_is_static &&  // required for optimized MH invokes
2772       C1ProfileVirtualCalls) {
2773     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2774     Register recv = op->recv()->as_register();
2775     assert_different_registers(mdo, tmp1, recv);
2776     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2777     ciKlass* known_klass = op->known_holder();
2778     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2779       // We know the type that will be seen at this call site; we can
2780       // statically update the MethodData* rather than needing to do
2781       // dynamic tests on the receiver type
2782 
2783       // NOTE: we should probably put a lock around this search to
2784       // avoid collisions by concurrent compilations
2785       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2786       uint i;
2787       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2788         ciKlass* receiver = vc_data->receiver(i);
2789         if (known_klass->equals(receiver)) {
2790           Address data_addr(mdo, md->byte_offset_of_slot(data,
2791                                                          VirtualCallData::receiver_count_offset(i)) -
2792                             mdo_offset_bias);
2793           __ ld_ptr(data_addr, tmp1);
2794           __ add(tmp1, DataLayout::counter_increment, tmp1);
2795           __ st_ptr(tmp1, data_addr);
2796           return;
2797         }
2798       }
2799 
2800       // Receiver type not found in profile data; select an empty slot
2801 
2802       // Note that this is less efficient than it should be because it
2803       // always does a write to the receiver part of the
2804       // VirtualCallData rather than just the first time
2805       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2806         ciKlass* receiver = vc_data->receiver(i);
2807         if (receiver == NULL) {
2808           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2809                             mdo_offset_bias);
2810           metadata2reg(known_klass->constant_encoding(), tmp1);
2811           __ st_ptr(tmp1, recv_addr);
2812           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2813                             mdo_offset_bias);
2814           __ ld_ptr(data_addr, tmp1);
2815           __ add(tmp1, DataLayout::counter_increment, tmp1);
2816           __ st_ptr(tmp1, data_addr);
2817           return;
2818         }
2819       }
2820     } else {
2821       __ load_klass(recv, recv);
2822       Label update_done;
2823       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2824       // Receiver did not match any saved receiver and there is no empty row for it.
2825       // Increment total counter to indicate polymorphic case.
2826       __ ld_ptr(counter_addr, tmp1);
2827       __ add(tmp1, DataLayout::counter_increment, tmp1);
2828       __ st_ptr(tmp1, counter_addr);
2829 
2830       __ bind(update_done);
2831     }
2832   } else {
2833     // Static call
2834     __ ld_ptr(counter_addr, tmp1);
2835     __ add(tmp1, DataLayout::counter_increment, tmp1);
2836     __ st_ptr(tmp1, counter_addr);
2837   }
2838 }
2839 
2840 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2841   Register obj = op->obj()->as_register();
2842   Register tmp1 = op->tmp()->as_pointer_register();
2843   Register tmp2 = G1;
2844   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2845   ciKlass* exact_klass = op->exact_klass();
2846   intptr_t current_klass = op->current_klass();
2847   bool not_null = op->not_null();
2848   bool no_conflict = op->no_conflict();
2849 
2850   Label update, next, none;
2851 
2852   bool do_null = !not_null;
2853   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2854   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2855 
2856   assert(do_null || do_update, "why are we here?");
2857   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2858 
2859   __ verify_oop(obj);
2860 
2861   if (tmp1 != obj) {
2862     __ mov(obj, tmp1);
2863   }
2864   if (do_null) {
2865     __ br_notnull_short(tmp1, Assembler::pt, update);
2866     if (!TypeEntries::was_null_seen(current_klass)) {
2867       __ ld_ptr(mdo_addr, tmp1);
2868       __ or3(tmp1, TypeEntries::null_seen, tmp1);
2869       __ st_ptr(tmp1, mdo_addr);
2870     }
2871     if (do_update) {
2872       __ ba(next);
2873       __ delayed()->nop();
2874     }
2875 #ifdef ASSERT
2876   } else {
2877     __ br_notnull_short(tmp1, Assembler::pt, update);
2878     __ stop("unexpect null obj");
2879 #endif
2880   }
2881 
2882   __ bind(update);
2883 
2884   if (do_update) {
2885 #ifdef ASSERT
2886     if (exact_klass != NULL) {
2887       Label ok;
2888       __ load_klass(tmp1, tmp1);
2889       metadata2reg(exact_klass->constant_encoding(), tmp2);
2890       __ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
2891       __ stop("exact klass and actual klass differ");
2892       __ bind(ok);
2893     }
2894 #endif
2895 
2896     Label do_update;
2897     __ ld_ptr(mdo_addr, tmp2);
2898 
2899     if (!no_conflict) {
2900       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2901         if (exact_klass != NULL) {
2902           metadata2reg(exact_klass->constant_encoding(), tmp1);
2903         } else {
2904           __ load_klass(tmp1, tmp1);
2905         }
2906 
2907         __ xor3(tmp1, tmp2, tmp1);
2908         __ btst(TypeEntries::type_klass_mask, tmp1);
2909         // klass seen before, nothing to do. The unknown bit may have been
2910         // set already but no need to check.
2911         __ brx(Assembler::zero, false, Assembler::pt, next);
2912         __ delayed()->
2913 
2914            btst(TypeEntries::type_unknown, tmp1);
2915         // already unknown. Nothing to do anymore.
2916         __ brx(Assembler::notZero, false, Assembler::pt, next);
2917 
2918         if (TypeEntries::is_type_none(current_klass)) {
2919           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2920           __ brx(Assembler::zero, true, Assembler::pt, do_update);
2921           // first time here. Set profile type.
2922           __ delayed()->or3(tmp2, tmp1, tmp2);
2923         } else {
2924           __ delayed()->nop();
2925         }
2926       } else {
2927         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2928                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2929 
2930         __ btst(TypeEntries::type_unknown, tmp2);
2931         // already unknown. Nothing to do anymore.
2932         __ brx(Assembler::notZero, false, Assembler::pt, next);
2933         __ delayed()->nop();
2934       }
2935 
2936       // different than before. Cannot keep accurate profile.
2937       __ or3(tmp2, TypeEntries::type_unknown, tmp2);
2938     } else {
2939       // There's a single possible klass at this profile point
2940       assert(exact_klass != NULL, "should be");
2941       if (TypeEntries::is_type_none(current_klass)) {
2942         metadata2reg(exact_klass->constant_encoding(), tmp1);
2943         __ xor3(tmp1, tmp2, tmp1);
2944         __ btst(TypeEntries::type_klass_mask, tmp1);
2945         __ brx(Assembler::zero, false, Assembler::pt, next);
2946 #ifdef ASSERT
2947 
2948         {
2949           Label ok;
2950           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2951           __ brx(Assembler::zero, true, Assembler::pt, ok);
2952           __ delayed()->nop();
2953 
2954           __ stop("unexpected profiling mismatch");
2955           __ bind(ok);
2956         }
2957         // first time here. Set profile type.
2958         __ or3(tmp2, tmp1, tmp2);
2959 #else
2960         // first time here. Set profile type.
2961         __ delayed()->or3(tmp2, tmp1, tmp2);
2962 #endif
2963 
2964       } else {
2965         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2966                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2967 
2968         // already unknown. Nothing to do anymore.
2969         __ btst(TypeEntries::type_unknown, tmp2);
2970         __ brx(Assembler::notZero, false, Assembler::pt, next);
2971         __ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
2972       }
2973     }
2974 
2975     __ bind(do_update);
2976     __ st_ptr(tmp2, mdo_addr);
2977 
2978     __ bind(next);
2979   }
2980 }
2981 
2982 void LIR_Assembler::align_backward_branch_target() {
2983   __ align(OptoLoopAlignment);
2984 }
2985 
2986 
2987 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2988   // make sure we are expecting a delay
2989   // this has the side effect of clearing the delay state
2990   // so we can use _masm instead of _masm->delayed() to do the
2991   // code generation.
2992   __ delayed();
2993 
2994   // make sure we only emit one instruction
2995   int offset = code_offset();
2996   op->delay_op()->emit_code(this);
2997 #ifdef ASSERT
2998   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
2999     op->delay_op()->print();
3000   }
3001   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3002          "only one instruction can go in a delay slot");
3003 #endif
3004 
3005   // we may also be emitting the call info for the instruction
3006   // which we are the delay slot of.
3007   CodeEmitInfo* call_info = op->call_info();
3008   if (call_info) {
3009     add_call_info(code_offset(), call_info);
3010   }
3011 
3012   if (VerifyStackAtCalls) {
3013     _masm->sub(FP, SP, O7);
3014     _masm->cmp(O7, initial_frame_size_in_bytes());
3015     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3016   }
3017 }
3018 
3019 
3020 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3021   assert(left->is_register(), "can only handle registers");
3022 
3023   if (left->is_single_cpu()) {
3024     __ neg(left->as_register(), dest->as_register());
3025   } else if (left->is_single_fpu()) {
3026     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3027   } else if (left->is_double_fpu()) {
3028     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3029   } else {
3030     assert (left->is_double_cpu(), "Must be a long");
3031     Register Rlow = left->as_register_lo();
3032     Register Rhi = left->as_register_hi();
3033     __ sub(G0, Rlow, dest->as_register_lo());
3034   }
3035 }
3036 
3037 
3038 void LIR_Assembler::fxch(int i) {
3039   Unimplemented();
3040 }
3041 
3042 void LIR_Assembler::fld(int i) {
3043   Unimplemented();
3044 }
3045 
3046 void LIR_Assembler::ffree(int i) {
3047   Unimplemented();
3048 }
3049 
3050 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3051                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3052 
3053   // if tmp is invalid, then the function being called doesn't destroy the thread
3054   if (tmp->is_valid()) {
3055     __ save_thread(tmp->as_pointer_register());
3056   }
3057   __ call(dest, relocInfo::runtime_call_type);
3058   __ delayed()->nop();
3059   if (info != NULL) {
3060     add_call_info_here(info);
3061   }
3062   if (tmp->is_valid()) {
3063     __ restore_thread(tmp->as_pointer_register());
3064   }
3065 
3066 #ifdef ASSERT
3067   __ verify_thread();
3068 #endif // ASSERT
3069 }
3070 
3071 
3072 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3073   ShouldNotReachHere();
3074 
3075   NEEDS_CLEANUP;
3076   if (type == T_LONG) {
3077     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3078 
3079     // (extended to allow indexed as well as constant displaced for JSR-166)
3080     Register idx = noreg; // contains either constant offset or index
3081 
3082     int disp = mem_addr->disp();
3083     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3084       if (!Assembler::is_simm13(disp)) {
3085         idx = O7;
3086         __ set(disp, idx);
3087       }
3088     } else {
3089       assert(disp == 0, "not both indexed and disp");
3090       idx = mem_addr->index()->as_register();
3091     }
3092 
3093     int null_check_offset = -1;
3094 
3095     Register base = mem_addr->base()->as_register();
3096     if (src->is_register() && dest->is_address()) {
3097       // G4 is high half, G5 is low half
3098       // clear the top bits of G5, and scale up G4
3099       __ srl (src->as_register_lo(),  0, G5);
3100       __ sllx(src->as_register_hi(), 32, G4);
3101       // combine the two halves into the 64 bits of G4
3102       __ or3(G4, G5, G4);
3103       null_check_offset = __ offset();
3104       if (idx == noreg) {
3105         __ stx(G4, base, disp);
3106       } else {
3107         __ stx(G4, base, idx);
3108       }
3109     } else if (src->is_address() && dest->is_register()) {
3110       null_check_offset = __ offset();
3111       if (idx == noreg) {
3112         __ ldx(base, disp, G5);
3113       } else {
3114         __ ldx(base, idx, G5);
3115       }
3116       __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3117       __ mov (G5, dest->as_register_lo());     // copy low half into lo
3118     } else {
3119       Unimplemented();
3120     }
3121     if (info != NULL) {
3122       add_debug_info_for_null_check(null_check_offset, info);
3123     }
3124 
3125   } else {
3126     // use normal move for all other volatiles since they don't need
3127     // special handling to remain atomic.
3128     move_op(src, dest, type, lir_patch_none, info, false, false, false);
3129   }
3130 }
3131 
3132 void LIR_Assembler::membar() {
3133   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3134   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3135 }
3136 
3137 void LIR_Assembler::membar_acquire() {
3138   // no-op on TSO
3139 }
3140 
3141 void LIR_Assembler::membar_release() {
3142   // no-op on TSO
3143 }
3144 
3145 void LIR_Assembler::membar_loadload() {
3146   // no-op
3147   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3148 }
3149 
3150 void LIR_Assembler::membar_storestore() {
3151   // no-op
3152   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3153 }
3154 
3155 void LIR_Assembler::membar_loadstore() {
3156   // no-op
3157   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3158 }
3159 
3160 void LIR_Assembler::membar_storeload() {
3161   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3162 }
3163 
3164 void LIR_Assembler::on_spin_wait() {
3165   Unimplemented();
3166 }
3167 
3168 // Pack two sequential registers containing 32 bit values
3169 // into a single 64 bit register.
3170 // src and src->successor() are packed into dst
3171 // src and dst may be the same register.
3172 // Note: src is destroyed
3173 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3174   Register rs = src->as_register();
3175   Register rd = dst->as_register_lo();
3176   __ sllx(rs, 32, rs);
3177   __ srl(rs->successor(), 0, rs->successor());
3178   __ or3(rs, rs->successor(), rd);
3179 }
3180 
3181 // Unpack a 64 bit value in a register into
3182 // two sequential registers.
3183 // src is unpacked into dst and dst->successor()
3184 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3185   Register rs = src->as_register_lo();
3186   Register rd = dst->as_register_hi();
3187   assert_different_registers(rs, rd, rd->successor());
3188   __ srlx(rs, 32, rd);
3189   __ srl (rs,  0, rd->successor());
3190 }
3191 
3192 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3193   const LIR_Address* addr = addr_opr->as_address_ptr();
3194   assert(addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
3195   const Register dest_reg = dest->as_pointer_register();
3196   const Register base_reg = addr->base()->as_pointer_register();
3197 
3198   if (Assembler::is_simm13(addr->disp())) {
3199     if (addr->index()->is_valid()) {
3200       const Register index_reg = addr->index()->as_pointer_register();
3201       assert(index_reg != G3_scratch, "invariant");
3202       __ add(base_reg, addr->disp(), G3_scratch);
3203       __ add(index_reg, G3_scratch, dest_reg);
3204     } else {
3205       __ add(base_reg, addr->disp(), dest_reg);
3206     }
3207   } else {
3208     __ set(addr->disp(), G3_scratch);
3209     if (addr->index()->is_valid()) {
3210       const Register index_reg = addr->index()->as_pointer_register();
3211       assert(index_reg != G3_scratch, "invariant");
3212       __ add(index_reg, G3_scratch, G3_scratch);
3213     }
3214     __ add(base_reg, G3_scratch, dest_reg);
3215   }
3216 }
3217 
3218 
3219 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3220   assert(result_reg->is_register(), "check");
3221   __ mov(G2_thread, result_reg->as_register());
3222 }
3223 
3224 #ifdef ASSERT
3225 // emit run-time assertion
3226 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3227   assert(op->code() == lir_assert, "must be");
3228 
3229   if (op->in_opr1()->is_valid()) {
3230     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3231     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3232   } else {
3233     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3234     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3235   }
3236 
3237   Label ok;
3238   if (op->condition() != lir_cond_always) {
3239     Assembler::Condition acond;
3240     switch (op->condition()) {
3241       case lir_cond_equal:        acond = Assembler::equal;                break;
3242       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
3243       case lir_cond_less:         acond = Assembler::less;                 break;
3244       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
3245       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
3246       case lir_cond_greater:      acond = Assembler::greater;              break;
3247       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
3248       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
3249       default:                         ShouldNotReachHere();
3250     };
3251     __ br(acond, false, Assembler::pt, ok);
3252     __ delayed()->nop();
3253   }
3254   if (op->halt()) {
3255     const char* str = __ code_string(op->msg());
3256     __ stop(str);
3257   } else {
3258     breakpoint();
3259   }
3260   __ bind(ok);
3261 }
3262 #endif
3263 
3264 void LIR_Assembler::peephole(LIR_List* lir) {
3265   LIR_OpList* inst = lir->instructions_list();
3266   for (int i = 0; i < inst->length(); i++) {
3267     LIR_Op* op = inst->at(i);
3268     switch (op->code()) {
3269       case lir_cond_float_branch:
3270       case lir_branch: {
3271         LIR_OpBranch* branch = op->as_OpBranch();
3272         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3273         LIR_Op* delay_op = NULL;
3274         // we'd like to be able to pull following instructions into
3275         // this slot but we don't know enough to do it safely yet so
3276         // only optimize block to block control flow.
3277         if (LIRFillDelaySlots && branch->block()) {
3278           LIR_Op* prev = inst->at(i - 1);
3279           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3280             // swap previous instruction into delay slot
3281             inst->at_put(i - 1, op);
3282             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3283 #ifndef PRODUCT
3284             if (LIRTracePeephole) {
3285               tty->print_cr("delayed");
3286               inst->at(i - 1)->print();
3287               inst->at(i)->print();
3288               tty->cr();
3289             }
3290 #endif
3291             continue;
3292           }
3293         }
3294 
3295         if (!delay_op) {
3296           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3297         }
3298         inst->insert_before(i + 1, delay_op);
3299         break;
3300       }
3301       case lir_static_call:
3302       case lir_virtual_call:
3303       case lir_icvirtual_call:
3304       case lir_optvirtual_call:
3305       case lir_dynamic_call: {
3306         LIR_Op* prev = inst->at(i - 1);
3307         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3308             (op->code() != lir_virtual_call ||
3309              !prev->result_opr()->is_single_cpu() ||
3310              prev->result_opr()->as_register() != O0) &&
3311             LIR_Assembler::is_single_instruction(prev)) {
3312           // Only moves without info can be put into the delay slot.
3313           // Also don't allow the setup of the receiver in the delay
3314           // slot for vtable calls.
3315           inst->at_put(i - 1, op);
3316           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3317 #ifndef PRODUCT
3318           if (LIRTracePeephole) {
3319             tty->print_cr("delayed");
3320             inst->at(i - 1)->print();
3321             inst->at(i)->print();
3322             tty->cr();
3323           }
3324 #endif
3325         } else {
3326           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3327           inst->insert_before(i + 1, delay_op);
3328           i++;
3329         }
3330         break;
3331       }
3332     }
3333   }
3334 }
3335 
3336 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3337   LIR_Address* addr = src->as_address_ptr();
3338 
3339   assert(data == dest, "swap uses only 2 operands");
3340   assert (code == lir_xchg, "no xadd on sparc");
3341 
3342   if (data->type() == T_INT) {
3343     __ swap(as_Address(addr), data->as_register());
3344   } else if (data->is_oop()) {
3345     Register obj = data->as_register();
3346     Register narrow = tmp->as_register();
3347     assert(UseCompressedOops, "swap is 32bit only");
3348     __ encode_heap_oop(obj, narrow);
3349     __ swap(as_Address(addr), narrow);
3350     __ decode_heap_oop(narrow, obj);
3351   } else {
3352     ShouldNotReachHere();
3353   }
3354 }
3355 
3356 #undef __