1 //
   2 // Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 // 64-bit build means 64-bit pointers means hi/lo pairs
 315 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 316                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 317                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 318                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 319 // Lock encodings use G3 and G4 internally
 320 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 321                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 322                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 323                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 324 // Special class for storeP instructions, which can store SP or RPC to TLS.
 325 // It is also used for memory addressing, allowing direct TLS addressing.
 326 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 327                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 328                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 329                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 330 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 331 // We use it to save R_G2 across calls out of Java.
 332 reg_class l7_regP(R_L7H,R_L7);
 333 
 334 // Other special pointer regs
 335 reg_class g1_regP(R_G1H,R_G1);
 336 reg_class g2_regP(R_G2H,R_G2);
 337 reg_class g3_regP(R_G3H,R_G3);
 338 reg_class g4_regP(R_G4H,R_G4);
 339 reg_class g5_regP(R_G5H,R_G5);
 340 reg_class i0_regP(R_I0H,R_I0);
 341 reg_class o0_regP(R_O0H,R_O0);
 342 reg_class o1_regP(R_O1H,R_O1);
 343 reg_class o2_regP(R_O2H,R_O2);
 344 reg_class o7_regP(R_O7H,R_O7);
 345 
 346 
 347 // ----------------------------
 348 // Long Register Classes
 349 // ----------------------------
 350 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 351 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 352 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 353                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 354 // 64-bit, longs in 1 register: use all 64-bit integer registers
 355                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 356                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 357                   );
 358 
 359 reg_class g1_regL(R_G1H,R_G1);
 360 reg_class g3_regL(R_G3H,R_G3);
 361 reg_class o2_regL(R_O2H,R_O2);
 362 reg_class o7_regL(R_O7H,R_O7);
 363 
 364 // ----------------------------
 365 // Special Class for Condition Code Flags Register
 366 reg_class int_flags(CCR);
 367 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 368 reg_class float_flag0(FCC0);
 369 
 370 
 371 // ----------------------------
 372 // Float Point Register Classes
 373 // ----------------------------
 374 // Skip F30/F31, they are reserved for mem-mem copies
 375 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 376 
 377 // Paired floating point registers--they show up in the same order as the floats,
 378 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 379 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 380                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 381                    /* Use extra V9 double registers; this AD file does not support V8 */
 382                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 383                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 384                    );
 385 
 386 // Paired floating point registers--they show up in the same order as the floats,
 387 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 388 // This class is usable for mis-aligned loads as happen in I2C adapters.
 389 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 390                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 391 %}
 392 
 393 //----------DEFINITION BLOCK---------------------------------------------------
 394 // Define name --> value mappings to inform the ADLC of an integer valued name
 395 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 396 // Format:
 397 //        int_def  <name>         ( <int_value>, <expression>);
 398 // Generated Code in ad_<arch>.hpp
 399 //        #define  <name>   (<expression>)
 400 //        // value == <int_value>
 401 // Generated code in ad_<arch>.cpp adlc_verification()
 402 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 403 //
 404 definitions %{
 405 // The default cost (of an ALU instruction).
 406   int_def DEFAULT_COST      (    100,     100);
 407   int_def HUGE_COST         (1000000, 1000000);
 408 
 409 // Memory refs are twice as expensive as run-of-the-mill.
 410   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 411 
 412 // Branches are even more expensive.
 413   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 414   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 415 %}
 416 
 417 
 418 //----------SOURCE BLOCK-------------------------------------------------------
 419 // This is a block of C++ code which provides values, functions, and
 420 // definitions necessary in the rest of the architecture description
 421 source_hpp %{
 422 // Header information of the source block.
 423 // Method declarations/definitions which are used outside
 424 // the ad-scope can conveniently be defined here.
 425 //
 426 // To keep related declarations/definitions/uses close together,
 427 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 428 
 429 // Must be visible to the DFA in dfa_sparc.cpp
 430 extern bool can_branch_register( Node *bol, Node *cmp );
 431 
 432 extern bool use_block_zeroing(Node* count);
 433 
 434 // Macros to extract hi & lo halves from a long pair.
 435 // G0 is not part of any long pair, so assert on that.
 436 // Prevents accidentally using G1 instead of G0.
 437 #define LONG_HI_REG(x) (x)
 438 #define LONG_LO_REG(x) (x)
 439 
 440 class CallStubImpl {
 441 
 442   //--------------------------------------------------------------
 443   //---<  Used for optimization in Compile::Shorten_branches  >---
 444   //--------------------------------------------------------------
 445 
 446  public:
 447   // Size of call trampoline stub.
 448   static uint size_call_trampoline() {
 449     return 0; // no call trampolines on this platform
 450   }
 451 
 452   // number of relocations needed by a call trampoline stub
 453   static uint reloc_call_trampoline() {
 454     return 0; // no call trampolines on this platform
 455   }
 456 };
 457 
 458 class HandlerImpl {
 459 
 460  public:
 461 
 462   static int emit_exception_handler(CodeBuffer &cbuf);
 463   static int emit_deopt_handler(CodeBuffer& cbuf);
 464 
 465   static uint size_exception_handler() {
 466     return ( NativeJump::instruction_size ); // sethi;jmp;nop
 467   }
 468 
 469   static uint size_deopt_handler() {
 470     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
 471   }
 472 };
 473 
 474 %}
 475 
 476 source %{
 477 #define __ _masm.
 478 
 479 // tertiary op of a LoadP or StoreP encoding
 480 #define REGP_OP true
 481 
 482 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 483 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 484 static Register reg_to_register_object(int register_encoding);
 485 
 486 // Used by the DFA in dfa_sparc.cpp.
 487 // Check for being able to use a V9 branch-on-register.  Requires a
 488 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 489 // extended.  Doesn't work following an integer ADD, for example, because of
 490 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 491 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 492 // replace them with zero, which could become sign-extension in a different OS
 493 // release.  There's no obvious reason why an interrupt will ever fill these
 494 // bits with non-zero junk (the registers are reloaded with standard LD
 495 // instructions which either zero-fill or sign-fill).
 496 bool can_branch_register( Node *bol, Node *cmp ) {
 497   if( !BranchOnRegister ) return false;
 498   if( cmp->Opcode() == Op_CmpP )
 499     return true;  // No problems with pointer compares
 500   if( cmp->Opcode() == Op_CmpL )
 501     return true;  // No problems with long compares
 502 
 503   if( !SparcV9RegsHiBitsZero ) return false;
 504   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 505       bol->as_Bool()->_test._test != BoolTest::eq )
 506      return false;
 507 
 508   // Check for comparing against a 'safe' value.  Any operation which
 509   // clears out the high word is safe.  Thus, loads and certain shifts
 510   // are safe, as are non-negative constants.  Any operation which
 511   // preserves zero bits in the high word is safe as long as each of its
 512   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 513   // inputs are safe.  At present, the only important case to recognize
 514   // seems to be loads.  Constants should fold away, and shifts &
 515   // logicals can use the 'cc' forms.
 516   Node *x = cmp->in(1);
 517   if( x->is_Load() ) return true;
 518   if( x->is_Phi() ) {
 519     for( uint i = 1; i < x->req(); i++ )
 520       if( !x->in(i)->is_Load() )
 521         return false;
 522     return true;
 523   }
 524   return false;
 525 }
 526 
 527 bool use_block_zeroing(Node* count) {
 528   // Use BIS for zeroing if count is not constant
 529   // or it is >= BlockZeroingLowLimit.
 530   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 531 }
 532 
 533 // ****************************************************************************
 534 
 535 // REQUIRED FUNCTIONALITY
 536 
 537 // !!!!! Special hack to get all type of calls to specify the byte offset
 538 //       from the start of the call to the point where the return address
 539 //       will point.
 540 //       The "return address" is the address of the call instruction, plus 8.
 541 
 542 int MachCallStaticJavaNode::ret_addr_offset() {
 543   int offset = NativeCall::instruction_size;  // call; delay slot
 544   if (_method_handle_invoke)
 545     offset += 4;  // restore SP
 546   return offset;
 547 }
 548 
 549 int MachCallDynamicJavaNode::ret_addr_offset() {
 550   int vtable_index = this->_vtable_index;
 551   if (vtable_index < 0) {
 552     // must be invalid_vtable_index, not nonvirtual_vtable_index
 553     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 554     return (NativeMovConstReg::instruction_size +
 555            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 556   } else {
 557     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 558     int entry_offset = in_bytes(Klass::vtable_start_offset()) + vtable_index*vtableEntry::size_in_bytes();
 559     int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
 560     int klass_load_size;
 561     if (UseCompressedClassPointers) {
 562       assert(Universe::heap() != NULL, "java heap should be initialized");
 563       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 564     } else {
 565       klass_load_size = 1*BytesPerInstWord;
 566     }
 567     if (Assembler::is_simm13(v_off)) {
 568       return klass_load_size +
 569              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 570              NativeCall::instruction_size);  // call; delay slot
 571     } else {
 572       return klass_load_size +
 573              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 574              NativeCall::instruction_size);  // call; delay slot
 575     }
 576   }
 577 }
 578 
 579 int MachCallRuntimeNode::ret_addr_offset() {
 580   if (MacroAssembler::is_far_target(entry_point())) {
 581     return NativeFarCall::instruction_size;
 582   } else {
 583     return NativeCall::instruction_size;
 584   }
 585 }
 586 
 587 // Indicate if the safepoint node needs the polling page as an input.
 588 // Since Sparc does not have absolute addressing, it does.
 589 bool SafePointNode::needs_polling_address_input() {
 590   return true;
 591 }
 592 
 593 // emit an interrupt that is caught by the debugger (for debugging compiler)
 594 void emit_break(CodeBuffer &cbuf) {
 595   MacroAssembler _masm(&cbuf);
 596   __ breakpoint_trap();
 597 }
 598 
 599 #ifndef PRODUCT
 600 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 601   st->print("TA");
 602 }
 603 #endif
 604 
 605 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 606   emit_break(cbuf);
 607 }
 608 
 609 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 610   return MachNode::size(ra_);
 611 }
 612 
 613 // Traceable jump
 614 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 615   MacroAssembler _masm(&cbuf);
 616   Register rdest = reg_to_register_object(jump_target);
 617   __ JMP(rdest, 0);
 618   __ delayed()->nop();
 619 }
 620 
 621 // Traceable jump and set exception pc
 622 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 623   MacroAssembler _masm(&cbuf);
 624   Register rdest = reg_to_register_object(jump_target);
 625   __ JMP(rdest, 0);
 626   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 627 }
 628 
 629 void emit_nop(CodeBuffer &cbuf) {
 630   MacroAssembler _masm(&cbuf);
 631   __ nop();
 632 }
 633 
 634 void emit_illtrap(CodeBuffer &cbuf) {
 635   MacroAssembler _masm(&cbuf);
 636   __ illtrap(0);
 637 }
 638 
 639 
 640 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 641   assert(n->rule() != loadUB_rule, "");
 642 
 643   intptr_t offset = 0;
 644   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 645   const Node* addr = n->get_base_and_disp(offset, adr_type);
 646   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 647   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 648   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 649   atype = atype->add_offset(offset);
 650   assert(disp32 == offset, "wrong disp32");
 651   return atype->_offset;
 652 }
 653 
 654 
 655 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 656   assert(n->rule() != loadUB_rule, "");
 657 
 658   intptr_t offset = 0;
 659   Node* addr = n->in(2);
 660   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 661   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 662     Node* a = addr->in(2/*AddPNode::Address*/);
 663     Node* o = addr->in(3/*AddPNode::Offset*/);
 664     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 665     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 666     assert(atype->isa_oop_ptr(), "still an oop");
 667   }
 668   offset = atype->is_ptr()->_offset;
 669   if (offset != Type::OffsetBot)  offset += disp32;
 670   return offset;
 671 }
 672 
 673 static inline jlong replicate_immI(int con, int count, int width) {
 674   // Load a constant replicated "count" times with width "width"
 675   assert(count*width == 8 && width <= 4, "sanity");
 676   int bit_width = width * 8;
 677   jlong val = con;
 678   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 679   for (int i = 0; i < count - 1; i++) {
 680     val |= (val << bit_width);
 681   }
 682   return val;
 683 }
 684 
 685 static inline jlong replicate_immF(float con) {
 686   // Replicate float con 2 times and pack into vector.
 687   int val = *((int*)&con);
 688   jlong lval = val;
 689   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 690   return lval;
 691 }
 692 
 693 // Standard Sparc opcode form2 field breakdown
 694 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 695   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 696   int op = (f30 << 30) |
 697            (f29 << 29) |
 698            (f25 << 25) |
 699            (f22 << 22) |
 700            (f20 << 20) |
 701            (f19 << 19) |
 702            (f0  <<  0);
 703   cbuf.insts()->emit_int32(op);
 704 }
 705 
 706 // Standard Sparc opcode form2 field breakdown
 707 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 708   f0 >>= 10;           // Drop 10 bits
 709   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 710   int op = (f30 << 30) |
 711            (f25 << 25) |
 712            (f22 << 22) |
 713            (f0  <<  0);
 714   cbuf.insts()->emit_int32(op);
 715 }
 716 
 717 // Standard Sparc opcode form3 field breakdown
 718 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 719   int op = (f30 << 30) |
 720            (f25 << 25) |
 721            (f19 << 19) |
 722            (f14 << 14) |
 723            (f5  <<  5) |
 724            (f0  <<  0);
 725   cbuf.insts()->emit_int32(op);
 726 }
 727 
 728 // Standard Sparc opcode form3 field breakdown
 729 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 730   simm13 &= (1<<13)-1; // Mask to 13 bits
 731   int op = (f30 << 30) |
 732            (f25 << 25) |
 733            (f19 << 19) |
 734            (f14 << 14) |
 735            (1   << 13) | // bit to indicate immediate-mode
 736            (simm13<<0);
 737   cbuf.insts()->emit_int32(op);
 738 }
 739 
 740 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 741   simm10 &= (1<<10)-1; // Mask to 10 bits
 742   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 743 }
 744 
 745 #ifdef ASSERT
 746 // Helper function for VerifyOops in emit_form3_mem_reg
 747 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 748   warning("VerifyOops encountered unexpected instruction:");
 749   n->dump(2);
 750   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 751 }
 752 #endif
 753 
 754 
 755 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 756                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 757 
 758 #ifdef ASSERT
 759   // The following code implements the +VerifyOops feature.
 760   // It verifies oop values which are loaded into or stored out of
 761   // the current method activation.  +VerifyOops complements techniques
 762   // like ScavengeALot, because it eagerly inspects oops in transit,
 763   // as they enter or leave the stack, as opposed to ScavengeALot,
 764   // which inspects oops "at rest", in the stack or heap, at safepoints.
 765   // For this reason, +VerifyOops can sometimes detect bugs very close
 766   // to their point of creation.  It can also serve as a cross-check
 767   // on the validity of oop maps, when used toegether with ScavengeALot.
 768 
 769   // It would be good to verify oops at other points, especially
 770   // when an oop is used as a base pointer for a load or store.
 771   // This is presently difficult, because it is hard to know when
 772   // a base address is biased or not.  (If we had such information,
 773   // it would be easy and useful to make a two-argument version of
 774   // verify_oop which unbiases the base, and performs verification.)
 775 
 776   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 777   bool is_verified_oop_base  = false;
 778   bool is_verified_oop_load  = false;
 779   bool is_verified_oop_store = false;
 780   int tmp_enc = -1;
 781   if (VerifyOops && src1_enc != R_SP_enc) {
 782     // classify the op, mainly for an assert check
 783     int st_op = 0, ld_op = 0;
 784     switch (primary) {
 785     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 786     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 787     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 788     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 789     case Assembler::std_op3:  st_op = Op_StoreL; break;
 790     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 791     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 792 
 793     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 794     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 795     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 796     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 797     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 798     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 799     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 800     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 801     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 802     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 803     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 804 
 805     default: ShouldNotReachHere();
 806     }
 807     if (tertiary == REGP_OP) {
 808       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 809       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 810       else                          ShouldNotReachHere();
 811       if (st_op) {
 812         // a store
 813         // inputs are (0:control, 1:memory, 2:address, 3:value)
 814         Node* n2 = n->in(3);
 815         if (n2 != NULL) {
 816           const Type* t = n2->bottom_type();
 817           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 818         }
 819       } else {
 820         // a load
 821         const Type* t = n->bottom_type();
 822         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 823       }
 824     }
 825 
 826     if (ld_op) {
 827       // a Load
 828       // inputs are (0:control, 1:memory, 2:address)
 829       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 830           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 831           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 832           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 833           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 834           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 835           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 836           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 837           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 838           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 839           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 840           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 841           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 842           !(n->rule() == loadUB_rule)) {
 843         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 844       }
 845     } else if (st_op) {
 846       // a Store
 847       // inputs are (0:control, 1:memory, 2:address, 3:value)
 848       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 849           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 850           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 851           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 852           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 853           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 854           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 855         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 856       }
 857     }
 858 
 859     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 860       Node* addr = n->in(2);
 861       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 862         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 863         if (atype != NULL) {
 864           intptr_t offset = get_offset_from_base(n, atype, disp32);
 865           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 866           if (offset != offset_2) {
 867             get_offset_from_base(n, atype, disp32);
 868             get_offset_from_base_2(n, atype, disp32);
 869           }
 870           assert(offset == offset_2, "different offsets");
 871           if (offset == disp32) {
 872             // we now know that src1 is a true oop pointer
 873             is_verified_oop_base = true;
 874             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 875               if( primary == Assembler::ldd_op3 ) {
 876                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 877               } else {
 878                 tmp_enc = dst_enc;
 879                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 880                 assert(src1_enc != dst_enc, "");
 881               }
 882             }
 883           }
 884           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 885                        || offset == oopDesc::mark_offset_in_bytes())) {
 886                       // loading the mark should not be allowed either, but
 887                       // we don't check this since it conflicts with InlineObjectHash
 888                       // usage of LoadINode to get the mark. We could keep the
 889                       // check if we create a new LoadMarkNode
 890             // but do not verify the object before its header is initialized
 891             ShouldNotReachHere();
 892           }
 893         }
 894       }
 895     }
 896   }
 897 #endif
 898 
 899   uint instr = (Assembler::ldst_op << 30)
 900              | (dst_enc        << 25)
 901              | (primary        << 19)
 902              | (src1_enc       << 14);
 903 
 904   uint index = src2_enc;
 905   int disp = disp32;
 906 
 907   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 908     disp += STACK_BIAS;
 909     // Check that stack offset fits, load into O7 if not
 910     if (!Assembler::is_simm13(disp)) {
 911       MacroAssembler _masm(&cbuf);
 912       __ set(disp, O7);
 913       if (index != R_G0_enc) {
 914         __ add(O7, reg_to_register_object(index), O7);
 915       }
 916       index = R_O7_enc;
 917       disp = 0;
 918     }
 919   }
 920 
 921   if( disp == 0 ) {
 922     // use reg-reg form
 923     // bit 13 is already zero
 924     instr |= index;
 925   } else {
 926     // use reg-imm form
 927     instr |= 0x00002000;          // set bit 13 to one
 928     instr |= disp & 0x1FFF;
 929   }
 930 
 931   cbuf.insts()->emit_int32(instr);
 932 
 933 #ifdef ASSERT
 934   if (VerifyOops) {
 935     MacroAssembler _masm(&cbuf);
 936     if (is_verified_oop_base) {
 937       __ verify_oop(reg_to_register_object(src1_enc));
 938     }
 939     if (is_verified_oop_store) {
 940       __ verify_oop(reg_to_register_object(dst_enc));
 941     }
 942     if (tmp_enc != -1) {
 943       __ mov(O7, reg_to_register_object(tmp_enc));
 944     }
 945     if (is_verified_oop_load) {
 946       __ verify_oop(reg_to_register_object(dst_enc));
 947     }
 948   }
 949 #endif
 950 }
 951 
 952 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, RelocationHolder const& rspec, bool preserve_g2 = false) {
 953   // The method which records debug information at every safepoint
 954   // expects the call to be the first instruction in the snippet as
 955   // it creates a PcDesc structure which tracks the offset of a call
 956   // from the start of the codeBlob. This offset is computed as
 957   // code_end() - code_begin() of the code which has been emitted
 958   // so far.
 959   // In this particular case we have skirted around the problem by
 960   // putting the "mov" instruction in the delay slot but the problem
 961   // may bite us again at some other point and a cleaner/generic
 962   // solution using relocations would be needed.
 963   MacroAssembler _masm(&cbuf);
 964   __ set_inst_mark();
 965 
 966   // We flush the current window just so that there is a valid stack copy
 967   // the fact that the current window becomes active again instantly is
 968   // not a problem there is nothing live in it.
 969 
 970 #ifdef ASSERT
 971   int startpos = __ offset();
 972 #endif /* ASSERT */
 973 
 974   __ call((address)entry_point, rspec);
 975 
 976   if (preserve_g2)   __ delayed()->mov(G2, L7);
 977   else __ delayed()->nop();
 978 
 979   if (preserve_g2)   __ mov(L7, G2);
 980 
 981 #ifdef ASSERT
 982   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 983     // Trash argument dump slots.
 984     __ set(0xb0b8ac0db0b8ac0d, G1);
 985     __ mov(G1, G5);
 986     __ stx(G1, SP, STACK_BIAS + 0x80);
 987     __ stx(G1, SP, STACK_BIAS + 0x88);
 988     __ stx(G1, SP, STACK_BIAS + 0x90);
 989     __ stx(G1, SP, STACK_BIAS + 0x98);
 990     __ stx(G1, SP, STACK_BIAS + 0xA0);
 991     __ stx(G1, SP, STACK_BIAS + 0xA8);
 992   }
 993 #endif /*ASSERT*/
 994 }
 995 
 996 //=============================================================================
 997 // REQUIRED FUNCTIONALITY for encoding
 998 void emit_lo(CodeBuffer &cbuf, int val) {  }
 999 void emit_hi(CodeBuffer &cbuf, int val) {  }
1000 
1001 
1002 //=============================================================================
1003 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1004 
1005 int Compile::ConstantTable::calculate_table_base_offset() const {
1006   if (UseRDPCForConstantTableBase) {
1007     // The table base offset might be less but then it fits into
1008     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1009     return Assembler::min_simm13();
1010   } else {
1011     int offset = -(size() / 2);
1012     if (!Assembler::is_simm13(offset)) {
1013       offset = Assembler::min_simm13();
1014     }
1015     return offset;
1016   }
1017 }
1018 
1019 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1020 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1021   ShouldNotReachHere();
1022 }
1023 
1024 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1025   Compile* C = ra_->C;
1026   Compile::ConstantTable& constant_table = C->constant_table();
1027   MacroAssembler _masm(&cbuf);
1028 
1029   Register r = as_Register(ra_->get_encode(this));
1030   CodeSection* consts_section = __ code()->consts();
1031   int consts_size = consts_section->align_at_start(consts_section->size());
1032   assert(constant_table.size() == consts_size, "must be: %d == %d", constant_table.size(), consts_size);
1033 
1034   if (UseRDPCForConstantTableBase) {
1035     // For the following RDPC logic to work correctly the consts
1036     // section must be allocated right before the insts section.  This
1037     // assert checks for that.  The layout and the SECT_* constants
1038     // are defined in src/share/vm/asm/codeBuffer.hpp.
1039     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1040     int insts_offset = __ offset();
1041 
1042     // Layout:
1043     //
1044     // |----------- consts section ------------|----------- insts section -----------...
1045     // |------ constant table -----|- padding -|------------------x----
1046     //                                                            \ current PC (RDPC instruction)
1047     // |<------------- consts_size ----------->|<- insts_offset ->|
1048     //                                                            \ table base
1049     // The table base offset is later added to the load displacement
1050     // so it has to be negative.
1051     int table_base_offset = -(consts_size + insts_offset);
1052     int disp;
1053 
1054     // If the displacement from the current PC to the constant table
1055     // base fits into simm13 we set the constant table base to the
1056     // current PC.
1057     if (Assembler::is_simm13(table_base_offset)) {
1058       constant_table.set_table_base_offset(table_base_offset);
1059       disp = 0;
1060     } else {
1061       // Otherwise we set the constant table base offset to the
1062       // maximum negative displacement of load instructions to keep
1063       // the disp as small as possible:
1064       //
1065       // |<------------- consts_size ----------->|<- insts_offset ->|
1066       // |<--------- min_simm13 --------->|<-------- disp --------->|
1067       //                                  \ table base
1068       table_base_offset = Assembler::min_simm13();
1069       constant_table.set_table_base_offset(table_base_offset);
1070       disp = (consts_size + insts_offset) + table_base_offset;
1071     }
1072 
1073     __ rdpc(r);
1074 
1075     if (disp == 0) {
1076       // Emitting an additional 'nop' instruction in order not to cause a code
1077       // size adjustment in the code following the table setup (if the instruction
1078       // immediately following after this section is a CTI).
1079       __ nop();
1080     }
1081     else {
1082       assert(r != O7, "need temporary");
1083       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1084     }
1085   }
1086   else {
1087     // Materialize the constant table base.
1088     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1089     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1090     AddressLiteral base(baseaddr, rspec);
1091     __ set(base, r);
1092   }
1093 }
1094 
1095 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1096   if (UseRDPCForConstantTableBase) {
1097     // This is really the worst case but generally it's only 1 instruction.
1098     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1099   } else {
1100     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1101   }
1102 }
1103 
1104 #ifndef PRODUCT
1105 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1106   char reg[128];
1107   ra_->dump_register(this, reg);
1108   if (UseRDPCForConstantTableBase) {
1109     st->print("RDPC   %s\t! constant table base", reg);
1110   } else {
1111     st->print("SET    &constanttable,%s\t! constant table base", reg);
1112   }
1113 }
1114 #endif
1115 
1116 
1117 //=============================================================================
1118 
1119 #ifndef PRODUCT
1120 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1121   Compile* C = ra_->C;
1122 
1123   for (int i = 0; i < OptoPrologueNops; i++) {
1124     st->print_cr("NOP"); st->print("\t");
1125   }
1126 
1127   if( VerifyThread ) {
1128     st->print_cr("Verify_Thread"); st->print("\t");
1129   }
1130 
1131   size_t framesize = C->frame_size_in_bytes();
1132   int bangsize = C->bang_size_in_bytes();
1133 
1134   // Calls to C2R adapters often do not accept exceptional returns.
1135   // We require that their callers must bang for them.  But be careful, because
1136   // some VM calls (such as call site linkage) can use several kilobytes of
1137   // stack.  But the stack safety zone should account for that.
1138   // See bugs 4446381, 4468289, 4497237.
1139   if (C->need_stack_bang(bangsize)) {
1140     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1141   }
1142 
1143   if (Assembler::is_simm13(-framesize)) {
1144     st->print   ("SAVE   R_SP,-" SIZE_FORMAT ",R_SP",framesize);
1145   } else {
1146     st->print_cr("SETHI  R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1147     st->print_cr("ADD    R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1148     st->print   ("SAVE   R_SP,R_G3,R_SP");
1149   }
1150 
1151 }
1152 #endif
1153 
1154 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1155   Compile* C = ra_->C;
1156   MacroAssembler _masm(&cbuf);
1157 
1158   for (int i = 0; i < OptoPrologueNops; i++) {
1159     __ nop();
1160   }
1161 
1162   __ verify_thread();
1163 
1164   size_t framesize = C->frame_size_in_bytes();
1165   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1166   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1167   int bangsize = C->bang_size_in_bytes();
1168 
1169   // Calls to C2R adapters often do not accept exceptional returns.
1170   // We require that their callers must bang for them.  But be careful, because
1171   // some VM calls (such as call site linkage) can use several kilobytes of
1172   // stack.  But the stack safety zone should account for that.
1173   // See bugs 4446381, 4468289, 4497237.
1174   if (C->need_stack_bang(bangsize)) {
1175     __ generate_stack_overflow_check(bangsize);
1176   }
1177 
1178   if (Assembler::is_simm13(-framesize)) {
1179     __ save(SP, -framesize, SP);
1180   } else {
1181     __ sethi(-framesize & ~0x3ff, G3);
1182     __ add(G3, -framesize & 0x3ff, G3);
1183     __ save(SP, G3, SP);
1184   }
1185   C->set_frame_complete( __ offset() );
1186 
1187   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1188     // NOTE: We set the table base offset here because users might be
1189     // emitted before MachConstantBaseNode.
1190     Compile::ConstantTable& constant_table = C->constant_table();
1191     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1192   }
1193 }
1194 
1195 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1196   return MachNode::size(ra_);
1197 }
1198 
1199 int MachPrologNode::reloc() const {
1200   return 10; // a large enough number
1201 }
1202 
1203 //=============================================================================
1204 #ifndef PRODUCT
1205 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1206   Compile* C = ra_->C;
1207 
1208   if(do_polling() && ra_->C->is_method_compilation()) {
1209     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1210     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1211   }
1212 
1213   if(do_polling()) {
1214     if (UseCBCond && !ra_->C->is_method_compilation()) {
1215       st->print("NOP\n\t");
1216     }
1217     st->print("RET\n\t");
1218   }
1219 
1220   st->print("RESTORE");
1221 }
1222 #endif
1223 
1224 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1225   MacroAssembler _masm(&cbuf);
1226   Compile* C = ra_->C;
1227 
1228   __ verify_thread();
1229 
1230   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
1231     __ reserved_stack_check();
1232   }
1233 
1234   // If this does safepoint polling, then do it here
1235   if(do_polling() && ra_->C->is_method_compilation()) {
1236     AddressLiteral polling_page(os::get_polling_page());
1237     __ sethi(polling_page, L0);
1238     __ relocate(relocInfo::poll_return_type);
1239     __ ld_ptr(L0, 0, G0);
1240   }
1241 
1242   // If this is a return, then stuff the restore in the delay slot
1243   if(do_polling()) {
1244     if (UseCBCond && !ra_->C->is_method_compilation()) {
1245       // Insert extra padding for the case when the epilogue is preceded by
1246       // a cbcond jump, which can't be followed by a CTI instruction
1247       __ nop();
1248     }
1249     __ ret();
1250     __ delayed()->restore();
1251   } else {
1252     __ restore();
1253   }
1254 }
1255 
1256 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1257   return MachNode::size(ra_);
1258 }
1259 
1260 int MachEpilogNode::reloc() const {
1261   return 16; // a large enough number
1262 }
1263 
1264 const Pipeline * MachEpilogNode::pipeline() const {
1265   return MachNode::pipeline_class();
1266 }
1267 
1268 int MachEpilogNode::safepoint_offset() const {
1269   assert( do_polling(), "no return for this epilog node");
1270   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1271 }
1272 
1273 //=============================================================================
1274 
1275 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1276 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1277 static enum RC rc_class( OptoReg::Name reg ) {
1278   if (!OptoReg::is_valid(reg)) return rc_bad;
1279   if (OptoReg::is_stack(reg)) return rc_stack;
1280   VMReg r = OptoReg::as_VMReg(reg);
1281   if (r->is_Register()) return rc_int;
1282   assert(r->is_FloatRegister(), "must be");
1283   return rc_float;
1284 }
1285 
1286 #ifndef PRODUCT
1287 ATTRIBUTE_PRINTF(2, 3)
1288 static void print_helper(outputStream* st, const char* format, ...) {
1289   if (st->position() > 0) {
1290     st->cr();
1291     st->sp();
1292   }
1293   va_list ap;
1294   va_start(ap, format);
1295   st->vprint(format, ap);
1296   va_end(ap);
1297 }
1298 #endif // !PRODUCT
1299 
1300 static void impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool is_load, int offset, int reg, int opcode, const char *op_str, outputStream* st) {
1301   if (cbuf) {
1302     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1303   }
1304 #ifndef PRODUCT
1305   else {
1306     if (is_load) {
1307       print_helper(st, "%s   [R_SP + #%d],R_%s\t! spill", op_str, offset, OptoReg::regname(reg));
1308     } else {
1309       print_helper(st, "%s   R_%s,[R_SP + #%d]\t! spill", op_str, OptoReg::regname(reg), offset);
1310     }
1311   }
1312 #endif
1313 }
1314 
1315 static void impl_mov_helper(CodeBuffer *cbuf, int src, int dst, int op1, int op2, const char *op_str, outputStream* st) {
1316   if (cbuf) {
1317     emit3(*cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src]);
1318   }
1319 #ifndef PRODUCT
1320   else {
1321     print_helper(st, "%s  R_%s,R_%s\t! spill", op_str, OptoReg::regname(src), OptoReg::regname(dst));
1322   }
1323 #endif
1324 }
1325 
1326 static void mach_spill_copy_implementation_helper(const MachNode* mach,
1327                                                   CodeBuffer *cbuf,
1328                                                   PhaseRegAlloc *ra_,
1329                                                   outputStream* st) {
1330   // Get registers to move
1331   OptoReg::Name src_second = ra_->get_reg_second(mach->in(1));
1332   OptoReg::Name src_first  = ra_->get_reg_first(mach->in(1));
1333   OptoReg::Name dst_second = ra_->get_reg_second(mach);
1334   OptoReg::Name dst_first  = ra_->get_reg_first(mach);
1335 
1336   enum RC src_second_rc = rc_class(src_second);
1337   enum RC src_first_rc  = rc_class(src_first);
1338   enum RC dst_second_rc = rc_class(dst_second);
1339   enum RC dst_first_rc  = rc_class(dst_first);
1340 
1341   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register");
1342 
1343   if (src_first == dst_first && src_second == dst_second) {
1344     return; // Self copy, no move
1345   }
1346 
1347   // --------------------------------------
1348   // Check for mem-mem move.  Load into unused float registers and fall into
1349   // the float-store case.
1350   if (src_first_rc == rc_stack && dst_first_rc == rc_stack) {
1351     int offset = ra_->reg2offset(src_first);
1352     // Further check for aligned-adjacent pair, so we can use a double load
1353     if ((src_first&1) == 0 && src_first+1 == src_second) {
1354       src_second    = OptoReg::Name(R_F31_num);
1355       src_second_rc = rc_float;
1356       impl_helper(mach, cbuf, ra_, true, offset, R_F30_num, Assembler::lddf_op3, "LDDF", st);
1357     } else {
1358       impl_helper(mach, cbuf, ra_, true, offset, R_F30_num, Assembler::ldf_op3, "LDF ", st);
1359     }
1360     src_first    = OptoReg::Name(R_F30_num);
1361     src_first_rc = rc_float;
1362   }
1363 
1364   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1365     int offset = ra_->reg2offset(src_second);
1366     impl_helper(mach, cbuf, ra_, true, offset, R_F31_num, Assembler::ldf_op3, "LDF ", st);
1367     src_second    = OptoReg::Name(R_F31_num);
1368     src_second_rc = rc_float;
1369   }
1370 
1371   // --------------------------------------
1372   // Check for float->int copy; requires a trip through memory
1373   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1374     int offset = frame::register_save_words*wordSize;
1375     if (cbuf) {
1376       emit3_simm13(*cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16);
1377       impl_helper(mach, cbuf, ra_, false, offset, src_first,  Assembler::stf_op3, "STF ", st);
1378       impl_helper(mach, cbuf, ra_,  true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1379       emit3_simm13(*cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16);
1380     }
1381 #ifndef PRODUCT
1382     else {
1383       print_helper(st, "SUB    R_SP,16,R_SP");
1384       impl_helper(mach, cbuf, ra_, false, offset, src_first,  Assembler::stf_op3, "STF ", st);
1385       impl_helper(mach, cbuf, ra_,  true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1386       print_helper(st, "ADD    R_SP,16,R_SP");
1387     }
1388 #endif
1389   }
1390 
1391   // Check for float->int copy on T4
1392   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1393     // Further check for aligned-adjacent pair, so we can use a double move
1394     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1395       impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mdtox_opf, "MOVDTOX", st);
1396       return;
1397     }
1398     impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mstouw_opf, "MOVSTOUW", st);
1399   }
1400   // Check for int->float copy on T4
1401   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1402     // Further check for aligned-adjacent pair, so we can use a double move
1403     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1404       impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mxtod_opf, "MOVXTOD", st);
1405       return;
1406     }
1407     impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mwtos_opf, "MOVWTOS", st);
1408   }
1409 
1410   // --------------------------------------
1411   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1412   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1413   // hardware does the flop for me.  Doubles are always aligned, so no problem
1414   // there.  Misaligned sources only come from native-long-returns (handled
1415   // special below).
1416 
1417   // --------------------------------------
1418   // Check for integer reg-reg copy
1419   if (src_first_rc == rc_int && dst_first_rc == rc_int) {
1420     // Else normal reg-reg copy
1421     assert(src_second != dst_first, "smashed second before evacuating it");
1422     impl_mov_helper(cbuf, src_first, dst_first, Assembler::or_op3, 0, "MOV  ", st);
1423     assert((src_first & 1) == 0 && (dst_first & 1) == 0, "never move second-halves of int registers");
1424     // This moves an aligned adjacent pair.
1425     // See if we are done.
1426     if (src_first + 1 == src_second && dst_first + 1 == dst_second) {
1427       return;
1428     }
1429   }
1430 
1431   // Check for integer store
1432   if (src_first_rc == rc_int && dst_first_rc == rc_stack) {
1433     int offset = ra_->reg2offset(dst_first);
1434     // Further check for aligned-adjacent pair, so we can use a double store
1435     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1436       impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stx_op3, "STX ", st);
1437       return;
1438     }
1439     impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stw_op3, "STW ", st);
1440   }
1441 
1442   // Check for integer load
1443   if (dst_first_rc == rc_int && src_first_rc == rc_stack) {
1444     int offset = ra_->reg2offset(src_first);
1445     // Further check for aligned-adjacent pair, so we can use a double load
1446     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1447       impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::ldx_op3, "LDX ", st);
1448       return;
1449     }
1450     impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1451   }
1452 
1453   // Check for float reg-reg copy
1454   if (src_first_rc == rc_float && dst_first_rc == rc_float) {
1455     // Further check for aligned-adjacent pair, so we can use a double move
1456     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1457       impl_mov_helper(cbuf, src_first, dst_first, Assembler::fpop1_op3, Assembler::fmovd_opf, "FMOVD", st);
1458       return;
1459     }
1460     impl_mov_helper(cbuf, src_first, dst_first, Assembler::fpop1_op3, Assembler::fmovs_opf, "FMOVS", st);
1461   }
1462 
1463   // Check for float store
1464   if (src_first_rc == rc_float && dst_first_rc == rc_stack) {
1465     int offset = ra_->reg2offset(dst_first);
1466     // Further check for aligned-adjacent pair, so we can use a double store
1467     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1468       impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stdf_op3, "STDF", st);
1469       return;
1470     }
1471     impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stf_op3, "STF ", st);
1472   }
1473 
1474   // Check for float load
1475   if (dst_first_rc == rc_float && src_first_rc == rc_stack) {
1476     int offset = ra_->reg2offset(src_first);
1477     // Further check for aligned-adjacent pair, so we can use a double load
1478     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1479       impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lddf_op3, "LDDF", st);
1480       return;
1481     }
1482     impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::ldf_op3, "LDF ", st);
1483   }
1484 
1485   // --------------------------------------------------------------------
1486   // Check for hi bits still needing moving.  Only happens for misaligned
1487   // arguments to native calls.
1488   if (src_second == dst_second) {
1489     return; // Self copy; no move
1490   }
1491   assert(src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad");
1492 
1493   Unimplemented();
1494 }
1495 
1496 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf,
1497                                        PhaseRegAlloc *ra_,
1498                                        bool do_size,
1499                                        outputStream* st) const {
1500   assert(!do_size, "not supported");
1501   mach_spill_copy_implementation_helper(this, cbuf, ra_, st);
1502   return 0;
1503 }
1504 
1505 #ifndef PRODUCT
1506 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1507   implementation( NULL, ra_, false, st );
1508 }
1509 #endif
1510 
1511 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1512   implementation( &cbuf, ra_, false, NULL );
1513 }
1514 
1515 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1516   return MachNode::size(ra_);
1517 }
1518 
1519 //=============================================================================
1520 #ifndef PRODUCT
1521 void MachNopNode::format(PhaseRegAlloc *, outputStream *st) const {
1522   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1523 }
1524 #endif
1525 
1526 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1527   MacroAssembler _masm(&cbuf);
1528   for (int i = 0; i < _count; i += 1) {
1529     __ nop();
1530   }
1531 }
1532 
1533 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1534   return 4 * _count;
1535 }
1536 
1537 
1538 //=============================================================================
1539 #ifndef PRODUCT
1540 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1541   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1542   int reg = ra_->get_reg_first(this);
1543   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1544 }
1545 #endif
1546 
1547 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1548   MacroAssembler _masm(&cbuf);
1549   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1550   int reg = ra_->get_encode(this);
1551 
1552   if (Assembler::is_simm13(offset)) {
1553      __ add(SP, offset, reg_to_register_object(reg));
1554   } else {
1555      __ set(offset, O7);
1556      __ add(SP, O7, reg_to_register_object(reg));
1557   }
1558 }
1559 
1560 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1561   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1562   assert(ra_ == ra_->C->regalloc(), "sanity");
1563   return ra_->C->scratch_emit_size(this);
1564 }
1565 
1566 //=============================================================================
1567 #ifndef PRODUCT
1568 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1569   st->print_cr("\nUEP:");
1570   if (UseCompressedClassPointers) {
1571     assert(Universe::heap() != NULL, "java heap should be initialized");
1572     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1573     if (Universe::narrow_klass_base() != 0) {
1574       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1575       if (Universe::narrow_klass_shift() != 0) {
1576         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1577       }
1578       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1579       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1580     } else {
1581       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1582     }
1583   } else {
1584     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1585   }
1586   st->print_cr("\tCMP    R_G5,R_G3" );
1587   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1588 }
1589 #endif
1590 
1591 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1592   MacroAssembler _masm(&cbuf);
1593   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1594   Register temp_reg   = G3;
1595   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1596 
1597   // Load klass from receiver
1598   __ load_klass(O0, temp_reg);
1599   // Compare against expected klass
1600   __ cmp(temp_reg, G5_ic_reg);
1601   // Branch to miss code, checks xcc or icc depending
1602   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1603 }
1604 
1605 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1606   return MachNode::size(ra_);
1607 }
1608 
1609 
1610 //=============================================================================
1611 
1612 
1613 // Emit exception handler code.
1614 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
1615   Register temp_reg = G3;
1616   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1617   MacroAssembler _masm(&cbuf);
1618 
1619   address base = __ start_a_stub(size_exception_handler());
1620   if (base == NULL) {
1621     ciEnv::current()->record_failure("CodeCache is full");
1622     return 0;  // CodeBuffer::expand failed
1623   }
1624 
1625   int offset = __ offset();
1626 
1627   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1628   __ delayed()->nop();
1629 
1630   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1631 
1632   __ end_a_stub();
1633 
1634   return offset;
1635 }
1636 
1637 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1638   // Can't use any of the current frame's registers as we may have deopted
1639   // at a poll and everything (including G3) can be live.
1640   Register temp_reg = L0;
1641   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1642   MacroAssembler _masm(&cbuf);
1643 
1644   address base = __ start_a_stub(size_deopt_handler());
1645   if (base == NULL) {
1646     ciEnv::current()->record_failure("CodeCache is full");
1647     return 0;  // CodeBuffer::expand failed
1648   }
1649 
1650   int offset = __ offset();
1651   __ save_frame(0);
1652   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1653   __ delayed()->restore();
1654 
1655   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1656 
1657   __ end_a_stub();
1658   return offset;
1659 
1660 }
1661 
1662 // Given a register encoding, produce a Integer Register object
1663 static Register reg_to_register_object(int register_encoding) {
1664   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1665   return as_Register(register_encoding);
1666 }
1667 
1668 // Given a register encoding, produce a single-precision Float Register object
1669 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1670   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1671   return as_SingleFloatRegister(register_encoding);
1672 }
1673 
1674 // Given a register encoding, produce a double-precision Float Register object
1675 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1676   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1677   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1678   return as_DoubleFloatRegister(register_encoding);
1679 }
1680 
1681 const bool Matcher::match_rule_supported(int opcode) {
1682   if (!has_match_rule(opcode))
1683     return false;
1684 
1685   switch (opcode) {
1686   case Op_CountLeadingZerosI:
1687   case Op_CountLeadingZerosL:
1688   case Op_CountTrailingZerosI:
1689   case Op_CountTrailingZerosL:
1690   case Op_PopCountI:
1691   case Op_PopCountL:
1692     if (!UsePopCountInstruction)
1693       return false;
1694   case Op_CompareAndSwapL:
1695   case Op_CompareAndSwapP:
1696     if (!VM_Version::supports_cx8())
1697       return false;
1698     break;
1699   }
1700 
1701   return true;  // Per default match rules are supported.
1702 }
1703 
1704 const bool Matcher::match_rule_supported_vector(int opcode, int vlen) {
1705 
1706   // TODO
1707   // identify extra cases that we might want to provide match rules for
1708   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
1709   bool ret_value = match_rule_supported(opcode);
1710   // Add rules here.
1711 
1712   return ret_value;  // Per default match rules are supported.
1713 }
1714 
1715 const bool Matcher::has_predicated_vectors(void) {
1716   return false;
1717 }
1718 
1719 const int Matcher::float_pressure(int default_pressure_threshold) {
1720   return default_pressure_threshold;
1721 }
1722 
1723 int Matcher::regnum_to_fpu_offset(int regnum) {
1724   return regnum - 32; // The FP registers are in the second chunk
1725 }
1726 
1727 #ifdef ASSERT
1728 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1729 #endif
1730 
1731 // Vector width in bytes
1732 const int Matcher::vector_width_in_bytes(BasicType bt) {
1733   assert(MaxVectorSize == 8, "");
1734   return 8;
1735 }
1736 
1737 // Vector ideal reg
1738 const uint Matcher::vector_ideal_reg(int size) {
1739   assert(MaxVectorSize == 8, "");
1740   return Op_RegD;
1741 }
1742 
1743 const uint Matcher::vector_shift_count_ideal_reg(int size) {
1744   fatal("vector shift is not supported");
1745   return Node::NotAMachineReg;
1746 }
1747 
1748 // Limits on vector size (number of elements) loaded into vector.
1749 const int Matcher::max_vector_size(const BasicType bt) {
1750   assert(is_java_primitive(bt), "only primitive type vectors");
1751   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1752 }
1753 
1754 const int Matcher::min_vector_size(const BasicType bt) {
1755   return max_vector_size(bt); // Same as max.
1756 }
1757 
1758 // SPARC doesn't support misaligned vectors store/load.
1759 const bool Matcher::misaligned_vectors_ok() {
1760   return false;
1761 }
1762 
1763 // Current (2013) SPARC platforms need to read original key
1764 // to construct decryption expanded key
1765 const bool Matcher::pass_original_key_for_aes() {
1766   return true;
1767 }
1768 
1769 // NOTE: All currently supported SPARC HW provides fast conversion.
1770 const bool Matcher::convL2FSupported(void) { return true; }
1771 
1772 // Is this branch offset short enough that a short branch can be used?
1773 //
1774 // NOTE: If the platform does not provide any short branch variants, then
1775 //       this method should return false for offset 0.
1776 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1777   // The passed offset is relative to address of the branch.
1778   // Don't need to adjust the offset.
1779   return UseCBCond && Assembler::is_simm12(offset);
1780 }
1781 
1782 const bool Matcher::isSimpleConstant64(jlong value) {
1783   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1784   // Depends on optimizations in MacroAssembler::setx.
1785   int hi = (int)(value >> 32);
1786   int lo = (int)(value & ~0);
1787   return (hi == 0) || (hi == -1) || (lo == 0);
1788 }
1789 
1790 // No scaling for the parameter the ClearArray node.
1791 const bool Matcher::init_array_count_is_in_bytes = true;
1792 
1793 // No additional cost for CMOVL.
1794 const int Matcher::long_cmove_cost() { return 0; }
1795 
1796 // CMOVF/CMOVD are expensive on e.g., T4 and SPARC64.
1797 const int Matcher::float_cmove_cost() {
1798   return VM_Version::has_fast_cmove() ? 0 : ConditionalMoveLimit;
1799 }
1800 
1801 // Does the CPU require late expand (see block.cpp for description of late expand)?
1802 const bool Matcher::require_postalloc_expand = false;
1803 
1804 // Do we need to mask the count passed to shift instructions or does
1805 // the cpu only look at the lower 5/6 bits anyway?
1806 const bool Matcher::need_masked_shift_count = false;
1807 
1808 bool Matcher::narrow_oop_use_complex_address() {
1809   assert(UseCompressedOops, "only for compressed oops code");
1810   return false;
1811 }
1812 
1813 bool Matcher::narrow_klass_use_complex_address() {
1814   assert(UseCompressedClassPointers, "only for compressed klass code");
1815   return false;
1816 }
1817 
1818 bool Matcher::const_oop_prefer_decode() {
1819   // TODO: Check if loading ConP from TOC in heap-based mode is better:
1820   // Prefer ConN+DecodeN over ConP in simple compressed oops mode.
1821   // return Universe::narrow_oop_base() == NULL;
1822   return true;
1823 }
1824 
1825 bool Matcher::const_klass_prefer_decode() {
1826   // TODO: Check if loading ConP from TOC in heap-based mode is better:
1827   // Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
1828   // return Universe::narrow_klass_base() == NULL;
1829   return true;
1830 }
1831 
1832 // Is it better to copy float constants, or load them directly from memory?
1833 // Intel can load a float constant from a direct address, requiring no
1834 // extra registers.  Most RISCs will have to materialize an address into a
1835 // register first, so they would do better to copy the constant from stack.
1836 const bool Matcher::rematerialize_float_constants = false;
1837 
1838 // If CPU can load and store mis-aligned doubles directly then no fixup is
1839 // needed.  Else we split the double into 2 integer pieces and move it
1840 // piece-by-piece.  Only happens when passing doubles into C code as the
1841 // Java calling convention forces doubles to be aligned.
1842 const bool Matcher::misaligned_doubles_ok = true;
1843 
1844 // No-op on SPARC.
1845 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1846 }
1847 
1848 // Advertise here if the CPU requires explicit rounding operations
1849 // to implement the UseStrictFP mode.
1850 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1851 
1852 // Are floats converted to double when stored to stack during deoptimization?
1853 // Sparc does not handle callee-save floats.
1854 bool Matcher::float_in_double() { return false; }
1855 
1856 // Do ints take an entire long register or just half?
1857 // Note that we if-def off of _LP64.
1858 // The relevant question is how the int is callee-saved.  In _LP64
1859 // the whole long is written but de-opt'ing will have to extract
1860 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1861 const bool Matcher::int_in_long = true;
1862 
1863 // Return whether or not this register is ever used as an argument.  This
1864 // function is used on startup to build the trampoline stubs in generateOptoStub.
1865 // Registers not mentioned will be killed by the VM call in the trampoline, and
1866 // arguments in those registers not be available to the callee.
1867 bool Matcher::can_be_java_arg( int reg ) {
1868   // Standard sparc 6 args in registers
1869   if( reg == R_I0_num ||
1870       reg == R_I1_num ||
1871       reg == R_I2_num ||
1872       reg == R_I3_num ||
1873       reg == R_I4_num ||
1874       reg == R_I5_num ) return true;
1875   // 64-bit builds can pass 64-bit pointers and longs in
1876   // the high I registers
1877   if( reg == R_I0H_num ||
1878       reg == R_I1H_num ||
1879       reg == R_I2H_num ||
1880       reg == R_I3H_num ||
1881       reg == R_I4H_num ||
1882       reg == R_I5H_num ) return true;
1883 
1884   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1885     return true;
1886   }
1887 
1888   // A few float args in registers
1889   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1890 
1891   return false;
1892 }
1893 
1894 bool Matcher::is_spillable_arg( int reg ) {
1895   return can_be_java_arg(reg);
1896 }
1897 
1898 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1899   // Use hardware SDIVX instruction when it is
1900   // faster than a code which use multiply.
1901   return VM_Version::has_fast_idiv();
1902 }
1903 
1904 // Register for DIVI projection of divmodI
1905 RegMask Matcher::divI_proj_mask() {
1906   ShouldNotReachHere();
1907   return RegMask();
1908 }
1909 
1910 // Register for MODI projection of divmodI
1911 RegMask Matcher::modI_proj_mask() {
1912   ShouldNotReachHere();
1913   return RegMask();
1914 }
1915 
1916 // Register for DIVL projection of divmodL
1917 RegMask Matcher::divL_proj_mask() {
1918   ShouldNotReachHere();
1919   return RegMask();
1920 }
1921 
1922 // Register for MODL projection of divmodL
1923 RegMask Matcher::modL_proj_mask() {
1924   ShouldNotReachHere();
1925   return RegMask();
1926 }
1927 
1928 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1929   return L7_REGP_mask();
1930 }
1931 
1932 
1933 const bool Matcher::convi2l_type_required = true;
1934 
1935 // Should the Matcher clone shifts on addressing modes, expecting them
1936 // to be subsumed into complex addressing expressions or compute them
1937 // into registers?
1938 bool Matcher::clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
1939   return clone_base_plus_offset_address(m, mstack, address_visited);
1940 }
1941 
1942 void Compile::reshape_address(AddPNode* addp) {
1943 }
1944 
1945 %}
1946 
1947 
1948 // The intptr_t operand types, defined by textual substitution.
1949 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1950 #define immX      immL
1951 #define immX13    immL13
1952 #define immX13m7  immL13m7
1953 #define iRegX     iRegL
1954 #define g1RegX    g1RegL
1955 
1956 //----------ENCODING BLOCK-----------------------------------------------------
1957 // This block specifies the encoding classes used by the compiler to output
1958 // byte streams.  Encoding classes are parameterized macros used by
1959 // Machine Instruction Nodes in order to generate the bit encoding of the
1960 // instruction.  Operands specify their base encoding interface with the
1961 // interface keyword.  There are currently supported four interfaces,
1962 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1963 // operand to generate a function which returns its register number when
1964 // queried.   CONST_INTER causes an operand to generate a function which
1965 // returns the value of the constant when queried.  MEMORY_INTER causes an
1966 // operand to generate four functions which return the Base Register, the
1967 // Index Register, the Scale Value, and the Offset Value of the operand when
1968 // queried.  COND_INTER causes an operand to generate six functions which
1969 // return the encoding code (ie - encoding bits for the instruction)
1970 // associated with each basic boolean condition for a conditional instruction.
1971 //
1972 // Instructions specify two basic values for encoding.  Again, a function
1973 // is available to check if the constant displacement is an oop. They use the
1974 // ins_encode keyword to specify their encoding classes (which must be
1975 // a sequence of enc_class names, and their parameters, specified in
1976 // the encoding block), and they use the
1977 // opcode keyword to specify, in order, their primary, secondary, and
1978 // tertiary opcode.  Only the opcode sections which a particular instruction
1979 // needs for encoding need to be specified.
1980 encode %{
1981   enc_class enc_untested %{
1982 #ifdef ASSERT
1983     MacroAssembler _masm(&cbuf);
1984     __ untested("encoding");
1985 #endif
1986   %}
1987 
1988   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1989     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
1990                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1991   %}
1992 
1993   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1994     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
1995                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1996   %}
1997 
1998   enc_class form3_mem_prefetch_read( memory mem ) %{
1999     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2000                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2001   %}
2002 
2003   enc_class form3_mem_prefetch_write( memory mem ) %{
2004     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2005                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2006   %}
2007 
2008   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2009     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2010     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2011     guarantee($mem$$index == R_G0_enc, "double index?");
2012     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2013     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2014     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2015     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2016   %}
2017 
2018   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2019     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2020     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2021     guarantee($mem$$index == R_G0_enc, "double index?");
2022     // Load long with 2 instructions
2023     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2024     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2025   %}
2026 
2027   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2028   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2029     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2030     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2031   %}
2032 
2033   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2034     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2035     if( $rs2$$reg != $rd$$reg )
2036       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2037   %}
2038 
2039   // Target lo half of long
2040   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2041     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2042     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2043       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2044   %}
2045 
2046   // Source lo half of long
2047   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2048     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2049     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2050       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2051   %}
2052 
2053   // Target hi half of long
2054   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2055     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2056   %}
2057 
2058   // Source lo half of long, and leave it sign extended.
2059   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2060     // Sign extend low half
2061     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2062   %}
2063 
2064   // Source hi half of long, and leave it sign extended.
2065   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2066     // Shift high half to low half
2067     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2068   %}
2069 
2070   // Source hi half of long
2071   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2072     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2073     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2074       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2075   %}
2076 
2077   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2078     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2079   %}
2080 
2081   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2082     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2083     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2084   %}
2085 
2086   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2087     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2088     // clear if nothing else is happening
2089     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2090     // blt,a,pn done
2091     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2092     // mov dst,-1 in delay slot
2093     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2094   %}
2095 
2096   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2097     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2098   %}
2099 
2100   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2101     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2102   %}
2103 
2104   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2105     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2106   %}
2107 
2108   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2109     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2110   %}
2111 
2112   enc_class move_return_pc_to_o1() %{
2113     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2114   %}
2115 
2116   /* %%% merge with enc_to_bool */
2117   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2118     MacroAssembler _masm(&cbuf);
2119 
2120     Register   src_reg = reg_to_register_object($src$$reg);
2121     Register   dst_reg = reg_to_register_object($dst$$reg);
2122     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2123   %}
2124 
2125   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2126     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2127     MacroAssembler _masm(&cbuf);
2128 
2129     Register   p_reg = reg_to_register_object($p$$reg);
2130     Register   q_reg = reg_to_register_object($q$$reg);
2131     Register   y_reg = reg_to_register_object($y$$reg);
2132     Register tmp_reg = reg_to_register_object($tmp$$reg);
2133 
2134     __ subcc( p_reg, q_reg,   p_reg );
2135     __ add  ( p_reg, y_reg, tmp_reg );
2136     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2137   %}
2138 
2139   enc_class form_d2i_helper(regD src, regF dst) %{
2140     // fcmp %fcc0,$src,$src
2141     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2142     // branch %fcc0 not-nan, predict taken
2143     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2144     // fdtoi $src,$dst
2145     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2146     // fitos $dst,$dst (if nan)
2147     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2148     // clear $dst (if nan)
2149     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2150     // carry on here...
2151   %}
2152 
2153   enc_class form_d2l_helper(regD src, regD dst) %{
2154     // fcmp %fcc0,$src,$src  check for NAN
2155     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2156     // branch %fcc0 not-nan, predict taken
2157     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2158     // fdtox $src,$dst   convert in delay slot
2159     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2160     // fxtod $dst,$dst  (if nan)
2161     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2162     // clear $dst (if nan)
2163     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2164     // carry on here...
2165   %}
2166 
2167   enc_class form_f2i_helper(regF src, regF dst) %{
2168     // fcmps %fcc0,$src,$src
2169     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2170     // branch %fcc0 not-nan, predict taken
2171     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2172     // fstoi $src,$dst
2173     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2174     // fitos $dst,$dst (if nan)
2175     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2176     // clear $dst (if nan)
2177     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2178     // carry on here...
2179   %}
2180 
2181   enc_class form_f2l_helper(regF src, regD dst) %{
2182     // fcmps %fcc0,$src,$src
2183     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2184     // branch %fcc0 not-nan, predict taken
2185     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2186     // fstox $src,$dst
2187     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2188     // fxtod $dst,$dst (if nan)
2189     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2190     // clear $dst (if nan)
2191     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2192     // carry on here...
2193   %}
2194 
2195   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2196   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2197   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2198   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2199 
2200   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2201 
2202   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2203   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2204 
2205   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2206     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2207   %}
2208 
2209   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2210     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2211   %}
2212 
2213   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2214     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2215   %}
2216 
2217   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2218     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2219   %}
2220 
2221   enc_class form3_convI2F(regF rs2, regF rd) %{
2222     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2223   %}
2224 
2225   // Encloding class for traceable jumps
2226   enc_class form_jmpl(g3RegP dest) %{
2227     emit_jmpl(cbuf, $dest$$reg);
2228   %}
2229 
2230   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2231     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2232   %}
2233 
2234   enc_class form2_nop() %{
2235     emit_nop(cbuf);
2236   %}
2237 
2238   enc_class form2_illtrap() %{
2239     emit_illtrap(cbuf);
2240   %}
2241 
2242 
2243   // Compare longs and convert into -1, 0, 1.
2244   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2245     // CMP $src1,$src2
2246     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2247     // blt,a,pn done
2248     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2249     // mov dst,-1 in delay slot
2250     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2251     // bgt,a,pn done
2252     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2253     // mov dst,1 in delay slot
2254     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2255     // CLR    $dst
2256     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2257   %}
2258 
2259   enc_class enc_PartialSubtypeCheck() %{
2260     MacroAssembler _masm(&cbuf);
2261     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2262     __ delayed()->nop();
2263   %}
2264 
2265   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2266     MacroAssembler _masm(&cbuf);
2267     Label* L = $labl$$label;
2268     Assembler::Predict predict_taken =
2269       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2270 
2271     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2272     __ delayed()->nop();
2273   %}
2274 
2275   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2276     MacroAssembler _masm(&cbuf);
2277     Label* L = $labl$$label;
2278     Assembler::Predict predict_taken =
2279       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2280 
2281     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2282     __ delayed()->nop();
2283   %}
2284 
2285   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2286     int op = (Assembler::arith_op << 30) |
2287              ($dst$$reg << 25) |
2288              (Assembler::movcc_op3 << 19) |
2289              (1 << 18) |                    // cc2 bit for 'icc'
2290              ($cmp$$cmpcode << 14) |
2291              (0 << 13) |                    // select register move
2292              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2293              ($src$$reg << 0);
2294     cbuf.insts()->emit_int32(op);
2295   %}
2296 
2297   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2298     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2299     int op = (Assembler::arith_op << 30) |
2300              ($dst$$reg << 25) |
2301              (Assembler::movcc_op3 << 19) |
2302              (1 << 18) |                    // cc2 bit for 'icc'
2303              ($cmp$$cmpcode << 14) |
2304              (1 << 13) |                    // select immediate move
2305              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2306              (simm11 << 0);
2307     cbuf.insts()->emit_int32(op);
2308   %}
2309 
2310   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2311     int op = (Assembler::arith_op << 30) |
2312              ($dst$$reg << 25) |
2313              (Assembler::movcc_op3 << 19) |
2314              (0 << 18) |                    // cc2 bit for 'fccX'
2315              ($cmp$$cmpcode << 14) |
2316              (0 << 13) |                    // select register move
2317              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2318              ($src$$reg << 0);
2319     cbuf.insts()->emit_int32(op);
2320   %}
2321 
2322   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2323     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2324     int op = (Assembler::arith_op << 30) |
2325              ($dst$$reg << 25) |
2326              (Assembler::movcc_op3 << 19) |
2327              (0 << 18) |                    // cc2 bit for 'fccX'
2328              ($cmp$$cmpcode << 14) |
2329              (1 << 13) |                    // select immediate move
2330              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2331              (simm11 << 0);
2332     cbuf.insts()->emit_int32(op);
2333   %}
2334 
2335   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2336     int op = (Assembler::arith_op << 30) |
2337              ($dst$$reg << 25) |
2338              (Assembler::fpop2_op3 << 19) |
2339              (0 << 18) |
2340              ($cmp$$cmpcode << 14) |
2341              (1 << 13) |                    // select register move
2342              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2343              ($primary << 5) |              // select single, double or quad
2344              ($src$$reg << 0);
2345     cbuf.insts()->emit_int32(op);
2346   %}
2347 
2348   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2349     int op = (Assembler::arith_op << 30) |
2350              ($dst$$reg << 25) |
2351              (Assembler::fpop2_op3 << 19) |
2352              (0 << 18) |
2353              ($cmp$$cmpcode << 14) |
2354              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2355              ($primary << 5) |              // select single, double or quad
2356              ($src$$reg << 0);
2357     cbuf.insts()->emit_int32(op);
2358   %}
2359 
2360   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2361   // the condition comes from opcode-field instead of an argument.
2362   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2363     int op = (Assembler::arith_op << 30) |
2364              ($dst$$reg << 25) |
2365              (Assembler::movcc_op3 << 19) |
2366              (1 << 18) |                    // cc2 bit for 'icc'
2367              ($primary << 14) |
2368              (0 << 13) |                    // select register move
2369              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2370              ($src$$reg << 0);
2371     cbuf.insts()->emit_int32(op);
2372   %}
2373 
2374   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2375     int op = (Assembler::arith_op << 30) |
2376              ($dst$$reg << 25) |
2377              (Assembler::movcc_op3 << 19) |
2378              (6 << 16) |                    // cc2 bit for 'xcc'
2379              ($primary << 14) |
2380              (0 << 13) |                    // select register move
2381              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2382              ($src$$reg << 0);
2383     cbuf.insts()->emit_int32(op);
2384   %}
2385 
2386   enc_class Set13( immI13 src, iRegI rd ) %{
2387     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2388   %}
2389 
2390   enc_class SetHi22( immI src, iRegI rd ) %{
2391     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2392   %}
2393 
2394   enc_class Set32( immI src, iRegI rd ) %{
2395     MacroAssembler _masm(&cbuf);
2396     __ set($src$$constant, reg_to_register_object($rd$$reg));
2397   %}
2398 
2399   enc_class call_epilog %{
2400     if( VerifyStackAtCalls ) {
2401       MacroAssembler _masm(&cbuf);
2402       int framesize = ra_->C->frame_size_in_bytes();
2403       Register temp_reg = G3;
2404       __ add(SP, framesize, temp_reg);
2405       __ cmp(temp_reg, FP);
2406       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2407     }
2408   %}
2409 
2410   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2411   // to G1 so the register allocator will not have to deal with the misaligned register
2412   // pair.
2413   enc_class adjust_long_from_native_call %{
2414   %}
2415 
2416   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2417     // CALL directly to the runtime
2418     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2419     emit_call_reloc(cbuf, $meth$$method, runtime_call_Relocation::spec(), /*preserve_g2=*/true);
2420   %}
2421 
2422   enc_class preserve_SP %{
2423     MacroAssembler _masm(&cbuf);
2424     __ mov(SP, L7_mh_SP_save);
2425   %}
2426 
2427   enc_class restore_SP %{
2428     MacroAssembler _masm(&cbuf);
2429     __ mov(L7_mh_SP_save, SP);
2430   %}
2431 
2432   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2433     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2434     // who we intended to call.
2435     if (!_method) {
2436       emit_call_reloc(cbuf, $meth$$method, runtime_call_Relocation::spec());
2437     } else {
2438       int method_index = resolved_method_index(cbuf);
2439       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
2440                                                   : static_call_Relocation::spec(method_index);
2441       emit_call_reloc(cbuf, $meth$$method, rspec);
2442 
2443       // Emit stub for static call.
2444       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
2445       if (stub == NULL) {
2446         ciEnv::current()->record_failure("CodeCache is full");
2447         return;
2448       }
2449     }
2450   %}
2451 
2452   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2453     MacroAssembler _masm(&cbuf);
2454     __ set_inst_mark();
2455     int vtable_index = this->_vtable_index;
2456     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2457     if (vtable_index < 0) {
2458       // must be invalid_vtable_index, not nonvirtual_vtable_index
2459       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2460       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2461       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2462       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2463       __ ic_call((address)$meth$$method, /*emit_delay=*/true, resolved_method_index(cbuf));
2464     } else {
2465       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2466       // Just go thru the vtable
2467       // get receiver klass (receiver already checked for non-null)
2468       // If we end up going thru a c2i adapter interpreter expects method in G5
2469       int off = __ offset();
2470       __ load_klass(O0, G3_scratch);
2471       int klass_load_size;
2472       if (UseCompressedClassPointers) {
2473         assert(Universe::heap() != NULL, "java heap should be initialized");
2474         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2475       } else {
2476         klass_load_size = 1*BytesPerInstWord;
2477       }
2478       int entry_offset = in_bytes(Klass::vtable_start_offset()) + vtable_index*vtableEntry::size_in_bytes();
2479       int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
2480       if (Assembler::is_simm13(v_off)) {
2481         __ ld_ptr(G3, v_off, G5_method);
2482       } else {
2483         // Generate 2 instructions
2484         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2485         __ or3(G5_method, v_off & 0x3ff, G5_method);
2486         // ld_ptr, set_hi, set
2487         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2488                "Unexpected instruction size(s)");
2489         __ ld_ptr(G3, G5_method, G5_method);
2490       }
2491       // NOTE: for vtable dispatches, the vtable entry will never be null.
2492       // However it may very well end up in handle_wrong_method if the
2493       // method is abstract for the particular class.
2494       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2495       // jump to target (either compiled code or c2iadapter)
2496       __ jmpl(G3_scratch, G0, O7);
2497       __ delayed()->nop();
2498     }
2499   %}
2500 
2501   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2502     MacroAssembler _masm(&cbuf);
2503 
2504     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2505     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2506                               // we might be calling a C2I adapter which needs it.
2507 
2508     assert(temp_reg != G5_ic_reg, "conflicting registers");
2509     // Load nmethod
2510     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2511 
2512     // CALL to compiled java, indirect the contents of G3
2513     __ set_inst_mark();
2514     __ callr(temp_reg, G0);
2515     __ delayed()->nop();
2516   %}
2517 
2518 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2519     MacroAssembler _masm(&cbuf);
2520     Register Rdividend = reg_to_register_object($src1$$reg);
2521     Register Rdivisor = reg_to_register_object($src2$$reg);
2522     Register Rresult = reg_to_register_object($dst$$reg);
2523 
2524     __ sra(Rdivisor, 0, Rdivisor);
2525     __ sra(Rdividend, 0, Rdividend);
2526     __ sdivx(Rdividend, Rdivisor, Rresult);
2527 %}
2528 
2529 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2530     MacroAssembler _masm(&cbuf);
2531 
2532     Register Rdividend = reg_to_register_object($src1$$reg);
2533     int divisor = $imm$$constant;
2534     Register Rresult = reg_to_register_object($dst$$reg);
2535 
2536     __ sra(Rdividend, 0, Rdividend);
2537     __ sdivx(Rdividend, divisor, Rresult);
2538 %}
2539 
2540 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2541     MacroAssembler _masm(&cbuf);
2542     Register Rsrc1 = reg_to_register_object($src1$$reg);
2543     Register Rsrc2 = reg_to_register_object($src2$$reg);
2544     Register Rdst  = reg_to_register_object($dst$$reg);
2545 
2546     __ sra( Rsrc1, 0, Rsrc1 );
2547     __ sra( Rsrc2, 0, Rsrc2 );
2548     __ mulx( Rsrc1, Rsrc2, Rdst );
2549     __ srlx( Rdst, 32, Rdst );
2550 %}
2551 
2552 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2553     MacroAssembler _masm(&cbuf);
2554     Register Rdividend = reg_to_register_object($src1$$reg);
2555     Register Rdivisor = reg_to_register_object($src2$$reg);
2556     Register Rresult = reg_to_register_object($dst$$reg);
2557     Register Rscratch = reg_to_register_object($scratch$$reg);
2558 
2559     assert(Rdividend != Rscratch, "");
2560     assert(Rdivisor  != Rscratch, "");
2561 
2562     __ sra(Rdividend, 0, Rdividend);
2563     __ sra(Rdivisor, 0, Rdivisor);
2564     __ sdivx(Rdividend, Rdivisor, Rscratch);
2565     __ mulx(Rscratch, Rdivisor, Rscratch);
2566     __ sub(Rdividend, Rscratch, Rresult);
2567 %}
2568 
2569 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2570     MacroAssembler _masm(&cbuf);
2571 
2572     Register Rdividend = reg_to_register_object($src1$$reg);
2573     int divisor = $imm$$constant;
2574     Register Rresult = reg_to_register_object($dst$$reg);
2575     Register Rscratch = reg_to_register_object($scratch$$reg);
2576 
2577     assert(Rdividend != Rscratch, "");
2578 
2579     __ sra(Rdividend, 0, Rdividend);
2580     __ sdivx(Rdividend, divisor, Rscratch);
2581     __ mulx(Rscratch, divisor, Rscratch);
2582     __ sub(Rdividend, Rscratch, Rresult);
2583 %}
2584 
2585 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2586     MacroAssembler _masm(&cbuf);
2587 
2588     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2589     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2590 
2591     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2592 %}
2593 
2594 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2595     MacroAssembler _masm(&cbuf);
2596 
2597     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2598     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2599 
2600     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2601 %}
2602 
2603 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2604     MacroAssembler _masm(&cbuf);
2605 
2606     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2607     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2608 
2609     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2610 %}
2611 
2612 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2613     MacroAssembler _masm(&cbuf);
2614 
2615     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2616     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2617 
2618     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2619 %}
2620 
2621 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2622     MacroAssembler _masm(&cbuf);
2623 
2624     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2625     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2626 
2627     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2628 %}
2629 
2630 
2631 enc_class fmadds (sflt_reg dst, sflt_reg a, sflt_reg b, sflt_reg c) %{
2632     MacroAssembler _masm(&cbuf);
2633 
2634     FloatRegister Frd = reg_to_SingleFloatRegister_object($dst$$reg);
2635     FloatRegister Fra = reg_to_SingleFloatRegister_object($a$$reg);
2636     FloatRegister Frb = reg_to_SingleFloatRegister_object($b$$reg);
2637     FloatRegister Frc = reg_to_SingleFloatRegister_object($c$$reg);
2638 
2639     __ fmadd(FloatRegisterImpl::S, Fra, Frb, Frc, Frd);
2640 %}
2641 
2642 enc_class fmaddd (dflt_reg dst, dflt_reg a, dflt_reg b, dflt_reg c) %{
2643     MacroAssembler _masm(&cbuf);
2644 
2645     FloatRegister Frd = reg_to_DoubleFloatRegister_object($dst$$reg);
2646     FloatRegister Fra = reg_to_DoubleFloatRegister_object($a$$reg);
2647     FloatRegister Frb = reg_to_DoubleFloatRegister_object($b$$reg);
2648     FloatRegister Frc = reg_to_DoubleFloatRegister_object($c$$reg);
2649 
2650     __ fmadd(FloatRegisterImpl::D, Fra, Frb, Frc, Frd);
2651 %}
2652 
2653 enc_class fmsubs (sflt_reg dst, sflt_reg a, sflt_reg b, sflt_reg c) %{
2654     MacroAssembler _masm(&cbuf);
2655 
2656     FloatRegister Frd = reg_to_SingleFloatRegister_object($dst$$reg);
2657     FloatRegister Fra = reg_to_SingleFloatRegister_object($a$$reg);
2658     FloatRegister Frb = reg_to_SingleFloatRegister_object($b$$reg);
2659     FloatRegister Frc = reg_to_SingleFloatRegister_object($c$$reg);
2660 
2661     __ fmsub(FloatRegisterImpl::S, Fra, Frb, Frc, Frd);
2662 %}
2663 
2664 enc_class fmsubd (dflt_reg dst, dflt_reg a, dflt_reg b, dflt_reg c) %{
2665     MacroAssembler _masm(&cbuf);
2666 
2667     FloatRegister Frd = reg_to_DoubleFloatRegister_object($dst$$reg);
2668     FloatRegister Fra = reg_to_DoubleFloatRegister_object($a$$reg);
2669     FloatRegister Frb = reg_to_DoubleFloatRegister_object($b$$reg);
2670     FloatRegister Frc = reg_to_DoubleFloatRegister_object($c$$reg);
2671 
2672     __ fmsub(FloatRegisterImpl::D, Fra, Frb, Frc, Frd);
2673 %}
2674 
2675 enc_class fnmadds (sflt_reg dst, sflt_reg a, sflt_reg b, sflt_reg c) %{
2676     MacroAssembler _masm(&cbuf);
2677 
2678     FloatRegister Frd = reg_to_SingleFloatRegister_object($dst$$reg);
2679     FloatRegister Fra = reg_to_SingleFloatRegister_object($a$$reg);
2680     FloatRegister Frb = reg_to_SingleFloatRegister_object($b$$reg);
2681     FloatRegister Frc = reg_to_SingleFloatRegister_object($c$$reg);
2682 
2683     __ fnmadd(FloatRegisterImpl::S, Fra, Frb, Frc, Frd);
2684 %}
2685 
2686 enc_class fnmaddd (dflt_reg dst, dflt_reg a, dflt_reg b, dflt_reg c) %{
2687     MacroAssembler _masm(&cbuf);
2688 
2689     FloatRegister Frd = reg_to_DoubleFloatRegister_object($dst$$reg);
2690     FloatRegister Fra = reg_to_DoubleFloatRegister_object($a$$reg);
2691     FloatRegister Frb = reg_to_DoubleFloatRegister_object($b$$reg);
2692     FloatRegister Frc = reg_to_DoubleFloatRegister_object($c$$reg);
2693 
2694     __ fnmadd(FloatRegisterImpl::D, Fra, Frb, Frc, Frd);
2695 %}
2696 
2697 enc_class fnmsubs (sflt_reg dst, sflt_reg a, sflt_reg b, sflt_reg c) %{
2698     MacroAssembler _masm(&cbuf);
2699 
2700     FloatRegister Frd = reg_to_SingleFloatRegister_object($dst$$reg);
2701     FloatRegister Fra = reg_to_SingleFloatRegister_object($a$$reg);
2702     FloatRegister Frb = reg_to_SingleFloatRegister_object($b$$reg);
2703     FloatRegister Frc = reg_to_SingleFloatRegister_object($c$$reg);
2704 
2705     __ fnmsub(FloatRegisterImpl::S, Fra, Frb, Frc, Frd);
2706 %}
2707 
2708 enc_class fnmsubd (dflt_reg dst, dflt_reg a, dflt_reg b, dflt_reg c) %{
2709     MacroAssembler _masm(&cbuf);
2710 
2711     FloatRegister Frd = reg_to_DoubleFloatRegister_object($dst$$reg);
2712     FloatRegister Fra = reg_to_DoubleFloatRegister_object($a$$reg);
2713     FloatRegister Frb = reg_to_DoubleFloatRegister_object($b$$reg);
2714     FloatRegister Frc = reg_to_DoubleFloatRegister_object($c$$reg);
2715 
2716     __ fnmsub(FloatRegisterImpl::D, Fra, Frb, Frc, Frd);
2717 %}
2718 
2719 
2720 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2721     MacroAssembler _masm(&cbuf);
2722 
2723     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2724     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2725 
2726     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2727 %}
2728 
2729 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2730     MacroAssembler _masm(&cbuf);
2731 
2732     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2733     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2734 
2735     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2736 %}
2737 
2738 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2739     MacroAssembler _masm(&cbuf);
2740 
2741     Register Roop  = reg_to_register_object($oop$$reg);
2742     Register Rbox  = reg_to_register_object($box$$reg);
2743     Register Rscratch = reg_to_register_object($scratch$$reg);
2744     Register Rmark =    reg_to_register_object($scratch2$$reg);
2745 
2746     assert(Roop  != Rscratch, "");
2747     assert(Roop  != Rmark, "");
2748     assert(Rbox  != Rscratch, "");
2749     assert(Rbox  != Rmark, "");
2750 
2751     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2752 %}
2753 
2754 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2755     MacroAssembler _masm(&cbuf);
2756 
2757     Register Roop  = reg_to_register_object($oop$$reg);
2758     Register Rbox  = reg_to_register_object($box$$reg);
2759     Register Rscratch = reg_to_register_object($scratch$$reg);
2760     Register Rmark =    reg_to_register_object($scratch2$$reg);
2761 
2762     assert(Roop  != Rscratch, "");
2763     assert(Roop  != Rmark, "");
2764     assert(Rbox  != Rscratch, "");
2765     assert(Rbox  != Rmark, "");
2766 
2767     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2768   %}
2769 
2770   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2771     MacroAssembler _masm(&cbuf);
2772     Register Rmem = reg_to_register_object($mem$$reg);
2773     Register Rold = reg_to_register_object($old$$reg);
2774     Register Rnew = reg_to_register_object($new$$reg);
2775 
2776     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2777     __ cmp( Rold, Rnew );
2778   %}
2779 
2780   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2781     Register Rmem = reg_to_register_object($mem$$reg);
2782     Register Rold = reg_to_register_object($old$$reg);
2783     Register Rnew = reg_to_register_object($new$$reg);
2784 
2785     MacroAssembler _masm(&cbuf);
2786     __ mov(Rnew, O7);
2787     __ casx(Rmem, Rold, O7);
2788     __ cmp( Rold, O7 );
2789   %}
2790 
2791   // raw int cas, used for compareAndSwap
2792   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2793     Register Rmem = reg_to_register_object($mem$$reg);
2794     Register Rold = reg_to_register_object($old$$reg);
2795     Register Rnew = reg_to_register_object($new$$reg);
2796 
2797     MacroAssembler _masm(&cbuf);
2798     __ mov(Rnew, O7);
2799     __ cas(Rmem, Rold, O7);
2800     __ cmp( Rold, O7 );
2801   %}
2802 
2803   // raw int cas without using tmp register for compareAndExchange
2804   enc_class enc_casi_exch( iRegP mem, iRegL old, iRegL new) %{
2805     Register Rmem = reg_to_register_object($mem$$reg);
2806     Register Rold = reg_to_register_object($old$$reg);
2807     Register Rnew = reg_to_register_object($new$$reg);
2808 
2809     MacroAssembler _masm(&cbuf);
2810     __ cas(Rmem, Rold, Rnew);
2811   %}
2812 
2813   // 64-bit cas without using tmp register for compareAndExchange
2814   enc_class enc_casx_exch( iRegP mem, iRegL old, iRegL new) %{
2815     Register Rmem = reg_to_register_object($mem$$reg);
2816     Register Rold = reg_to_register_object($old$$reg);
2817     Register Rnew = reg_to_register_object($new$$reg);
2818 
2819     MacroAssembler _masm(&cbuf);
2820     __ casx(Rmem, Rold, Rnew);
2821   %}
2822 
2823   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2824     Register Rres = reg_to_register_object($res$$reg);
2825 
2826     MacroAssembler _masm(&cbuf);
2827     __ mov(1, Rres);
2828     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2829   %}
2830 
2831   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2832     Register Rres = reg_to_register_object($res$$reg);
2833 
2834     MacroAssembler _masm(&cbuf);
2835     __ mov(1, Rres);
2836     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2837   %}
2838 
2839   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2840     MacroAssembler _masm(&cbuf);
2841     Register Rdst = reg_to_register_object($dst$$reg);
2842     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2843                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2844     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2845                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2846 
2847     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2848     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2849   %}
2850 
2851   enc_class enc_rethrow() %{
2852     cbuf.set_insts_mark();
2853     Register temp_reg = G3;
2854     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
2855     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
2856     MacroAssembler _masm(&cbuf);
2857 #ifdef ASSERT
2858     __ save_frame(0);
2859     AddressLiteral last_rethrow_addrlit(&last_rethrow);
2860     __ sethi(last_rethrow_addrlit, L1);
2861     Address addr(L1, last_rethrow_addrlit.low10());
2862     __ rdpc(L2);
2863     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
2864     __ st_ptr(L2, addr);
2865     __ restore();
2866 #endif
2867     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
2868     __ delayed()->nop();
2869   %}
2870 
2871   enc_class emit_mem_nop() %{
2872     // Generates the instruction LDUXA [o6,g0],#0x82,g0
2873     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
2874   %}
2875 
2876   enc_class emit_fadd_nop() %{
2877     // Generates the instruction FMOVS f31,f31
2878     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
2879   %}
2880 
2881   enc_class emit_br_nop() %{
2882     // Generates the instruction BPN,PN .
2883     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
2884   %}
2885 
2886   enc_class enc_membar_acquire %{
2887     MacroAssembler _masm(&cbuf);
2888     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
2889   %}
2890 
2891   enc_class enc_membar_release %{
2892     MacroAssembler _masm(&cbuf);
2893     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
2894   %}
2895 
2896   enc_class enc_membar_volatile %{
2897     MacroAssembler _masm(&cbuf);
2898     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
2899   %}
2900 
2901 %}
2902 
2903 //----------FRAME--------------------------------------------------------------
2904 // Definition of frame structure and management information.
2905 //
2906 //  S T A C K   L A Y O U T    Allocators stack-slot number
2907 //                             |   (to get allocators register number
2908 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
2909 //  r   CALLER     |        |
2910 //  o     |        +--------+      pad to even-align allocators stack-slot
2911 //  w     V        |  pad0  |        numbers; owned by CALLER
2912 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2913 //  h     ^        |   in   |  5
2914 //        |        |  args  |  4   Holes in incoming args owned by SELF
2915 //  |     |        |        |  3
2916 //  |     |        +--------+
2917 //  V     |        | old out|      Empty on Intel, window on Sparc
2918 //        |    old |preserve|      Must be even aligned.
2919 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
2920 //        |        |   in   |  3   area for Intel ret address
2921 //     Owned by    |preserve|      Empty on Sparc.
2922 //       SELF      +--------+
2923 //        |        |  pad2  |  2   pad to align old SP
2924 //        |        +--------+  1
2925 //        |        | locks  |  0
2926 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
2927 //        |        |  pad1  | 11   pad to align new SP
2928 //        |        +--------+
2929 //        |        |        | 10
2930 //        |        | spills |  9   spills
2931 //        V        |        |  8   (pad0 slot for callee)
2932 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2933 //        ^        |  out   |  7
2934 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2935 //     Owned by    +--------+
2936 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2937 //        |    new |preserve|      Must be even-aligned.
2938 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2939 //        |        |        |
2940 //
2941 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2942 //         known from SELF's arguments and the Java calling convention.
2943 //         Region 6-7 is determined per call site.
2944 // Note 2: If the calling convention leaves holes in the incoming argument
2945 //         area, those holes are owned by SELF.  Holes in the outgoing area
2946 //         are owned by the CALLEE.  Holes should not be nessecary in the
2947 //         incoming area, as the Java calling convention is completely under
2948 //         the control of the AD file.  Doubles can be sorted and packed to
2949 //         avoid holes.  Holes in the outgoing arguments may be necessary for
2950 //         varargs C calling conventions.
2951 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2952 //         even aligned with pad0 as needed.
2953 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2954 //         region 6-11 is even aligned; it may be padded out more so that
2955 //         the region from SP to FP meets the minimum stack alignment.
2956 
2957 frame %{
2958   // What direction does stack grow in (assumed to be same for native & Java)
2959   stack_direction(TOWARDS_LOW);
2960 
2961   // These two registers define part of the calling convention
2962   // between compiled code and the interpreter.
2963   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
2964   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
2965 
2966   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
2967   cisc_spilling_operand_name(indOffset);
2968 
2969   // Number of stack slots consumed by a Monitor enter
2970   sync_stack_slots(2);
2971 
2972   // Compiled code's Frame Pointer
2973   frame_pointer(R_SP);
2974 
2975   // Stack alignment requirement
2976   stack_alignment(StackAlignmentInBytes);
2977   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
2978   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
2979 
2980   // Number of stack slots between incoming argument block and the start of
2981   // a new frame.  The PROLOG must add this many slots to the stack.  The
2982   // EPILOG must remove this many slots.
2983   in_preserve_stack_slots(0);
2984 
2985   // Number of outgoing stack slots killed above the out_preserve_stack_slots
2986   // for calls to C.  Supports the var-args backing area for register parms.
2987   // ADLC doesn't support parsing expressions, so I folded the math by hand.
2988   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
2989   varargs_C_out_slots_killed(12);
2990 
2991   // The after-PROLOG location of the return address.  Location of
2992   // return address specifies a type (REG or STACK) and a number
2993   // representing the register number (i.e. - use a register name) or
2994   // stack slot.
2995   return_addr(REG R_I7);          // Ret Addr is in register I7
2996 
2997   // Body of function which returns an OptoRegs array locating
2998   // arguments either in registers or in stack slots for calling
2999   // java
3000   calling_convention %{
3001     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3002 
3003   %}
3004 
3005   // Body of function which returns an OptoRegs array locating
3006   // arguments either in registers or in stack slots for calling
3007   // C.
3008   c_calling_convention %{
3009     // This is obviously always outgoing
3010     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3011   %}
3012 
3013   // Location of native (C/C++) and interpreter return values.  This is specified to
3014   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3015   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3016   // to and from the register pairs is done by the appropriate call and epilog
3017   // opcodes.  This simplifies the register allocator.
3018   c_return_value %{
3019     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3020     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3021     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3022     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3023     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3024     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3025                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3026   %}
3027 
3028   // Location of compiled Java return values.  Same as C
3029   return_value %{
3030     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3031     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3032     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3033     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3034     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3035     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3036                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3037   %}
3038 
3039 %}
3040 
3041 
3042 //----------ATTRIBUTES---------------------------------------------------------
3043 //----------Operand Attributes-------------------------------------------------
3044 op_attrib op_cost(1);          // Required cost attribute
3045 
3046 //----------Instruction Attributes---------------------------------------------
3047 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3048 ins_attrib ins_size(32);           // Required size attribute (in bits)
3049 
3050 // avoid_back_to_back attribute is an expression that must return
3051 // one of the following values defined in MachNode:
3052 // AVOID_NONE   - instruction can be placed anywhere
3053 // AVOID_BEFORE - instruction cannot be placed after an
3054 //                instruction with MachNode::AVOID_AFTER
3055 // AVOID_AFTER  - the next instruction cannot be the one
3056 //                with MachNode::AVOID_BEFORE
3057 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at
3058 //                          the same time
3059 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
3060 
3061 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3062                                    // non-matching short branch variant of some
3063                                                             // long branch?
3064 
3065 //----------OPERANDS-----------------------------------------------------------
3066 // Operand definitions must precede instruction definitions for correct parsing
3067 // in the ADLC because operands constitute user defined types which are used in
3068 // instruction definitions.
3069 
3070 //----------Simple Operands----------------------------------------------------
3071 // Immediate Operands
3072 // Integer Immediate: 32-bit
3073 operand immI() %{
3074   match(ConI);
3075 
3076   op_cost(0);
3077   // formats are generated automatically for constants and base registers
3078   format %{ %}
3079   interface(CONST_INTER);
3080 %}
3081 
3082 // Integer Immediate: 0-bit
3083 operand immI0() %{
3084   predicate(n->get_int() == 0);
3085   match(ConI);
3086   op_cost(0);
3087 
3088   format %{ %}
3089   interface(CONST_INTER);
3090 %}
3091 
3092 // Integer Immediate: 5-bit
3093 operand immI5() %{
3094   predicate(Assembler::is_simm5(n->get_int()));
3095   match(ConI);
3096   op_cost(0);
3097   format %{ %}
3098   interface(CONST_INTER);
3099 %}
3100 
3101 // Integer Immediate: 8-bit
3102 operand immI8() %{
3103   predicate(Assembler::is_simm8(n->get_int()));
3104   match(ConI);
3105   op_cost(0);
3106   format %{ %}
3107   interface(CONST_INTER);
3108 %}
3109 
3110 // Integer Immediate: the value 10
3111 operand immI10() %{
3112   predicate(n->get_int() == 10);
3113   match(ConI);
3114   op_cost(0);
3115 
3116   format %{ %}
3117   interface(CONST_INTER);
3118 %}
3119 
3120 // Integer Immediate: 11-bit
3121 operand immI11() %{
3122   predicate(Assembler::is_simm11(n->get_int()));
3123   match(ConI);
3124   op_cost(0);
3125   format %{ %}
3126   interface(CONST_INTER);
3127 %}
3128 
3129 // Integer Immediate: 13-bit
3130 operand immI13() %{
3131   predicate(Assembler::is_simm13(n->get_int()));
3132   match(ConI);
3133   op_cost(0);
3134 
3135   format %{ %}
3136   interface(CONST_INTER);
3137 %}
3138 
3139 // Integer Immediate: 13-bit minus 7
3140 operand immI13m7() %{
3141   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3142   match(ConI);
3143   op_cost(0);
3144 
3145   format %{ %}
3146   interface(CONST_INTER);
3147 %}
3148 
3149 // Integer Immediate: 16-bit
3150 operand immI16() %{
3151   predicate(Assembler::is_simm16(n->get_int()));
3152   match(ConI);
3153   op_cost(0);
3154   format %{ %}
3155   interface(CONST_INTER);
3156 %}
3157 
3158 // Integer Immediate: the values 1-31
3159 operand immI_1_31() %{
3160   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3161   match(ConI);
3162   op_cost(0);
3163 
3164   format %{ %}
3165   interface(CONST_INTER);
3166 %}
3167 
3168 // Integer Immediate: the values 32-63
3169 operand immI_32_63() %{
3170   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3171   match(ConI);
3172   op_cost(0);
3173 
3174   format %{ %}
3175   interface(CONST_INTER);
3176 %}
3177 
3178 // Immediates for special shifts (sign extend)
3179 
3180 // Integer Immediate: the value 16
3181 operand immI_16() %{
3182   predicate(n->get_int() == 16);
3183   match(ConI);
3184   op_cost(0);
3185 
3186   format %{ %}
3187   interface(CONST_INTER);
3188 %}
3189 
3190 // Integer Immediate: the value 24
3191 operand immI_24() %{
3192   predicate(n->get_int() == 24);
3193   match(ConI);
3194   op_cost(0);
3195 
3196   format %{ %}
3197   interface(CONST_INTER);
3198 %}
3199 // Integer Immediate: the value 255
3200 operand immI_255() %{
3201   predicate( n->get_int() == 255 );
3202   match(ConI);
3203   op_cost(0);
3204 
3205   format %{ %}
3206   interface(CONST_INTER);
3207 %}
3208 
3209 // Integer Immediate: the value 65535
3210 operand immI_65535() %{
3211   predicate(n->get_int() == 65535);
3212   match(ConI);
3213   op_cost(0);
3214 
3215   format %{ %}
3216   interface(CONST_INTER);
3217 %}
3218 
3219 // Integer Immediate: the values 0-31
3220 operand immU5() %{
3221   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3222   match(ConI);
3223   op_cost(0);
3224 
3225   format %{ %}
3226   interface(CONST_INTER);
3227 %}
3228 
3229 // Integer Immediate: 6-bit
3230 operand immU6() %{
3231   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3232   match(ConI);
3233   op_cost(0);
3234   format %{ %}
3235   interface(CONST_INTER);
3236 %}
3237 
3238 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3239 operand immU12() %{
3240   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3241   match(ConI);
3242   op_cost(0);
3243 
3244   format %{ %}
3245   interface(CONST_INTER);
3246 %}
3247 
3248 // Unsigned Long Immediate: 12-bit (non-negative that fits in simm13)
3249 operand immUL12() %{
3250   predicate((0 <= n->get_long()) && (n->get_long() == (int)n->get_long()) && Assembler::is_simm13((int)n->get_long()));
3251   match(ConL);
3252   op_cost(0);
3253 
3254   format %{ %}
3255   interface(CONST_INTER);
3256 %}
3257 
3258 // Integer Immediate non-negative
3259 operand immU31()
3260 %{
3261   predicate(n->get_int() >= 0);
3262   match(ConI);
3263 
3264   op_cost(0);
3265   format %{ %}
3266   interface(CONST_INTER);
3267 %}
3268 
3269 // Long Immediate: the value FF
3270 operand immL_FF() %{
3271   predicate( n->get_long() == 0xFFL );
3272   match(ConL);
3273   op_cost(0);
3274 
3275   format %{ %}
3276   interface(CONST_INTER);
3277 %}
3278 
3279 // Long Immediate: the value FFFF
3280 operand immL_FFFF() %{
3281   predicate( n->get_long() == 0xFFFFL );
3282   match(ConL);
3283   op_cost(0);
3284 
3285   format %{ %}
3286   interface(CONST_INTER);
3287 %}
3288 
3289 // Pointer Immediate: 32 or 64-bit
3290 operand immP() %{
3291   match(ConP);
3292 
3293   op_cost(5);
3294   // formats are generated automatically for constants and base registers
3295   format %{ %}
3296   interface(CONST_INTER);
3297 %}
3298 
3299 // Pointer Immediate: 64-bit
3300 operand immP_set() %{
3301   predicate(!VM_Version::has_fast_ld());
3302   match(ConP);
3303 
3304   op_cost(5);
3305   // formats are generated automatically for constants and base registers
3306   format %{ %}
3307   interface(CONST_INTER);
3308 %}
3309 
3310 // Pointer Immediate: 64-bit
3311 // From Niagara2 processors on a load should be better than materializing.
3312 operand immP_load() %{
3313   predicate(VM_Version::has_fast_ld() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3314   match(ConP);
3315 
3316   op_cost(5);
3317   // formats are generated automatically for constants and base registers
3318   format %{ %}
3319   interface(CONST_INTER);
3320 %}
3321 
3322 // Pointer Immediate: 64-bit
3323 operand immP_no_oop_cheap() %{
3324   predicate(VM_Version::has_fast_ld() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3325   match(ConP);
3326 
3327   op_cost(5);
3328   // formats are generated automatically for constants and base registers
3329   format %{ %}
3330   interface(CONST_INTER);
3331 %}
3332 
3333 operand immP13() %{
3334   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3335   match(ConP);
3336   op_cost(0);
3337 
3338   format %{ %}
3339   interface(CONST_INTER);
3340 %}
3341 
3342 operand immP0() %{
3343   predicate(n->get_ptr() == 0);
3344   match(ConP);
3345   op_cost(0);
3346 
3347   format %{ %}
3348   interface(CONST_INTER);
3349 %}
3350 
3351 operand immP_poll() %{
3352   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3353   match(ConP);
3354 
3355   // formats are generated automatically for constants and base registers
3356   format %{ %}
3357   interface(CONST_INTER);
3358 %}
3359 
3360 // Pointer Immediate
3361 operand immN()
3362 %{
3363   match(ConN);
3364 
3365   op_cost(10);
3366   format %{ %}
3367   interface(CONST_INTER);
3368 %}
3369 
3370 operand immNKlass()
3371 %{
3372   match(ConNKlass);
3373 
3374   op_cost(10);
3375   format %{ %}
3376   interface(CONST_INTER);
3377 %}
3378 
3379 // NULL Pointer Immediate
3380 operand immN0()
3381 %{
3382   predicate(n->get_narrowcon() == 0);
3383   match(ConN);
3384 
3385   op_cost(0);
3386   format %{ %}
3387   interface(CONST_INTER);
3388 %}
3389 
3390 operand immL() %{
3391   match(ConL);
3392   op_cost(40);
3393   // formats are generated automatically for constants and base registers
3394   format %{ %}
3395   interface(CONST_INTER);
3396 %}
3397 
3398 operand immL0() %{
3399   predicate(n->get_long() == 0L);
3400   match(ConL);
3401   op_cost(0);
3402   // formats are generated automatically for constants and base registers
3403   format %{ %}
3404   interface(CONST_INTER);
3405 %}
3406 
3407 // Integer Immediate: 5-bit
3408 operand immL5() %{
3409   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3410   match(ConL);
3411   op_cost(0);
3412   format %{ %}
3413   interface(CONST_INTER);
3414 %}
3415 
3416 // Long Immediate: 13-bit
3417 operand immL13() %{
3418   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3419   match(ConL);
3420   op_cost(0);
3421 
3422   format %{ %}
3423   interface(CONST_INTER);
3424 %}
3425 
3426 // Long Immediate: 13-bit minus 7
3427 operand immL13m7() %{
3428   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3429   match(ConL);
3430   op_cost(0);
3431 
3432   format %{ %}
3433   interface(CONST_INTER);
3434 %}
3435 
3436 // Long Immediate: low 32-bit mask
3437 operand immL_32bits() %{
3438   predicate(n->get_long() == 0xFFFFFFFFL);
3439   match(ConL);
3440   op_cost(0);
3441 
3442   format %{ %}
3443   interface(CONST_INTER);
3444 %}
3445 
3446 // Long Immediate: cheap (materialize in <= 3 instructions)
3447 operand immL_cheap() %{
3448   predicate(!VM_Version::has_fast_ld() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3449   match(ConL);
3450   op_cost(0);
3451 
3452   format %{ %}
3453   interface(CONST_INTER);
3454 %}
3455 
3456 // Long Immediate: expensive (materialize in > 3 instructions)
3457 operand immL_expensive() %{
3458   predicate(VM_Version::has_fast_ld() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3459   match(ConL);
3460   op_cost(0);
3461 
3462   format %{ %}
3463   interface(CONST_INTER);
3464 %}
3465 
3466 // Double Immediate
3467 operand immD() %{
3468   match(ConD);
3469 
3470   op_cost(40);
3471   format %{ %}
3472   interface(CONST_INTER);
3473 %}
3474 
3475 // Double Immediate: +0.0d
3476 operand immD0() %{
3477   predicate(jlong_cast(n->getd()) == 0);
3478   match(ConD);
3479 
3480   op_cost(0);
3481   format %{ %}
3482   interface(CONST_INTER);
3483 %}
3484 
3485 // Float Immediate
3486 operand immF() %{
3487   match(ConF);
3488 
3489   op_cost(20);
3490   format %{ %}
3491   interface(CONST_INTER);
3492 %}
3493 
3494 // Float Immediate: +0.0f
3495 operand immF0() %{
3496   predicate(jint_cast(n->getf()) == 0);
3497   match(ConF);
3498 
3499   op_cost(0);
3500   format %{ %}
3501   interface(CONST_INTER);
3502 %}
3503 
3504 // Integer Register Operands
3505 // Integer Register
3506 operand iRegI() %{
3507   constraint(ALLOC_IN_RC(int_reg));
3508   match(RegI);
3509 
3510   match(notemp_iRegI);
3511   match(g1RegI);
3512   match(o0RegI);
3513   match(iRegIsafe);
3514 
3515   format %{ %}
3516   interface(REG_INTER);
3517 %}
3518 
3519 operand notemp_iRegI() %{
3520   constraint(ALLOC_IN_RC(notemp_int_reg));
3521   match(RegI);
3522 
3523   match(o0RegI);
3524 
3525   format %{ %}
3526   interface(REG_INTER);
3527 %}
3528 
3529 operand o0RegI() %{
3530   constraint(ALLOC_IN_RC(o0_regI));
3531   match(iRegI);
3532 
3533   format %{ %}
3534   interface(REG_INTER);
3535 %}
3536 
3537 // Pointer Register
3538 operand iRegP() %{
3539   constraint(ALLOC_IN_RC(ptr_reg));
3540   match(RegP);
3541 
3542   match(lock_ptr_RegP);
3543   match(g1RegP);
3544   match(g2RegP);
3545   match(g3RegP);
3546   match(g4RegP);
3547   match(i0RegP);
3548   match(o0RegP);
3549   match(o1RegP);
3550   match(l7RegP);
3551 
3552   format %{ %}
3553   interface(REG_INTER);
3554 %}
3555 
3556 operand sp_ptr_RegP() %{
3557   constraint(ALLOC_IN_RC(sp_ptr_reg));
3558   match(RegP);
3559   match(iRegP);
3560 
3561   format %{ %}
3562   interface(REG_INTER);
3563 %}
3564 
3565 operand lock_ptr_RegP() %{
3566   constraint(ALLOC_IN_RC(lock_ptr_reg));
3567   match(RegP);
3568   match(i0RegP);
3569   match(o0RegP);
3570   match(o1RegP);
3571   match(l7RegP);
3572 
3573   format %{ %}
3574   interface(REG_INTER);
3575 %}
3576 
3577 operand g1RegP() %{
3578   constraint(ALLOC_IN_RC(g1_regP));
3579   match(iRegP);
3580 
3581   format %{ %}
3582   interface(REG_INTER);
3583 %}
3584 
3585 operand g2RegP() %{
3586   constraint(ALLOC_IN_RC(g2_regP));
3587   match(iRegP);
3588 
3589   format %{ %}
3590   interface(REG_INTER);
3591 %}
3592 
3593 operand g3RegP() %{
3594   constraint(ALLOC_IN_RC(g3_regP));
3595   match(iRegP);
3596 
3597   format %{ %}
3598   interface(REG_INTER);
3599 %}
3600 
3601 operand g1RegI() %{
3602   constraint(ALLOC_IN_RC(g1_regI));
3603   match(iRegI);
3604 
3605   format %{ %}
3606   interface(REG_INTER);
3607 %}
3608 
3609 operand g3RegI() %{
3610   constraint(ALLOC_IN_RC(g3_regI));
3611   match(iRegI);
3612 
3613   format %{ %}
3614   interface(REG_INTER);
3615 %}
3616 
3617 operand g4RegI() %{
3618   constraint(ALLOC_IN_RC(g4_regI));
3619   match(iRegI);
3620 
3621   format %{ %}
3622   interface(REG_INTER);
3623 %}
3624 
3625 operand g4RegP() %{
3626   constraint(ALLOC_IN_RC(g4_regP));
3627   match(iRegP);
3628 
3629   format %{ %}
3630   interface(REG_INTER);
3631 %}
3632 
3633 operand i0RegP() %{
3634   constraint(ALLOC_IN_RC(i0_regP));
3635   match(iRegP);
3636 
3637   format %{ %}
3638   interface(REG_INTER);
3639 %}
3640 
3641 operand o0RegP() %{
3642   constraint(ALLOC_IN_RC(o0_regP));
3643   match(iRegP);
3644 
3645   format %{ %}
3646   interface(REG_INTER);
3647 %}
3648 
3649 operand o1RegP() %{
3650   constraint(ALLOC_IN_RC(o1_regP));
3651   match(iRegP);
3652 
3653   format %{ %}
3654   interface(REG_INTER);
3655 %}
3656 
3657 operand o2RegP() %{
3658   constraint(ALLOC_IN_RC(o2_regP));
3659   match(iRegP);
3660 
3661   format %{ %}
3662   interface(REG_INTER);
3663 %}
3664 
3665 operand o7RegP() %{
3666   constraint(ALLOC_IN_RC(o7_regP));
3667   match(iRegP);
3668 
3669   format %{ %}
3670   interface(REG_INTER);
3671 %}
3672 
3673 operand l7RegP() %{
3674   constraint(ALLOC_IN_RC(l7_regP));
3675   match(iRegP);
3676 
3677   format %{ %}
3678   interface(REG_INTER);
3679 %}
3680 
3681 operand o7RegI() %{
3682   constraint(ALLOC_IN_RC(o7_regI));
3683   match(iRegI);
3684 
3685   format %{ %}
3686   interface(REG_INTER);
3687 %}
3688 
3689 operand iRegN() %{
3690   constraint(ALLOC_IN_RC(int_reg));
3691   match(RegN);
3692 
3693   format %{ %}
3694   interface(REG_INTER);
3695 %}
3696 
3697 // Long Register
3698 operand iRegL() %{
3699   constraint(ALLOC_IN_RC(long_reg));
3700   match(RegL);
3701 
3702   format %{ %}
3703   interface(REG_INTER);
3704 %}
3705 
3706 operand o2RegL() %{
3707   constraint(ALLOC_IN_RC(o2_regL));
3708   match(iRegL);
3709 
3710   format %{ %}
3711   interface(REG_INTER);
3712 %}
3713 
3714 operand o7RegL() %{
3715   constraint(ALLOC_IN_RC(o7_regL));
3716   match(iRegL);
3717 
3718   format %{ %}
3719   interface(REG_INTER);
3720 %}
3721 
3722 operand g1RegL() %{
3723   constraint(ALLOC_IN_RC(g1_regL));
3724   match(iRegL);
3725 
3726   format %{ %}
3727   interface(REG_INTER);
3728 %}
3729 
3730 operand g3RegL() %{
3731   constraint(ALLOC_IN_RC(g3_regL));
3732   match(iRegL);
3733 
3734   format %{ %}
3735   interface(REG_INTER);
3736 %}
3737 
3738 // Int Register safe
3739 // This is 64bit safe
3740 operand iRegIsafe() %{
3741   constraint(ALLOC_IN_RC(long_reg));
3742 
3743   match(iRegI);
3744 
3745   format %{ %}
3746   interface(REG_INTER);
3747 %}
3748 
3749 // Condition Code Flag Register
3750 operand flagsReg() %{
3751   constraint(ALLOC_IN_RC(int_flags));
3752   match(RegFlags);
3753 
3754   format %{ "ccr" %} // both ICC and XCC
3755   interface(REG_INTER);
3756 %}
3757 
3758 // Condition Code Register, unsigned comparisons.
3759 operand flagsRegU() %{
3760   constraint(ALLOC_IN_RC(int_flags));
3761   match(RegFlags);
3762 
3763   format %{ "icc_U" %}
3764   interface(REG_INTER);
3765 %}
3766 
3767 // Condition Code Register, pointer comparisons.
3768 operand flagsRegP() %{
3769   constraint(ALLOC_IN_RC(int_flags));
3770   match(RegFlags);
3771 
3772   format %{ "xcc_P" %}
3773   interface(REG_INTER);
3774 %}
3775 
3776 // Condition Code Register, long comparisons.
3777 operand flagsRegL() %{
3778   constraint(ALLOC_IN_RC(int_flags));
3779   match(RegFlags);
3780 
3781   format %{ "xcc_L" %}
3782   interface(REG_INTER);
3783 %}
3784 
3785 // Condition Code Register, unsigned long comparisons.
3786 operand flagsRegUL() %{
3787   constraint(ALLOC_IN_RC(int_flags));
3788   match(RegFlags);
3789 
3790   format %{ "xcc_UL" %}
3791   interface(REG_INTER);
3792 %}
3793 
3794 // Condition Code Register, floating comparisons, unordered same as "less".
3795 operand flagsRegF() %{
3796   constraint(ALLOC_IN_RC(float_flags));
3797   match(RegFlags);
3798   match(flagsRegF0);
3799 
3800   format %{ %}
3801   interface(REG_INTER);
3802 %}
3803 
3804 operand flagsRegF0() %{
3805   constraint(ALLOC_IN_RC(float_flag0));
3806   match(RegFlags);
3807 
3808   format %{ %}
3809   interface(REG_INTER);
3810 %}
3811 
3812 
3813 // Condition Code Flag Register used by long compare
3814 operand flagsReg_long_LTGE() %{
3815   constraint(ALLOC_IN_RC(int_flags));
3816   match(RegFlags);
3817   format %{ "icc_LTGE" %}
3818   interface(REG_INTER);
3819 %}
3820 operand flagsReg_long_EQNE() %{
3821   constraint(ALLOC_IN_RC(int_flags));
3822   match(RegFlags);
3823   format %{ "icc_EQNE" %}
3824   interface(REG_INTER);
3825 %}
3826 operand flagsReg_long_LEGT() %{
3827   constraint(ALLOC_IN_RC(int_flags));
3828   match(RegFlags);
3829   format %{ "icc_LEGT" %}
3830   interface(REG_INTER);
3831 %}
3832 
3833 
3834 operand regD() %{
3835   constraint(ALLOC_IN_RC(dflt_reg));
3836   match(RegD);
3837 
3838   match(regD_low);
3839 
3840   format %{ %}
3841   interface(REG_INTER);
3842 %}
3843 
3844 operand regF() %{
3845   constraint(ALLOC_IN_RC(sflt_reg));
3846   match(RegF);
3847 
3848   format %{ %}
3849   interface(REG_INTER);
3850 %}
3851 
3852 operand regD_low() %{
3853   constraint(ALLOC_IN_RC(dflt_low_reg));
3854   match(regD);
3855 
3856   format %{ %}
3857   interface(REG_INTER);
3858 %}
3859 
3860 // Special Registers
3861 
3862 // Method Register
3863 operand inline_cache_regP(iRegP reg) %{
3864   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
3865   match(reg);
3866   format %{ %}
3867   interface(REG_INTER);
3868 %}
3869 
3870 operand interpreter_method_oop_regP(iRegP reg) %{
3871   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
3872   match(reg);
3873   format %{ %}
3874   interface(REG_INTER);
3875 %}
3876 
3877 
3878 //----------Complex Operands---------------------------------------------------
3879 // Indirect Memory Reference
3880 operand indirect(sp_ptr_RegP reg) %{
3881   constraint(ALLOC_IN_RC(sp_ptr_reg));
3882   match(reg);
3883 
3884   op_cost(100);
3885   format %{ "[$reg]" %}
3886   interface(MEMORY_INTER) %{
3887     base($reg);
3888     index(0x0);
3889     scale(0x0);
3890     disp(0x0);
3891   %}
3892 %}
3893 
3894 // Indirect with simm13 Offset
3895 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
3896   constraint(ALLOC_IN_RC(sp_ptr_reg));
3897   match(AddP reg offset);
3898 
3899   op_cost(100);
3900   format %{ "[$reg + $offset]" %}
3901   interface(MEMORY_INTER) %{
3902     base($reg);
3903     index(0x0);
3904     scale(0x0);
3905     disp($offset);
3906   %}
3907 %}
3908 
3909 // Indirect with simm13 Offset minus 7
3910 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
3911   constraint(ALLOC_IN_RC(sp_ptr_reg));
3912   match(AddP reg offset);
3913 
3914   op_cost(100);
3915   format %{ "[$reg + $offset]" %}
3916   interface(MEMORY_INTER) %{
3917     base($reg);
3918     index(0x0);
3919     scale(0x0);
3920     disp($offset);
3921   %}
3922 %}
3923 
3924 // Note:  Intel has a swapped version also, like this:
3925 //operand indOffsetX(iRegI reg, immP offset) %{
3926 //  constraint(ALLOC_IN_RC(int_reg));
3927 //  match(AddP offset reg);
3928 //
3929 //  op_cost(100);
3930 //  format %{ "[$reg + $offset]" %}
3931 //  interface(MEMORY_INTER) %{
3932 //    base($reg);
3933 //    index(0x0);
3934 //    scale(0x0);
3935 //    disp($offset);
3936 //  %}
3937 //%}
3938 //// However, it doesn't make sense for SPARC, since
3939 // we have no particularly good way to embed oops in
3940 // single instructions.
3941 
3942 // Indirect with Register Index
3943 operand indIndex(iRegP addr, iRegX index) %{
3944   constraint(ALLOC_IN_RC(ptr_reg));
3945   match(AddP addr index);
3946 
3947   op_cost(100);
3948   format %{ "[$addr + $index]" %}
3949   interface(MEMORY_INTER) %{
3950     base($addr);
3951     index($index);
3952     scale(0x0);
3953     disp(0x0);
3954   %}
3955 %}
3956 
3957 //----------Special Memory Operands--------------------------------------------
3958 // Stack Slot Operand - This operand is used for loading and storing temporary
3959 //                      values on the stack where a match requires a value to
3960 //                      flow through memory.
3961 operand stackSlotI(sRegI reg) %{
3962   constraint(ALLOC_IN_RC(stack_slots));
3963   op_cost(100);
3964   //match(RegI);
3965   format %{ "[$reg]" %}
3966   interface(MEMORY_INTER) %{
3967     base(0xE);   // R_SP
3968     index(0x0);
3969     scale(0x0);
3970     disp($reg);  // Stack Offset
3971   %}
3972 %}
3973 
3974 operand stackSlotP(sRegP reg) %{
3975   constraint(ALLOC_IN_RC(stack_slots));
3976   op_cost(100);
3977   //match(RegP);
3978   format %{ "[$reg]" %}
3979   interface(MEMORY_INTER) %{
3980     base(0xE);   // R_SP
3981     index(0x0);
3982     scale(0x0);
3983     disp($reg);  // Stack Offset
3984   %}
3985 %}
3986 
3987 operand stackSlotF(sRegF reg) %{
3988   constraint(ALLOC_IN_RC(stack_slots));
3989   op_cost(100);
3990   //match(RegF);
3991   format %{ "[$reg]" %}
3992   interface(MEMORY_INTER) %{
3993     base(0xE);   // R_SP
3994     index(0x0);
3995     scale(0x0);
3996     disp($reg);  // Stack Offset
3997   %}
3998 %}
3999 operand stackSlotD(sRegD reg) %{
4000   constraint(ALLOC_IN_RC(stack_slots));
4001   op_cost(100);
4002   //match(RegD);
4003   format %{ "[$reg]" %}
4004   interface(MEMORY_INTER) %{
4005     base(0xE);   // R_SP
4006     index(0x0);
4007     scale(0x0);
4008     disp($reg);  // Stack Offset
4009   %}
4010 %}
4011 operand stackSlotL(sRegL reg) %{
4012   constraint(ALLOC_IN_RC(stack_slots));
4013   op_cost(100);
4014   //match(RegL);
4015   format %{ "[$reg]" %}
4016   interface(MEMORY_INTER) %{
4017     base(0xE);   // R_SP
4018     index(0x0);
4019     scale(0x0);
4020     disp($reg);  // Stack Offset
4021   %}
4022 %}
4023 
4024 // Operands for expressing Control Flow
4025 // NOTE:  Label is a predefined operand which should not be redefined in
4026 //        the AD file.  It is generically handled within the ADLC.
4027 
4028 //----------Conditional Branch Operands----------------------------------------
4029 // Comparison Op  - This is the operation of the comparison, and is limited to
4030 //                  the following set of codes:
4031 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4032 //
4033 // Other attributes of the comparison, such as unsignedness, are specified
4034 // by the comparison instruction that sets a condition code flags register.
4035 // That result is represented by a flags operand whose subtype is appropriate
4036 // to the unsignedness (etc.) of the comparison.
4037 //
4038 // Later, the instruction which matches both the Comparison Op (a Bool) and
4039 // the flags (produced by the Cmp) specifies the coding of the comparison op
4040 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4041 
4042 operand cmpOp() %{
4043   match(Bool);
4044 
4045   format %{ "" %}
4046   interface(COND_INTER) %{
4047     equal(0x1);
4048     not_equal(0x9);
4049     less(0x3);
4050     greater_equal(0xB);
4051     less_equal(0x2);
4052     greater(0xA);
4053     overflow(0x7);
4054     no_overflow(0xF);
4055   %}
4056 %}
4057 
4058 // Comparison Op, unsigned
4059 operand cmpOpU() %{
4060   match(Bool);
4061   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4062             n->as_Bool()->_test._test != BoolTest::no_overflow);
4063 
4064   format %{ "u" %}
4065   interface(COND_INTER) %{
4066     equal(0x1);
4067     not_equal(0x9);
4068     less(0x5);
4069     greater_equal(0xD);
4070     less_equal(0x4);
4071     greater(0xC);
4072     overflow(0x7);
4073     no_overflow(0xF);
4074   %}
4075 %}
4076 
4077 // Comparison Op, pointer (same as unsigned)
4078 operand cmpOpP() %{
4079   match(Bool);
4080   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4081             n->as_Bool()->_test._test != BoolTest::no_overflow);
4082 
4083   format %{ "p" %}
4084   interface(COND_INTER) %{
4085     equal(0x1);
4086     not_equal(0x9);
4087     less(0x5);
4088     greater_equal(0xD);
4089     less_equal(0x4);
4090     greater(0xC);
4091     overflow(0x7);
4092     no_overflow(0xF);
4093   %}
4094 %}
4095 
4096 // Comparison Op, branch-register encoding
4097 operand cmpOp_reg() %{
4098   match(Bool);
4099   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4100             n->as_Bool()->_test._test != BoolTest::no_overflow);
4101 
4102   format %{ "" %}
4103   interface(COND_INTER) %{
4104     equal        (0x1);
4105     not_equal    (0x5);
4106     less         (0x3);
4107     greater_equal(0x7);
4108     less_equal   (0x2);
4109     greater      (0x6);
4110     overflow(0x7); // not supported
4111     no_overflow(0xF); // not supported
4112   %}
4113 %}
4114 
4115 // Comparison Code, floating, unordered same as less
4116 operand cmpOpF() %{
4117   match(Bool);
4118   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4119             n->as_Bool()->_test._test != BoolTest::no_overflow);
4120 
4121   format %{ "fl" %}
4122   interface(COND_INTER) %{
4123     equal(0x9);
4124     not_equal(0x1);
4125     less(0x3);
4126     greater_equal(0xB);
4127     less_equal(0xE);
4128     greater(0x6);
4129 
4130     overflow(0x7); // not supported
4131     no_overflow(0xF); // not supported
4132   %}
4133 %}
4134 
4135 // Used by long compare
4136 operand cmpOp_commute() %{
4137   match(Bool);
4138   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4139             n->as_Bool()->_test._test != BoolTest::no_overflow);
4140 
4141   format %{ "" %}
4142   interface(COND_INTER) %{
4143     equal(0x1);
4144     not_equal(0x9);
4145     less(0xA);
4146     greater_equal(0x2);
4147     less_equal(0xB);
4148     greater(0x3);
4149     overflow(0x7);
4150     no_overflow(0xF);
4151   %}
4152 %}
4153 
4154 //----------OPERAND CLASSES----------------------------------------------------
4155 // Operand Classes are groups of operands that are used to simplify
4156 // instruction definitions by not requiring the AD writer to specify separate
4157 // instructions for every form of operand when the instruction accepts
4158 // multiple operand types with the same basic encoding and format.  The classic
4159 // case of this is memory operands.
4160 opclass memory( indirect, indOffset13, indIndex );
4161 opclass indIndexMemory( indIndex );
4162 
4163 //----------PIPELINE-----------------------------------------------------------
4164 pipeline %{
4165 
4166 //----------ATTRIBUTES---------------------------------------------------------
4167 attributes %{
4168   fixed_size_instructions;           // Fixed size instructions
4169   branch_has_delay_slot;             // Branch has delay slot following
4170   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4171   instruction_unit_size = 4;         // An instruction is 4 bytes long
4172   instruction_fetch_unit_size = 16;  // The processor fetches one line
4173   instruction_fetch_units = 1;       // of 16 bytes
4174 
4175   // List of nop instructions
4176   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4177 %}
4178 
4179 //----------RESOURCES----------------------------------------------------------
4180 // Resources are the functional units available to the machine
4181 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4182 
4183 //----------PIPELINE DESCRIPTION-----------------------------------------------
4184 // Pipeline Description specifies the stages in the machine's pipeline
4185 
4186 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4187 
4188 //----------PIPELINE CLASSES---------------------------------------------------
4189 // Pipeline Classes describe the stages in which input and output are
4190 // referenced by the hardware pipeline.
4191 
4192 // Integer ALU reg-reg operation
4193 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4194     single_instruction;
4195     dst   : E(write);
4196     src1  : R(read);
4197     src2  : R(read);
4198     IALU  : R;
4199 %}
4200 
4201 // Integer ALU reg-reg long operation
4202 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4203     instruction_count(2);
4204     dst   : E(write);
4205     src1  : R(read);
4206     src2  : R(read);
4207     IALU  : R;
4208     IALU  : R;
4209 %}
4210 
4211 // Integer ALU reg-reg long dependent operation
4212 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4213     instruction_count(1); multiple_bundles;
4214     dst   : E(write);
4215     src1  : R(read);
4216     src2  : R(read);
4217     cr    : E(write);
4218     IALU  : R(2);
4219 %}
4220 
4221 // Integer ALU reg-imm operaion
4222 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4223     single_instruction;
4224     dst   : E(write);
4225     src1  : R(read);
4226     IALU  : R;
4227 %}
4228 
4229 // Integer ALU reg-reg operation with condition code
4230 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4231     single_instruction;
4232     dst   : E(write);
4233     cr    : E(write);
4234     src1  : R(read);
4235     src2  : R(read);
4236     IALU  : R;
4237 %}
4238 
4239 // Integer ALU reg-imm operation with condition code
4240 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4241     single_instruction;
4242     dst   : E(write);
4243     cr    : E(write);
4244     src1  : R(read);
4245     IALU  : R;
4246 %}
4247 
4248 // Integer ALU zero-reg operation
4249 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4250     single_instruction;
4251     dst   : E(write);
4252     src2  : R(read);
4253     IALU  : R;
4254 %}
4255 
4256 // Integer ALU zero-reg operation with condition code only
4257 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4258     single_instruction;
4259     cr    : E(write);
4260     src   : R(read);
4261     IALU  : R;
4262 %}
4263 
4264 // Integer ALU reg-reg operation with condition code only
4265 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4266     single_instruction;
4267     cr    : E(write);
4268     src1  : R(read);
4269     src2  : R(read);
4270     IALU  : R;
4271 %}
4272 
4273 // Integer ALU reg-imm operation with condition code only
4274 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4275     single_instruction;
4276     cr    : E(write);
4277     src1  : R(read);
4278     IALU  : R;
4279 %}
4280 
4281 // Integer ALU reg-reg-zero operation with condition code only
4282 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4283     single_instruction;
4284     cr    : E(write);
4285     src1  : R(read);
4286     src2  : R(read);
4287     IALU  : R;
4288 %}
4289 
4290 // Integer ALU reg-imm-zero operation with condition code only
4291 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4292     single_instruction;
4293     cr    : E(write);
4294     src1  : R(read);
4295     IALU  : R;
4296 %}
4297 
4298 // Integer ALU reg-reg operation with condition code, src1 modified
4299 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4300     single_instruction;
4301     cr    : E(write);
4302     src1  : E(write);
4303     src1  : R(read);
4304     src2  : R(read);
4305     IALU  : R;
4306 %}
4307 
4308 // Integer ALU reg-imm operation with condition code, src1 modified
4309 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4310     single_instruction;
4311     cr    : E(write);
4312     src1  : E(write);
4313     src1  : R(read);
4314     IALU  : R;
4315 %}
4316 
4317 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4318     multiple_bundles;
4319     dst   : E(write)+4;
4320     cr    : E(write);
4321     src1  : R(read);
4322     src2  : R(read);
4323     IALU  : R(3);
4324     BR    : R(2);
4325 %}
4326 
4327 // Integer ALU operation
4328 pipe_class ialu_none(iRegI dst) %{
4329     single_instruction;
4330     dst   : E(write);
4331     IALU  : R;
4332 %}
4333 
4334 // Integer ALU reg operation
4335 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4336     single_instruction; may_have_no_code;
4337     dst   : E(write);
4338     src   : R(read);
4339     IALU  : R;
4340 %}
4341 
4342 // Integer ALU reg conditional operation
4343 // This instruction has a 1 cycle stall, and cannot execute
4344 // in the same cycle as the instruction setting the condition
4345 // code. We kludge this by pretending to read the condition code
4346 // 1 cycle earlier, and by marking the functional units as busy
4347 // for 2 cycles with the result available 1 cycle later than
4348 // is really the case.
4349 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4350     single_instruction;
4351     op2_out : C(write);
4352     op1     : R(read);
4353     cr      : R(read);       // This is really E, with a 1 cycle stall
4354     BR      : R(2);
4355     MS      : R(2);
4356 %}
4357 
4358 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4359     instruction_count(1); multiple_bundles;
4360     dst     : C(write)+1;
4361     src     : R(read)+1;
4362     IALU    : R(1);
4363     BR      : E(2);
4364     MS      : E(2);
4365 %}
4366 
4367 // Integer ALU reg operation
4368 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4369     single_instruction; may_have_no_code;
4370     dst   : E(write);
4371     src   : R(read);
4372     IALU  : R;
4373 %}
4374 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4375     single_instruction; may_have_no_code;
4376     dst   : E(write);
4377     src   : R(read);
4378     IALU  : R;
4379 %}
4380 
4381 // Two integer ALU reg operations
4382 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4383     instruction_count(2);
4384     dst   : E(write);
4385     src   : R(read);
4386     A0    : R;
4387     A1    : R;
4388 %}
4389 
4390 // Two integer ALU reg operations
4391 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4392     instruction_count(2); may_have_no_code;
4393     dst   : E(write);
4394     src   : R(read);
4395     A0    : R;
4396     A1    : R;
4397 %}
4398 
4399 // Integer ALU imm operation
4400 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4401     single_instruction;
4402     dst   : E(write);
4403     IALU  : R;
4404 %}
4405 
4406 // Integer ALU reg-reg with carry operation
4407 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4408     single_instruction;
4409     dst   : E(write);
4410     src1  : R(read);
4411     src2  : R(read);
4412     IALU  : R;
4413 %}
4414 
4415 // Integer ALU cc operation
4416 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4417     single_instruction;
4418     dst   : E(write);
4419     cc    : R(read);
4420     IALU  : R;
4421 %}
4422 
4423 // Integer ALU cc / second IALU operation
4424 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4425     instruction_count(1); multiple_bundles;
4426     dst   : E(write)+1;
4427     src   : R(read);
4428     IALU  : R;
4429 %}
4430 
4431 // Integer ALU cc / second IALU operation
4432 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4433     instruction_count(1); multiple_bundles;
4434     dst   : E(write)+1;
4435     p     : R(read);
4436     q     : R(read);
4437     IALU  : R;
4438 %}
4439 
4440 // Integer ALU hi-lo-reg operation
4441 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4442     instruction_count(1); multiple_bundles;
4443     dst   : E(write)+1;
4444     IALU  : R(2);
4445 %}
4446 
4447 // Float ALU hi-lo-reg operation (with temp)
4448 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4449     instruction_count(1); multiple_bundles;
4450     dst   : E(write)+1;
4451     IALU  : R(2);
4452 %}
4453 
4454 // Long Constant
4455 pipe_class loadConL( iRegL dst, immL src ) %{
4456     instruction_count(2); multiple_bundles;
4457     dst   : E(write)+1;
4458     IALU  : R(2);
4459     IALU  : R(2);
4460 %}
4461 
4462 // Pointer Constant
4463 pipe_class loadConP( iRegP dst, immP src ) %{
4464     instruction_count(0); multiple_bundles;
4465     fixed_latency(6);
4466 %}
4467 
4468 // Polling Address
4469 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4470     instruction_count(0); multiple_bundles;
4471     fixed_latency(6);
4472 %}
4473 
4474 // Long Constant small
4475 pipe_class loadConLlo( iRegL dst, immL src ) %{
4476     instruction_count(2);
4477     dst   : E(write);
4478     IALU  : R;
4479     IALU  : R;
4480 %}
4481 
4482 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4483 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4484     instruction_count(1); multiple_bundles;
4485     src   : R(read);
4486     dst   : M(write)+1;
4487     IALU  : R;
4488     MS    : E;
4489 %}
4490 
4491 // Integer ALU nop operation
4492 pipe_class ialu_nop() %{
4493     single_instruction;
4494     IALU  : R;
4495 %}
4496 
4497 // Integer ALU nop operation
4498 pipe_class ialu_nop_A0() %{
4499     single_instruction;
4500     A0    : R;
4501 %}
4502 
4503 // Integer ALU nop operation
4504 pipe_class ialu_nop_A1() %{
4505     single_instruction;
4506     A1    : R;
4507 %}
4508 
4509 // Integer Multiply reg-reg operation
4510 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4511     single_instruction;
4512     dst   : E(write);
4513     src1  : R(read);
4514     src2  : R(read);
4515     MS    : R(5);
4516 %}
4517 
4518 // Integer Multiply reg-imm operation
4519 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4520     single_instruction;
4521     dst   : E(write);
4522     src1  : R(read);
4523     MS    : R(5);
4524 %}
4525 
4526 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4527     single_instruction;
4528     dst   : E(write)+4;
4529     src1  : R(read);
4530     src2  : R(read);
4531     MS    : R(6);
4532 %}
4533 
4534 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4535     single_instruction;
4536     dst   : E(write)+4;
4537     src1  : R(read);
4538     MS    : R(6);
4539 %}
4540 
4541 // Integer Divide reg-reg
4542 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4543     instruction_count(1); multiple_bundles;
4544     dst   : E(write);
4545     temp  : E(write);
4546     src1  : R(read);
4547     src2  : R(read);
4548     temp  : R(read);
4549     MS    : R(38);
4550 %}
4551 
4552 // Integer Divide reg-imm
4553 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4554     instruction_count(1); multiple_bundles;
4555     dst   : E(write);
4556     temp  : E(write);
4557     src1  : R(read);
4558     temp  : R(read);
4559     MS    : R(38);
4560 %}
4561 
4562 // Long Divide
4563 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4564     dst  : E(write)+71;
4565     src1 : R(read);
4566     src2 : R(read)+1;
4567     MS   : R(70);
4568 %}
4569 
4570 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4571     dst  : E(write)+71;
4572     src1 : R(read);
4573     MS   : R(70);
4574 %}
4575 
4576 // Floating Point Add Float
4577 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4578     single_instruction;
4579     dst   : X(write);
4580     src1  : E(read);
4581     src2  : E(read);
4582     FA    : R;
4583 %}
4584 
4585 // Floating Point Add Double
4586 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4587     single_instruction;
4588     dst   : X(write);
4589     src1  : E(read);
4590     src2  : E(read);
4591     FA    : R;
4592 %}
4593 
4594 // Floating Point Conditional Move based on integer flags
4595 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4596     single_instruction;
4597     dst   : X(write);
4598     src   : E(read);
4599     cr    : R(read);
4600     FA    : R(2);
4601     BR    : R(2);
4602 %}
4603 
4604 // Floating Point Conditional Move based on integer flags
4605 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4606     single_instruction;
4607     dst   : X(write);
4608     src   : E(read);
4609     cr    : R(read);
4610     FA    : R(2);
4611     BR    : R(2);
4612 %}
4613 
4614 // Floating Point Multiply Float
4615 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4616     single_instruction;
4617     dst   : X(write);
4618     src1  : E(read);
4619     src2  : E(read);
4620     FM    : R;
4621 %}
4622 
4623 // Floating Point Multiply Double
4624 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4625     single_instruction;
4626     dst   : X(write);
4627     src1  : E(read);
4628     src2  : E(read);
4629     FM    : R;
4630 %}
4631 
4632 // Floating Point Divide Float
4633 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4634     single_instruction;
4635     dst   : X(write);
4636     src1  : E(read);
4637     src2  : E(read);
4638     FM    : R;
4639     FDIV  : C(14);
4640 %}
4641 
4642 // Floating Point Divide Double
4643 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4644     single_instruction;
4645     dst   : X(write);
4646     src1  : E(read);
4647     src2  : E(read);
4648     FM    : R;
4649     FDIV  : C(17);
4650 %}
4651 
4652 // Fused floating-point multiply-add float.
4653 pipe_class fmaF_regx4(regF dst, regF src1, regF src2, regF src3) %{
4654     single_instruction;
4655     dst   : X(write);
4656     src1  : E(read);
4657     src2  : E(read);
4658     src3  : E(read);
4659     FM    : R;
4660 %}
4661 
4662 // Fused gloating-point multiply-add double.
4663 pipe_class fmaD_regx4(regD dst, regD src1, regD src2, regD src3) %{
4664     single_instruction;
4665     dst   : X(write);
4666     src1  : E(read);
4667     src2  : E(read);
4668     src3  : E(read);
4669     FM    : R;
4670 %}
4671 
4672 // Floating Point Move/Negate/Abs Float
4673 pipe_class faddF_reg(regF dst, regF src) %{
4674     single_instruction;
4675     dst   : W(write);
4676     src   : E(read);
4677     FA    : R(1);
4678 %}
4679 
4680 // Floating Point Move/Negate/Abs Double
4681 pipe_class faddD_reg(regD dst, regD src) %{
4682     single_instruction;
4683     dst   : W(write);
4684     src   : E(read);
4685     FA    : R;
4686 %}
4687 
4688 // Floating Point Convert F->D
4689 pipe_class fcvtF2D(regD dst, regF src) %{
4690     single_instruction;
4691     dst   : X(write);
4692     src   : E(read);
4693     FA    : R;
4694 %}
4695 
4696 // Floating Point Convert I->D
4697 pipe_class fcvtI2D(regD dst, regF src) %{
4698     single_instruction;
4699     dst   : X(write);
4700     src   : E(read);
4701     FA    : R;
4702 %}
4703 
4704 // Floating Point Convert LHi->D
4705 pipe_class fcvtLHi2D(regD dst, regD src) %{
4706     single_instruction;
4707     dst   : X(write);
4708     src   : E(read);
4709     FA    : R;
4710 %}
4711 
4712 // Floating Point Convert L->D
4713 pipe_class fcvtL2D(regD dst, regF src) %{
4714     single_instruction;
4715     dst   : X(write);
4716     src   : E(read);
4717     FA    : R;
4718 %}
4719 
4720 // Floating Point Convert L->F
4721 pipe_class fcvtL2F(regD dst, regF src) %{
4722     single_instruction;
4723     dst   : X(write);
4724     src   : E(read);
4725     FA    : R;
4726 %}
4727 
4728 // Floating Point Convert D->F
4729 pipe_class fcvtD2F(regD dst, regF src) %{
4730     single_instruction;
4731     dst   : X(write);
4732     src   : E(read);
4733     FA    : R;
4734 %}
4735 
4736 // Floating Point Convert I->L
4737 pipe_class fcvtI2L(regD dst, regF src) %{
4738     single_instruction;
4739     dst   : X(write);
4740     src   : E(read);
4741     FA    : R;
4742 %}
4743 
4744 // Floating Point Convert D->F
4745 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4746     instruction_count(1); multiple_bundles;
4747     dst   : X(write)+6;
4748     src   : E(read);
4749     FA    : R;
4750 %}
4751 
4752 // Floating Point Convert D->L
4753 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4754     instruction_count(1); multiple_bundles;
4755     dst   : X(write)+6;
4756     src   : E(read);
4757     FA    : R;
4758 %}
4759 
4760 // Floating Point Convert F->I
4761 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4762     instruction_count(1); multiple_bundles;
4763     dst   : X(write)+6;
4764     src   : E(read);
4765     FA    : R;
4766 %}
4767 
4768 // Floating Point Convert F->L
4769 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4770     instruction_count(1); multiple_bundles;
4771     dst   : X(write)+6;
4772     src   : E(read);
4773     FA    : R;
4774 %}
4775 
4776 // Floating Point Convert I->F
4777 pipe_class fcvtI2F(regF dst, regF src) %{
4778     single_instruction;
4779     dst   : X(write);
4780     src   : E(read);
4781     FA    : R;
4782 %}
4783 
4784 // Floating Point Compare
4785 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4786     single_instruction;
4787     cr    : X(write);
4788     src1  : E(read);
4789     src2  : E(read);
4790     FA    : R;
4791 %}
4792 
4793 // Floating Point Compare
4794 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4795     single_instruction;
4796     cr    : X(write);
4797     src1  : E(read);
4798     src2  : E(read);
4799     FA    : R;
4800 %}
4801 
4802 // Floating Add Nop
4803 pipe_class fadd_nop() %{
4804     single_instruction;
4805     FA  : R;
4806 %}
4807 
4808 // Integer Store to Memory
4809 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4810     single_instruction;
4811     mem   : R(read);
4812     src   : C(read);
4813     MS    : R;
4814 %}
4815 
4816 // Integer Store to Memory
4817 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4818     single_instruction;
4819     mem   : R(read);
4820     src   : C(read);
4821     MS    : R;
4822 %}
4823 
4824 // Integer Store Zero to Memory
4825 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4826     single_instruction;
4827     mem   : R(read);
4828     MS    : R;
4829 %}
4830 
4831 // Special Stack Slot Store
4832 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4833     single_instruction;
4834     stkSlot : R(read);
4835     src     : C(read);
4836     MS      : R;
4837 %}
4838 
4839 // Special Stack Slot Store
4840 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4841     instruction_count(2); multiple_bundles;
4842     stkSlot : R(read);
4843     src     : C(read);
4844     MS      : R(2);
4845 %}
4846 
4847 // Float Store
4848 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4849     single_instruction;
4850     mem : R(read);
4851     src : C(read);
4852     MS  : R;
4853 %}
4854 
4855 // Float Store
4856 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4857     single_instruction;
4858     mem : R(read);
4859     MS  : R;
4860 %}
4861 
4862 // Double Store
4863 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4864     instruction_count(1);
4865     mem : R(read);
4866     src : C(read);
4867     MS  : R;
4868 %}
4869 
4870 // Double Store
4871 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4872     single_instruction;
4873     mem : R(read);
4874     MS  : R;
4875 %}
4876 
4877 // Special Stack Slot Float Store
4878 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
4879     single_instruction;
4880     stkSlot : R(read);
4881     src     : C(read);
4882     MS      : R;
4883 %}
4884 
4885 // Special Stack Slot Double Store
4886 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
4887     single_instruction;
4888     stkSlot : R(read);
4889     src     : C(read);
4890     MS      : R;
4891 %}
4892 
4893 // Integer Load (when sign bit propagation not needed)
4894 pipe_class iload_mem(iRegI dst, memory mem) %{
4895     single_instruction;
4896     mem : R(read);
4897     dst : C(write);
4898     MS  : R;
4899 %}
4900 
4901 // Integer Load from stack operand
4902 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
4903     single_instruction;
4904     mem : R(read);
4905     dst : C(write);
4906     MS  : R;
4907 %}
4908 
4909 // Integer Load (when sign bit propagation or masking is needed)
4910 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
4911     single_instruction;
4912     mem : R(read);
4913     dst : M(write);
4914     MS  : R;
4915 %}
4916 
4917 // Float Load
4918 pipe_class floadF_mem(regF dst, memory mem) %{
4919     single_instruction;
4920     mem : R(read);
4921     dst : M(write);
4922     MS  : R;
4923 %}
4924 
4925 // Float Load
4926 pipe_class floadD_mem(regD dst, memory mem) %{
4927     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
4928     mem : R(read);
4929     dst : M(write);
4930     MS  : R;
4931 %}
4932 
4933 // Float Load
4934 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
4935     single_instruction;
4936     stkSlot : R(read);
4937     dst : M(write);
4938     MS  : R;
4939 %}
4940 
4941 // Float Load
4942 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
4943     single_instruction;
4944     stkSlot : R(read);
4945     dst : M(write);
4946     MS  : R;
4947 %}
4948 
4949 // Memory Nop
4950 pipe_class mem_nop() %{
4951     single_instruction;
4952     MS  : R;
4953 %}
4954 
4955 pipe_class sethi(iRegP dst, immI src) %{
4956     single_instruction;
4957     dst  : E(write);
4958     IALU : R;
4959 %}
4960 
4961 pipe_class loadPollP(iRegP poll) %{
4962     single_instruction;
4963     poll : R(read);
4964     MS   : R;
4965 %}
4966 
4967 pipe_class br(Universe br, label labl) %{
4968     single_instruction_with_delay_slot;
4969     BR  : R;
4970 %}
4971 
4972 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
4973     single_instruction_with_delay_slot;
4974     cr    : E(read);
4975     BR    : R;
4976 %}
4977 
4978 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
4979     single_instruction_with_delay_slot;
4980     op1 : E(read);
4981     BR  : R;
4982     MS  : R;
4983 %}
4984 
4985 // Compare and branch
4986 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
4987     instruction_count(2); has_delay_slot;
4988     cr    : E(write);
4989     src1  : R(read);
4990     src2  : R(read);
4991     IALU  : R;
4992     BR    : R;
4993 %}
4994 
4995 // Compare and branch
4996 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
4997     instruction_count(2); has_delay_slot;
4998     cr    : E(write);
4999     src1  : R(read);
5000     IALU  : R;
5001     BR    : R;
5002 %}
5003 
5004 // Compare and branch using cbcond
5005 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5006     single_instruction;
5007     src1  : E(read);
5008     src2  : E(read);
5009     IALU  : R;
5010     BR    : R;
5011 %}
5012 
5013 // Compare and branch using cbcond
5014 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5015     single_instruction;
5016     src1  : E(read);
5017     IALU  : R;
5018     BR    : R;
5019 %}
5020 
5021 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5022     single_instruction_with_delay_slot;
5023     cr    : E(read);
5024     BR    : R;
5025 %}
5026 
5027 pipe_class br_nop() %{
5028     single_instruction;
5029     BR  : R;
5030 %}
5031 
5032 pipe_class simple_call(method meth) %{
5033     instruction_count(2); multiple_bundles; force_serialization;
5034     fixed_latency(100);
5035     BR  : R(1);
5036     MS  : R(1);
5037     A0  : R(1);
5038 %}
5039 
5040 pipe_class compiled_call(method meth) %{
5041     instruction_count(1); multiple_bundles; force_serialization;
5042     fixed_latency(100);
5043     MS  : R(1);
5044 %}
5045 
5046 pipe_class call(method meth) %{
5047     instruction_count(0); multiple_bundles; force_serialization;
5048     fixed_latency(100);
5049 %}
5050 
5051 pipe_class tail_call(Universe ignore, label labl) %{
5052     single_instruction; has_delay_slot;
5053     fixed_latency(100);
5054     BR  : R(1);
5055     MS  : R(1);
5056 %}
5057 
5058 pipe_class ret(Universe ignore) %{
5059     single_instruction; has_delay_slot;
5060     BR  : R(1);
5061     MS  : R(1);
5062 %}
5063 
5064 pipe_class ret_poll(g3RegP poll) %{
5065     instruction_count(3); has_delay_slot;
5066     poll : E(read);
5067     MS   : R;
5068 %}
5069 
5070 // The real do-nothing guy
5071 pipe_class empty( ) %{
5072     instruction_count(0);
5073 %}
5074 
5075 pipe_class long_memory_op() %{
5076     instruction_count(0); multiple_bundles; force_serialization;
5077     fixed_latency(25);
5078     MS  : R(1);
5079 %}
5080 
5081 // Check-cast
5082 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5083     array : R(read);
5084     match  : R(read);
5085     IALU   : R(2);
5086     BR     : R(2);
5087     MS     : R;
5088 %}
5089 
5090 // Convert FPU flags into +1,0,-1
5091 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5092     src1  : E(read);
5093     src2  : E(read);
5094     dst   : E(write);
5095     FA    : R;
5096     MS    : R(2);
5097     BR    : R(2);
5098 %}
5099 
5100 // Compare for p < q, and conditionally add y
5101 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5102     p     : E(read);
5103     q     : E(read);
5104     y     : E(read);
5105     IALU  : R(3)
5106 %}
5107 
5108 // Perform a compare, then move conditionally in a branch delay slot.
5109 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5110     src2   : E(read);
5111     srcdst : E(read);
5112     IALU   : R;
5113     BR     : R;
5114 %}
5115 
5116 // Define the class for the Nop node
5117 define %{
5118    MachNop = ialu_nop;
5119 %}
5120 
5121 %}
5122 
5123 //----------INSTRUCTIONS-------------------------------------------------------
5124 
5125 //------------Special Stack Slot instructions - no match rules-----------------
5126 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5127   // No match rule to avoid chain rule match.
5128   effect(DEF dst, USE src);
5129   ins_cost(MEMORY_REF_COST);
5130   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5131   opcode(Assembler::ldf_op3);
5132   ins_encode(simple_form3_mem_reg(src, dst));
5133   ins_pipe(floadF_stk);
5134 %}
5135 
5136 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5137   // No match rule to avoid chain rule match.
5138   effect(DEF dst, USE src);
5139   ins_cost(MEMORY_REF_COST);
5140   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5141   opcode(Assembler::lddf_op3);
5142   ins_encode(simple_form3_mem_reg(src, dst));
5143   ins_pipe(floadD_stk);
5144 %}
5145 
5146 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5147   // No match rule to avoid chain rule match.
5148   effect(DEF dst, USE src);
5149   ins_cost(MEMORY_REF_COST);
5150   format %{ "STF    $src,$dst\t! regF to stkI" %}
5151   opcode(Assembler::stf_op3);
5152   ins_encode(simple_form3_mem_reg(dst, src));
5153   ins_pipe(fstoreF_stk_reg);
5154 %}
5155 
5156 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5157   // No match rule to avoid chain rule match.
5158   effect(DEF dst, USE src);
5159   ins_cost(MEMORY_REF_COST);
5160   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5161   opcode(Assembler::stdf_op3);
5162   ins_encode(simple_form3_mem_reg(dst, src));
5163   ins_pipe(fstoreD_stk_reg);
5164 %}
5165 
5166 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5167   effect(DEF dst, USE src);
5168   ins_cost(MEMORY_REF_COST*2);
5169   format %{ "STW    $src,$dst.hi\t! long\n\t"
5170             "STW    R_G0,$dst.lo" %}
5171   opcode(Assembler::stw_op3);
5172   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5173   ins_pipe(lstoreI_stk_reg);
5174 %}
5175 
5176 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5177   // No match rule to avoid chain rule match.
5178   effect(DEF dst, USE src);
5179   ins_cost(MEMORY_REF_COST);
5180   format %{ "STX    $src,$dst\t! regL to stkD" %}
5181   opcode(Assembler::stx_op3);
5182   ins_encode(simple_form3_mem_reg( dst, src ) );
5183   ins_pipe(istore_stk_reg);
5184 %}
5185 
5186 //---------- Chain stack slots between similar types --------
5187 
5188 // Load integer from stack slot
5189 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5190   match(Set dst src);
5191   ins_cost(MEMORY_REF_COST);
5192 
5193   format %{ "LDUW   $src,$dst\t!stk" %}
5194   opcode(Assembler::lduw_op3);
5195   ins_encode(simple_form3_mem_reg( src, dst ) );
5196   ins_pipe(iload_mem);
5197 %}
5198 
5199 // Store integer to stack slot
5200 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5201   match(Set dst src);
5202   ins_cost(MEMORY_REF_COST);
5203 
5204   format %{ "STW    $src,$dst\t!stk" %}
5205   opcode(Assembler::stw_op3);
5206   ins_encode(simple_form3_mem_reg( dst, src ) );
5207   ins_pipe(istore_mem_reg);
5208 %}
5209 
5210 // Load long from stack slot
5211 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5212   match(Set dst src);
5213 
5214   ins_cost(MEMORY_REF_COST);
5215   format %{ "LDX    $src,$dst\t! long" %}
5216   opcode(Assembler::ldx_op3);
5217   ins_encode(simple_form3_mem_reg( src, dst ) );
5218   ins_pipe(iload_mem);
5219 %}
5220 
5221 // Store long to stack slot
5222 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5223   match(Set dst src);
5224 
5225   ins_cost(MEMORY_REF_COST);
5226   format %{ "STX    $src,$dst\t! long" %}
5227   opcode(Assembler::stx_op3);
5228   ins_encode(simple_form3_mem_reg( dst, src ) );
5229   ins_pipe(istore_mem_reg);
5230 %}
5231 
5232 // Load pointer from stack slot, 64-bit encoding
5233 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5234   match(Set dst src);
5235   ins_cost(MEMORY_REF_COST);
5236   format %{ "LDX    $src,$dst\t!ptr" %}
5237   opcode(Assembler::ldx_op3);
5238   ins_encode(simple_form3_mem_reg( src, dst ) );
5239   ins_pipe(iload_mem);
5240 %}
5241 
5242 // Store pointer to stack slot
5243 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5244   match(Set dst src);
5245   ins_cost(MEMORY_REF_COST);
5246   format %{ "STX    $src,$dst\t!ptr" %}
5247   opcode(Assembler::stx_op3);
5248   ins_encode(simple_form3_mem_reg( dst, src ) );
5249   ins_pipe(istore_mem_reg);
5250 %}
5251 
5252 //------------Special Nop instructions for bundling - no match rules-----------
5253 // Nop using the A0 functional unit
5254 instruct Nop_A0() %{
5255   ins_cost(0);
5256 
5257   format %{ "NOP    ! Alu Pipeline" %}
5258   opcode(Assembler::or_op3, Assembler::arith_op);
5259   ins_encode( form2_nop() );
5260   ins_pipe(ialu_nop_A0);
5261 %}
5262 
5263 // Nop using the A1 functional unit
5264 instruct Nop_A1( ) %{
5265   ins_cost(0);
5266 
5267   format %{ "NOP    ! Alu Pipeline" %}
5268   opcode(Assembler::or_op3, Assembler::arith_op);
5269   ins_encode( form2_nop() );
5270   ins_pipe(ialu_nop_A1);
5271 %}
5272 
5273 // Nop using the memory functional unit
5274 instruct Nop_MS( ) %{
5275   ins_cost(0);
5276 
5277   format %{ "NOP    ! Memory Pipeline" %}
5278   ins_encode( emit_mem_nop );
5279   ins_pipe(mem_nop);
5280 %}
5281 
5282 // Nop using the floating add functional unit
5283 instruct Nop_FA( ) %{
5284   ins_cost(0);
5285 
5286   format %{ "NOP    ! Floating Add Pipeline" %}
5287   ins_encode( emit_fadd_nop );
5288   ins_pipe(fadd_nop);
5289 %}
5290 
5291 // Nop using the branch functional unit
5292 instruct Nop_BR( ) %{
5293   ins_cost(0);
5294 
5295   format %{ "NOP    ! Branch Pipeline" %}
5296   ins_encode( emit_br_nop );
5297   ins_pipe(br_nop);
5298 %}
5299 
5300 //----------Load/Store/Move Instructions---------------------------------------
5301 //----------Load Instructions--------------------------------------------------
5302 // Load Byte (8bit signed)
5303 instruct loadB(iRegI dst, memory mem) %{
5304   match(Set dst (LoadB mem));
5305   ins_cost(MEMORY_REF_COST);
5306 
5307   size(4);
5308   format %{ "LDSB   $mem,$dst\t! byte" %}
5309   ins_encode %{
5310     __ ldsb($mem$$Address, $dst$$Register);
5311   %}
5312   ins_pipe(iload_mask_mem);
5313 %}
5314 
5315 // Load Byte (8bit signed) into a Long Register
5316 instruct loadB2L(iRegL dst, memory mem) %{
5317   match(Set dst (ConvI2L (LoadB mem)));
5318   ins_cost(MEMORY_REF_COST);
5319 
5320   size(4);
5321   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5322   ins_encode %{
5323     __ ldsb($mem$$Address, $dst$$Register);
5324   %}
5325   ins_pipe(iload_mask_mem);
5326 %}
5327 
5328 // Load Unsigned Byte (8bit UNsigned) into an int reg
5329 instruct loadUB(iRegI dst, memory mem) %{
5330   match(Set dst (LoadUB mem));
5331   ins_cost(MEMORY_REF_COST);
5332 
5333   size(4);
5334   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5335   ins_encode %{
5336     __ ldub($mem$$Address, $dst$$Register);
5337   %}
5338   ins_pipe(iload_mem);
5339 %}
5340 
5341 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5342 instruct loadUB2L(iRegL dst, memory mem) %{
5343   match(Set dst (ConvI2L (LoadUB mem)));
5344   ins_cost(MEMORY_REF_COST);
5345 
5346   size(4);
5347   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5348   ins_encode %{
5349     __ ldub($mem$$Address, $dst$$Register);
5350   %}
5351   ins_pipe(iload_mem);
5352 %}
5353 
5354 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
5355 instruct loadUB2L_immI(iRegL dst, memory mem, immI mask) %{
5356   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5357   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5358 
5359   size(2*4);
5360   format %{ "LDUB   $mem,$dst\t# ubyte & 32-bit mask -> long\n\t"
5361             "AND    $dst,right_n_bits($mask, 8),$dst" %}
5362   ins_encode %{
5363     __ ldub($mem$$Address, $dst$$Register);
5364     __ and3($dst$$Register, $mask$$constant & right_n_bits(8), $dst$$Register);
5365   %}
5366   ins_pipe(iload_mem);
5367 %}
5368 
5369 // Load Short (16bit signed)
5370 instruct loadS(iRegI dst, memory mem) %{
5371   match(Set dst (LoadS mem));
5372   ins_cost(MEMORY_REF_COST);
5373 
5374   size(4);
5375   format %{ "LDSH   $mem,$dst\t! short" %}
5376   ins_encode %{
5377     __ ldsh($mem$$Address, $dst$$Register);
5378   %}
5379   ins_pipe(iload_mask_mem);
5380 %}
5381 
5382 // Load Short (16 bit signed) to Byte (8 bit signed)
5383 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5384   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5385   ins_cost(MEMORY_REF_COST);
5386 
5387   size(4);
5388 
5389   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5390   ins_encode %{
5391     __ ldsb($mem$$Address, $dst$$Register, 1);
5392   %}
5393   ins_pipe(iload_mask_mem);
5394 %}
5395 
5396 // Load Short (16bit signed) into a Long Register
5397 instruct loadS2L(iRegL dst, memory mem) %{
5398   match(Set dst (ConvI2L (LoadS mem)));
5399   ins_cost(MEMORY_REF_COST);
5400 
5401   size(4);
5402   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5403   ins_encode %{
5404     __ ldsh($mem$$Address, $dst$$Register);
5405   %}
5406   ins_pipe(iload_mask_mem);
5407 %}
5408 
5409 // Load Unsigned Short/Char (16bit UNsigned)
5410 instruct loadUS(iRegI dst, memory mem) %{
5411   match(Set dst (LoadUS mem));
5412   ins_cost(MEMORY_REF_COST);
5413 
5414   size(4);
5415   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5416   ins_encode %{
5417     __ lduh($mem$$Address, $dst$$Register);
5418   %}
5419   ins_pipe(iload_mem);
5420 %}
5421 
5422 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5423 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5424   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5425   ins_cost(MEMORY_REF_COST);
5426 
5427   size(4);
5428   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5429   ins_encode %{
5430     __ ldsb($mem$$Address, $dst$$Register, 1);
5431   %}
5432   ins_pipe(iload_mask_mem);
5433 %}
5434 
5435 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5436 instruct loadUS2L(iRegL dst, memory mem) %{
5437   match(Set dst (ConvI2L (LoadUS mem)));
5438   ins_cost(MEMORY_REF_COST);
5439 
5440   size(4);
5441   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5442   ins_encode %{
5443     __ lduh($mem$$Address, $dst$$Register);
5444   %}
5445   ins_pipe(iload_mem);
5446 %}
5447 
5448 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5449 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5450   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5451   ins_cost(MEMORY_REF_COST);
5452 
5453   size(4);
5454   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5455   ins_encode %{
5456     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5457   %}
5458   ins_pipe(iload_mem);
5459 %}
5460 
5461 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5462 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5463   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5464   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5465 
5466   size(2*4);
5467   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5468             "AND    $dst,$mask,$dst" %}
5469   ins_encode %{
5470     Register Rdst = $dst$$Register;
5471     __ lduh($mem$$Address, Rdst);
5472     __ and3(Rdst, $mask$$constant, Rdst);
5473   %}
5474   ins_pipe(iload_mem);
5475 %}
5476 
5477 // Load Unsigned Short/Char (16bit UNsigned) with a 32-bit mask into a Long Register
5478 instruct loadUS2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5479   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5480   effect(TEMP dst, TEMP tmp);
5481   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5482 
5483   format %{ "LDUH   $mem,$dst\t! ushort/char & 32-bit mask -> long\n\t"
5484             "SET    right_n_bits($mask, 16),$tmp\n\t"
5485             "AND    $dst,$tmp,$dst" %}
5486   ins_encode %{
5487     Register Rdst = $dst$$Register;
5488     Register Rtmp = $tmp$$Register;
5489     __ lduh($mem$$Address, Rdst);
5490     __ set($mask$$constant & right_n_bits(16), Rtmp);
5491     __ and3(Rdst, Rtmp, Rdst);
5492   %}
5493   ins_pipe(iload_mem);
5494 %}
5495 
5496 // Load Integer
5497 instruct loadI(iRegI dst, memory mem) %{
5498   match(Set dst (LoadI mem));
5499   ins_cost(MEMORY_REF_COST);
5500 
5501   size(4);
5502   format %{ "LDUW   $mem,$dst\t! int" %}
5503   ins_encode %{
5504     __ lduw($mem$$Address, $dst$$Register);
5505   %}
5506   ins_pipe(iload_mem);
5507 %}
5508 
5509 // Load Integer to Byte (8 bit signed)
5510 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5511   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5512   ins_cost(MEMORY_REF_COST);
5513 
5514   size(4);
5515 
5516   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5517   ins_encode %{
5518     __ ldsb($mem$$Address, $dst$$Register, 3);
5519   %}
5520   ins_pipe(iload_mask_mem);
5521 %}
5522 
5523 // Load Integer to Unsigned Byte (8 bit UNsigned)
5524 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5525   match(Set dst (AndI (LoadI mem) mask));
5526   ins_cost(MEMORY_REF_COST);
5527 
5528   size(4);
5529 
5530   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5531   ins_encode %{
5532     __ ldub($mem$$Address, $dst$$Register, 3);
5533   %}
5534   ins_pipe(iload_mask_mem);
5535 %}
5536 
5537 // Load Integer to Short (16 bit signed)
5538 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5539   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5540   ins_cost(MEMORY_REF_COST);
5541 
5542   size(4);
5543 
5544   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5545   ins_encode %{
5546     __ ldsh($mem$$Address, $dst$$Register, 2);
5547   %}
5548   ins_pipe(iload_mask_mem);
5549 %}
5550 
5551 // Load Integer to Unsigned Short (16 bit UNsigned)
5552 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5553   match(Set dst (AndI (LoadI mem) mask));
5554   ins_cost(MEMORY_REF_COST);
5555 
5556   size(4);
5557 
5558   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5559   ins_encode %{
5560     __ lduh($mem$$Address, $dst$$Register, 2);
5561   %}
5562   ins_pipe(iload_mask_mem);
5563 %}
5564 
5565 // Load Integer into a Long Register
5566 instruct loadI2L(iRegL dst, memory mem) %{
5567   match(Set dst (ConvI2L (LoadI mem)));
5568   ins_cost(MEMORY_REF_COST);
5569 
5570   size(4);
5571   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5572   ins_encode %{
5573     __ ldsw($mem$$Address, $dst$$Register);
5574   %}
5575   ins_pipe(iload_mask_mem);
5576 %}
5577 
5578 // Load Integer with mask 0xFF into a Long Register
5579 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5580   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5581   ins_cost(MEMORY_REF_COST);
5582 
5583   size(4);
5584   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5585   ins_encode %{
5586     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5587   %}
5588   ins_pipe(iload_mem);
5589 %}
5590 
5591 // Load Integer with mask 0xFFFF into a Long Register
5592 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5593   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5594   ins_cost(MEMORY_REF_COST);
5595 
5596   size(4);
5597   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5598   ins_encode %{
5599     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5600   %}
5601   ins_pipe(iload_mem);
5602 %}
5603 
5604 // Load Integer with a 12-bit mask into a Long Register
5605 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5606   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5607   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5608 
5609   size(2*4);
5610   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5611             "AND    $dst,$mask,$dst" %}
5612   ins_encode %{
5613     Register Rdst = $dst$$Register;
5614     __ lduw($mem$$Address, Rdst);
5615     __ and3(Rdst, $mask$$constant, Rdst);
5616   %}
5617   ins_pipe(iload_mem);
5618 %}
5619 
5620 // Load Integer with a 31-bit mask into a Long Register
5621 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5622   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5623   effect(TEMP dst, TEMP tmp);
5624   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5625 
5626   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5627             "SET    $mask,$tmp\n\t"
5628             "AND    $dst,$tmp,$dst" %}
5629   ins_encode %{
5630     Register Rdst = $dst$$Register;
5631     Register Rtmp = $tmp$$Register;
5632     __ lduw($mem$$Address, Rdst);
5633     __ set($mask$$constant, Rtmp);
5634     __ and3(Rdst, Rtmp, Rdst);
5635   %}
5636   ins_pipe(iload_mem);
5637 %}
5638 
5639 // Load Unsigned Integer into a Long Register
5640 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5641   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5642   ins_cost(MEMORY_REF_COST);
5643 
5644   size(4);
5645   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5646   ins_encode %{
5647     __ lduw($mem$$Address, $dst$$Register);
5648   %}
5649   ins_pipe(iload_mem);
5650 %}
5651 
5652 // Load Long - aligned
5653 instruct loadL(iRegL dst, memory mem ) %{
5654   match(Set dst (LoadL mem));
5655   ins_cost(MEMORY_REF_COST);
5656 
5657   size(4);
5658   format %{ "LDX    $mem,$dst\t! long" %}
5659   ins_encode %{
5660     __ ldx($mem$$Address, $dst$$Register);
5661   %}
5662   ins_pipe(iload_mem);
5663 %}
5664 
5665 // Load Long - UNaligned
5666 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5667   match(Set dst (LoadL_unaligned mem));
5668   effect(KILL tmp);
5669   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5670   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5671           "\tLDUW   $mem  ,$dst\n"
5672           "\tSLLX   #32, $dst, $dst\n"
5673           "\tOR     $dst, R_O7, $dst" %}
5674   opcode(Assembler::lduw_op3);
5675   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5676   ins_pipe(iload_mem);
5677 %}
5678 
5679 // Load Range
5680 instruct loadRange(iRegI dst, memory mem) %{
5681   match(Set dst (LoadRange mem));
5682   ins_cost(MEMORY_REF_COST);
5683 
5684   format %{ "LDUW   $mem,$dst\t! range" %}
5685   opcode(Assembler::lduw_op3);
5686   ins_encode(simple_form3_mem_reg( mem, dst ) );
5687   ins_pipe(iload_mem);
5688 %}
5689 
5690 // Load Integer into %f register (for fitos/fitod)
5691 instruct loadI_freg(regF dst, memory mem) %{
5692   match(Set dst (LoadI mem));
5693   ins_cost(MEMORY_REF_COST);
5694 
5695   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5696   opcode(Assembler::ldf_op3);
5697   ins_encode(simple_form3_mem_reg( mem, dst ) );
5698   ins_pipe(floadF_mem);
5699 %}
5700 
5701 // Load Pointer
5702 instruct loadP(iRegP dst, memory mem) %{
5703   match(Set dst (LoadP mem));
5704   ins_cost(MEMORY_REF_COST);
5705   size(4);
5706 
5707   format %{ "LDX    $mem,$dst\t! ptr" %}
5708   ins_encode %{
5709     __ ldx($mem$$Address, $dst$$Register);
5710   %}
5711   ins_pipe(iload_mem);
5712 %}
5713 
5714 // Load Compressed Pointer
5715 instruct loadN(iRegN dst, memory mem) %{
5716   match(Set dst (LoadN mem));
5717   ins_cost(MEMORY_REF_COST);
5718   size(4);
5719 
5720   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5721   ins_encode %{
5722     __ lduw($mem$$Address, $dst$$Register);
5723   %}
5724   ins_pipe(iload_mem);
5725 %}
5726 
5727 // Load Klass Pointer
5728 instruct loadKlass(iRegP dst, memory mem) %{
5729   match(Set dst (LoadKlass mem));
5730   ins_cost(MEMORY_REF_COST);
5731   size(4);
5732 
5733   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5734   ins_encode %{
5735     __ ldx($mem$$Address, $dst$$Register);
5736   %}
5737   ins_pipe(iload_mem);
5738 %}
5739 
5740 // Load narrow Klass Pointer
5741 instruct loadNKlass(iRegN dst, memory mem) %{
5742   match(Set dst (LoadNKlass mem));
5743   ins_cost(MEMORY_REF_COST);
5744   size(4);
5745 
5746   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5747   ins_encode %{
5748     __ lduw($mem$$Address, $dst$$Register);
5749   %}
5750   ins_pipe(iload_mem);
5751 %}
5752 
5753 // Load Double
5754 instruct loadD(regD dst, memory mem) %{
5755   match(Set dst (LoadD mem));
5756   ins_cost(MEMORY_REF_COST);
5757 
5758   format %{ "LDDF   $mem,$dst" %}
5759   opcode(Assembler::lddf_op3);
5760   ins_encode(simple_form3_mem_reg( mem, dst ) );
5761   ins_pipe(floadD_mem);
5762 %}
5763 
5764 // Load Double - UNaligned
5765 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5766   match(Set dst (LoadD_unaligned mem));
5767   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5768   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5769           "\tLDF    $mem+4,$dst.lo\t!" %}
5770   opcode(Assembler::ldf_op3);
5771   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5772   ins_pipe(iload_mem);
5773 %}
5774 
5775 // Load Float
5776 instruct loadF(regF dst, memory mem) %{
5777   match(Set dst (LoadF mem));
5778   ins_cost(MEMORY_REF_COST);
5779 
5780   format %{ "LDF    $mem,$dst" %}
5781   opcode(Assembler::ldf_op3);
5782   ins_encode(simple_form3_mem_reg( mem, dst ) );
5783   ins_pipe(floadF_mem);
5784 %}
5785 
5786 // Load Constant
5787 instruct loadConI( iRegI dst, immI src ) %{
5788   match(Set dst src);
5789   ins_cost(DEFAULT_COST * 3/2);
5790   format %{ "SET    $src,$dst" %}
5791   ins_encode( Set32(src, dst) );
5792   ins_pipe(ialu_hi_lo_reg);
5793 %}
5794 
5795 instruct loadConI13( iRegI dst, immI13 src ) %{
5796   match(Set dst src);
5797 
5798   size(4);
5799   format %{ "MOV    $src,$dst" %}
5800   ins_encode( Set13( src, dst ) );
5801   ins_pipe(ialu_imm);
5802 %}
5803 
5804 instruct loadConP_set(iRegP dst, immP_set con) %{
5805   match(Set dst con);
5806   ins_cost(DEFAULT_COST * 3/2);
5807   format %{ "SET    $con,$dst\t! ptr" %}
5808   ins_encode %{
5809     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
5810       intptr_t val = $con$$constant;
5811     if (constant_reloc == relocInfo::oop_type) {
5812       __ set_oop_constant((jobject) val, $dst$$Register);
5813     } else if (constant_reloc == relocInfo::metadata_type) {
5814       __ set_metadata_constant((Metadata*)val, $dst$$Register);
5815     } else {          // non-oop pointers, e.g. card mark base, heap top
5816       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
5817       __ set(val, $dst$$Register);
5818     }
5819   %}
5820   ins_pipe(loadConP);
5821 %}
5822 
5823 instruct loadConP_load(iRegP dst, immP_load con) %{
5824   match(Set dst con);
5825   ins_cost(MEMORY_REF_COST);
5826   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
5827   ins_encode %{
5828     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
5829     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
5830   %}
5831   ins_pipe(loadConP);
5832 %}
5833 
5834 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
5835   match(Set dst con);
5836   ins_cost(DEFAULT_COST * 3/2);
5837   format %{ "SET    $con,$dst\t! non-oop ptr" %}
5838   ins_encode %{
5839     if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
5840       __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
5841     } else {
5842       __ set($con$$constant, $dst$$Register);
5843     }
5844   %}
5845   ins_pipe(loadConP);
5846 %}
5847 
5848 instruct loadConP0(iRegP dst, immP0 src) %{
5849   match(Set dst src);
5850 
5851   size(4);
5852   format %{ "CLR    $dst\t!ptr" %}
5853   ins_encode %{
5854     __ clr($dst$$Register);
5855   %}
5856   ins_pipe(ialu_imm);
5857 %}
5858 
5859 instruct loadConP_poll(iRegP dst, immP_poll src) %{
5860   match(Set dst src);
5861   ins_cost(DEFAULT_COST);
5862   format %{ "SET    $src,$dst\t!ptr" %}
5863   ins_encode %{
5864     AddressLiteral polling_page(os::get_polling_page());
5865     __ sethi(polling_page, reg_to_register_object($dst$$reg));
5866   %}
5867   ins_pipe(loadConP_poll);
5868 %}
5869 
5870 instruct loadConN0(iRegN dst, immN0 src) %{
5871   match(Set dst src);
5872 
5873   size(4);
5874   format %{ "CLR    $dst\t! compressed NULL ptr" %}
5875   ins_encode %{
5876     __ clr($dst$$Register);
5877   %}
5878   ins_pipe(ialu_imm);
5879 %}
5880 
5881 instruct loadConN(iRegN dst, immN src) %{
5882   match(Set dst src);
5883   ins_cost(DEFAULT_COST * 3/2);
5884   format %{ "SET    $src,$dst\t! compressed ptr" %}
5885   ins_encode %{
5886     Register dst = $dst$$Register;
5887     __ set_narrow_oop((jobject)$src$$constant, dst);
5888   %}
5889   ins_pipe(ialu_hi_lo_reg);
5890 %}
5891 
5892 instruct loadConNKlass(iRegN dst, immNKlass src) %{
5893   match(Set dst src);
5894   ins_cost(DEFAULT_COST * 3/2);
5895   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
5896   ins_encode %{
5897     Register dst = $dst$$Register;
5898     __ set_narrow_klass((Klass*)$src$$constant, dst);
5899   %}
5900   ins_pipe(ialu_hi_lo_reg);
5901 %}
5902 
5903 // Materialize long value (predicated by immL_cheap).
5904 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
5905   match(Set dst con);
5906   effect(KILL tmp);
5907   ins_cost(DEFAULT_COST * 3);
5908   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
5909   ins_encode %{
5910     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
5911   %}
5912   ins_pipe(loadConL);
5913 %}
5914 
5915 // Load long value from constant table (predicated by immL_expensive).
5916 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
5917   match(Set dst con);
5918   ins_cost(MEMORY_REF_COST);
5919   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
5920   ins_encode %{
5921       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
5922     __ ldx($constanttablebase, con_offset, $dst$$Register);
5923   %}
5924   ins_pipe(loadConL);
5925 %}
5926 
5927 instruct loadConL0( iRegL dst, immL0 src ) %{
5928   match(Set dst src);
5929   ins_cost(DEFAULT_COST);
5930   size(4);
5931   format %{ "CLR    $dst\t! long" %}
5932   ins_encode( Set13( src, dst ) );
5933   ins_pipe(ialu_imm);
5934 %}
5935 
5936 instruct loadConL13( iRegL dst, immL13 src ) %{
5937   match(Set dst src);
5938   ins_cost(DEFAULT_COST * 2);
5939 
5940   size(4);
5941   format %{ "MOV    $src,$dst\t! long" %}
5942   ins_encode( Set13( src, dst ) );
5943   ins_pipe(ialu_imm);
5944 %}
5945 
5946 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
5947   match(Set dst con);
5948   effect(KILL tmp);
5949   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
5950   ins_encode %{
5951       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
5952     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
5953   %}
5954   ins_pipe(loadConFD);
5955 %}
5956 
5957 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
5958   match(Set dst con);
5959   effect(KILL tmp);
5960   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
5961   ins_encode %{
5962     // XXX This is a quick fix for 6833573.
5963     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
5964     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
5965     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
5966   %}
5967   ins_pipe(loadConFD);
5968 %}
5969 
5970 // Prefetch instructions for allocation.
5971 // Must be safe to execute with invalid address (cannot fault).
5972 
5973 instruct prefetchAlloc( memory mem ) %{
5974   predicate(AllocatePrefetchInstr == 0);
5975   match( PrefetchAllocation mem );
5976   ins_cost(MEMORY_REF_COST);
5977 
5978   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
5979   opcode(Assembler::prefetch_op3);
5980   ins_encode( form3_mem_prefetch_write( mem ) );
5981   ins_pipe(iload_mem);
5982 %}
5983 
5984 // Use BIS instruction to prefetch for allocation.
5985 // Could fault, need space at the end of TLAB.
5986 instruct prefetchAlloc_bis( iRegP dst ) %{
5987   predicate(AllocatePrefetchInstr == 1);
5988   match( PrefetchAllocation dst );
5989   ins_cost(MEMORY_REF_COST);
5990   size(4);
5991 
5992   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
5993   ins_encode %{
5994     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
5995   %}
5996   ins_pipe(istore_mem_reg);
5997 %}
5998 
5999 // Next code is used for finding next cache line address to prefetch.
6000 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6001   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6002   ins_cost(DEFAULT_COST);
6003   size(4);
6004 
6005   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6006   ins_encode %{
6007     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6008   %}
6009   ins_pipe(ialu_reg_imm);
6010 %}
6011 
6012 //----------Store Instructions-------------------------------------------------
6013 // Store Byte
6014 instruct storeB(memory mem, iRegI src) %{
6015   match(Set mem (StoreB mem src));
6016   ins_cost(MEMORY_REF_COST);
6017 
6018   format %{ "STB    $src,$mem\t! byte" %}
6019   opcode(Assembler::stb_op3);
6020   ins_encode(simple_form3_mem_reg( mem, src ) );
6021   ins_pipe(istore_mem_reg);
6022 %}
6023 
6024 instruct storeB0(memory mem, immI0 src) %{
6025   match(Set mem (StoreB mem src));
6026   ins_cost(MEMORY_REF_COST);
6027 
6028   format %{ "STB    $src,$mem\t! byte" %}
6029   opcode(Assembler::stb_op3);
6030   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6031   ins_pipe(istore_mem_zero);
6032 %}
6033 
6034 instruct storeCM0(memory mem, immI0 src) %{
6035   match(Set mem (StoreCM mem src));
6036   ins_cost(MEMORY_REF_COST);
6037 
6038   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6039   opcode(Assembler::stb_op3);
6040   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6041   ins_pipe(istore_mem_zero);
6042 %}
6043 
6044 // Store Char/Short
6045 instruct storeC(memory mem, iRegI src) %{
6046   match(Set mem (StoreC mem src));
6047   ins_cost(MEMORY_REF_COST);
6048 
6049   format %{ "STH    $src,$mem\t! short" %}
6050   opcode(Assembler::sth_op3);
6051   ins_encode(simple_form3_mem_reg( mem, src ) );
6052   ins_pipe(istore_mem_reg);
6053 %}
6054 
6055 instruct storeC0(memory mem, immI0 src) %{
6056   match(Set mem (StoreC mem src));
6057   ins_cost(MEMORY_REF_COST);
6058 
6059   format %{ "STH    $src,$mem\t! short" %}
6060   opcode(Assembler::sth_op3);
6061   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6062   ins_pipe(istore_mem_zero);
6063 %}
6064 
6065 // Store Integer
6066 instruct storeI(memory mem, iRegI src) %{
6067   match(Set mem (StoreI mem src));
6068   ins_cost(MEMORY_REF_COST);
6069 
6070   format %{ "STW    $src,$mem" %}
6071   opcode(Assembler::stw_op3);
6072   ins_encode(simple_form3_mem_reg( mem, src ) );
6073   ins_pipe(istore_mem_reg);
6074 %}
6075 
6076 // Store Long
6077 instruct storeL(memory mem, iRegL src) %{
6078   match(Set mem (StoreL mem src));
6079   ins_cost(MEMORY_REF_COST);
6080   format %{ "STX    $src,$mem\t! long" %}
6081   opcode(Assembler::stx_op3);
6082   ins_encode(simple_form3_mem_reg( mem, src ) );
6083   ins_pipe(istore_mem_reg);
6084 %}
6085 
6086 instruct storeI0(memory mem, immI0 src) %{
6087   match(Set mem (StoreI mem src));
6088   ins_cost(MEMORY_REF_COST);
6089 
6090   format %{ "STW    $src,$mem" %}
6091   opcode(Assembler::stw_op3);
6092   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6093   ins_pipe(istore_mem_zero);
6094 %}
6095 
6096 instruct storeL0(memory mem, immL0 src) %{
6097   match(Set mem (StoreL mem src));
6098   ins_cost(MEMORY_REF_COST);
6099 
6100   format %{ "STX    $src,$mem" %}
6101   opcode(Assembler::stx_op3);
6102   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6103   ins_pipe(istore_mem_zero);
6104 %}
6105 
6106 // Store Integer from float register (used after fstoi)
6107 instruct storeI_Freg(memory mem, regF src) %{
6108   match(Set mem (StoreI mem src));
6109   ins_cost(MEMORY_REF_COST);
6110 
6111   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6112   opcode(Assembler::stf_op3);
6113   ins_encode(simple_form3_mem_reg( mem, src ) );
6114   ins_pipe(fstoreF_mem_reg);
6115 %}
6116 
6117 // Store Pointer
6118 instruct storeP(memory dst, sp_ptr_RegP src) %{
6119   match(Set dst (StoreP dst src));
6120   ins_cost(MEMORY_REF_COST);
6121 
6122   format %{ "STX    $src,$dst\t! ptr" %}
6123   opcode(Assembler::stx_op3, 0, REGP_OP);
6124   ins_encode( form3_mem_reg( dst, src ) );
6125   ins_pipe(istore_mem_spORreg);
6126 %}
6127 
6128 instruct storeP0(memory dst, immP0 src) %{
6129   match(Set dst (StoreP dst src));
6130   ins_cost(MEMORY_REF_COST);
6131 
6132   format %{ "STX    $src,$dst\t! ptr" %}
6133   opcode(Assembler::stx_op3, 0, REGP_OP);
6134   ins_encode( form3_mem_reg( dst, R_G0 ) );
6135   ins_pipe(istore_mem_zero);
6136 %}
6137 
6138 // Store Compressed Pointer
6139 instruct storeN(memory dst, iRegN src) %{
6140    match(Set dst (StoreN dst src));
6141    ins_cost(MEMORY_REF_COST);
6142    size(4);
6143 
6144    format %{ "STW    $src,$dst\t! compressed ptr" %}
6145    ins_encode %{
6146      Register base = as_Register($dst$$base);
6147      Register index = as_Register($dst$$index);
6148      Register src = $src$$Register;
6149      if (index != G0) {
6150        __ stw(src, base, index);
6151      } else {
6152        __ stw(src, base, $dst$$disp);
6153      }
6154    %}
6155    ins_pipe(istore_mem_spORreg);
6156 %}
6157 
6158 instruct storeNKlass(memory dst, iRegN src) %{
6159    match(Set dst (StoreNKlass dst src));
6160    ins_cost(MEMORY_REF_COST);
6161    size(4);
6162 
6163    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6164    ins_encode %{
6165      Register base = as_Register($dst$$base);
6166      Register index = as_Register($dst$$index);
6167      Register src = $src$$Register;
6168      if (index != G0) {
6169        __ stw(src, base, index);
6170      } else {
6171        __ stw(src, base, $dst$$disp);
6172      }
6173    %}
6174    ins_pipe(istore_mem_spORreg);
6175 %}
6176 
6177 instruct storeN0(memory dst, immN0 src) %{
6178    match(Set dst (StoreN dst src));
6179    ins_cost(MEMORY_REF_COST);
6180    size(4);
6181 
6182    format %{ "STW    $src,$dst\t! compressed ptr" %}
6183    ins_encode %{
6184      Register base = as_Register($dst$$base);
6185      Register index = as_Register($dst$$index);
6186      if (index != G0) {
6187        __ stw(0, base, index);
6188      } else {
6189        __ stw(0, base, $dst$$disp);
6190      }
6191    %}
6192    ins_pipe(istore_mem_zero);
6193 %}
6194 
6195 // Store Double
6196 instruct storeD( memory mem, regD src) %{
6197   match(Set mem (StoreD mem src));
6198   ins_cost(MEMORY_REF_COST);
6199 
6200   format %{ "STDF   $src,$mem" %}
6201   opcode(Assembler::stdf_op3);
6202   ins_encode(simple_form3_mem_reg( mem, src ) );
6203   ins_pipe(fstoreD_mem_reg);
6204 %}
6205 
6206 instruct storeD0( memory mem, immD0 src) %{
6207   match(Set mem (StoreD mem src));
6208   ins_cost(MEMORY_REF_COST);
6209 
6210   format %{ "STX    $src,$mem" %}
6211   opcode(Assembler::stx_op3);
6212   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6213   ins_pipe(fstoreD_mem_zero);
6214 %}
6215 
6216 // Store Float
6217 instruct storeF( memory mem, regF src) %{
6218   match(Set mem (StoreF mem src));
6219   ins_cost(MEMORY_REF_COST);
6220 
6221   format %{ "STF    $src,$mem" %}
6222   opcode(Assembler::stf_op3);
6223   ins_encode(simple_form3_mem_reg( mem, src ) );
6224   ins_pipe(fstoreF_mem_reg);
6225 %}
6226 
6227 instruct storeF0( memory mem, immF0 src) %{
6228   match(Set mem (StoreF mem src));
6229   ins_cost(MEMORY_REF_COST);
6230 
6231   format %{ "STW    $src,$mem\t! storeF0" %}
6232   opcode(Assembler::stw_op3);
6233   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6234   ins_pipe(fstoreF_mem_zero);
6235 %}
6236 
6237 // Convert oop pointer into compressed form
6238 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6239   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6240   match(Set dst (EncodeP src));
6241   format %{ "encode_heap_oop $src, $dst" %}
6242   ins_encode %{
6243     __ encode_heap_oop($src$$Register, $dst$$Register);
6244   %}
6245   ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
6246   ins_pipe(ialu_reg);
6247 %}
6248 
6249 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6250   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6251   match(Set dst (EncodeP src));
6252   format %{ "encode_heap_oop_not_null $src, $dst" %}
6253   ins_encode %{
6254     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6255   %}
6256   ins_pipe(ialu_reg);
6257 %}
6258 
6259 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6260   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6261             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6262   match(Set dst (DecodeN src));
6263   format %{ "decode_heap_oop $src, $dst" %}
6264   ins_encode %{
6265     __ decode_heap_oop($src$$Register, $dst$$Register);
6266   %}
6267   ins_pipe(ialu_reg);
6268 %}
6269 
6270 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6271   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6272             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6273   match(Set dst (DecodeN src));
6274   format %{ "decode_heap_oop_not_null $src, $dst" %}
6275   ins_encode %{
6276     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6277   %}
6278   ins_pipe(ialu_reg);
6279 %}
6280 
6281 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6282   match(Set dst (EncodePKlass src));
6283   format %{ "encode_klass_not_null $src, $dst" %}
6284   ins_encode %{
6285     __ encode_klass_not_null($src$$Register, $dst$$Register);
6286   %}
6287   ins_pipe(ialu_reg);
6288 %}
6289 
6290 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6291   match(Set dst (DecodeNKlass src));
6292   format %{ "decode_klass_not_null $src, $dst" %}
6293   ins_encode %{
6294     __ decode_klass_not_null($src$$Register, $dst$$Register);
6295   %}
6296   ins_pipe(ialu_reg);
6297 %}
6298 
6299 //----------MemBar Instructions-----------------------------------------------
6300 // Memory barrier flavors
6301 
6302 instruct membar_acquire() %{
6303   match(MemBarAcquire);
6304   match(LoadFence);
6305   ins_cost(4*MEMORY_REF_COST);
6306 
6307   size(0);
6308   format %{ "MEMBAR-acquire" %}
6309   ins_encode( enc_membar_acquire );
6310   ins_pipe(long_memory_op);
6311 %}
6312 
6313 instruct membar_acquire_lock() %{
6314   match(MemBarAcquireLock);
6315   ins_cost(0);
6316 
6317   size(0);
6318   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6319   ins_encode( );
6320   ins_pipe(empty);
6321 %}
6322 
6323 instruct membar_release() %{
6324   match(MemBarRelease);
6325   match(StoreFence);
6326   ins_cost(4*MEMORY_REF_COST);
6327 
6328   size(0);
6329   format %{ "MEMBAR-release" %}
6330   ins_encode( enc_membar_release );
6331   ins_pipe(long_memory_op);
6332 %}
6333 
6334 instruct membar_release_lock() %{
6335   match(MemBarReleaseLock);
6336   ins_cost(0);
6337 
6338   size(0);
6339   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6340   ins_encode( );
6341   ins_pipe(empty);
6342 %}
6343 
6344 instruct membar_volatile() %{
6345   match(MemBarVolatile);
6346   ins_cost(4*MEMORY_REF_COST);
6347 
6348   size(4);
6349   format %{ "MEMBAR-volatile" %}
6350   ins_encode( enc_membar_volatile );
6351   ins_pipe(long_memory_op);
6352 %}
6353 
6354 instruct unnecessary_membar_volatile() %{
6355   match(MemBarVolatile);
6356   predicate(Matcher::post_store_load_barrier(n));
6357   ins_cost(0);
6358 
6359   size(0);
6360   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6361   ins_encode( );
6362   ins_pipe(empty);
6363 %}
6364 
6365 instruct membar_storestore() %{
6366   match(MemBarStoreStore);
6367   ins_cost(0);
6368 
6369   size(0);
6370   format %{ "!MEMBAR-storestore (empty encoding)" %}
6371   ins_encode( );
6372   ins_pipe(empty);
6373 %}
6374 
6375 //----------Register Move Instructions-----------------------------------------
6376 instruct roundDouble_nop(regD dst) %{
6377   match(Set dst (RoundDouble dst));
6378   ins_cost(0);
6379   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6380   ins_encode( );
6381   ins_pipe(empty);
6382 %}
6383 
6384 
6385 instruct roundFloat_nop(regF dst) %{
6386   match(Set dst (RoundFloat dst));
6387   ins_cost(0);
6388   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6389   ins_encode( );
6390   ins_pipe(empty);
6391 %}
6392 
6393 
6394 // Cast Index to Pointer for unsafe natives
6395 instruct castX2P(iRegX src, iRegP dst) %{
6396   match(Set dst (CastX2P src));
6397 
6398   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6399   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6400   ins_pipe(ialu_reg);
6401 %}
6402 
6403 // Cast Pointer to Index for unsafe natives
6404 instruct castP2X(iRegP src, iRegX dst) %{
6405   match(Set dst (CastP2X src));
6406 
6407   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6408   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6409   ins_pipe(ialu_reg);
6410 %}
6411 
6412 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6413   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6414   match(Set stkSlot src);   // chain rule
6415   ins_cost(MEMORY_REF_COST);
6416   format %{ "STDF   $src,$stkSlot\t!stk" %}
6417   opcode(Assembler::stdf_op3);
6418   ins_encode(simple_form3_mem_reg(stkSlot, src));
6419   ins_pipe(fstoreD_stk_reg);
6420 %}
6421 
6422 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6423   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6424   match(Set dst stkSlot);   // chain rule
6425   ins_cost(MEMORY_REF_COST);
6426   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6427   opcode(Assembler::lddf_op3);
6428   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6429   ins_pipe(floadD_stk);
6430 %}
6431 
6432 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6433   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6434   match(Set stkSlot src);   // chain rule
6435   ins_cost(MEMORY_REF_COST);
6436   format %{ "STF   $src,$stkSlot\t!stk" %}
6437   opcode(Assembler::stf_op3);
6438   ins_encode(simple_form3_mem_reg(stkSlot, src));
6439   ins_pipe(fstoreF_stk_reg);
6440 %}
6441 
6442 //----------Conditional Move---------------------------------------------------
6443 // Conditional move
6444 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6445   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6446   ins_cost(150);
6447   format %{ "MOV$cmp $pcc,$src,$dst" %}
6448   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6449   ins_pipe(ialu_reg);
6450 %}
6451 
6452 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6453   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6454   ins_cost(140);
6455   format %{ "MOV$cmp $pcc,$src,$dst" %}
6456   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6457   ins_pipe(ialu_imm);
6458 %}
6459 
6460 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6461   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6462   ins_cost(150);
6463   size(4);
6464   format %{ "MOV$cmp  $icc,$src,$dst" %}
6465   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6466   ins_pipe(ialu_reg);
6467 %}
6468 
6469 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6470   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6471   ins_cost(140);
6472   size(4);
6473   format %{ "MOV$cmp  $icc,$src,$dst" %}
6474   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6475   ins_pipe(ialu_imm);
6476 %}
6477 
6478 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6479   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6480   ins_cost(150);
6481   size(4);
6482   format %{ "MOV$cmp  $icc,$src,$dst" %}
6483   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6484   ins_pipe(ialu_reg);
6485 %}
6486 
6487 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6488   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6489   ins_cost(140);
6490   size(4);
6491   format %{ "MOV$cmp  $icc,$src,$dst" %}
6492   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6493   ins_pipe(ialu_imm);
6494 %}
6495 
6496 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6497   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6498   ins_cost(150);
6499   size(4);
6500   format %{ "MOV$cmp $fcc,$src,$dst" %}
6501   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6502   ins_pipe(ialu_reg);
6503 %}
6504 
6505 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6506   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6507   ins_cost(140);
6508   size(4);
6509   format %{ "MOV$cmp $fcc,$src,$dst" %}
6510   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6511   ins_pipe(ialu_imm);
6512 %}
6513 
6514 // Conditional move for RegN. Only cmov(reg,reg).
6515 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6516   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6517   ins_cost(150);
6518   format %{ "MOV$cmp $pcc,$src,$dst" %}
6519   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6520   ins_pipe(ialu_reg);
6521 %}
6522 
6523 // This instruction also works with CmpN so we don't need cmovNN_reg.
6524 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6525   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6526   ins_cost(150);
6527   size(4);
6528   format %{ "MOV$cmp  $icc,$src,$dst" %}
6529   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6530   ins_pipe(ialu_reg);
6531 %}
6532 
6533 // This instruction also works with CmpN so we don't need cmovNN_reg.
6534 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6535   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6536   ins_cost(150);
6537   size(4);
6538   format %{ "MOV$cmp  $icc,$src,$dst" %}
6539   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6540   ins_pipe(ialu_reg);
6541 %}
6542 
6543 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6544   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6545   ins_cost(150);
6546   size(4);
6547   format %{ "MOV$cmp $fcc,$src,$dst" %}
6548   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6549   ins_pipe(ialu_reg);
6550 %}
6551 
6552 // Conditional move
6553 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6554   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6555   ins_cost(150);
6556   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6557   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6558   ins_pipe(ialu_reg);
6559 %}
6560 
6561 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6562   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6563   ins_cost(140);
6564   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6565   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6566   ins_pipe(ialu_imm);
6567 %}
6568 
6569 // This instruction also works with CmpN so we don't need cmovPN_reg.
6570 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6571   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6572   ins_cost(150);
6573 
6574   size(4);
6575   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6576   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6577   ins_pipe(ialu_reg);
6578 %}
6579 
6580 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6581   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6582   ins_cost(150);
6583 
6584   size(4);
6585   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6586   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6587   ins_pipe(ialu_reg);
6588 %}
6589 
6590 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6591   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6592   ins_cost(140);
6593 
6594   size(4);
6595   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6596   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6597   ins_pipe(ialu_imm);
6598 %}
6599 
6600 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6601   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6602   ins_cost(140);
6603 
6604   size(4);
6605   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6606   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6607   ins_pipe(ialu_imm);
6608 %}
6609 
6610 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6611   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6612   ins_cost(150);
6613   size(4);
6614   format %{ "MOV$cmp $fcc,$src,$dst" %}
6615   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6616   ins_pipe(ialu_imm);
6617 %}
6618 
6619 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6620   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6621   ins_cost(140);
6622   size(4);
6623   format %{ "MOV$cmp $fcc,$src,$dst" %}
6624   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6625   ins_pipe(ialu_imm);
6626 %}
6627 
6628 // Conditional move
6629 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6630   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6631   ins_cost(150);
6632   opcode(0x101);
6633   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6634   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6635   ins_pipe(int_conditional_float_move);
6636 %}
6637 
6638 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6639   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6640   ins_cost(150);
6641 
6642   size(4);
6643   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6644   opcode(0x101);
6645   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6646   ins_pipe(int_conditional_float_move);
6647 %}
6648 
6649 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6650   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6651   ins_cost(150);
6652 
6653   size(4);
6654   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6655   opcode(0x101);
6656   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6657   ins_pipe(int_conditional_float_move);
6658 %}
6659 
6660 // Conditional move,
6661 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6662   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6663   ins_cost(150);
6664   size(4);
6665   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6666   opcode(0x1);
6667   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6668   ins_pipe(int_conditional_double_move);
6669 %}
6670 
6671 // Conditional move
6672 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6673   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6674   ins_cost(150);
6675   size(4);
6676   opcode(0x102);
6677   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6678   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6679   ins_pipe(int_conditional_double_move);
6680 %}
6681 
6682 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6683   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6684   ins_cost(150);
6685 
6686   size(4);
6687   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6688   opcode(0x102);
6689   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6690   ins_pipe(int_conditional_double_move);
6691 %}
6692 
6693 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6694   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6695   ins_cost(150);
6696 
6697   size(4);
6698   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6699   opcode(0x102);
6700   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6701   ins_pipe(int_conditional_double_move);
6702 %}
6703 
6704 // Conditional move,
6705 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6706   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6707   ins_cost(150);
6708   size(4);
6709   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6710   opcode(0x2);
6711   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6712   ins_pipe(int_conditional_double_move);
6713 %}
6714 
6715 // Conditional move
6716 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6717   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6718   ins_cost(150);
6719   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6720   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6721   ins_pipe(ialu_reg);
6722 %}
6723 
6724 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6725   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6726   ins_cost(140);
6727   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6728   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6729   ins_pipe(ialu_imm);
6730 %}
6731 
6732 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6733   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6734   ins_cost(150);
6735 
6736   size(4);
6737   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6738   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6739   ins_pipe(ialu_reg);
6740 %}
6741 
6742 
6743 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
6744   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6745   ins_cost(150);
6746 
6747   size(4);
6748   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6749   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6750   ins_pipe(ialu_reg);
6751 %}
6752 
6753 
6754 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6755   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6756   ins_cost(150);
6757 
6758   size(4);
6759   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6760   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6761   ins_pipe(ialu_reg);
6762 %}
6763 
6764 
6765 
6766 //----------OS and Locking Instructions----------------------------------------
6767 
6768 // This name is KNOWN by the ADLC and cannot be changed.
6769 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6770 // for this guy.
6771 instruct tlsLoadP(g2RegP dst) %{
6772   match(Set dst (ThreadLocal));
6773 
6774   size(0);
6775   ins_cost(0);
6776   format %{ "# TLS is in G2" %}
6777   ins_encode( /*empty encoding*/ );
6778   ins_pipe(ialu_none);
6779 %}
6780 
6781 instruct checkCastPP( iRegP dst ) %{
6782   match(Set dst (CheckCastPP dst));
6783 
6784   size(0);
6785   format %{ "# checkcastPP of $dst" %}
6786   ins_encode( /*empty encoding*/ );
6787   ins_pipe(empty);
6788 %}
6789 
6790 
6791 instruct castPP( iRegP dst ) %{
6792   match(Set dst (CastPP dst));
6793   format %{ "# castPP of $dst" %}
6794   ins_encode( /*empty encoding*/ );
6795   ins_pipe(empty);
6796 %}
6797 
6798 instruct castII( iRegI dst ) %{
6799   match(Set dst (CastII dst));
6800   format %{ "# castII of $dst" %}
6801   ins_encode( /*empty encoding*/ );
6802   ins_cost(0);
6803   ins_pipe(empty);
6804 %}
6805 
6806 //----------Arithmetic Instructions--------------------------------------------
6807 // Addition Instructions
6808 // Register Addition
6809 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6810   match(Set dst (AddI src1 src2));
6811 
6812   size(4);
6813   format %{ "ADD    $src1,$src2,$dst" %}
6814   ins_encode %{
6815     __ add($src1$$Register, $src2$$Register, $dst$$Register);
6816   %}
6817   ins_pipe(ialu_reg_reg);
6818 %}
6819 
6820 // Immediate Addition
6821 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6822   match(Set dst (AddI src1 src2));
6823 
6824   size(4);
6825   format %{ "ADD    $src1,$src2,$dst" %}
6826   opcode(Assembler::add_op3, Assembler::arith_op);
6827   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6828   ins_pipe(ialu_reg_imm);
6829 %}
6830 
6831 // Pointer Register Addition
6832 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
6833   match(Set dst (AddP src1 src2));
6834 
6835   size(4);
6836   format %{ "ADD    $src1,$src2,$dst" %}
6837   opcode(Assembler::add_op3, Assembler::arith_op);
6838   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6839   ins_pipe(ialu_reg_reg);
6840 %}
6841 
6842 // Pointer Immediate Addition
6843 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
6844   match(Set dst (AddP src1 src2));
6845 
6846   size(4);
6847   format %{ "ADD    $src1,$src2,$dst" %}
6848   opcode(Assembler::add_op3, Assembler::arith_op);
6849   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6850   ins_pipe(ialu_reg_imm);
6851 %}
6852 
6853 // Long Addition
6854 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6855   match(Set dst (AddL src1 src2));
6856 
6857   size(4);
6858   format %{ "ADD    $src1,$src2,$dst\t! long" %}
6859   opcode(Assembler::add_op3, Assembler::arith_op);
6860   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6861   ins_pipe(ialu_reg_reg);
6862 %}
6863 
6864 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6865   match(Set dst (AddL src1 con));
6866 
6867   size(4);
6868   format %{ "ADD    $src1,$con,$dst" %}
6869   opcode(Assembler::add_op3, Assembler::arith_op);
6870   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6871   ins_pipe(ialu_reg_imm);
6872 %}
6873 
6874 //----------Conditional_store--------------------------------------------------
6875 // Conditional-store of the updated heap-top.
6876 // Used during allocation of the shared heap.
6877 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
6878 
6879 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
6880 instruct loadPLocked(iRegP dst, memory mem) %{
6881   match(Set dst (LoadPLocked mem));
6882   ins_cost(MEMORY_REF_COST);
6883 
6884   format %{ "LDX    $mem,$dst\t! ptr" %}
6885   opcode(Assembler::ldx_op3, 0, REGP_OP);
6886   ins_encode( form3_mem_reg( mem, dst ) );
6887   ins_pipe(iload_mem);
6888 %}
6889 
6890 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
6891   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
6892   effect( KILL newval );
6893   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
6894             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
6895   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
6896   ins_pipe( long_memory_op );
6897 %}
6898 
6899 // Conditional-store of an int value.
6900 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
6901   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
6902   effect( KILL newval );
6903   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6904             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6905   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6906   ins_pipe( long_memory_op );
6907 %}
6908 
6909 // Conditional-store of a long value.
6910 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
6911   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
6912   effect( KILL newval );
6913   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6914             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6915   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6916   ins_pipe( long_memory_op );
6917 %}
6918 
6919 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
6920 
6921 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6922   predicate(VM_Version::supports_cx8());
6923   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
6924   match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
6925   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6926   format %{
6927             "MOV    $newval,O7\n\t"
6928             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6929             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6930             "MOV    1,$res\n\t"
6931             "MOVne  xcc,R_G0,$res"
6932   %}
6933   ins_encode( enc_casx(mem_ptr, oldval, newval),
6934               enc_lflags_ne_to_boolean(res) );
6935   ins_pipe( long_memory_op );
6936 %}
6937 
6938 
6939 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6940   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
6941   match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
6942   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6943   format %{
6944             "MOV    $newval,O7\n\t"
6945             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6946             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6947             "MOV    1,$res\n\t"
6948             "MOVne  icc,R_G0,$res"
6949   %}
6950   ins_encode( enc_casi(mem_ptr, oldval, newval),
6951               enc_iflags_ne_to_boolean(res) );
6952   ins_pipe( long_memory_op );
6953 %}
6954 
6955 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6956   predicate(VM_Version::supports_cx8());
6957   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
6958   match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
6959   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6960   format %{
6961             "MOV    $newval,O7\n\t"
6962             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6963             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6964             "MOV    1,$res\n\t"
6965             "MOVne  xcc,R_G0,$res"
6966   %}
6967   ins_encode( enc_casx(mem_ptr, oldval, newval),
6968               enc_lflags_ne_to_boolean(res) );
6969   ins_pipe( long_memory_op );
6970 %}
6971 
6972 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6973   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
6974   match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
6975   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6976   format %{
6977             "MOV    $newval,O7\n\t"
6978             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6979             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6980             "MOV    1,$res\n\t"
6981             "MOVne  icc,R_G0,$res"
6982   %}
6983   ins_encode( enc_casi(mem_ptr, oldval, newval),
6984               enc_iflags_ne_to_boolean(res) );
6985   ins_pipe( long_memory_op );
6986 %}
6987 
6988 instruct compareAndExchangeI(iRegP mem_ptr, iRegI oldval, iRegI newval)
6989 %{
6990   match(Set newval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
6991   effect( USE mem_ptr );
6992 
6993   format %{
6994             "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
6995   %}
6996   ins_encode( enc_casi_exch(mem_ptr, oldval, newval) );
6997   ins_pipe( long_memory_op );
6998 %}
6999 
7000 instruct compareAndExchangeL(iRegP mem_ptr, iRegL oldval, iRegL newval)
7001 %{
7002   match(Set newval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
7003   effect( USE mem_ptr );
7004 
7005   format %{
7006             "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
7007   %}
7008   ins_encode( enc_casx_exch(mem_ptr, oldval, newval) );
7009   ins_pipe( long_memory_op );
7010 %}
7011 
7012 instruct compareAndExchangeP(iRegP mem_ptr, iRegP oldval, iRegP newval)
7013 %{
7014   match(Set newval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
7015   effect( USE mem_ptr );
7016 
7017   format %{
7018             "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
7019   %}
7020   ins_encode( enc_casx_exch(mem_ptr, oldval, newval) );
7021   ins_pipe( long_memory_op );
7022 %}
7023 
7024 instruct compareAndExchangeN(iRegP mem_ptr, iRegN oldval, iRegN newval)
7025 %{
7026   match(Set newval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
7027   effect( USE mem_ptr );
7028 
7029   format %{
7030             "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
7031   %}
7032   ins_encode( enc_casi_exch(mem_ptr, oldval, newval) );
7033   ins_pipe( long_memory_op );
7034 %}
7035 
7036 instruct xchgI( memory mem, iRegI newval) %{
7037   match(Set newval (GetAndSetI mem newval));
7038   format %{ "SWAP  [$mem],$newval" %}
7039   size(4);
7040   ins_encode %{
7041     __ swap($mem$$Address, $newval$$Register);
7042   %}
7043   ins_pipe( long_memory_op );
7044 %}
7045 
7046 
7047 instruct xchgN( memory mem, iRegN newval) %{
7048   match(Set newval (GetAndSetN mem newval));
7049   format %{ "SWAP  [$mem],$newval" %}
7050   size(4);
7051   ins_encode %{
7052     __ swap($mem$$Address, $newval$$Register);
7053   %}
7054   ins_pipe( long_memory_op );
7055 %}
7056 
7057 //---------------------
7058 // Subtraction Instructions
7059 // Register Subtraction
7060 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7061   match(Set dst (SubI src1 src2));
7062 
7063   size(4);
7064   format %{ "SUB    $src1,$src2,$dst" %}
7065   opcode(Assembler::sub_op3, Assembler::arith_op);
7066   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7067   ins_pipe(ialu_reg_reg);
7068 %}
7069 
7070 // Immediate Subtraction
7071 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7072   match(Set dst (SubI src1 src2));
7073 
7074   size(4);
7075   format %{ "SUB    $src1,$src2,$dst" %}
7076   opcode(Assembler::sub_op3, Assembler::arith_op);
7077   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7078   ins_pipe(ialu_reg_imm);
7079 %}
7080 
7081 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7082   match(Set dst (SubI zero src2));
7083 
7084   size(4);
7085   format %{ "NEG    $src2,$dst" %}
7086   opcode(Assembler::sub_op3, Assembler::arith_op);
7087   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7088   ins_pipe(ialu_zero_reg);
7089 %}
7090 
7091 // Long subtraction
7092 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7093   match(Set dst (SubL src1 src2));
7094 
7095   size(4);
7096   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7097   opcode(Assembler::sub_op3, Assembler::arith_op);
7098   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7099   ins_pipe(ialu_reg_reg);
7100 %}
7101 
7102 // Immediate Subtraction
7103 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7104   match(Set dst (SubL src1 con));
7105 
7106   size(4);
7107   format %{ "SUB    $src1,$con,$dst\t! long" %}
7108   opcode(Assembler::sub_op3, Assembler::arith_op);
7109   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7110   ins_pipe(ialu_reg_imm);
7111 %}
7112 
7113 // Long negation
7114 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7115   match(Set dst (SubL zero src2));
7116 
7117   size(4);
7118   format %{ "NEG    $src2,$dst\t! long" %}
7119   opcode(Assembler::sub_op3, Assembler::arith_op);
7120   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7121   ins_pipe(ialu_zero_reg);
7122 %}
7123 
7124 // Multiplication Instructions
7125 // Integer Multiplication
7126 // Register Multiplication
7127 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7128   match(Set dst (MulI src1 src2));
7129 
7130   size(4);
7131   format %{ "MULX   $src1,$src2,$dst" %}
7132   opcode(Assembler::mulx_op3, Assembler::arith_op);
7133   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7134   ins_pipe(imul_reg_reg);
7135 %}
7136 
7137 // Immediate Multiplication
7138 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7139   match(Set dst (MulI src1 src2));
7140 
7141   size(4);
7142   format %{ "MULX   $src1,$src2,$dst" %}
7143   opcode(Assembler::mulx_op3, Assembler::arith_op);
7144   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7145   ins_pipe(imul_reg_imm);
7146 %}
7147 
7148 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7149   match(Set dst (MulL src1 src2));
7150   ins_cost(DEFAULT_COST * 5);
7151   size(4);
7152   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7153   opcode(Assembler::mulx_op3, Assembler::arith_op);
7154   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7155   ins_pipe(mulL_reg_reg);
7156 %}
7157 
7158 // Immediate Multiplication
7159 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7160   match(Set dst (MulL src1 src2));
7161   ins_cost(DEFAULT_COST * 5);
7162   size(4);
7163   format %{ "MULX   $src1,$src2,$dst" %}
7164   opcode(Assembler::mulx_op3, Assembler::arith_op);
7165   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7166   ins_pipe(mulL_reg_imm);
7167 %}
7168 
7169 // Integer Division
7170 // Register Division
7171 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7172   match(Set dst (DivI src1 src2));
7173   ins_cost((2+71)*DEFAULT_COST);
7174 
7175   format %{ "SRA     $src2,0,$src2\n\t"
7176             "SRA     $src1,0,$src1\n\t"
7177             "SDIVX   $src1,$src2,$dst" %}
7178   ins_encode( idiv_reg( src1, src2, dst ) );
7179   ins_pipe(sdiv_reg_reg);
7180 %}
7181 
7182 // Immediate Division
7183 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7184   match(Set dst (DivI src1 src2));
7185   ins_cost((2+71)*DEFAULT_COST);
7186 
7187   format %{ "SRA     $src1,0,$src1\n\t"
7188             "SDIVX   $src1,$src2,$dst" %}
7189   ins_encode( idiv_imm( src1, src2, dst ) );
7190   ins_pipe(sdiv_reg_imm);
7191 %}
7192 
7193 //----------Div-By-10-Expansion------------------------------------------------
7194 // Extract hi bits of a 32x32->64 bit multiply.
7195 // Expand rule only, not matched
7196 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7197   effect( DEF dst, USE src1, USE src2 );
7198   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7199             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7200   ins_encode( enc_mul_hi(dst,src1,src2));
7201   ins_pipe(sdiv_reg_reg);
7202 %}
7203 
7204 // Magic constant, reciprocal of 10
7205 instruct loadConI_x66666667(iRegIsafe dst) %{
7206   effect( DEF dst );
7207 
7208   size(8);
7209   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7210   ins_encode( Set32(0x66666667, dst) );
7211   ins_pipe(ialu_hi_lo_reg);
7212 %}
7213 
7214 // Register Shift Right Arithmetic Long by 32-63
7215 instruct sra_31( iRegI dst, iRegI src ) %{
7216   effect( DEF dst, USE src );
7217   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7218   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7219   ins_pipe(ialu_reg_reg);
7220 %}
7221 
7222 // Arithmetic Shift Right by 8-bit immediate
7223 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7224   effect( DEF dst, USE src );
7225   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7226   opcode(Assembler::sra_op3, Assembler::arith_op);
7227   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7228   ins_pipe(ialu_reg_imm);
7229 %}
7230 
7231 // Integer DIV with 10
7232 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7233   match(Set dst (DivI src div));
7234   ins_cost((6+6)*DEFAULT_COST);
7235   expand %{
7236     iRegIsafe tmp1;               // Killed temps;
7237     iRegIsafe tmp2;               // Killed temps;
7238     iRegI tmp3;                   // Killed temps;
7239     iRegI tmp4;                   // Killed temps;
7240     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7241     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7242     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7243     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7244     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7245   %}
7246 %}
7247 
7248 // Register Long Division
7249 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7250   match(Set dst (DivL src1 src2));
7251   ins_cost(DEFAULT_COST*71);
7252   size(4);
7253   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7254   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7255   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7256   ins_pipe(divL_reg_reg);
7257 %}
7258 
7259 // Register Long Division
7260 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7261   match(Set dst (DivL src1 src2));
7262   ins_cost(DEFAULT_COST*71);
7263   size(4);
7264   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7265   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7266   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7267   ins_pipe(divL_reg_imm);
7268 %}
7269 
7270 // Integer Remainder
7271 // Register Remainder
7272 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7273   match(Set dst (ModI src1 src2));
7274   effect( KILL ccr, KILL temp);
7275 
7276   format %{ "SREM   $src1,$src2,$dst" %}
7277   ins_encode( irem_reg(src1, src2, dst, temp) );
7278   ins_pipe(sdiv_reg_reg);
7279 %}
7280 
7281 // Immediate Remainder
7282 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7283   match(Set dst (ModI src1 src2));
7284   effect( KILL ccr, KILL temp);
7285 
7286   format %{ "SREM   $src1,$src2,$dst" %}
7287   ins_encode( irem_imm(src1, src2, dst, temp) );
7288   ins_pipe(sdiv_reg_imm);
7289 %}
7290 
7291 // Register Long Remainder
7292 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7293   effect(DEF dst, USE src1, USE src2);
7294   size(4);
7295   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7296   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7297   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7298   ins_pipe(divL_reg_reg);
7299 %}
7300 
7301 // Register Long Division
7302 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7303   effect(DEF dst, USE src1, USE src2);
7304   size(4);
7305   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7306   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7307   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7308   ins_pipe(divL_reg_imm);
7309 %}
7310 
7311 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7312   effect(DEF dst, USE src1, USE src2);
7313   size(4);
7314   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7315   opcode(Assembler::mulx_op3, Assembler::arith_op);
7316   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7317   ins_pipe(mulL_reg_reg);
7318 %}
7319 
7320 // Immediate Multiplication
7321 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7322   effect(DEF dst, USE src1, USE src2);
7323   size(4);
7324   format %{ "MULX   $src1,$src2,$dst" %}
7325   opcode(Assembler::mulx_op3, Assembler::arith_op);
7326   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7327   ins_pipe(mulL_reg_imm);
7328 %}
7329 
7330 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7331   effect(DEF dst, USE src1, USE src2);
7332   size(4);
7333   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7334   opcode(Assembler::sub_op3, Assembler::arith_op);
7335   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7336   ins_pipe(ialu_reg_reg);
7337 %}
7338 
7339 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7340   effect(DEF dst, USE src1, USE src2);
7341   size(4);
7342   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7343   opcode(Assembler::sub_op3, Assembler::arith_op);
7344   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7345   ins_pipe(ialu_reg_reg);
7346 %}
7347 
7348 // Register Long Remainder
7349 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7350   match(Set dst (ModL src1 src2));
7351   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7352   expand %{
7353     iRegL tmp1;
7354     iRegL tmp2;
7355     divL_reg_reg_1(tmp1, src1, src2);
7356     mulL_reg_reg_1(tmp2, tmp1, src2);
7357     subL_reg_reg_1(dst,  src1, tmp2);
7358   %}
7359 %}
7360 
7361 // Register Long Remainder
7362 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7363   match(Set dst (ModL src1 src2));
7364   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7365   expand %{
7366     iRegL tmp1;
7367     iRegL tmp2;
7368     divL_reg_imm13_1(tmp1, src1, src2);
7369     mulL_reg_imm13_1(tmp2, tmp1, src2);
7370     subL_reg_reg_2  (dst,  src1, tmp2);
7371   %}
7372 %}
7373 
7374 // Integer Shift Instructions
7375 // Register Shift Left
7376 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7377   match(Set dst (LShiftI src1 src2));
7378 
7379   size(4);
7380   format %{ "SLL    $src1,$src2,$dst" %}
7381   opcode(Assembler::sll_op3, Assembler::arith_op);
7382   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7383   ins_pipe(ialu_reg_reg);
7384 %}
7385 
7386 // Register Shift Left Immediate
7387 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7388   match(Set dst (LShiftI src1 src2));
7389 
7390   size(4);
7391   format %{ "SLL    $src1,$src2,$dst" %}
7392   opcode(Assembler::sll_op3, Assembler::arith_op);
7393   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7394   ins_pipe(ialu_reg_imm);
7395 %}
7396 
7397 // Register Shift Left
7398 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7399   match(Set dst (LShiftL src1 src2));
7400 
7401   size(4);
7402   format %{ "SLLX   $src1,$src2,$dst" %}
7403   opcode(Assembler::sllx_op3, Assembler::arith_op);
7404   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7405   ins_pipe(ialu_reg_reg);
7406 %}
7407 
7408 // Register Shift Left Immediate
7409 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7410   match(Set dst (LShiftL src1 src2));
7411 
7412   size(4);
7413   format %{ "SLLX   $src1,$src2,$dst" %}
7414   opcode(Assembler::sllx_op3, Assembler::arith_op);
7415   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7416   ins_pipe(ialu_reg_imm);
7417 %}
7418 
7419 // Register Arithmetic Shift Right
7420 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7421   match(Set dst (RShiftI src1 src2));
7422   size(4);
7423   format %{ "SRA    $src1,$src2,$dst" %}
7424   opcode(Assembler::sra_op3, Assembler::arith_op);
7425   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7426   ins_pipe(ialu_reg_reg);
7427 %}
7428 
7429 // Register Arithmetic Shift Right Immediate
7430 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7431   match(Set dst (RShiftI src1 src2));
7432 
7433   size(4);
7434   format %{ "SRA    $src1,$src2,$dst" %}
7435   opcode(Assembler::sra_op3, Assembler::arith_op);
7436   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7437   ins_pipe(ialu_reg_imm);
7438 %}
7439 
7440 // Register Shift Right Arithmatic Long
7441 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7442   match(Set dst (RShiftL src1 src2));
7443 
7444   size(4);
7445   format %{ "SRAX   $src1,$src2,$dst" %}
7446   opcode(Assembler::srax_op3, Assembler::arith_op);
7447   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7448   ins_pipe(ialu_reg_reg);
7449 %}
7450 
7451 // Register Shift Left Immediate
7452 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7453   match(Set dst (RShiftL src1 src2));
7454 
7455   size(4);
7456   format %{ "SRAX   $src1,$src2,$dst" %}
7457   opcode(Assembler::srax_op3, Assembler::arith_op);
7458   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7459   ins_pipe(ialu_reg_imm);
7460 %}
7461 
7462 // Register Shift Right
7463 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7464   match(Set dst (URShiftI src1 src2));
7465 
7466   size(4);
7467   format %{ "SRL    $src1,$src2,$dst" %}
7468   opcode(Assembler::srl_op3, Assembler::arith_op);
7469   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7470   ins_pipe(ialu_reg_reg);
7471 %}
7472 
7473 // Register Shift Right Immediate
7474 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7475   match(Set dst (URShiftI src1 src2));
7476 
7477   size(4);
7478   format %{ "SRL    $src1,$src2,$dst" %}
7479   opcode(Assembler::srl_op3, Assembler::arith_op);
7480   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7481   ins_pipe(ialu_reg_imm);
7482 %}
7483 
7484 // Register Shift Right
7485 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7486   match(Set dst (URShiftL src1 src2));
7487 
7488   size(4);
7489   format %{ "SRLX   $src1,$src2,$dst" %}
7490   opcode(Assembler::srlx_op3, Assembler::arith_op);
7491   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7492   ins_pipe(ialu_reg_reg);
7493 %}
7494 
7495 // Register Shift Right Immediate
7496 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7497   match(Set dst (URShiftL src1 src2));
7498 
7499   size(4);
7500   format %{ "SRLX   $src1,$src2,$dst" %}
7501   opcode(Assembler::srlx_op3, Assembler::arith_op);
7502   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7503   ins_pipe(ialu_reg_imm);
7504 %}
7505 
7506 // Register Shift Right Immediate with a CastP2X
7507 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7508   match(Set dst (URShiftL (CastP2X src1) src2));
7509   size(4);
7510   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7511   opcode(Assembler::srlx_op3, Assembler::arith_op);
7512   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7513   ins_pipe(ialu_reg_imm);
7514 %}
7515 
7516 
7517 //----------Floating Point Arithmetic Instructions-----------------------------
7518 
7519 //  Add float single precision
7520 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7521   match(Set dst (AddF src1 src2));
7522 
7523   size(4);
7524   format %{ "FADDS  $src1,$src2,$dst" %}
7525   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7526   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7527   ins_pipe(faddF_reg_reg);
7528 %}
7529 
7530 //  Add float double precision
7531 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7532   match(Set dst (AddD src1 src2));
7533 
7534   size(4);
7535   format %{ "FADDD  $src1,$src2,$dst" %}
7536   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7537   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7538   ins_pipe(faddD_reg_reg);
7539 %}
7540 
7541 //  Sub float single precision
7542 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7543   match(Set dst (SubF src1 src2));
7544 
7545   size(4);
7546   format %{ "FSUBS  $src1,$src2,$dst" %}
7547   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7548   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7549   ins_pipe(faddF_reg_reg);
7550 %}
7551 
7552 //  Sub float double precision
7553 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7554   match(Set dst (SubD src1 src2));
7555 
7556   size(4);
7557   format %{ "FSUBD  $src1,$src2,$dst" %}
7558   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7559   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7560   ins_pipe(faddD_reg_reg);
7561 %}
7562 
7563 //  Mul float single precision
7564 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7565   match(Set dst (MulF src1 src2));
7566 
7567   size(4);
7568   format %{ "FMULS  $src1,$src2,$dst" %}
7569   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7570   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7571   ins_pipe(fmulF_reg_reg);
7572 %}
7573 
7574 //  Mul float double precision
7575 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7576   match(Set dst (MulD src1 src2));
7577 
7578   size(4);
7579   format %{ "FMULD  $src1,$src2,$dst" %}
7580   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7581   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7582   ins_pipe(fmulD_reg_reg);
7583 %}
7584 
7585 //  Div float single precision
7586 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7587   match(Set dst (DivF src1 src2));
7588 
7589   size(4);
7590   format %{ "FDIVS  $src1,$src2,$dst" %}
7591   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7592   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7593   ins_pipe(fdivF_reg_reg);
7594 %}
7595 
7596 //  Div float double precision
7597 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7598   match(Set dst (DivD src1 src2));
7599 
7600   size(4);
7601   format %{ "FDIVD  $src1,$src2,$dst" %}
7602   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7603   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7604   ins_pipe(fdivD_reg_reg);
7605 %}
7606 
7607 //  Absolute float double precision
7608 instruct absD_reg(regD dst, regD src) %{
7609   match(Set dst (AbsD src));
7610 
7611   format %{ "FABSd  $src,$dst" %}
7612   ins_encode(fabsd(dst, src));
7613   ins_pipe(faddD_reg);
7614 %}
7615 
7616 //  Absolute float single precision
7617 instruct absF_reg(regF dst, regF src) %{
7618   match(Set dst (AbsF src));
7619 
7620   format %{ "FABSs  $src,$dst" %}
7621   ins_encode(fabss(dst, src));
7622   ins_pipe(faddF_reg);
7623 %}
7624 
7625 instruct negF_reg(regF dst, regF src) %{
7626   match(Set dst (NegF src));
7627 
7628   size(4);
7629   format %{ "FNEGs  $src,$dst" %}
7630   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7631   ins_encode(form3_opf_rs2F_rdF(src, dst));
7632   ins_pipe(faddF_reg);
7633 %}
7634 
7635 instruct negD_reg(regD dst, regD src) %{
7636   match(Set dst (NegD src));
7637 
7638   format %{ "FNEGd  $src,$dst" %}
7639   ins_encode(fnegd(dst, src));
7640   ins_pipe(faddD_reg);
7641 %}
7642 
7643 //  Sqrt float double precision
7644 instruct sqrtF_reg_reg(regF dst, regF src) %{
7645   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7646 
7647   size(4);
7648   format %{ "FSQRTS $src,$dst" %}
7649   ins_encode(fsqrts(dst, src));
7650   ins_pipe(fdivF_reg_reg);
7651 %}
7652 
7653 //  Sqrt float double precision
7654 instruct sqrtD_reg_reg(regD dst, regD src) %{
7655   match(Set dst (SqrtD src));
7656 
7657   size(4);
7658   format %{ "FSQRTD $src,$dst" %}
7659   ins_encode(fsqrtd(dst, src));
7660   ins_pipe(fdivD_reg_reg);
7661 %}
7662 
7663 // Single/Double precision fused floating-point multiply-add (d = a * b + c).
7664 instruct fmaF_regx4(regF dst, regF a, regF b, regF c) %{
7665   predicate(UseFMA);
7666   match(Set dst (FmaF c (Binary a b)));
7667   format %{ "fmadds $a,$b,$c,$dst\t# $dst = $a * $b + $c" %}
7668   ins_encode(fmadds(dst, a, b, c));
7669   ins_pipe(fmaF_regx4);
7670 %}
7671 
7672 instruct fmaD_regx4(regD dst, regD a, regD b, regD c) %{
7673   predicate(UseFMA);
7674   match(Set dst (FmaD c (Binary a b)));
7675   format %{ "fmaddd $a,$b,$c,$dst\t# $dst = $a * $b + $c" %}
7676   ins_encode(fmaddd(dst, a, b, c));
7677   ins_pipe(fmaD_regx4);
7678 %}
7679 
7680 // Additional patterns matching complement versions that we can map directly to
7681 // variants of the fused multiply-add instructions.
7682 
7683 // Single/Double precision fused floating-point multiply-sub (d = a * b - c)
7684 instruct fmsubF_regx4(regF dst, regF a, regF b, regF c) %{
7685   predicate(UseFMA);
7686   match(Set dst (FmaF (NegF c) (Binary a b)));
7687   format %{ "fmsubs $a,$b,$c,$dst\t# $dst = $a * $b - $c" %}
7688   ins_encode(fmsubs(dst, a, b, c));
7689   ins_pipe(fmaF_regx4);
7690 %}
7691 
7692 instruct fmsubD_regx4(regD dst, regD a, regD b, regD c) %{
7693   predicate(UseFMA);
7694   match(Set dst (FmaD (NegD c) (Binary a b)));
7695   format %{ "fmsubd $a,$b,$c,$dst\t# $dst = $a * $b - $c" %}
7696   ins_encode(fmsubd(dst, a, b, c));
7697   ins_pipe(fmaD_regx4);
7698 %}
7699 
7700 // Single/Double precision fused floating-point neg. multiply-add,
7701 //      d = -1 * a * b - c = -(a * b + c)
7702 instruct fnmaddF_regx4(regF dst, regF a, regF b, regF c) %{
7703   predicate(UseFMA);
7704   match(Set dst (FmaF (NegF c) (Binary (NegF a) b)));
7705   match(Set dst (FmaF (NegF c) (Binary a (NegF b))));
7706   format %{ "fnmadds $a,$b,$c,$dst\t# $dst = -($a * $b + $c)" %}
7707   ins_encode(fnmadds(dst, a, b, c));
7708   ins_pipe(fmaF_regx4);
7709 %}
7710 
7711 instruct fnmaddD_regx4(regD dst, regD a, regD b, regD c) %{
7712   predicate(UseFMA);
7713   match(Set dst (FmaD (NegD c) (Binary (NegD a) b)));
7714   match(Set dst (FmaD (NegD c) (Binary a (NegD b))));
7715   format %{ "fnmaddd $a,$b,$c,$dst\t# $dst = -($a * $b + $c)" %}
7716   ins_encode(fnmaddd(dst, a, b, c));
7717   ins_pipe(fmaD_regx4);
7718 %}
7719 
7720 // Single/Double precision fused floating-point neg. multiply-sub,
7721 //      d = -1 * a * b + c = -(a * b - c)
7722 instruct fnmsubF_regx4(regF dst, regF a, regF b, regF c) %{
7723   predicate(UseFMA);
7724   match(Set dst (FmaF c (Binary (NegF a) b)));
7725   match(Set dst (FmaF c (Binary a (NegF b))));
7726   format %{ "fnmsubs $a,$b,$c,$dst\t# $dst = -($a * $b - $c)" %}
7727   ins_encode(fnmsubs(dst, a, b, c));
7728   ins_pipe(fmaF_regx4);
7729 %}
7730 
7731 instruct fnmsubD_regx4(regD dst, regD a, regD b, regD c) %{
7732   predicate(UseFMA);
7733   match(Set dst (FmaD c (Binary (NegD a) b)));
7734   match(Set dst (FmaD c (Binary a (NegD b))));
7735   format %{ "fnmsubd $a,$b,$c,$dst\t# $dst = -($a * $b - $c)" %}
7736   ins_encode(fnmsubd(dst, a, b, c));
7737   ins_pipe(fmaD_regx4);
7738 %}
7739 
7740 //----------Logical Instructions-----------------------------------------------
7741 // And Instructions
7742 // Register And
7743 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7744   match(Set dst (AndI src1 src2));
7745 
7746   size(4);
7747   format %{ "AND    $src1,$src2,$dst" %}
7748   opcode(Assembler::and_op3, Assembler::arith_op);
7749   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7750   ins_pipe(ialu_reg_reg);
7751 %}
7752 
7753 // Immediate And
7754 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7755   match(Set dst (AndI src1 src2));
7756 
7757   size(4);
7758   format %{ "AND    $src1,$src2,$dst" %}
7759   opcode(Assembler::and_op3, Assembler::arith_op);
7760   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7761   ins_pipe(ialu_reg_imm);
7762 %}
7763 
7764 // Register And Long
7765 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7766   match(Set dst (AndL src1 src2));
7767 
7768   ins_cost(DEFAULT_COST);
7769   size(4);
7770   format %{ "AND    $src1,$src2,$dst\t! long" %}
7771   opcode(Assembler::and_op3, Assembler::arith_op);
7772   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7773   ins_pipe(ialu_reg_reg);
7774 %}
7775 
7776 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7777   match(Set dst (AndL src1 con));
7778 
7779   ins_cost(DEFAULT_COST);
7780   size(4);
7781   format %{ "AND    $src1,$con,$dst\t! long" %}
7782   opcode(Assembler::and_op3, Assembler::arith_op);
7783   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7784   ins_pipe(ialu_reg_imm);
7785 %}
7786 
7787 // Or Instructions
7788 // Register Or
7789 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7790   match(Set dst (OrI src1 src2));
7791 
7792   size(4);
7793   format %{ "OR     $src1,$src2,$dst" %}
7794   opcode(Assembler::or_op3, Assembler::arith_op);
7795   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7796   ins_pipe(ialu_reg_reg);
7797 %}
7798 
7799 // Immediate Or
7800 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7801   match(Set dst (OrI src1 src2));
7802 
7803   size(4);
7804   format %{ "OR     $src1,$src2,$dst" %}
7805   opcode(Assembler::or_op3, Assembler::arith_op);
7806   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7807   ins_pipe(ialu_reg_imm);
7808 %}
7809 
7810 // Register Or Long
7811 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7812   match(Set dst (OrL src1 src2));
7813 
7814   ins_cost(DEFAULT_COST);
7815   size(4);
7816   format %{ "OR     $src1,$src2,$dst\t! long" %}
7817   opcode(Assembler::or_op3, Assembler::arith_op);
7818   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7819   ins_pipe(ialu_reg_reg);
7820 %}
7821 
7822 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7823   match(Set dst (OrL src1 con));
7824   ins_cost(DEFAULT_COST*2);
7825 
7826   ins_cost(DEFAULT_COST);
7827   size(4);
7828   format %{ "OR     $src1,$con,$dst\t! long" %}
7829   opcode(Assembler::or_op3, Assembler::arith_op);
7830   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7831   ins_pipe(ialu_reg_imm);
7832 %}
7833 
7834 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7835   match(Set dst (OrL src1 (CastP2X src2)));
7836 
7837   ins_cost(DEFAULT_COST);
7838   size(4);
7839   format %{ "OR     $src1,$src2,$dst\t! long" %}
7840   opcode(Assembler::or_op3, Assembler::arith_op);
7841   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7842   ins_pipe(ialu_reg_reg);
7843 %}
7844 
7845 // Xor Instructions
7846 // Register Xor
7847 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7848   match(Set dst (XorI src1 src2));
7849 
7850   size(4);
7851   format %{ "XOR    $src1,$src2,$dst" %}
7852   opcode(Assembler::xor_op3, Assembler::arith_op);
7853   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7854   ins_pipe(ialu_reg_reg);
7855 %}
7856 
7857 // Immediate Xor
7858 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7859   match(Set dst (XorI src1 src2));
7860 
7861   size(4);
7862   format %{ "XOR    $src1,$src2,$dst" %}
7863   opcode(Assembler::xor_op3, Assembler::arith_op);
7864   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7865   ins_pipe(ialu_reg_imm);
7866 %}
7867 
7868 // Register Xor Long
7869 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7870   match(Set dst (XorL src1 src2));
7871 
7872   ins_cost(DEFAULT_COST);
7873   size(4);
7874   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7875   opcode(Assembler::xor_op3, Assembler::arith_op);
7876   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7877   ins_pipe(ialu_reg_reg);
7878 %}
7879 
7880 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7881   match(Set dst (XorL src1 con));
7882 
7883   ins_cost(DEFAULT_COST);
7884   size(4);
7885   format %{ "XOR    $src1,$con,$dst\t! long" %}
7886   opcode(Assembler::xor_op3, Assembler::arith_op);
7887   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7888   ins_pipe(ialu_reg_imm);
7889 %}
7890 
7891 //----------Convert to Boolean-------------------------------------------------
7892 // Nice hack for 32-bit tests but doesn't work for
7893 // 64-bit pointers.
7894 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7895   match(Set dst (Conv2B src));
7896   effect( KILL ccr );
7897   ins_cost(DEFAULT_COST*2);
7898   format %{ "CMP    R_G0,$src\n\t"
7899             "ADDX   R_G0,0,$dst" %}
7900   ins_encode( enc_to_bool( src, dst ) );
7901   ins_pipe(ialu_reg_ialu);
7902 %}
7903 
7904 instruct convP2B( iRegI dst, iRegP src ) %{
7905   match(Set dst (Conv2B src));
7906   ins_cost(DEFAULT_COST*2);
7907   format %{ "MOV    $src,$dst\n\t"
7908             "MOVRNZ $src,1,$dst" %}
7909   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
7910   ins_pipe(ialu_clr_and_mover);
7911 %}
7912 
7913 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
7914   match(Set dst (CmpLTMask src zero));
7915   effect(KILL ccr);
7916   size(4);
7917   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
7918   ins_encode %{
7919     __ sra($src$$Register, 31, $dst$$Register);
7920   %}
7921   ins_pipe(ialu_reg_imm);
7922 %}
7923 
7924 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
7925   match(Set dst (CmpLTMask p q));
7926   effect( KILL ccr );
7927   ins_cost(DEFAULT_COST*4);
7928   format %{ "CMP    $p,$q\n\t"
7929             "MOV    #0,$dst\n\t"
7930             "BLT,a  .+8\n\t"
7931             "MOV    #-1,$dst" %}
7932   ins_encode( enc_ltmask(p,q,dst) );
7933   ins_pipe(ialu_reg_reg_ialu);
7934 %}
7935 
7936 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7937   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
7938   effect(KILL ccr, TEMP tmp);
7939   ins_cost(DEFAULT_COST*3);
7940 
7941   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7942             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7943             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7944   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
7945   ins_pipe(cadd_cmpltmask);
7946 %}
7947 
7948 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
7949   match(Set p (AndI (CmpLTMask p q) y));
7950   effect(KILL ccr);
7951   ins_cost(DEFAULT_COST*3);
7952 
7953   format %{ "CMP  $p,$q\n\t"
7954             "MOV  $y,$p\n\t"
7955             "MOVge G0,$p" %}
7956   ins_encode %{
7957     __ cmp($p$$Register, $q$$Register);
7958     __ mov($y$$Register, $p$$Register);
7959     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
7960   %}
7961   ins_pipe(ialu_reg_reg_ialu);
7962 %}
7963 
7964 //-----------------------------------------------------------------
7965 // Direct raw moves between float and general registers using VIS3.
7966 
7967 //  ins_pipe(faddF_reg);
7968 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
7969   predicate(UseVIS >= 3);
7970   match(Set dst (MoveF2I src));
7971 
7972   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
7973   ins_encode %{
7974     __ movstouw($src$$FloatRegister, $dst$$Register);
7975   %}
7976   ins_pipe(ialu_reg_reg);
7977 %}
7978 
7979 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
7980   predicate(UseVIS >= 3);
7981   match(Set dst (MoveI2F src));
7982 
7983   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
7984   ins_encode %{
7985     __ movwtos($src$$Register, $dst$$FloatRegister);
7986   %}
7987   ins_pipe(ialu_reg_reg);
7988 %}
7989 
7990 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
7991   predicate(UseVIS >= 3);
7992   match(Set dst (MoveD2L src));
7993 
7994   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
7995   ins_encode %{
7996     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
7997   %}
7998   ins_pipe(ialu_reg_reg);
7999 %}
8000 
8001 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8002   predicate(UseVIS >= 3);
8003   match(Set dst (MoveL2D src));
8004 
8005   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8006   ins_encode %{
8007     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8008   %}
8009   ins_pipe(ialu_reg_reg);
8010 %}
8011 
8012 
8013 // Raw moves between float and general registers using stack.
8014 
8015 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8016   match(Set dst (MoveF2I src));
8017   effect(DEF dst, USE src);
8018   ins_cost(MEMORY_REF_COST);
8019 
8020   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8021   opcode(Assembler::lduw_op3);
8022   ins_encode(simple_form3_mem_reg( src, dst ) );
8023   ins_pipe(iload_mem);
8024 %}
8025 
8026 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8027   match(Set dst (MoveI2F src));
8028   effect(DEF dst, USE src);
8029   ins_cost(MEMORY_REF_COST);
8030 
8031   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8032   opcode(Assembler::ldf_op3);
8033   ins_encode(simple_form3_mem_reg(src, dst));
8034   ins_pipe(floadF_stk);
8035 %}
8036 
8037 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8038   match(Set dst (MoveD2L src));
8039   effect(DEF dst, USE src);
8040   ins_cost(MEMORY_REF_COST);
8041 
8042   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8043   opcode(Assembler::ldx_op3);
8044   ins_encode(simple_form3_mem_reg( src, dst ) );
8045   ins_pipe(iload_mem);
8046 %}
8047 
8048 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8049   match(Set dst (MoveL2D src));
8050   effect(DEF dst, USE src);
8051   ins_cost(MEMORY_REF_COST);
8052 
8053   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8054   opcode(Assembler::lddf_op3);
8055   ins_encode(simple_form3_mem_reg(src, dst));
8056   ins_pipe(floadD_stk);
8057 %}
8058 
8059 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8060   match(Set dst (MoveF2I src));
8061   effect(DEF dst, USE src);
8062   ins_cost(MEMORY_REF_COST);
8063 
8064   format %{ "STF   $src,$dst\t! MoveF2I" %}
8065   opcode(Assembler::stf_op3);
8066   ins_encode(simple_form3_mem_reg(dst, src));
8067   ins_pipe(fstoreF_stk_reg);
8068 %}
8069 
8070 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8071   match(Set dst (MoveI2F src));
8072   effect(DEF dst, USE src);
8073   ins_cost(MEMORY_REF_COST);
8074 
8075   format %{ "STW    $src,$dst\t! MoveI2F" %}
8076   opcode(Assembler::stw_op3);
8077   ins_encode(simple_form3_mem_reg( dst, src ) );
8078   ins_pipe(istore_mem_reg);
8079 %}
8080 
8081 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8082   match(Set dst (MoveD2L src));
8083   effect(DEF dst, USE src);
8084   ins_cost(MEMORY_REF_COST);
8085 
8086   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8087   opcode(Assembler::stdf_op3);
8088   ins_encode(simple_form3_mem_reg(dst, src));
8089   ins_pipe(fstoreD_stk_reg);
8090 %}
8091 
8092 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8093   match(Set dst (MoveL2D src));
8094   effect(DEF dst, USE src);
8095   ins_cost(MEMORY_REF_COST);
8096 
8097   format %{ "STX    $src,$dst\t! MoveL2D" %}
8098   opcode(Assembler::stx_op3);
8099   ins_encode(simple_form3_mem_reg( dst, src ) );
8100   ins_pipe(istore_mem_reg);
8101 %}
8102 
8103 
8104 //----------Arithmetic Conversion Instructions---------------------------------
8105 // The conversions operations are all Alpha sorted.  Please keep it that way!
8106 
8107 instruct convD2F_reg(regF dst, regD src) %{
8108   match(Set dst (ConvD2F src));
8109   size(4);
8110   format %{ "FDTOS  $src,$dst" %}
8111   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8112   ins_encode(form3_opf_rs2D_rdF(src, dst));
8113   ins_pipe(fcvtD2F);
8114 %}
8115 
8116 
8117 // Convert a double to an int in a float register.
8118 // If the double is a NAN, stuff a zero in instead.
8119 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8120   effect(DEF dst, USE src, KILL fcc0);
8121   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8122             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8123             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8124             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8125             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8126       "skip:" %}
8127   ins_encode(form_d2i_helper(src,dst));
8128   ins_pipe(fcvtD2I);
8129 %}
8130 
8131 instruct convD2I_stk(stackSlotI dst, regD src) %{
8132   match(Set dst (ConvD2I src));
8133   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8134   expand %{
8135     regF tmp;
8136     convD2I_helper(tmp, src);
8137     regF_to_stkI(dst, tmp);
8138   %}
8139 %}
8140 
8141 instruct convD2I_reg(iRegI dst, regD src) %{
8142   predicate(UseVIS >= 3);
8143   match(Set dst (ConvD2I src));
8144   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8145   expand %{
8146     regF tmp;
8147     convD2I_helper(tmp, src);
8148     MoveF2I_reg_reg(dst, tmp);
8149   %}
8150 %}
8151 
8152 
8153 // Convert a double to a long in a double register.
8154 // If the double is a NAN, stuff a zero in instead.
8155 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8156   effect(DEF dst, USE src, KILL fcc0);
8157   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8158             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8159             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8160             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8161             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8162       "skip:" %}
8163   ins_encode(form_d2l_helper(src,dst));
8164   ins_pipe(fcvtD2L);
8165 %}
8166 
8167 instruct convD2L_stk(stackSlotL dst, regD src) %{
8168   match(Set dst (ConvD2L src));
8169   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8170   expand %{
8171     regD tmp;
8172     convD2L_helper(tmp, src);
8173     regD_to_stkL(dst, tmp);
8174   %}
8175 %}
8176 
8177 instruct convD2L_reg(iRegL dst, regD src) %{
8178   predicate(UseVIS >= 3);
8179   match(Set dst (ConvD2L src));
8180   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8181   expand %{
8182     regD tmp;
8183     convD2L_helper(tmp, src);
8184     MoveD2L_reg_reg(dst, tmp);
8185   %}
8186 %}
8187 
8188 
8189 instruct convF2D_reg(regD dst, regF src) %{
8190   match(Set dst (ConvF2D src));
8191   format %{ "FSTOD  $src,$dst" %}
8192   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8193   ins_encode(form3_opf_rs2F_rdD(src, dst));
8194   ins_pipe(fcvtF2D);
8195 %}
8196 
8197 
8198 // Convert a float to an int in a float register.
8199 // If the float is a NAN, stuff a zero in instead.
8200 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8201   effect(DEF dst, USE src, KILL fcc0);
8202   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8203             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8204             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8205             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8206             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8207       "skip:" %}
8208   ins_encode(form_f2i_helper(src,dst));
8209   ins_pipe(fcvtF2I);
8210 %}
8211 
8212 instruct convF2I_stk(stackSlotI dst, regF src) %{
8213   match(Set dst (ConvF2I src));
8214   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8215   expand %{
8216     regF tmp;
8217     convF2I_helper(tmp, src);
8218     regF_to_stkI(dst, tmp);
8219   %}
8220 %}
8221 
8222 instruct convF2I_reg(iRegI dst, regF src) %{
8223   predicate(UseVIS >= 3);
8224   match(Set dst (ConvF2I src));
8225   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8226   expand %{
8227     regF tmp;
8228     convF2I_helper(tmp, src);
8229     MoveF2I_reg_reg(dst, tmp);
8230   %}
8231 %}
8232 
8233 
8234 // Convert a float to a long in a float register.
8235 // If the float is a NAN, stuff a zero in instead.
8236 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8237   effect(DEF dst, USE src, KILL fcc0);
8238   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8239             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8240             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8241             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8242             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8243       "skip:" %}
8244   ins_encode(form_f2l_helper(src,dst));
8245   ins_pipe(fcvtF2L);
8246 %}
8247 
8248 instruct convF2L_stk(stackSlotL dst, regF src) %{
8249   match(Set dst (ConvF2L src));
8250   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8251   expand %{
8252     regD tmp;
8253     convF2L_helper(tmp, src);
8254     regD_to_stkL(dst, tmp);
8255   %}
8256 %}
8257 
8258 instruct convF2L_reg(iRegL dst, regF src) %{
8259   predicate(UseVIS >= 3);
8260   match(Set dst (ConvF2L src));
8261   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8262   expand %{
8263     regD tmp;
8264     convF2L_helper(tmp, src);
8265     MoveD2L_reg_reg(dst, tmp);
8266   %}
8267 %}
8268 
8269 
8270 instruct convI2D_helper(regD dst, regF tmp) %{
8271   effect(USE tmp, DEF dst);
8272   format %{ "FITOD  $tmp,$dst" %}
8273   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8274   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8275   ins_pipe(fcvtI2D);
8276 %}
8277 
8278 instruct convI2D_stk(stackSlotI src, regD dst) %{
8279   match(Set dst (ConvI2D src));
8280   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8281   expand %{
8282     regF tmp;
8283     stkI_to_regF(tmp, src);
8284     convI2D_helper(dst, tmp);
8285   %}
8286 %}
8287 
8288 instruct convI2D_reg(regD_low dst, iRegI src) %{
8289   predicate(UseVIS >= 3);
8290   match(Set dst (ConvI2D src));
8291   expand %{
8292     regF tmp;
8293     MoveI2F_reg_reg(tmp, src);
8294     convI2D_helper(dst, tmp);
8295   %}
8296 %}
8297 
8298 instruct convI2D_mem(regD_low dst, memory mem) %{
8299   match(Set dst (ConvI2D (LoadI mem)));
8300   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8301   format %{ "LDF    $mem,$dst\n\t"
8302             "FITOD  $dst,$dst" %}
8303   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8304   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8305   ins_pipe(floadF_mem);
8306 %}
8307 
8308 
8309 instruct convI2F_helper(regF dst, regF tmp) %{
8310   effect(DEF dst, USE tmp);
8311   format %{ "FITOS  $tmp,$dst" %}
8312   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8313   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8314   ins_pipe(fcvtI2F);
8315 %}
8316 
8317 instruct convI2F_stk(regF dst, stackSlotI src) %{
8318   match(Set dst (ConvI2F src));
8319   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8320   expand %{
8321     regF tmp;
8322     stkI_to_regF(tmp,src);
8323     convI2F_helper(dst, tmp);
8324   %}
8325 %}
8326 
8327 instruct convI2F_reg(regF dst, iRegI src) %{
8328   predicate(UseVIS >= 3);
8329   match(Set dst (ConvI2F src));
8330   ins_cost(DEFAULT_COST);
8331   expand %{
8332     regF tmp;
8333     MoveI2F_reg_reg(tmp, src);
8334     convI2F_helper(dst, tmp);
8335   %}
8336 %}
8337 
8338 instruct convI2F_mem( regF dst, memory mem ) %{
8339   match(Set dst (ConvI2F (LoadI mem)));
8340   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8341   format %{ "LDF    $mem,$dst\n\t"
8342             "FITOS  $dst,$dst" %}
8343   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8344   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8345   ins_pipe(floadF_mem);
8346 %}
8347 
8348 
8349 instruct convI2L_reg(iRegL dst, iRegI src) %{
8350   match(Set dst (ConvI2L src));
8351   size(4);
8352   format %{ "SRA    $src,0,$dst\t! int->long" %}
8353   opcode(Assembler::sra_op3, Assembler::arith_op);
8354   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8355   ins_pipe(ialu_reg_reg);
8356 %}
8357 
8358 // Zero-extend convert int to long
8359 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8360   match(Set dst (AndL (ConvI2L src) mask) );
8361   size(4);
8362   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8363   opcode(Assembler::srl_op3, Assembler::arith_op);
8364   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8365   ins_pipe(ialu_reg_reg);
8366 %}
8367 
8368 // Zero-extend long
8369 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8370   match(Set dst (AndL src mask) );
8371   size(4);
8372   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8373   opcode(Assembler::srl_op3, Assembler::arith_op);
8374   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8375   ins_pipe(ialu_reg_reg);
8376 %}
8377 
8378 
8379 //-----------
8380 // Long to Double conversion using V8 opcodes.
8381 // Still useful because cheetah traps and becomes
8382 // amazingly slow for some common numbers.
8383 
8384 // Magic constant, 0x43300000
8385 instruct loadConI_x43300000(iRegI dst) %{
8386   effect(DEF dst);
8387   size(4);
8388   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8389   ins_encode(SetHi22(0x43300000, dst));
8390   ins_pipe(ialu_none);
8391 %}
8392 
8393 // Magic constant, 0x41f00000
8394 instruct loadConI_x41f00000(iRegI dst) %{
8395   effect(DEF dst);
8396   size(4);
8397   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8398   ins_encode(SetHi22(0x41f00000, dst));
8399   ins_pipe(ialu_none);
8400 %}
8401 
8402 // Construct a double from two float halves
8403 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8404   effect(DEF dst, USE src1, USE src2);
8405   size(8);
8406   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8407             "FMOVS  $src2.lo,$dst.lo" %}
8408   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8409   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8410   ins_pipe(faddD_reg_reg);
8411 %}
8412 
8413 // Convert integer in high half of a double register (in the lower half of
8414 // the double register file) to double
8415 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8416   effect(DEF dst, USE src);
8417   size(4);
8418   format %{ "FITOD  $src,$dst" %}
8419   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8420   ins_encode(form3_opf_rs2D_rdD(src, dst));
8421   ins_pipe(fcvtLHi2D);
8422 %}
8423 
8424 // Add float double precision
8425 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8426   effect(DEF dst, USE src1, USE src2);
8427   size(4);
8428   format %{ "FADDD  $src1,$src2,$dst" %}
8429   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8430   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8431   ins_pipe(faddD_reg_reg);
8432 %}
8433 
8434 // Sub float double precision
8435 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8436   effect(DEF dst, USE src1, USE src2);
8437   size(4);
8438   format %{ "FSUBD  $src1,$src2,$dst" %}
8439   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8440   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8441   ins_pipe(faddD_reg_reg);
8442 %}
8443 
8444 // Mul float double precision
8445 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8446   effect(DEF dst, USE src1, USE src2);
8447   size(4);
8448   format %{ "FMULD  $src1,$src2,$dst" %}
8449   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8450   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8451   ins_pipe(fmulD_reg_reg);
8452 %}
8453 
8454 // Long to Double conversion using fast fxtof
8455 instruct convL2D_helper(regD dst, regD tmp) %{
8456   effect(DEF dst, USE tmp);
8457   size(4);
8458   format %{ "FXTOD  $tmp,$dst" %}
8459   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8460   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8461   ins_pipe(fcvtL2D);
8462 %}
8463 
8464 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8465   match(Set dst (ConvL2D src));
8466   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8467   expand %{
8468     regD tmp;
8469     stkL_to_regD(tmp, src);
8470     convL2D_helper(dst, tmp);
8471   %}
8472 %}
8473 
8474 instruct convL2D_reg(regD dst, iRegL src) %{
8475   predicate(UseVIS >= 3);
8476   match(Set dst (ConvL2D src));
8477   expand %{
8478     regD tmp;
8479     MoveL2D_reg_reg(tmp, src);
8480     convL2D_helper(dst, tmp);
8481   %}
8482 %}
8483 
8484 // Long to Float conversion using fast fxtof
8485 instruct convL2F_helper(regF dst, regD tmp) %{
8486   effect(DEF dst, USE tmp);
8487   size(4);
8488   format %{ "FXTOS  $tmp,$dst" %}
8489   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8490   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8491   ins_pipe(fcvtL2F);
8492 %}
8493 
8494 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8495   match(Set dst (ConvL2F src));
8496   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8497   expand %{
8498     regD tmp;
8499     stkL_to_regD(tmp, src);
8500     convL2F_helper(dst, tmp);
8501   %}
8502 %}
8503 
8504 instruct convL2F_reg(regF dst, iRegL src) %{
8505   predicate(UseVIS >= 3);
8506   match(Set dst (ConvL2F src));
8507   ins_cost(DEFAULT_COST);
8508   expand %{
8509     regD tmp;
8510     MoveL2D_reg_reg(tmp, src);
8511     convL2F_helper(dst, tmp);
8512   %}
8513 %}
8514 
8515 //-----------
8516 
8517 instruct convL2I_reg(iRegI dst, iRegL src) %{
8518   match(Set dst (ConvL2I src));
8519   size(4);
8520   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8521   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8522   ins_pipe(ialu_reg);
8523 %}
8524 
8525 // Register Shift Right Immediate
8526 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8527   match(Set dst (ConvL2I (RShiftL src cnt)));
8528 
8529   size(4);
8530   format %{ "SRAX   $src,$cnt,$dst" %}
8531   opcode(Assembler::srax_op3, Assembler::arith_op);
8532   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8533   ins_pipe(ialu_reg_imm);
8534 %}
8535 
8536 //----------Control Flow Instructions------------------------------------------
8537 // Compare Instructions
8538 // Compare Integers
8539 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8540   match(Set icc (CmpI op1 op2));
8541   effect( DEF icc, USE op1, USE op2 );
8542 
8543   size(4);
8544   format %{ "CMP    $op1,$op2" %}
8545   opcode(Assembler::subcc_op3, Assembler::arith_op);
8546   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8547   ins_pipe(ialu_cconly_reg_reg);
8548 %}
8549 
8550 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8551   match(Set icc (CmpU op1 op2));
8552 
8553   size(4);
8554   format %{ "CMP    $op1,$op2\t! unsigned" %}
8555   opcode(Assembler::subcc_op3, Assembler::arith_op);
8556   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8557   ins_pipe(ialu_cconly_reg_reg);
8558 %}
8559 
8560 instruct compUL_iReg(flagsRegUL xcc, iRegL op1, iRegL op2) %{
8561   match(Set xcc (CmpUL op1 op2));
8562   effect(DEF xcc, USE op1, USE op2);
8563 
8564   size(4);
8565   format %{ "CMP    $op1,$op2\t! unsigned long" %}
8566   opcode(Assembler::subcc_op3, Assembler::arith_op);
8567   ins_encode(form3_rs1_rs2_rd(op1, op2, R_G0));
8568   ins_pipe(ialu_cconly_reg_reg);
8569 %}
8570 
8571 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8572   match(Set icc (CmpI op1 op2));
8573   effect( DEF icc, USE op1 );
8574 
8575   size(4);
8576   format %{ "CMP    $op1,$op2" %}
8577   opcode(Assembler::subcc_op3, Assembler::arith_op);
8578   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8579   ins_pipe(ialu_cconly_reg_imm);
8580 %}
8581 
8582 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8583   match(Set icc (CmpI (AndI op1 op2) zero));
8584 
8585   size(4);
8586   format %{ "BTST   $op2,$op1" %}
8587   opcode(Assembler::andcc_op3, Assembler::arith_op);
8588   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8589   ins_pipe(ialu_cconly_reg_reg_zero);
8590 %}
8591 
8592 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8593   match(Set icc (CmpI (AndI op1 op2) zero));
8594 
8595   size(4);
8596   format %{ "BTST   $op2,$op1" %}
8597   opcode(Assembler::andcc_op3, Assembler::arith_op);
8598   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8599   ins_pipe(ialu_cconly_reg_imm_zero);
8600 %}
8601 
8602 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8603   match(Set xcc (CmpL op1 op2));
8604   effect( DEF xcc, USE op1, USE op2 );
8605 
8606   size(4);
8607   format %{ "CMP    $op1,$op2\t\t! long" %}
8608   opcode(Assembler::subcc_op3, Assembler::arith_op);
8609   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8610   ins_pipe(ialu_cconly_reg_reg);
8611 %}
8612 
8613 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8614   match(Set xcc (CmpL op1 con));
8615   effect( DEF xcc, USE op1, USE con );
8616 
8617   size(4);
8618   format %{ "CMP    $op1,$con\t\t! long" %}
8619   opcode(Assembler::subcc_op3, Assembler::arith_op);
8620   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8621   ins_pipe(ialu_cconly_reg_reg);
8622 %}
8623 
8624 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8625   match(Set xcc (CmpL (AndL op1 op2) zero));
8626   effect( DEF xcc, USE op1, USE op2 );
8627 
8628   size(4);
8629   format %{ "BTST   $op1,$op2\t\t! long" %}
8630   opcode(Assembler::andcc_op3, Assembler::arith_op);
8631   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8632   ins_pipe(ialu_cconly_reg_reg);
8633 %}
8634 
8635 // useful for checking the alignment of a pointer:
8636 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8637   match(Set xcc (CmpL (AndL op1 con) zero));
8638   effect( DEF xcc, USE op1, USE con );
8639 
8640   size(4);
8641   format %{ "BTST   $op1,$con\t\t! long" %}
8642   opcode(Assembler::andcc_op3, Assembler::arith_op);
8643   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8644   ins_pipe(ialu_cconly_reg_reg);
8645 %}
8646 
8647 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
8648   match(Set icc (CmpU op1 op2));
8649 
8650   size(4);
8651   format %{ "CMP    $op1,$op2\t! unsigned" %}
8652   opcode(Assembler::subcc_op3, Assembler::arith_op);
8653   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8654   ins_pipe(ialu_cconly_reg_imm);
8655 %}
8656 
8657 instruct compUL_iReg_imm13(flagsRegUL xcc, iRegL op1, immUL12 op2) %{
8658   match(Set xcc (CmpUL op1 op2));
8659   effect(DEF xcc, USE op1, USE op2);
8660 
8661   size(4);
8662   format %{ "CMP    $op1,$op2\t! unsigned long" %}
8663   opcode(Assembler::subcc_op3, Assembler::arith_op);
8664   ins_encode(form3_rs1_simm13_rd(op1, op2, R_G0));
8665   ins_pipe(ialu_cconly_reg_imm);
8666 %}
8667 
8668 // Compare Pointers
8669 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8670   match(Set pcc (CmpP op1 op2));
8671 
8672   size(4);
8673   format %{ "CMP    $op1,$op2\t! ptr" %}
8674   opcode(Assembler::subcc_op3, Assembler::arith_op);
8675   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8676   ins_pipe(ialu_cconly_reg_reg);
8677 %}
8678 
8679 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8680   match(Set pcc (CmpP op1 op2));
8681 
8682   size(4);
8683   format %{ "CMP    $op1,$op2\t! ptr" %}
8684   opcode(Assembler::subcc_op3, Assembler::arith_op);
8685   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8686   ins_pipe(ialu_cconly_reg_imm);
8687 %}
8688 
8689 // Compare Narrow oops
8690 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8691   match(Set icc (CmpN op1 op2));
8692 
8693   size(4);
8694   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8695   opcode(Assembler::subcc_op3, Assembler::arith_op);
8696   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8697   ins_pipe(ialu_cconly_reg_reg);
8698 %}
8699 
8700 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8701   match(Set icc (CmpN op1 op2));
8702 
8703   size(4);
8704   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8705   opcode(Assembler::subcc_op3, Assembler::arith_op);
8706   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8707   ins_pipe(ialu_cconly_reg_imm);
8708 %}
8709 
8710 //----------Max and Min--------------------------------------------------------
8711 // Min Instructions
8712 // Conditional move for min
8713 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8714   effect( USE_DEF op2, USE op1, USE icc );
8715 
8716   size(4);
8717   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8718   opcode(Assembler::less);
8719   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8720   ins_pipe(ialu_reg_flags);
8721 %}
8722 
8723 // Min Register with Register.
8724 instruct minI_eReg(iRegI op1, iRegI op2) %{
8725   match(Set op2 (MinI op1 op2));
8726   ins_cost(DEFAULT_COST*2);
8727   expand %{
8728     flagsReg icc;
8729     compI_iReg(icc,op1,op2);
8730     cmovI_reg_lt(op2,op1,icc);
8731   %}
8732 %}
8733 
8734 // Max Instructions
8735 // Conditional move for max
8736 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8737   effect( USE_DEF op2, USE op1, USE icc );
8738   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8739   opcode(Assembler::greater);
8740   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8741   ins_pipe(ialu_reg_flags);
8742 %}
8743 
8744 // Max Register with Register
8745 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8746   match(Set op2 (MaxI op1 op2));
8747   ins_cost(DEFAULT_COST*2);
8748   expand %{
8749     flagsReg icc;
8750     compI_iReg(icc,op1,op2);
8751     cmovI_reg_gt(op2,op1,icc);
8752   %}
8753 %}
8754 
8755 
8756 //----------Float Compares----------------------------------------------------
8757 // Compare floating, generate condition code
8758 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8759   match(Set fcc (CmpF src1 src2));
8760 
8761   size(4);
8762   format %{ "FCMPs  $fcc,$src1,$src2" %}
8763   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8764   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8765   ins_pipe(faddF_fcc_reg_reg_zero);
8766 %}
8767 
8768 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8769   match(Set fcc (CmpD src1 src2));
8770 
8771   size(4);
8772   format %{ "FCMPd  $fcc,$src1,$src2" %}
8773   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8774   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8775   ins_pipe(faddD_fcc_reg_reg_zero);
8776 %}
8777 
8778 
8779 // Compare floating, generate -1,0,1
8780 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8781   match(Set dst (CmpF3 src1 src2));
8782   effect(KILL fcc0);
8783   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8784   format %{ "fcmpl  $dst,$src1,$src2" %}
8785   // Primary = float
8786   opcode( true );
8787   ins_encode( floating_cmp( dst, src1, src2 ) );
8788   ins_pipe( floating_cmp );
8789 %}
8790 
8791 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8792   match(Set dst (CmpD3 src1 src2));
8793   effect(KILL fcc0);
8794   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8795   format %{ "dcmpl  $dst,$src1,$src2" %}
8796   // Primary = double (not float)
8797   opcode( false );
8798   ins_encode( floating_cmp( dst, src1, src2 ) );
8799   ins_pipe( floating_cmp );
8800 %}
8801 
8802 //----------Branches---------------------------------------------------------
8803 // Jump
8804 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8805 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8806   match(Jump switch_val);
8807   effect(TEMP table);
8808 
8809   ins_cost(350);
8810 
8811   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
8812              "LD     [O7 + $switch_val], O7\n\t"
8813              "JUMP   O7" %}
8814   ins_encode %{
8815     // Calculate table address into a register.
8816     Register table_reg;
8817     Register label_reg = O7;
8818     // If we are calculating the size of this instruction don't trust
8819     // zero offsets because they might change when
8820     // MachConstantBaseNode decides to optimize the constant table
8821     // base.
8822     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
8823       table_reg = $constanttablebase;
8824     } else {
8825       table_reg = O7;
8826       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
8827       __ add($constanttablebase, con_offset, table_reg);
8828     }
8829 
8830     // Jump to base address + switch value
8831     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
8832     __ jmp(label_reg, G0);
8833     __ delayed()->nop();
8834   %}
8835   ins_pipe(ialu_reg_reg);
8836 %}
8837 
8838 // Direct Branch.  Use V8 version with longer range.
8839 instruct branch(label labl) %{
8840   match(Goto);
8841   effect(USE labl);
8842 
8843   size(8);
8844   ins_cost(BRANCH_COST);
8845   format %{ "BA     $labl" %}
8846   ins_encode %{
8847     Label* L = $labl$$label;
8848     __ ba(*L);
8849     __ delayed()->nop();
8850   %}
8851   ins_avoid_back_to_back(AVOID_BEFORE);
8852   ins_pipe(br);
8853 %}
8854 
8855 // Direct Branch, short with no delay slot
8856 instruct branch_short(label labl) %{
8857   match(Goto);
8858   predicate(UseCBCond);
8859   effect(USE labl);
8860 
8861   size(4); // Assuming no NOP inserted.
8862   ins_cost(BRANCH_COST);
8863   format %{ "BA     $labl\t! short branch" %}
8864   ins_encode %{
8865     Label* L = $labl$$label;
8866     assert(__ use_cbcond(*L), "back to back cbcond");
8867     __ ba_short(*L);
8868   %}
8869   ins_short_branch(1);
8870   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
8871   ins_pipe(cbcond_reg_imm);
8872 %}
8873 
8874 // Conditional Direct Branch
8875 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8876   match(If cmp icc);
8877   effect(USE labl);
8878 
8879   size(8);
8880   ins_cost(BRANCH_COST);
8881   format %{ "BP$cmp   $icc,$labl" %}
8882   // Prim = bits 24-22, Secnd = bits 31-30
8883   ins_encode( enc_bp( labl, cmp, icc ) );
8884   ins_avoid_back_to_back(AVOID_BEFORE);
8885   ins_pipe(br_cc);
8886 %}
8887 
8888 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
8889   match(If cmp icc);
8890   effect(USE labl);
8891 
8892   ins_cost(BRANCH_COST);
8893   format %{ "BP$cmp  $icc,$labl" %}
8894   // Prim = bits 24-22, Secnd = bits 31-30
8895   ins_encode( enc_bp( labl, cmp, icc ) );
8896   ins_avoid_back_to_back(AVOID_BEFORE);
8897   ins_pipe(br_cc);
8898 %}
8899 
8900 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
8901   match(If cmp pcc);
8902   effect(USE labl);
8903 
8904   size(8);
8905   ins_cost(BRANCH_COST);
8906   format %{ "BP$cmp  $pcc,$labl" %}
8907   ins_encode %{
8908     Label* L = $labl$$label;
8909     Assembler::Predict predict_taken =
8910       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8911 
8912     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
8913     __ delayed()->nop();
8914   %}
8915   ins_avoid_back_to_back(AVOID_BEFORE);
8916   ins_pipe(br_cc);
8917 %}
8918 
8919 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
8920   match(If cmp fcc);
8921   effect(USE labl);
8922 
8923   size(8);
8924   ins_cost(BRANCH_COST);
8925   format %{ "FBP$cmp $fcc,$labl" %}
8926   ins_encode %{
8927     Label* L = $labl$$label;
8928     Assembler::Predict predict_taken =
8929       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8930 
8931     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
8932     __ delayed()->nop();
8933   %}
8934   ins_avoid_back_to_back(AVOID_BEFORE);
8935   ins_pipe(br_fcc);
8936 %}
8937 
8938 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
8939   match(CountedLoopEnd cmp icc);
8940   effect(USE labl);
8941 
8942   size(8);
8943   ins_cost(BRANCH_COST);
8944   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
8945   // Prim = bits 24-22, Secnd = bits 31-30
8946   ins_encode( enc_bp( labl, cmp, icc ) );
8947   ins_avoid_back_to_back(AVOID_BEFORE);
8948   ins_pipe(br_cc);
8949 %}
8950 
8951 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
8952   match(CountedLoopEnd cmp icc);
8953   effect(USE labl);
8954 
8955   size(8);
8956   ins_cost(BRANCH_COST);
8957   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
8958   // Prim = bits 24-22, Secnd = bits 31-30
8959   ins_encode( enc_bp( labl, cmp, icc ) );
8960   ins_avoid_back_to_back(AVOID_BEFORE);
8961   ins_pipe(br_cc);
8962 %}
8963 
8964 // Compare and branch instructions
8965 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
8966   match(If cmp (CmpI op1 op2));
8967   effect(USE labl, KILL icc);
8968 
8969   size(12);
8970   ins_cost(BRANCH_COST);
8971   format %{ "CMP    $op1,$op2\t! int\n\t"
8972             "BP$cmp   $labl" %}
8973   ins_encode %{
8974     Label* L = $labl$$label;
8975     Assembler::Predict predict_taken =
8976       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8977     __ cmp($op1$$Register, $op2$$Register);
8978     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8979     __ delayed()->nop();
8980   %}
8981   ins_pipe(cmp_br_reg_reg);
8982 %}
8983 
8984 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
8985   match(If cmp (CmpI op1 op2));
8986   effect(USE labl, KILL icc);
8987 
8988   size(12);
8989   ins_cost(BRANCH_COST);
8990   format %{ "CMP    $op1,$op2\t! int\n\t"
8991             "BP$cmp   $labl" %}
8992   ins_encode %{
8993     Label* L = $labl$$label;
8994     Assembler::Predict predict_taken =
8995       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8996     __ cmp($op1$$Register, $op2$$constant);
8997     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8998     __ delayed()->nop();
8999   %}
9000   ins_pipe(cmp_br_reg_imm);
9001 %}
9002 
9003 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9004   match(If cmp (CmpU op1 op2));
9005   effect(USE labl, KILL icc);
9006 
9007   size(12);
9008   ins_cost(BRANCH_COST);
9009   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9010             "BP$cmp  $labl" %}
9011   ins_encode %{
9012     Label* L = $labl$$label;
9013     Assembler::Predict predict_taken =
9014       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9015     __ cmp($op1$$Register, $op2$$Register);
9016     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9017     __ delayed()->nop();
9018   %}
9019   ins_pipe(cmp_br_reg_reg);
9020 %}
9021 
9022 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9023   match(If cmp (CmpU op1 op2));
9024   effect(USE labl, KILL icc);
9025 
9026   size(12);
9027   ins_cost(BRANCH_COST);
9028   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9029             "BP$cmp  $labl" %}
9030   ins_encode %{
9031     Label* L = $labl$$label;
9032     Assembler::Predict predict_taken =
9033       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9034     __ cmp($op1$$Register, $op2$$constant);
9035     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9036     __ delayed()->nop();
9037   %}
9038   ins_pipe(cmp_br_reg_imm);
9039 %}
9040 
9041 instruct cmpUL_reg_branch(cmpOpU cmp, iRegL op1, iRegL op2, label labl, flagsRegUL xcc) %{
9042   match(If cmp (CmpUL op1 op2));
9043   effect(USE labl, KILL xcc);
9044 
9045   size(12);
9046   ins_cost(BRANCH_COST);
9047   format %{ "CMP    $op1,$op2\t! unsigned long\n\t"
9048             "BP$cmp   $labl" %}
9049   ins_encode %{
9050     Label* L = $labl$$label;
9051     Assembler::Predict predict_taken =
9052       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9053     __ cmp($op1$$Register, $op2$$Register);
9054     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9055     __ delayed()->nop();
9056   %}
9057   ins_pipe(cmp_br_reg_reg);
9058 %}
9059 
9060 instruct cmpUL_imm_branch(cmpOpU cmp, iRegL op1, immL5 op2, label labl, flagsRegUL xcc) %{
9061   match(If cmp (CmpUL op1 op2));
9062   effect(USE labl, KILL xcc);
9063 
9064   size(12);
9065   ins_cost(BRANCH_COST);
9066   format %{ "CMP    $op1,$op2\t! unsigned long\n\t"
9067             "BP$cmp   $labl" %}
9068   ins_encode %{
9069     Label* L = $labl$$label;
9070     Assembler::Predict predict_taken =
9071       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9072     __ cmp($op1$$Register, $op2$$constant);
9073     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9074     __ delayed()->nop();
9075   %}
9076   ins_pipe(cmp_br_reg_imm);
9077 %}
9078 
9079 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9080   match(If cmp (CmpL op1 op2));
9081   effect(USE labl, KILL xcc);
9082 
9083   size(12);
9084   ins_cost(BRANCH_COST);
9085   format %{ "CMP    $op1,$op2\t! long\n\t"
9086             "BP$cmp   $labl" %}
9087   ins_encode %{
9088     Label* L = $labl$$label;
9089     Assembler::Predict predict_taken =
9090       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9091     __ cmp($op1$$Register, $op2$$Register);
9092     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9093     __ delayed()->nop();
9094   %}
9095   ins_pipe(cmp_br_reg_reg);
9096 %}
9097 
9098 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9099   match(If cmp (CmpL op1 op2));
9100   effect(USE labl, KILL xcc);
9101 
9102   size(12);
9103   ins_cost(BRANCH_COST);
9104   format %{ "CMP    $op1,$op2\t! long\n\t"
9105             "BP$cmp   $labl" %}
9106   ins_encode %{
9107     Label* L = $labl$$label;
9108     Assembler::Predict predict_taken =
9109       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9110     __ cmp($op1$$Register, $op2$$constant);
9111     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9112     __ delayed()->nop();
9113   %}
9114   ins_pipe(cmp_br_reg_imm);
9115 %}
9116 
9117 // Compare Pointers and branch
9118 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9119   match(If cmp (CmpP op1 op2));
9120   effect(USE labl, KILL pcc);
9121 
9122   size(12);
9123   ins_cost(BRANCH_COST);
9124   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9125             "B$cmp   $labl" %}
9126   ins_encode %{
9127     Label* L = $labl$$label;
9128     Assembler::Predict predict_taken =
9129       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9130     __ cmp($op1$$Register, $op2$$Register);
9131     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9132     __ delayed()->nop();
9133   %}
9134   ins_pipe(cmp_br_reg_reg);
9135 %}
9136 
9137 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9138   match(If cmp (CmpP op1 null));
9139   effect(USE labl, KILL pcc);
9140 
9141   size(12);
9142   ins_cost(BRANCH_COST);
9143   format %{ "CMP    $op1,0\t! ptr\n\t"
9144             "B$cmp   $labl" %}
9145   ins_encode %{
9146     Label* L = $labl$$label;
9147     Assembler::Predict predict_taken =
9148       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9149     __ cmp($op1$$Register, G0);
9150     // bpr() is not used here since it has shorter distance.
9151     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9152     __ delayed()->nop();
9153   %}
9154   ins_pipe(cmp_br_reg_reg);
9155 %}
9156 
9157 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9158   match(If cmp (CmpN op1 op2));
9159   effect(USE labl, KILL icc);
9160 
9161   size(12);
9162   ins_cost(BRANCH_COST);
9163   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9164             "BP$cmp   $labl" %}
9165   ins_encode %{
9166     Label* L = $labl$$label;
9167     Assembler::Predict predict_taken =
9168       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9169     __ cmp($op1$$Register, $op2$$Register);
9170     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9171     __ delayed()->nop();
9172   %}
9173   ins_pipe(cmp_br_reg_reg);
9174 %}
9175 
9176 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9177   match(If cmp (CmpN op1 null));
9178   effect(USE labl, KILL icc);
9179 
9180   size(12);
9181   ins_cost(BRANCH_COST);
9182   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9183             "BP$cmp   $labl" %}
9184   ins_encode %{
9185     Label* L = $labl$$label;
9186     Assembler::Predict predict_taken =
9187       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9188     __ cmp($op1$$Register, G0);
9189     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9190     __ delayed()->nop();
9191   %}
9192   ins_pipe(cmp_br_reg_reg);
9193 %}
9194 
9195 // Loop back branch
9196 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9197   match(CountedLoopEnd cmp (CmpI op1 op2));
9198   effect(USE labl, KILL icc);
9199 
9200   size(12);
9201   ins_cost(BRANCH_COST);
9202   format %{ "CMP    $op1,$op2\t! int\n\t"
9203             "BP$cmp   $labl\t! Loop end" %}
9204   ins_encode %{
9205     Label* L = $labl$$label;
9206     Assembler::Predict predict_taken =
9207       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9208     __ cmp($op1$$Register, $op2$$Register);
9209     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9210     __ delayed()->nop();
9211   %}
9212   ins_pipe(cmp_br_reg_reg);
9213 %}
9214 
9215 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9216   match(CountedLoopEnd cmp (CmpI op1 op2));
9217   effect(USE labl, KILL icc);
9218 
9219   size(12);
9220   ins_cost(BRANCH_COST);
9221   format %{ "CMP    $op1,$op2\t! int\n\t"
9222             "BP$cmp   $labl\t! Loop end" %}
9223   ins_encode %{
9224     Label* L = $labl$$label;
9225     Assembler::Predict predict_taken =
9226       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9227     __ cmp($op1$$Register, $op2$$constant);
9228     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9229     __ delayed()->nop();
9230   %}
9231   ins_pipe(cmp_br_reg_imm);
9232 %}
9233 
9234 // Short compare and branch instructions
9235 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9236   match(If cmp (CmpI op1 op2));
9237   predicate(UseCBCond);
9238   effect(USE labl, KILL icc);
9239 
9240   size(4); // Assuming no NOP inserted.
9241   ins_cost(BRANCH_COST);
9242   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9243   ins_encode %{
9244     Label* L = $labl$$label;
9245     assert(__ use_cbcond(*L), "back to back cbcond");
9246     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9247   %}
9248   ins_short_branch(1);
9249   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9250   ins_pipe(cbcond_reg_reg);
9251 %}
9252 
9253 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9254   match(If cmp (CmpI op1 op2));
9255   predicate(UseCBCond);
9256   effect(USE labl, KILL icc);
9257 
9258   size(4); // Assuming no NOP inserted.
9259   ins_cost(BRANCH_COST);
9260   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9261   ins_encode %{
9262     Label* L = $labl$$label;
9263     assert(__ use_cbcond(*L), "back to back cbcond");
9264     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9265   %}
9266   ins_short_branch(1);
9267   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9268   ins_pipe(cbcond_reg_imm);
9269 %}
9270 
9271 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9272   match(If cmp (CmpU op1 op2));
9273   predicate(UseCBCond);
9274   effect(USE labl, KILL icc);
9275 
9276   size(4); // Assuming no NOP inserted.
9277   ins_cost(BRANCH_COST);
9278   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9279   ins_encode %{
9280     Label* L = $labl$$label;
9281     assert(__ use_cbcond(*L), "back to back cbcond");
9282     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9283   %}
9284   ins_short_branch(1);
9285   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9286   ins_pipe(cbcond_reg_reg);
9287 %}
9288 
9289 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9290   match(If cmp (CmpU op1 op2));
9291   predicate(UseCBCond);
9292   effect(USE labl, KILL icc);
9293 
9294   size(4); // Assuming no NOP inserted.
9295   ins_cost(BRANCH_COST);
9296   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9297   ins_encode %{
9298     Label* L = $labl$$label;
9299     assert(__ use_cbcond(*L), "back to back cbcond");
9300     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9301   %}
9302   ins_short_branch(1);
9303   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9304   ins_pipe(cbcond_reg_imm);
9305 %}
9306 
9307 instruct cmpUL_reg_branch_short(cmpOpU cmp, iRegL op1, iRegL op2, label labl, flagsRegUL xcc) %{
9308   match(If cmp (CmpUL op1 op2));
9309   predicate(UseCBCond);
9310   effect(USE labl, KILL xcc);
9311 
9312   size(4);
9313   ins_cost(BRANCH_COST);
9314   format %{ "CXB$cmp  $op1,$op2,$labl\t! unsigned long" %}
9315   ins_encode %{
9316     Label* L = $labl$$label;
9317     assert(__ use_cbcond(*L), "back to back cbcond");
9318     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9319   %}
9320   ins_short_branch(1);
9321   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9322   ins_pipe(cbcond_reg_reg);
9323 %}
9324 
9325 instruct cmpUL_imm_branch_short(cmpOpU cmp, iRegL op1, immL5 op2, label labl, flagsRegUL xcc) %{
9326   match(If cmp (CmpUL op1 op2));
9327   predicate(UseCBCond);
9328   effect(USE labl, KILL xcc);
9329 
9330   size(4);
9331   ins_cost(BRANCH_COST);
9332   format %{ "CXB$cmp  $op1,$op2,$labl\t! unsigned long" %}
9333   ins_encode %{
9334     Label* L = $labl$$label;
9335     assert(__ use_cbcond(*L), "back to back cbcond");
9336     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9337   %}
9338   ins_short_branch(1);
9339   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9340   ins_pipe(cbcond_reg_imm);
9341 %}
9342 
9343 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9344   match(If cmp (CmpL op1 op2));
9345   predicate(UseCBCond);
9346   effect(USE labl, KILL xcc);
9347 
9348   size(4); // Assuming no NOP inserted.
9349   ins_cost(BRANCH_COST);
9350   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9351   ins_encode %{
9352     Label* L = $labl$$label;
9353     assert(__ use_cbcond(*L), "back to back cbcond");
9354     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9355   %}
9356   ins_short_branch(1);
9357   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9358   ins_pipe(cbcond_reg_reg);
9359 %}
9360 
9361 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9362   match(If cmp (CmpL op1 op2));
9363   predicate(UseCBCond);
9364   effect(USE labl, KILL xcc);
9365 
9366   size(4); // Assuming no NOP inserted.
9367   ins_cost(BRANCH_COST);
9368   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9369   ins_encode %{
9370     Label* L = $labl$$label;
9371     assert(__ use_cbcond(*L), "back to back cbcond");
9372     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9373   %}
9374   ins_short_branch(1);
9375   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9376   ins_pipe(cbcond_reg_imm);
9377 %}
9378 
9379 // Compare Pointers and branch
9380 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9381   match(If cmp (CmpP op1 op2));
9382   predicate(UseCBCond);
9383   effect(USE labl, KILL pcc);
9384 
9385   size(4); // Assuming no NOP inserted.
9386   ins_cost(BRANCH_COST);
9387   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9388   ins_encode %{
9389     Label* L = $labl$$label;
9390     assert(__ use_cbcond(*L), "back to back cbcond");
9391     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9392   %}
9393   ins_short_branch(1);
9394   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9395   ins_pipe(cbcond_reg_reg);
9396 %}
9397 
9398 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9399   match(If cmp (CmpP op1 null));
9400   predicate(UseCBCond);
9401   effect(USE labl, KILL pcc);
9402 
9403   size(4); // Assuming no NOP inserted.
9404   ins_cost(BRANCH_COST);
9405   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9406   ins_encode %{
9407     Label* L = $labl$$label;
9408     assert(__ use_cbcond(*L), "back to back cbcond");
9409     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9410   %}
9411   ins_short_branch(1);
9412   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9413   ins_pipe(cbcond_reg_reg);
9414 %}
9415 
9416 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9417   match(If cmp (CmpN op1 op2));
9418   predicate(UseCBCond);
9419   effect(USE labl, KILL icc);
9420 
9421   size(4); // Assuming no NOP inserted.
9422   ins_cost(BRANCH_COST);
9423   format %{ "CWB$cmp  $op1,$op2,$labl\t! compressed ptr" %}
9424   ins_encode %{
9425     Label* L = $labl$$label;
9426     assert(__ use_cbcond(*L), "back to back cbcond");
9427     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9428   %}
9429   ins_short_branch(1);
9430   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9431   ins_pipe(cbcond_reg_reg);
9432 %}
9433 
9434 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9435   match(If cmp (CmpN op1 null));
9436   predicate(UseCBCond);
9437   effect(USE labl, KILL icc);
9438 
9439   size(4); // Assuming no NOP inserted.
9440   ins_cost(BRANCH_COST);
9441   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9442   ins_encode %{
9443     Label* L = $labl$$label;
9444     assert(__ use_cbcond(*L), "back to back cbcond");
9445     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9446   %}
9447   ins_short_branch(1);
9448   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9449   ins_pipe(cbcond_reg_reg);
9450 %}
9451 
9452 // Loop back branch
9453 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9454   match(CountedLoopEnd cmp (CmpI op1 op2));
9455   predicate(UseCBCond);
9456   effect(USE labl, KILL icc);
9457 
9458   size(4); // Assuming no NOP inserted.
9459   ins_cost(BRANCH_COST);
9460   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9461   ins_encode %{
9462     Label* L = $labl$$label;
9463     assert(__ use_cbcond(*L), "back to back cbcond");
9464     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9465   %}
9466   ins_short_branch(1);
9467   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9468   ins_pipe(cbcond_reg_reg);
9469 %}
9470 
9471 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9472   match(CountedLoopEnd cmp (CmpI op1 op2));
9473   predicate(UseCBCond);
9474   effect(USE labl, KILL icc);
9475 
9476   size(4); // Assuming no NOP inserted.
9477   ins_cost(BRANCH_COST);
9478   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9479   ins_encode %{
9480     Label* L = $labl$$label;
9481     assert(__ use_cbcond(*L), "back to back cbcond");
9482     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9483   %}
9484   ins_short_branch(1);
9485   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9486   ins_pipe(cbcond_reg_imm);
9487 %}
9488 
9489 // Branch-on-register tests all 64 bits.  We assume that values
9490 // in 64-bit registers always remains zero or sign extended
9491 // unless our code munges the high bits.  Interrupts can chop
9492 // the high order bits to zero or sign at any time.
9493 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9494   match(If cmp (CmpI op1 zero));
9495   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9496   effect(USE labl);
9497 
9498   size(8);
9499   ins_cost(BRANCH_COST);
9500   format %{ "BR$cmp   $op1,$labl" %}
9501   ins_encode( enc_bpr( labl, cmp, op1 ) );
9502   ins_avoid_back_to_back(AVOID_BEFORE);
9503   ins_pipe(br_reg);
9504 %}
9505 
9506 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9507   match(If cmp (CmpP op1 null));
9508   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9509   effect(USE labl);
9510 
9511   size(8);
9512   ins_cost(BRANCH_COST);
9513   format %{ "BR$cmp   $op1,$labl" %}
9514   ins_encode( enc_bpr( labl, cmp, op1 ) );
9515   ins_avoid_back_to_back(AVOID_BEFORE);
9516   ins_pipe(br_reg);
9517 %}
9518 
9519 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9520   match(If cmp (CmpL op1 zero));
9521   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9522   effect(USE labl);
9523 
9524   size(8);
9525   ins_cost(BRANCH_COST);
9526   format %{ "BR$cmp   $op1,$labl" %}
9527   ins_encode( enc_bpr( labl, cmp, op1 ) );
9528   ins_avoid_back_to_back(AVOID_BEFORE);
9529   ins_pipe(br_reg);
9530 %}
9531 
9532 
9533 // ============================================================================
9534 // Long Compare
9535 //
9536 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9537 // is tricky.  The flavor of compare used depends on whether we are testing
9538 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9539 // The GE test is the negated LT test.  The LE test can be had by commuting
9540 // the operands (yielding a GE test) and then negating; negate again for the
9541 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9542 // NE test is negated from that.
9543 
9544 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9545 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9546 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9547 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9548 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9549 // foo match ends up with the wrong leaf.  One fix is to not match both
9550 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9551 // both forms beat the trinary form of long-compare and both are very useful
9552 // on Intel which has so few registers.
9553 
9554 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9555   match(If cmp xcc);
9556   effect(USE labl);
9557 
9558   size(8);
9559   ins_cost(BRANCH_COST);
9560   format %{ "BP$cmp   $xcc,$labl" %}
9561   ins_encode %{
9562     Label* L = $labl$$label;
9563     Assembler::Predict predict_taken =
9564       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9565 
9566     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9567     __ delayed()->nop();
9568   %}
9569   ins_avoid_back_to_back(AVOID_BEFORE);
9570   ins_pipe(br_cc);
9571 %}
9572 
9573 instruct branchConU_long(cmpOpU cmp, flagsRegUL xcc, label labl) %{
9574   match(If cmp xcc);
9575   effect(USE labl);
9576 
9577   size(8);
9578   ins_cost(BRANCH_COST);
9579   format %{ "BP$cmp   $xcc,$labl" %}
9580   ins_encode %{
9581     Label* L = $labl$$label;
9582     Assembler::Predict predict_taken =
9583       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9584 
9585     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9586     __ delayed()->nop();
9587   %}
9588   ins_avoid_back_to_back(AVOID_BEFORE);
9589   ins_pipe(br_cc);
9590 %}
9591 
9592 // Manifest a CmpL3 result in an integer register.  Very painful.
9593 // This is the test to avoid.
9594 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9595   match(Set dst (CmpL3 src1 src2) );
9596   effect( KILL ccr );
9597   ins_cost(6*DEFAULT_COST);
9598   size(24);
9599   format %{ "CMP    $src1,$src2\t\t! long\n"
9600           "\tBLT,a,pn done\n"
9601           "\tMOV    -1,$dst\t! delay slot\n"
9602           "\tBGT,a,pn done\n"
9603           "\tMOV    1,$dst\t! delay slot\n"
9604           "\tCLR    $dst\n"
9605     "done:"     %}
9606   ins_encode( cmpl_flag(src1,src2,dst) );
9607   ins_pipe(cmpL_reg);
9608 %}
9609 
9610 // Conditional move
9611 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9612   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9613   ins_cost(150);
9614   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9615   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9616   ins_pipe(ialu_reg);
9617 %}
9618 
9619 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9620   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9621   ins_cost(140);
9622   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9623   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9624   ins_pipe(ialu_imm);
9625 %}
9626 
9627 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9628   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9629   ins_cost(150);
9630   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9631   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9632   ins_pipe(ialu_reg);
9633 %}
9634 
9635 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9636   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9637   ins_cost(140);
9638   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9639   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9640   ins_pipe(ialu_imm);
9641 %}
9642 
9643 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9644   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9645   ins_cost(150);
9646   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9647   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9648   ins_pipe(ialu_reg);
9649 %}
9650 
9651 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9652   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9653   ins_cost(150);
9654   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9655   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9656   ins_pipe(ialu_reg);
9657 %}
9658 
9659 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9660   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9661   ins_cost(140);
9662   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9663   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9664   ins_pipe(ialu_imm);
9665 %}
9666 
9667 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9668   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9669   ins_cost(150);
9670   opcode(0x101);
9671   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9672   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9673   ins_pipe(int_conditional_float_move);
9674 %}
9675 
9676 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9677   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9678   ins_cost(150);
9679   opcode(0x102);
9680   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9681   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9682   ins_pipe(int_conditional_float_move);
9683 %}
9684 
9685 // ============================================================================
9686 // Safepoint Instruction
9687 instruct safePoint_poll(iRegP poll) %{
9688   match(SafePoint poll);
9689   effect(USE poll);
9690 
9691   size(4);
9692   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9693   ins_encode %{
9694     __ relocate(relocInfo::poll_type);
9695     __ ld_ptr($poll$$Register, 0, G0);
9696   %}
9697   ins_pipe(loadPollP);
9698 %}
9699 
9700 // ============================================================================
9701 // Call Instructions
9702 // Call Java Static Instruction
9703 instruct CallStaticJavaDirect( method meth ) %{
9704   match(CallStaticJava);
9705   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9706   effect(USE meth);
9707 
9708   size(8);
9709   ins_cost(CALL_COST);
9710   format %{ "CALL,static  ; NOP ==> " %}
9711   ins_encode( Java_Static_Call( meth ), call_epilog );
9712   ins_avoid_back_to_back(AVOID_BEFORE);
9713   ins_pipe(simple_call);
9714 %}
9715 
9716 // Call Java Static Instruction (method handle version)
9717 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9718   match(CallStaticJava);
9719   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9720   effect(USE meth, KILL l7_mh_SP_save);
9721 
9722   size(16);
9723   ins_cost(CALL_COST);
9724   format %{ "CALL,static/MethodHandle" %}
9725   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9726   ins_pipe(simple_call);
9727 %}
9728 
9729 // Call Java Dynamic Instruction
9730 instruct CallDynamicJavaDirect( method meth ) %{
9731   match(CallDynamicJava);
9732   effect(USE meth);
9733 
9734   ins_cost(CALL_COST);
9735   format %{ "SET    (empty),R_G5\n\t"
9736             "CALL,dynamic  ; NOP ==> " %}
9737   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9738   ins_pipe(call);
9739 %}
9740 
9741 // Call Runtime Instruction
9742 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9743   match(CallRuntime);
9744   effect(USE meth, KILL l7);
9745   ins_cost(CALL_COST);
9746   format %{ "CALL,runtime" %}
9747   ins_encode( Java_To_Runtime( meth ),
9748               call_epilog, adjust_long_from_native_call );
9749   ins_avoid_back_to_back(AVOID_BEFORE);
9750   ins_pipe(simple_call);
9751 %}
9752 
9753 // Call runtime without safepoint - same as CallRuntime
9754 instruct CallLeafDirect(method meth, l7RegP l7) %{
9755   match(CallLeaf);
9756   effect(USE meth, KILL l7);
9757   ins_cost(CALL_COST);
9758   format %{ "CALL,runtime leaf" %}
9759   ins_encode( Java_To_Runtime( meth ),
9760               call_epilog,
9761               adjust_long_from_native_call );
9762   ins_avoid_back_to_back(AVOID_BEFORE);
9763   ins_pipe(simple_call);
9764 %}
9765 
9766 // Call runtime without safepoint - same as CallLeaf
9767 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9768   match(CallLeafNoFP);
9769   effect(USE meth, KILL l7);
9770   ins_cost(CALL_COST);
9771   format %{ "CALL,runtime leaf nofp" %}
9772   ins_encode( Java_To_Runtime( meth ),
9773               call_epilog,
9774               adjust_long_from_native_call );
9775   ins_avoid_back_to_back(AVOID_BEFORE);
9776   ins_pipe(simple_call);
9777 %}
9778 
9779 // Tail Call; Jump from runtime stub to Java code.
9780 // Also known as an 'interprocedural jump'.
9781 // Target of jump will eventually return to caller.
9782 // TailJump below removes the return address.
9783 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9784   match(TailCall jump_target method_oop );
9785 
9786   ins_cost(CALL_COST);
9787   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9788   ins_encode(form_jmpl(jump_target));
9789   ins_avoid_back_to_back(AVOID_BEFORE);
9790   ins_pipe(tail_call);
9791 %}
9792 
9793 
9794 // Return Instruction
9795 instruct Ret() %{
9796   match(Return);
9797 
9798   // The epilogue node did the ret already.
9799   size(0);
9800   format %{ "! return" %}
9801   ins_encode();
9802   ins_pipe(empty);
9803 %}
9804 
9805 
9806 // Tail Jump; remove the return address; jump to target.
9807 // TailCall above leaves the return address around.
9808 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9809 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9810 // "restore" before this instruction (in Epilogue), we need to materialize it
9811 // in %i0.
9812 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9813   match( TailJump jump_target ex_oop );
9814   ins_cost(CALL_COST);
9815   format %{ "! discard R_O7\n\t"
9816             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9817   ins_encode(form_jmpl_set_exception_pc(jump_target));
9818   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9819   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9820   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9821   ins_avoid_back_to_back(AVOID_BEFORE);
9822   ins_pipe(tail_call);
9823 %}
9824 
9825 // Create exception oop: created by stack-crawling runtime code.
9826 // Created exception is now available to this handler, and is setup
9827 // just prior to jumping to this handler.  No code emitted.
9828 instruct CreateException( o0RegP ex_oop )
9829 %{
9830   match(Set ex_oop (CreateEx));
9831   ins_cost(0);
9832 
9833   size(0);
9834   // use the following format syntax
9835   format %{ "! exception oop is in R_O0; no code emitted" %}
9836   ins_encode();
9837   ins_pipe(empty);
9838 %}
9839 
9840 
9841 // Rethrow exception:
9842 // The exception oop will come in the first argument position.
9843 // Then JUMP (not call) to the rethrow stub code.
9844 instruct RethrowException()
9845 %{
9846   match(Rethrow);
9847   ins_cost(CALL_COST);
9848 
9849   // use the following format syntax
9850   format %{ "Jmp    rethrow_stub" %}
9851   ins_encode(enc_rethrow);
9852   ins_avoid_back_to_back(AVOID_BEFORE);
9853   ins_pipe(tail_call);
9854 %}
9855 
9856 
9857 // Die now
9858 instruct ShouldNotReachHere( )
9859 %{
9860   match(Halt);
9861   ins_cost(CALL_COST);
9862 
9863   size(4);
9864   // Use the following format syntax
9865   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9866   ins_encode( form2_illtrap() );
9867   ins_pipe(tail_call);
9868 %}
9869 
9870 // ============================================================================
9871 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9872 // array for an instance of the superklass.  Set a hidden internal cache on a
9873 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9874 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9875 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9876   match(Set index (PartialSubtypeCheck sub super));
9877   effect( KILL pcc, KILL o7 );
9878   ins_cost(DEFAULT_COST*10);
9879   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9880   ins_encode( enc_PartialSubtypeCheck() );
9881   ins_avoid_back_to_back(AVOID_BEFORE);
9882   ins_pipe(partial_subtype_check_pipe);
9883 %}
9884 
9885 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9886   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9887   effect( KILL idx, KILL o7 );
9888   ins_cost(DEFAULT_COST*10);
9889   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9890   ins_encode( enc_PartialSubtypeCheck() );
9891   ins_avoid_back_to_back(AVOID_BEFORE);
9892   ins_pipe(partial_subtype_check_pipe);
9893 %}
9894 
9895 
9896 // ============================================================================
9897 // inlined locking and unlocking
9898 
9899 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9900   match(Set pcc (FastLock object box));
9901 
9902   effect(TEMP scratch2, USE_KILL box, KILL scratch);
9903   ins_cost(100);
9904 
9905   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9906   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9907   ins_pipe(long_memory_op);
9908 %}
9909 
9910 
9911 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9912   match(Set pcc (FastUnlock object box));
9913   effect(TEMP scratch2, USE_KILL box, KILL scratch);
9914   ins_cost(100);
9915 
9916   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9917   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9918   ins_pipe(long_memory_op);
9919 %}
9920 
9921 // The encodings are generic.
9922 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9923   predicate(!use_block_zeroing(n->in(2)) );
9924   match(Set dummy (ClearArray cnt base));
9925   effect(TEMP temp, KILL ccr);
9926   ins_cost(300);
9927   format %{ "MOV    $cnt,$temp\n"
9928     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9929     "        BRge   loop\t\t! Clearing loop\n"
9930     "        STX    G0,[$base+$temp]\t! delay slot" %}
9931 
9932   ins_encode %{
9933     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
9934     Register nof_bytes_arg    = $cnt$$Register;
9935     Register nof_bytes_tmp    = $temp$$Register;
9936     Register base_pointer_arg = $base$$Register;
9937 
9938     Label loop;
9939     __ mov(nof_bytes_arg, nof_bytes_tmp);
9940 
9941     // Loop and clear, walking backwards through the array.
9942     // nof_bytes_tmp (if >0) is always the number of bytes to zero
9943     __ bind(loop);
9944     __ deccc(nof_bytes_tmp, 8);
9945     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
9946     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
9947     // %%%% this mini-loop must not cross a cache boundary!
9948   %}
9949   ins_pipe(long_memory_op);
9950 %}
9951 
9952 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
9953   predicate(use_block_zeroing(n->in(2)));
9954   match(Set dummy (ClearArray cnt base));
9955   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
9956   ins_cost(300);
9957   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
9958 
9959   ins_encode %{
9960 
9961     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
9962     Register to    = $base$$Register;
9963     Register count = $cnt$$Register;
9964 
9965     Label Ldone;
9966     __ nop(); // Separate short branches
9967     // Use BIS for zeroing (temp is not used).
9968     __ bis_zeroing(to, count, G0, Ldone);
9969     __ bind(Ldone);
9970 
9971   %}
9972   ins_pipe(long_memory_op);
9973 %}
9974 
9975 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
9976   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
9977   match(Set dummy (ClearArray cnt base));
9978   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
9979   ins_cost(300);
9980   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
9981 
9982   ins_encode %{
9983 
9984     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
9985     Register to    = $base$$Register;
9986     Register count = $cnt$$Register;
9987     Register temp  = $tmp$$Register;
9988 
9989     Label Ldone;
9990     __ nop(); // Separate short branches
9991     // Use BIS for zeroing
9992     __ bis_zeroing(to, count, temp, Ldone);
9993     __ bind(Ldone);
9994 
9995   %}
9996   ins_pipe(long_memory_op);
9997 %}
9998 
9999 instruct string_compareL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10000                          o7RegI tmp, flagsReg ccr) %{
10001   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
10002   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10003   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10004   ins_cost(300);
10005   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10006   ins_encode %{
10007     __ string_compare($str1$$Register, $str2$$Register,
10008                       $cnt1$$Register, $cnt2$$Register,
10009                       $tmp$$Register, $tmp$$Register,
10010                       $result$$Register, StrIntrinsicNode::LL);
10011   %}
10012   ins_pipe(long_memory_op);
10013 %}
10014 
10015 instruct string_compareU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10016                          o7RegI tmp, flagsReg ccr) %{
10017   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
10018   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10019   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10020   ins_cost(300);
10021   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10022   ins_encode %{
10023     __ string_compare($str1$$Register, $str2$$Register,
10024                       $cnt1$$Register, $cnt2$$Register,
10025                       $tmp$$Register, $tmp$$Register,
10026                       $result$$Register, StrIntrinsicNode::UU);
10027   %}
10028   ins_pipe(long_memory_op);
10029 %}
10030 
10031 instruct string_compareLU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10032                           o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
10033   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
10034   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10035   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
10036   ins_cost(300);
10037   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
10038   ins_encode %{
10039     __ string_compare($str1$$Register, $str2$$Register,
10040                       $cnt1$$Register, $cnt2$$Register,
10041                       $tmp1$$Register, $tmp2$$Register,
10042                       $result$$Register, StrIntrinsicNode::LU);
10043   %}
10044   ins_pipe(long_memory_op);
10045 %}
10046 
10047 instruct string_compareUL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10048                           o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
10049   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
10050   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10051   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
10052   ins_cost(300);
10053   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
10054   ins_encode %{
10055     __ string_compare($str2$$Register, $str1$$Register,
10056                       $cnt2$$Register, $cnt1$$Register,
10057                       $tmp1$$Register, $tmp2$$Register,
10058                       $result$$Register, StrIntrinsicNode::UL);
10059   %}
10060   ins_pipe(long_memory_op);
10061 %}
10062 
10063 instruct string_equalsL(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10064                         o7RegI tmp, flagsReg ccr) %{
10065   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
10066   match(Set result (StrEquals (Binary str1 str2) cnt));
10067   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10068   ins_cost(300);
10069   format %{ "String Equals byte[] $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10070   ins_encode %{
10071     __ array_equals(false, $str1$$Register, $str2$$Register,
10072                     $cnt$$Register, $tmp$$Register,
10073                     $result$$Register, true /* byte */);
10074   %}
10075   ins_pipe(long_memory_op);
10076 %}
10077 
10078 instruct string_equalsU(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10079                         o7RegI tmp, flagsReg ccr) %{
10080   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
10081   match(Set result (StrEquals (Binary str1 str2) cnt));
10082   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10083   ins_cost(300);
10084   format %{ "String Equals char[]  $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10085   ins_encode %{
10086     __ array_equals(false, $str1$$Register, $str2$$Register,
10087                     $cnt$$Register, $tmp$$Register,
10088                     $result$$Register, false /* byte */);
10089   %}
10090   ins_pipe(long_memory_op);
10091 %}
10092 
10093 instruct array_equalsB(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10094                        o7RegI tmp2, flagsReg ccr) %{
10095   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
10096   match(Set result (AryEq ary1 ary2));
10097   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10098   ins_cost(300);
10099   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10100   ins_encode %{
10101     __ array_equals(true, $ary1$$Register, $ary2$$Register,
10102                     $tmp1$$Register, $tmp2$$Register,
10103                     $result$$Register, true /* byte */);
10104   %}
10105   ins_pipe(long_memory_op);
10106 %}
10107 
10108 instruct array_equalsC(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10109                        o7RegI tmp2, flagsReg ccr) %{
10110   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
10111   match(Set result (AryEq ary1 ary2));
10112   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10113   ins_cost(300);
10114   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10115   ins_encode %{
10116     __ array_equals(true, $ary1$$Register, $ary2$$Register,
10117                     $tmp1$$Register, $tmp2$$Register,
10118                     $result$$Register, false /* byte */);
10119   %}
10120   ins_pipe(long_memory_op);
10121 %}
10122 
10123 instruct has_negatives(o0RegP pAryR, g3RegI iSizeR, notemp_iRegI resultR,
10124                        iRegL tmp1L, iRegL tmp2L, iRegL tmp3L, iRegL tmp4L,
10125                        flagsReg ccr)
10126 %{
10127   match(Set resultR (HasNegatives pAryR iSizeR));
10128   effect(TEMP resultR, TEMP tmp1L, TEMP tmp2L, TEMP tmp3L, TEMP tmp4L, USE pAryR, USE iSizeR, KILL ccr);
10129   format %{ "has negatives byte[] $pAryR,$iSizeR -> $resultR // KILL $tmp1L,$tmp2L,$tmp3L,$tmp4L" %}
10130   ins_encode %{
10131     __ has_negatives($pAryR$$Register, $iSizeR$$Register,
10132                      $resultR$$Register,
10133                      $tmp1L$$Register, $tmp2L$$Register,
10134                      $tmp3L$$Register, $tmp4L$$Register);
10135   %}
10136   ins_pipe(long_memory_op);
10137 %}
10138 
10139 // char[] to byte[] compression
10140 instruct string_compress(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result, iRegL tmp, flagsReg ccr) %{
10141   predicate(UseVIS < 3);
10142   match(Set result (StrCompressedCopy src (Binary dst len)));
10143   effect(TEMP result, TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10144   ins_cost(300);
10145   format %{ "String Compress $src,$dst,$len -> $result    // KILL $tmp" %}
10146   ins_encode %{
10147     Label Ldone;
10148     __ signx($len$$Register);
10149     __ cmp_zero_and_br(Assembler::zero, $len$$Register, Ldone, false, Assembler::pn);
10150     __ delayed()->mov($len$$Register, $result$$Register); // copy count
10151     __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp$$Register, Ldone);
10152     __ bind(Ldone);
10153   %}
10154   ins_pipe(long_memory_op);
10155 %}
10156 
10157 // fast char[] to byte[] compression using VIS instructions
10158 instruct string_compress_fast(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result,
10159                               iRegL tmp1, iRegL tmp2, iRegL tmp3, iRegL tmp4,
10160                               regD ftmp1, regD ftmp2, regD ftmp3, flagsReg ccr) %{
10161   predicate(UseVIS >= 3);
10162   match(Set result (StrCompressedCopy src (Binary dst len)));
10163   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10164   ins_cost(300);
10165   format %{ "String Compress Fast $src,$dst,$len -> $result    // KILL $tmp1,$tmp2,$tmp3,$tmp4,$ftmp1,$ftmp2,$ftmp3" %}
10166   ins_encode %{
10167     Label Ldone;
10168     __ signx($len$$Register);
10169     __ string_compress_16($src$$Register, $dst$$Register, $len$$Register, $result$$Register,
10170                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register,
10171                           $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, Ldone);
10172     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10173     __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp1$$Register, Ldone);
10174     __ bind(Ldone);
10175   %}
10176   ins_pipe(long_memory_op);
10177 %}
10178 
10179 // byte[] to char[] inflation
10180 instruct string_inflate(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
10181                         iRegL tmp, flagsReg ccr) %{
10182   match(Set dummy (StrInflatedCopy src (Binary dst len)));
10183   effect(TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10184   ins_cost(300);
10185   format %{ "String Inflate $src,$dst,$len    // KILL $tmp" %}
10186   ins_encode %{
10187     Label Ldone;
10188     __ signx($len$$Register);
10189     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10190     __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
10191     __ bind(Ldone);
10192   %}
10193   ins_pipe(long_memory_op);
10194 %}
10195 
10196 // fast byte[] to char[] inflation using VIS instructions
10197 instruct string_inflate_fast(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
10198                              iRegL tmp, regD ftmp1, regD ftmp2, regD ftmp3, regD ftmp4, flagsReg ccr) %{
10199   predicate(UseVIS >= 3);
10200   match(Set dummy (StrInflatedCopy src (Binary dst len)));
10201   effect(TEMP tmp, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, TEMP ftmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10202   ins_cost(300);
10203   format %{ "String Inflate Fast $src,$dst,$len    // KILL $tmp,$ftmp1,$ftmp2,$ftmp3,$ftmp4" %}
10204   ins_encode %{
10205     Label Ldone;
10206     __ signx($len$$Register);
10207     __ string_inflate_16($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register,
10208                          $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, $ftmp4$$FloatRegister, Ldone);
10209     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10210     __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
10211     __ bind(Ldone);
10212   %}
10213   ins_pipe(long_memory_op);
10214 %}
10215 
10216 
10217 //---------- Zeros Count Instructions ------------------------------------------
10218 
10219 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10220   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10221   match(Set dst (CountLeadingZerosI src));
10222   effect(TEMP dst, TEMP tmp, KILL cr);
10223 
10224   // x |= (x >> 1);
10225   // x |= (x >> 2);
10226   // x |= (x >> 4);
10227   // x |= (x >> 8);
10228   // x |= (x >> 16);
10229   // return (WORDBITS - popc(x));
10230   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10231             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10232             "OR      $dst,$tmp,$dst\n\t"
10233             "SRL     $dst,2,$tmp\n\t"
10234             "OR      $dst,$tmp,$dst\n\t"
10235             "SRL     $dst,4,$tmp\n\t"
10236             "OR      $dst,$tmp,$dst\n\t"
10237             "SRL     $dst,8,$tmp\n\t"
10238             "OR      $dst,$tmp,$dst\n\t"
10239             "SRL     $dst,16,$tmp\n\t"
10240             "OR      $dst,$tmp,$dst\n\t"
10241             "POPC    $dst,$dst\n\t"
10242             "MOV     32,$tmp\n\t"
10243             "SUB     $tmp,$dst,$dst" %}
10244   ins_encode %{
10245     Register Rdst = $dst$$Register;
10246     Register Rsrc = $src$$Register;
10247     Register Rtmp = $tmp$$Register;
10248     __ srl(Rsrc, 1,    Rtmp);
10249     __ srl(Rsrc, 0,    Rdst);
10250     __ or3(Rdst, Rtmp, Rdst);
10251     __ srl(Rdst, 2,    Rtmp);
10252     __ or3(Rdst, Rtmp, Rdst);
10253     __ srl(Rdst, 4,    Rtmp);
10254     __ or3(Rdst, Rtmp, Rdst);
10255     __ srl(Rdst, 8,    Rtmp);
10256     __ or3(Rdst, Rtmp, Rdst);
10257     __ srl(Rdst, 16,   Rtmp);
10258     __ or3(Rdst, Rtmp, Rdst);
10259     __ popc(Rdst, Rdst);
10260     __ mov(BitsPerInt, Rtmp);
10261     __ sub(Rtmp, Rdst, Rdst);
10262   %}
10263   ins_pipe(ialu_reg);
10264 %}
10265 
10266 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10267   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10268   match(Set dst (CountLeadingZerosL src));
10269   effect(TEMP dst, TEMP tmp, KILL cr);
10270 
10271   // x |= (x >> 1);
10272   // x |= (x >> 2);
10273   // x |= (x >> 4);
10274   // x |= (x >> 8);
10275   // x |= (x >> 16);
10276   // x |= (x >> 32);
10277   // return (WORDBITS - popc(x));
10278   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10279             "OR      $src,$tmp,$dst\n\t"
10280             "SRLX    $dst,2,$tmp\n\t"
10281             "OR      $dst,$tmp,$dst\n\t"
10282             "SRLX    $dst,4,$tmp\n\t"
10283             "OR      $dst,$tmp,$dst\n\t"
10284             "SRLX    $dst,8,$tmp\n\t"
10285             "OR      $dst,$tmp,$dst\n\t"
10286             "SRLX    $dst,16,$tmp\n\t"
10287             "OR      $dst,$tmp,$dst\n\t"
10288             "SRLX    $dst,32,$tmp\n\t"
10289             "OR      $dst,$tmp,$dst\n\t"
10290             "POPC    $dst,$dst\n\t"
10291             "MOV     64,$tmp\n\t"
10292             "SUB     $tmp,$dst,$dst" %}
10293   ins_encode %{
10294     Register Rdst = $dst$$Register;
10295     Register Rsrc = $src$$Register;
10296     Register Rtmp = $tmp$$Register;
10297     __ srlx(Rsrc, 1,    Rtmp);
10298     __ or3( Rsrc, Rtmp, Rdst);
10299     __ srlx(Rdst, 2,    Rtmp);
10300     __ or3( Rdst, Rtmp, Rdst);
10301     __ srlx(Rdst, 4,    Rtmp);
10302     __ or3( Rdst, Rtmp, Rdst);
10303     __ srlx(Rdst, 8,    Rtmp);
10304     __ or3( Rdst, Rtmp, Rdst);
10305     __ srlx(Rdst, 16,   Rtmp);
10306     __ or3( Rdst, Rtmp, Rdst);
10307     __ srlx(Rdst, 32,   Rtmp);
10308     __ or3( Rdst, Rtmp, Rdst);
10309     __ popc(Rdst, Rdst);
10310     __ mov(BitsPerLong, Rtmp);
10311     __ sub(Rtmp, Rdst, Rdst);
10312   %}
10313   ins_pipe(ialu_reg);
10314 %}
10315 
10316 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10317   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10318   match(Set dst (CountTrailingZerosI src));
10319   effect(TEMP dst, KILL cr);
10320 
10321   // return popc(~x & (x - 1));
10322   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10323             "ANDN    $dst,$src,$dst\n\t"
10324             "SRL     $dst,R_G0,$dst\n\t"
10325             "POPC    $dst,$dst" %}
10326   ins_encode %{
10327     Register Rdst = $dst$$Register;
10328     Register Rsrc = $src$$Register;
10329     __ sub(Rsrc, 1, Rdst);
10330     __ andn(Rdst, Rsrc, Rdst);
10331     __ srl(Rdst, G0, Rdst);
10332     __ popc(Rdst, Rdst);
10333   %}
10334   ins_pipe(ialu_reg);
10335 %}
10336 
10337 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10338   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10339   match(Set dst (CountTrailingZerosL src));
10340   effect(TEMP dst, KILL cr);
10341 
10342   // return popc(~x & (x - 1));
10343   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10344             "ANDN    $dst,$src,$dst\n\t"
10345             "POPC    $dst,$dst" %}
10346   ins_encode %{
10347     Register Rdst = $dst$$Register;
10348     Register Rsrc = $src$$Register;
10349     __ sub(Rsrc, 1, Rdst);
10350     __ andn(Rdst, Rsrc, Rdst);
10351     __ popc(Rdst, Rdst);
10352   %}
10353   ins_pipe(ialu_reg);
10354 %}
10355 
10356 
10357 //---------- Population Count Instructions -------------------------------------
10358 
10359 instruct popCountI(iRegIsafe dst, iRegI src) %{
10360   predicate(UsePopCountInstruction);
10361   match(Set dst (PopCountI src));
10362 
10363   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10364             "POPC   $dst, $dst" %}
10365   ins_encode %{
10366     __ srl($src$$Register, G0, $dst$$Register);
10367     __ popc($dst$$Register, $dst$$Register);
10368   %}
10369   ins_pipe(ialu_reg);
10370 %}
10371 
10372 // Note: Long.bitCount(long) returns an int.
10373 instruct popCountL(iRegIsafe dst, iRegL src) %{
10374   predicate(UsePopCountInstruction);
10375   match(Set dst (PopCountL src));
10376 
10377   format %{ "POPC   $src, $dst" %}
10378   ins_encode %{
10379     __ popc($src$$Register, $dst$$Register);
10380   %}
10381   ins_pipe(ialu_reg);
10382 %}
10383 
10384 
10385 // ============================================================================
10386 //------------Bytes reverse--------------------------------------------------
10387 
10388 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10389   match(Set dst (ReverseBytesI src));
10390 
10391   // Op cost is artificially doubled to make sure that load or store
10392   // instructions are preferred over this one which requires a spill
10393   // onto a stack slot.
10394   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10395   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10396 
10397   ins_encode %{
10398     __ set($src$$disp + STACK_BIAS, O7);
10399     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10400   %}
10401   ins_pipe( iload_mem );
10402 %}
10403 
10404 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10405   match(Set dst (ReverseBytesL src));
10406 
10407   // Op cost is artificially doubled to make sure that load or store
10408   // instructions are preferred over this one which requires a spill
10409   // onto a stack slot.
10410   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10411   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10412 
10413   ins_encode %{
10414     __ set($src$$disp + STACK_BIAS, O7);
10415     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10416   %}
10417   ins_pipe( iload_mem );
10418 %}
10419 
10420 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10421   match(Set dst (ReverseBytesUS src));
10422 
10423   // Op cost is artificially doubled to make sure that load or store
10424   // instructions are preferred over this one which requires a spill
10425   // onto a stack slot.
10426   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10427   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10428 
10429   ins_encode %{
10430     // the value was spilled as an int so bias the load
10431     __ set($src$$disp + STACK_BIAS + 2, O7);
10432     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10433   %}
10434   ins_pipe( iload_mem );
10435 %}
10436 
10437 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10438   match(Set dst (ReverseBytesS src));
10439 
10440   // Op cost is artificially doubled to make sure that load or store
10441   // instructions are preferred over this one which requires a spill
10442   // onto a stack slot.
10443   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10444   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10445 
10446   ins_encode %{
10447     // the value was spilled as an int so bias the load
10448     __ set($src$$disp + STACK_BIAS + 2, O7);
10449     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10450   %}
10451   ins_pipe( iload_mem );
10452 %}
10453 
10454 // Load Integer reversed byte order
10455 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10456   match(Set dst (ReverseBytesI (LoadI src)));
10457 
10458   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10459   size(4);
10460   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10461 
10462   ins_encode %{
10463     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10464   %}
10465   ins_pipe(iload_mem);
10466 %}
10467 
10468 // Load Long - aligned and reversed
10469 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10470   match(Set dst (ReverseBytesL (LoadL src)));
10471 
10472   ins_cost(MEMORY_REF_COST);
10473   size(4);
10474   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10475 
10476   ins_encode %{
10477     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10478   %}
10479   ins_pipe(iload_mem);
10480 %}
10481 
10482 // Load unsigned short / char reversed byte order
10483 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10484   match(Set dst (ReverseBytesUS (LoadUS src)));
10485 
10486   ins_cost(MEMORY_REF_COST);
10487   size(4);
10488   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10489 
10490   ins_encode %{
10491     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10492   %}
10493   ins_pipe(iload_mem);
10494 %}
10495 
10496 // Load short reversed byte order
10497 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10498   match(Set dst (ReverseBytesS (LoadS src)));
10499 
10500   ins_cost(MEMORY_REF_COST);
10501   size(4);
10502   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10503 
10504   ins_encode %{
10505     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10506   %}
10507   ins_pipe(iload_mem);
10508 %}
10509 
10510 // Store Integer reversed byte order
10511 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10512   match(Set dst (StoreI dst (ReverseBytesI src)));
10513 
10514   ins_cost(MEMORY_REF_COST);
10515   size(4);
10516   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10517 
10518   ins_encode %{
10519     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10520   %}
10521   ins_pipe(istore_mem_reg);
10522 %}
10523 
10524 // Store Long reversed byte order
10525 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10526   match(Set dst (StoreL dst (ReverseBytesL src)));
10527 
10528   ins_cost(MEMORY_REF_COST);
10529   size(4);
10530   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10531 
10532   ins_encode %{
10533     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10534   %}
10535   ins_pipe(istore_mem_reg);
10536 %}
10537 
10538 // Store unsighed short/char reversed byte order
10539 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10540   match(Set dst (StoreC dst (ReverseBytesUS src)));
10541 
10542   ins_cost(MEMORY_REF_COST);
10543   size(4);
10544   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10545 
10546   ins_encode %{
10547     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10548   %}
10549   ins_pipe(istore_mem_reg);
10550 %}
10551 
10552 // Store short reversed byte order
10553 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10554   match(Set dst (StoreC dst (ReverseBytesS src)));
10555 
10556   ins_cost(MEMORY_REF_COST);
10557   size(4);
10558   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10559 
10560   ins_encode %{
10561     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10562   %}
10563   ins_pipe(istore_mem_reg);
10564 %}
10565 
10566 // ====================VECTOR INSTRUCTIONS=====================================
10567 
10568 // Load Aligned Packed values into a Double Register
10569 instruct loadV8(regD dst, memory mem) %{
10570   predicate(n->as_LoadVector()->memory_size() == 8);
10571   match(Set dst (LoadVector mem));
10572   ins_cost(MEMORY_REF_COST);
10573   size(4);
10574   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10575   ins_encode %{
10576     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10577   %}
10578   ins_pipe(floadD_mem);
10579 %}
10580 
10581 // Store Vector in Double register to memory
10582 instruct storeV8(memory mem, regD src) %{
10583   predicate(n->as_StoreVector()->memory_size() == 8);
10584   match(Set mem (StoreVector mem src));
10585   ins_cost(MEMORY_REF_COST);
10586   size(4);
10587   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10588   ins_encode %{
10589     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10590   %}
10591   ins_pipe(fstoreD_mem_reg);
10592 %}
10593 
10594 // Store Zero into vector in memory
10595 instruct storeV8B_zero(memory mem, immI0 zero) %{
10596   predicate(n->as_StoreVector()->memory_size() == 8);
10597   match(Set mem (StoreVector mem (ReplicateB zero)));
10598   ins_cost(MEMORY_REF_COST);
10599   size(4);
10600   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10601   ins_encode %{
10602     __ stx(G0, $mem$$Address);
10603   %}
10604   ins_pipe(fstoreD_mem_zero);
10605 %}
10606 
10607 instruct storeV4S_zero(memory mem, immI0 zero) %{
10608   predicate(n->as_StoreVector()->memory_size() == 8);
10609   match(Set mem (StoreVector mem (ReplicateS zero)));
10610   ins_cost(MEMORY_REF_COST);
10611   size(4);
10612   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10613   ins_encode %{
10614     __ stx(G0, $mem$$Address);
10615   %}
10616   ins_pipe(fstoreD_mem_zero);
10617 %}
10618 
10619 instruct storeV2I_zero(memory mem, immI0 zero) %{
10620   predicate(n->as_StoreVector()->memory_size() == 8);
10621   match(Set mem (StoreVector mem (ReplicateI zero)));
10622   ins_cost(MEMORY_REF_COST);
10623   size(4);
10624   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10625   ins_encode %{
10626     __ stx(G0, $mem$$Address);
10627   %}
10628   ins_pipe(fstoreD_mem_zero);
10629 %}
10630 
10631 instruct storeV2F_zero(memory mem, immF0 zero) %{
10632   predicate(n->as_StoreVector()->memory_size() == 8);
10633   match(Set mem (StoreVector mem (ReplicateF zero)));
10634   ins_cost(MEMORY_REF_COST);
10635   size(4);
10636   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10637   ins_encode %{
10638     __ stx(G0, $mem$$Address);
10639   %}
10640   ins_pipe(fstoreD_mem_zero);
10641 %}
10642 
10643 // Replicate scalar to packed byte values into Double register
10644 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10645   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10646   match(Set dst (ReplicateB src));
10647   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10648   format %{ "SLLX  $src,56,$tmp\n\t"
10649             "SRLX  $tmp, 8,$tmp2\n\t"
10650             "OR    $tmp,$tmp2,$tmp\n\t"
10651             "SRLX  $tmp,16,$tmp2\n\t"
10652             "OR    $tmp,$tmp2,$tmp\n\t"
10653             "SRLX  $tmp,32,$tmp2\n\t"
10654             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10655             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10656   ins_encode %{
10657     Register Rsrc = $src$$Register;
10658     Register Rtmp = $tmp$$Register;
10659     Register Rtmp2 = $tmp2$$Register;
10660     __ sllx(Rsrc,    56, Rtmp);
10661     __ srlx(Rtmp,     8, Rtmp2);
10662     __ or3 (Rtmp, Rtmp2, Rtmp);
10663     __ srlx(Rtmp,    16, Rtmp2);
10664     __ or3 (Rtmp, Rtmp2, Rtmp);
10665     __ srlx(Rtmp,    32, Rtmp2);
10666     __ or3 (Rtmp, Rtmp2, Rtmp);
10667     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10668   %}
10669   ins_pipe(ialu_reg);
10670 %}
10671 
10672 // Replicate scalar to packed byte values into Double stack
10673 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10674   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10675   match(Set dst (ReplicateB src));
10676   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10677   format %{ "SLLX  $src,56,$tmp\n\t"
10678             "SRLX  $tmp, 8,$tmp2\n\t"
10679             "OR    $tmp,$tmp2,$tmp\n\t"
10680             "SRLX  $tmp,16,$tmp2\n\t"
10681             "OR    $tmp,$tmp2,$tmp\n\t"
10682             "SRLX  $tmp,32,$tmp2\n\t"
10683             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10684             "STX   $tmp,$dst\t! regL to stkD" %}
10685   ins_encode %{
10686     Register Rsrc = $src$$Register;
10687     Register Rtmp = $tmp$$Register;
10688     Register Rtmp2 = $tmp2$$Register;
10689     __ sllx(Rsrc,    56, Rtmp);
10690     __ srlx(Rtmp,     8, Rtmp2);
10691     __ or3 (Rtmp, Rtmp2, Rtmp);
10692     __ srlx(Rtmp,    16, Rtmp2);
10693     __ or3 (Rtmp, Rtmp2, Rtmp);
10694     __ srlx(Rtmp,    32, Rtmp2);
10695     __ or3 (Rtmp, Rtmp2, Rtmp);
10696     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10697     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10698   %}
10699   ins_pipe(ialu_reg);
10700 %}
10701 
10702 // Replicate scalar constant to packed byte values in Double register
10703 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10704   predicate(n->as_Vector()->length() == 8);
10705   match(Set dst (ReplicateB con));
10706   effect(KILL tmp);
10707   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10708   ins_encode %{
10709     // XXX This is a quick fix for 6833573.
10710     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10711     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10712     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10713   %}
10714   ins_pipe(loadConFD);
10715 %}
10716 
10717 // Replicate scalar to packed char/short values into Double register
10718 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10719   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10720   match(Set dst (ReplicateS src));
10721   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10722   format %{ "SLLX  $src,48,$tmp\n\t"
10723             "SRLX  $tmp,16,$tmp2\n\t"
10724             "OR    $tmp,$tmp2,$tmp\n\t"
10725             "SRLX  $tmp,32,$tmp2\n\t"
10726             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10727             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10728   ins_encode %{
10729     Register Rsrc = $src$$Register;
10730     Register Rtmp = $tmp$$Register;
10731     Register Rtmp2 = $tmp2$$Register;
10732     __ sllx(Rsrc,    48, Rtmp);
10733     __ srlx(Rtmp,    16, Rtmp2);
10734     __ or3 (Rtmp, Rtmp2, Rtmp);
10735     __ srlx(Rtmp,    32, Rtmp2);
10736     __ or3 (Rtmp, Rtmp2, Rtmp);
10737     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10738   %}
10739   ins_pipe(ialu_reg);
10740 %}
10741 
10742 // Replicate scalar to packed char/short values into Double stack
10743 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10744   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10745   match(Set dst (ReplicateS src));
10746   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10747   format %{ "SLLX  $src,48,$tmp\n\t"
10748             "SRLX  $tmp,16,$tmp2\n\t"
10749             "OR    $tmp,$tmp2,$tmp\n\t"
10750             "SRLX  $tmp,32,$tmp2\n\t"
10751             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10752             "STX   $tmp,$dst\t! regL to stkD" %}
10753   ins_encode %{
10754     Register Rsrc = $src$$Register;
10755     Register Rtmp = $tmp$$Register;
10756     Register Rtmp2 = $tmp2$$Register;
10757     __ sllx(Rsrc,    48, Rtmp);
10758     __ srlx(Rtmp,    16, Rtmp2);
10759     __ or3 (Rtmp, Rtmp2, Rtmp);
10760     __ srlx(Rtmp,    32, Rtmp2);
10761     __ or3 (Rtmp, Rtmp2, Rtmp);
10762     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10763     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10764   %}
10765   ins_pipe(ialu_reg);
10766 %}
10767 
10768 // Replicate scalar constant to packed char/short values in Double register
10769 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10770   predicate(n->as_Vector()->length() == 4);
10771   match(Set dst (ReplicateS con));
10772   effect(KILL tmp);
10773   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10774   ins_encode %{
10775     // XXX This is a quick fix for 6833573.
10776     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10777     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10778     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10779   %}
10780   ins_pipe(loadConFD);
10781 %}
10782 
10783 // Replicate scalar to packed int values into Double register
10784 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10785   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10786   match(Set dst (ReplicateI src));
10787   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10788   format %{ "SLLX  $src,32,$tmp\n\t"
10789             "SRLX  $tmp,32,$tmp2\n\t"
10790             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10791             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10792   ins_encode %{
10793     Register Rsrc = $src$$Register;
10794     Register Rtmp = $tmp$$Register;
10795     Register Rtmp2 = $tmp2$$Register;
10796     __ sllx(Rsrc,    32, Rtmp);
10797     __ srlx(Rtmp,    32, Rtmp2);
10798     __ or3 (Rtmp, Rtmp2, Rtmp);
10799     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10800   %}
10801   ins_pipe(ialu_reg);
10802 %}
10803 
10804 // Replicate scalar to packed int values into Double stack
10805 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10806   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10807   match(Set dst (ReplicateI src));
10808   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10809   format %{ "SLLX  $src,32,$tmp\n\t"
10810             "SRLX  $tmp,32,$tmp2\n\t"
10811             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10812             "STX   $tmp,$dst\t! regL to stkD" %}
10813   ins_encode %{
10814     Register Rsrc = $src$$Register;
10815     Register Rtmp = $tmp$$Register;
10816     Register Rtmp2 = $tmp2$$Register;
10817     __ sllx(Rsrc,    32, Rtmp);
10818     __ srlx(Rtmp,    32, Rtmp2);
10819     __ or3 (Rtmp, Rtmp2, Rtmp);
10820     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10821     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10822   %}
10823   ins_pipe(ialu_reg);
10824 %}
10825 
10826 // Replicate scalar zero constant to packed int values in Double register
10827 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10828   predicate(n->as_Vector()->length() == 2);
10829   match(Set dst (ReplicateI con));
10830   effect(KILL tmp);
10831   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10832   ins_encode %{
10833     // XXX This is a quick fix for 6833573.
10834     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10835     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10836     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10837   %}
10838   ins_pipe(loadConFD);
10839 %}
10840 
10841 // Replicate scalar to packed float values into Double stack
10842 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10843   predicate(n->as_Vector()->length() == 2);
10844   match(Set dst (ReplicateF src));
10845   ins_cost(MEMORY_REF_COST*2);
10846   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10847             "STF    $src,$dst.lo" %}
10848   opcode(Assembler::stf_op3);
10849   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10850   ins_pipe(fstoreF_stk_reg);
10851 %}
10852 
10853 // Replicate scalar zero constant to packed float values in Double register
10854 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10855   predicate(n->as_Vector()->length() == 2);
10856   match(Set dst (ReplicateF con));
10857   effect(KILL tmp);
10858   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10859   ins_encode %{
10860     // XXX This is a quick fix for 6833573.
10861     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10862     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10863     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10864   %}
10865   ins_pipe(loadConFD);
10866 %}
10867 
10868 //----------PEEPHOLE RULES-----------------------------------------------------
10869 // These must follow all instruction definitions as they use the names
10870 // defined in the instructions definitions.
10871 //
10872 // peepmatch ( root_instr_name [preceding_instruction]* );
10873 //
10874 // peepconstraint %{
10875 // (instruction_number.operand_name relational_op instruction_number.operand_name
10876 //  [, ...] );
10877 // // instruction numbers are zero-based using left to right order in peepmatch
10878 //
10879 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10880 // // provide an instruction_number.operand_name for each operand that appears
10881 // // in the replacement instruction's match rule
10882 //
10883 // ---------VM FLAGS---------------------------------------------------------
10884 //
10885 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10886 //
10887 // Each peephole rule is given an identifying number starting with zero and
10888 // increasing by one in the order seen by the parser.  An individual peephole
10889 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10890 // on the command-line.
10891 //
10892 // ---------CURRENT LIMITATIONS----------------------------------------------
10893 //
10894 // Only match adjacent instructions in same basic block
10895 // Only equality constraints
10896 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10897 // Only one replacement instruction
10898 //
10899 // ---------EXAMPLE----------------------------------------------------------
10900 //
10901 // // pertinent parts of existing instructions in architecture description
10902 // instruct movI(eRegI dst, eRegI src) %{
10903 //   match(Set dst (CopyI src));
10904 // %}
10905 //
10906 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10907 //   match(Set dst (AddI dst src));
10908 //   effect(KILL cr);
10909 // %}
10910 //
10911 // // Change (inc mov) to lea
10912 // peephole %{
10913 //   // increment preceeded by register-register move
10914 //   peepmatch ( incI_eReg movI );
10915 //   // require that the destination register of the increment
10916 //   // match the destination register of the move
10917 //   peepconstraint ( 0.dst == 1.dst );
10918 //   // construct a replacement instruction that sets
10919 //   // the destination to ( move's source register + one )
10920 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10921 // %}
10922 //
10923 
10924 // // Change load of spilled value to only a spill
10925 // instruct storeI(memory mem, eRegI src) %{
10926 //   match(Set mem (StoreI mem src));
10927 // %}
10928 //
10929 // instruct loadI(eRegI dst, memory mem) %{
10930 //   match(Set dst (LoadI mem));
10931 // %}
10932 //
10933 // peephole %{
10934 //   peepmatch ( loadI storeI );
10935 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10936 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10937 // %}
10938 
10939 //----------SMARTSPILL RULES---------------------------------------------------
10940 // These must follow all instruction definitions as they use the names
10941 // defined in the instructions definitions.
10942 //
10943 // SPARC will probably not have any of these rules due to RISC instruction set.
10944 
10945 //----------PIPELINE-----------------------------------------------------------
10946 // Rules which define the behavior of the target architectures pipeline.