1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/align.hpp"
  48 #include "utilities/debug.hpp"
  49 #include "utilities/macros.hpp"
  50 
  51 // Size of interpreter code.  Increase if too small.  Interpreter will
  52 // fail with a guarantee ("not enough space for interpreter generation");
  53 // if too small.
  54 // Run with +PrintInterpreter to get the VM to print out the size.
  55 // Max size with JVMTI
  56 // The sethi() instruction generates lots more instructions when shell
  57 // stack limit is unlimited, so that's why this is much bigger.
  58 int TemplateInterpreter::InterpreterCodeSize = 260 * K;
  59 
  60 // Generation of Interpreter
  61 //
  62 // The TemplateInterpreterGenerator generates the interpreter into Interpreter::_code.
  63 
  64 
  65 #define __ _masm->
  66 
  67 
  68 //----------------------------------------------------------------------------------------------------
  69 
  70 // LP64 passes floating point arguments in F1, F3, F5, etc. instead of
  71 // O0, O1, O2 etc..
  72 // Doubles are passed in D0, D2, D4
  73 // We store the signature of the first 16 arguments in the first argument
  74 // slot because it will be overwritten prior to calling the native
  75 // function, with the pointer to the JNIEnv.
  76 // If LP64 there can be up to 16 floating point arguments in registers
  77 // or 6 integer registers.
  78 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  79 
  80   enum {
  81     non_float  = 0,
  82     float_sig  = 1,
  83     double_sig = 2,
  84     sig_mask   = 3
  85   };
  86 
  87   address entry = __ pc();
  88   Argument argv(0, true);
  89 
  90   // We are in the jni transition frame. Save the last_java_frame corresponding to the
  91   // outer interpreter frame
  92   //
  93   __ set_last_Java_frame(FP, noreg);
  94   // make sure the interpreter frame we've pushed has a valid return pc
  95   __ mov(O7, I7);
  96   __ mov(Lmethod, G3_scratch);
  97   __ mov(Llocals, G4_scratch);
  98   __ save_frame(0);
  99   __ mov(G2_thread, L7_thread_cache);
 100   __ add(argv.address_in_frame(), O3);
 101   __ mov(G2_thread, O0);
 102   __ mov(G3_scratch, O1);
 103   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
 104   __ delayed()->mov(G4_scratch, O2);
 105   __ mov(L7_thread_cache, G2_thread);
 106   __ reset_last_Java_frame();
 107 
 108 
 109   // load the register arguments (the C code packed them as varargs)
 110   Address Sig = argv.address_in_frame();        // Argument 0 holds the signature
 111   __ ld_ptr( Sig, G3_scratch );                   // Get register argument signature word into G3_scratch
 112   __ mov( G3_scratch, G4_scratch);
 113   __ srl( G4_scratch, 2, G4_scratch);             // Skip Arg 0
 114   Label done;
 115   for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) {
 116     Label NonFloatArg;
 117     Label LoadFloatArg;
 118     Label LoadDoubleArg;
 119     Label NextArg;
 120     Address a = ldarg.address_in_frame();
 121     __ andcc(G4_scratch, sig_mask, G3_scratch);
 122     __ br(Assembler::zero, false, Assembler::pt, NonFloatArg);
 123     __ delayed()->nop();
 124 
 125     __ cmp(G3_scratch, float_sig );
 126     __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg);
 127     __ delayed()->nop();
 128 
 129     __ cmp(G3_scratch, double_sig );
 130     __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg);
 131     __ delayed()->nop();
 132 
 133     __ bind(NonFloatArg);
 134     // There are only 6 integer register arguments!
 135     if ( ldarg.is_register() )
 136       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 137     else {
 138     // Optimization, see if there are any more args and get out prior to checking
 139     // all 16 float registers.  My guess is that this is rare.
 140     // If is_register is false, then we are done the first six integer args.
 141       __ br_null_short(G4_scratch, Assembler::pt, done);
 142     }
 143     __ ba(NextArg);
 144     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 145 
 146     __ bind(LoadFloatArg);
 147     __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4);
 148     __ ba(NextArg);
 149     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 150 
 151     __ bind(LoadDoubleArg);
 152     __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() );
 153     __ ba(NextArg);
 154     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 155 
 156     __ bind(NextArg);
 157   }
 158 
 159   __ bind(done);
 160   __ ret();
 161   __ delayed()->restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 162 
 163   return entry;
 164 }
 165 
 166 void TemplateInterpreterGenerator::generate_counter_overflow(Label& Lcontinue) {
 167 
 168   // Generate code to initiate compilation on the counter overflow.
 169 
 170   // InterpreterRuntime::frequency_counter_overflow takes two arguments,
 171   // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 172   // and the second is only used when the first is true.  We pass zero for both.
 173   // The call returns the address of the verified entry point for the method or NULL
 174   // if the compilation did not complete (either went background or bailed out).
 175   __ set((int)false, O2);
 176   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true);
 177   // returns verified_entry_point or NULL
 178   // we ignore it in any case
 179   __ ba_short(Lcontinue);
 180 }
 181 
 182 
 183 // End of helpers
 184 
 185 // Various method entries
 186 
 187 // Abstract method entry
 188 // Attempt to execute abstract method. Throw exception
 189 //
 190 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 191   address entry = __ pc();
 192   // abstract method entry
 193   // throw exception
 194   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
 195   // the call_VM checks for exception, so we should never return here.
 196   __ should_not_reach_here();
 197   return entry;
 198 }
 199 
 200 void TemplateInterpreterGenerator::save_native_result(void) {
 201   // result potentially in O0/O1: save it across calls
 202   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 203 
 204   // result potentially in F0/F1: save it across calls
 205   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 206 
 207   // save and restore any potential method result value around the unlocking operation
 208   __ stf(FloatRegisterImpl::D, F0, d_tmp);
 209   __ stx(O0, l_tmp);
 210 }
 211 
 212 void TemplateInterpreterGenerator::restore_native_result(void) {
 213   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 214   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 215 
 216   // Restore any method result value
 217   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
 218   __ ldx(l_tmp, O0);
 219 }
 220 
 221 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 222   assert(!pass_oop || message == NULL, "either oop or message but not both");
 223   address entry = __ pc();
 224   // expression stack must be empty before entering the VM if an exception happened
 225   __ empty_expression_stack();
 226   // load exception object
 227   __ set((intptr_t)name, G3_scratch);
 228   if (pass_oop) {
 229     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 230   } else {
 231     __ set((intptr_t)message, G4_scratch);
 232     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 233   }
 234   // throw exception
 235   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 236   AddressLiteral thrower(Interpreter::throw_exception_entry());
 237   __ jump_to(thrower, G3_scratch);
 238   __ delayed()->nop();
 239   return entry;
 240 }
 241 
 242 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 243   address entry = __ pc();
 244   // expression stack must be empty before entering the VM if an exception
 245   // happened
 246   __ empty_expression_stack();
 247   // load exception object
 248   __ call_VM(Oexception,
 249              CAST_FROM_FN_PTR(address,
 250                               InterpreterRuntime::throw_ClassCastException),
 251              Otos_i);
 252   __ should_not_reach_here();
 253   return entry;
 254 }
 255 
 256 
 257 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 258   address entry = __ pc();
 259   // expression stack must be empty before entering the VM if an exception happened
 260   __ empty_expression_stack();
 261   // convention: expect aberrant index in register G3_scratch, then shuffle the
 262   // index to G4_scratch for the VM call
 263   __ mov(G3_scratch, G4_scratch);
 264   __ set((intptr_t)name, G3_scratch);
 265   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 266   __ should_not_reach_here();
 267   return entry;
 268 }
 269 
 270 
 271 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 272   address entry = __ pc();
 273   // expression stack must be empty before entering the VM if an exception happened
 274   __ empty_expression_stack();
 275   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 276   __ should_not_reach_here();
 277   return entry;
 278 }
 279 
 280 
 281 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 282   address entry = __ pc();
 283 
 284   if (state == atos) {
 285     __ profile_return_type(O0, G3_scratch, G1_scratch);
 286   }
 287 
 288   // The callee returns with the stack possibly adjusted by adapter transition
 289   // We remove that possible adjustment here.
 290   // All interpreter local registers are untouched. Any result is passed back
 291   // in the O0/O1 or float registers. Before continuing, the arguments must be
 292   // popped from the java expression stack; i.e., Lesp must be adjusted.
 293 
 294   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 295 
 296   const Register cache = G3_scratch;
 297   const Register index  = G1_scratch;
 298   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
 299 
 300   const Register flags = cache;
 301   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
 302   const Register parameter_size = flags;
 303   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
 304   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
 305   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
 306 
 307   __ check_and_handle_popframe(Gtemp);
 308   __ check_and_handle_earlyret(Gtemp);
 309 
 310   __ dispatch_next(state, step);
 311 
 312   return entry;
 313 }
 314 
 315 
 316 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 317   address entry = __ pc();
 318   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 319 #if INCLUDE_JVMCI
 320   // Check if we need to take lock at entry of synchronized method.  This can
 321   // only occur on method entry so emit it only for vtos with step 0.
 322   if (UseJVMCICompiler && state == vtos && step == 0) {
 323     Label L;
 324     Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 325     __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 326     __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 327     // Clear flag.
 328     __ stbool(G0, pending_monitor_enter_addr);
 329     // Take lock.
 330     lock_method();
 331     __ bind(L);
 332   } else {
 333 #ifdef ASSERT
 334     if (UseJVMCICompiler) {
 335       Label L;
 336       Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 337       __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 338       __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 339       __ stop("unexpected pending monitor in deopt entry");
 340       __ bind(L);
 341     }
 342 #endif
 343   }
 344 #endif
 345   { Label L;
 346     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 347     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 348     __ br_null_short(Gtemp, Assembler::pt, L);
 349     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 350     __ should_not_reach_here();
 351     __ bind(L);
 352   }
 353   __ dispatch_next(state, step);
 354   return entry;
 355 }
 356 
 357 // A result handler converts/unboxes a native call result into
 358 // a java interpreter/compiler result. The current frame is an
 359 // interpreter frame. The activation frame unwind code must be
 360 // consistent with that of TemplateTable::_return(...). In the
 361 // case of native methods, the caller's SP was not modified.
 362 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 363   address entry = __ pc();
 364   Register Itos_i  = Otos_i ->after_save();
 365   Register Itos_l  = Otos_l ->after_save();
 366   Register Itos_l1 = Otos_l1->after_save();
 367   Register Itos_l2 = Otos_l2->after_save();
 368   switch (type) {
 369     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 370     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 371     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 372     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 373     case T_LONG   :
 374     case T_INT    : __ mov(O0, Itos_i);                         break;
 375     case T_VOID   : /* nothing to do */                         break;
 376     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 377     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 378     case T_OBJECT :
 379       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 380       __ verify_oop(Itos_i);
 381       break;
 382     default       : ShouldNotReachHere();
 383   }
 384   __ ret();                           // return from interpreter activation
 385   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 386   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 387   return entry;
 388 }
 389 
 390 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 391   address entry = __ pc();
 392   __ push(state);
 393   __ call_VM(noreg, runtime_entry);
 394   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 395   return entry;
 396 }
 397 
 398 
 399 //
 400 // Helpers for commoning out cases in the various type of method entries.
 401 //
 402 
 403 // increment invocation count & check for overflow
 404 //
 405 // Note: checking for negative value instead of overflow
 406 //       so we have a 'sticky' overflow test
 407 //
 408 // Lmethod: method
 409 // ??: invocation counter
 410 //
 411 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 412   // Note: In tiered we increment either counters in MethodCounters* or in
 413   // MDO depending if we're profiling or not.
 414   const Register G3_method_counters = G3_scratch;
 415   Label done;
 416 
 417   if (TieredCompilation) {
 418     const int increment = InvocationCounter::count_increment;
 419     Label no_mdo;
 420     if (ProfileInterpreter) {
 421       // If no method data exists, go to profile_continue.
 422       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 423       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 424       // Increment counter
 425       Address mdo_invocation_counter(G4_scratch,
 426                                      in_bytes(MethodData::invocation_counter_offset()) +
 427                                      in_bytes(InvocationCounter::counter_offset()));
 428       Address mask(G4_scratch, in_bytes(MethodData::invoke_mask_offset()));
 429       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 430                                  G3_scratch, Lscratch,
 431                                  Assembler::zero, overflow);
 432       __ ba_short(done);
 433     }
 434 
 435     // Increment counter in MethodCounters*
 436     __ bind(no_mdo);
 437     Address invocation_counter(G3_method_counters,
 438             in_bytes(MethodCounters::invocation_counter_offset()) +
 439             in_bytes(InvocationCounter::counter_offset()));
 440     __ get_method_counters(Lmethod, G3_method_counters, done);
 441     Address mask(G3_method_counters, in_bytes(MethodCounters::invoke_mask_offset()));
 442     __ increment_mask_and_jump(invocation_counter, increment, mask,
 443                                G4_scratch, Lscratch,
 444                                Assembler::zero, overflow);
 445     __ bind(done);
 446   } else { // not TieredCompilation
 447     // Update standard invocation counters
 448     __ get_method_counters(Lmethod, G3_method_counters, done);
 449     __ increment_invocation_counter(G3_method_counters, O0, G4_scratch);
 450     if (ProfileInterpreter) {
 451       Address interpreter_invocation_counter(G3_method_counters,
 452             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
 453       __ ld(interpreter_invocation_counter, G4_scratch);
 454       __ inc(G4_scratch);
 455       __ st(G4_scratch, interpreter_invocation_counter);
 456     }
 457 
 458     if (ProfileInterpreter && profile_method != NULL) {
 459       // Test to see if we should create a method data oop
 460       Address profile_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
 461       __ ld(profile_limit, G1_scratch);
 462       __ cmp_and_br_short(O0, G1_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 463 
 464       // if no method data exists, go to profile_method
 465       __ test_method_data_pointer(*profile_method);
 466     }
 467 
 468     Address invocation_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_invocation_limit_offset()));
 469     __ ld(invocation_limit, G3_scratch);
 470     __ cmp(O0, G3_scratch);
 471     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 472     __ delayed()->nop();
 473     __ bind(done);
 474   }
 475 }
 476 
 477 // Allocate monitor and lock method (asm interpreter)
 478 // ebx - Method*
 479 //
 480 void TemplateInterpreterGenerator::lock_method() {
 481   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 482 
 483 #ifdef ASSERT
 484  { Label ok;
 485    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 486    __ br( Assembler::notZero, false, Assembler::pt, ok);
 487    __ delayed()->nop();
 488    __ stop("method doesn't need synchronization");
 489    __ bind(ok);
 490   }
 491 #endif // ASSERT
 492 
 493   // get synchronization object to O0
 494   { Label done;
 495     __ btst(JVM_ACC_STATIC, O0);
 496     __ br( Assembler::zero, true, Assembler::pt, done);
 497     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 498 
 499     // lock the mirror, not the Klass*
 500     __ load_mirror(O0, Lmethod);
 501 
 502 #ifdef ASSERT
 503     __ tst(O0);
 504     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 505 #endif // ASSERT
 506 
 507     __ bind(done);
 508   }
 509 
 510   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 511   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 512   // __ untested("lock_object from method entry");
 513   __ lock_object(Lmonitors, O0);
 514 }
 515 
 516 // See if we've got enough room on the stack for locals plus overhead below
 517 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 518 // without going through the signal handler, i.e., reserved and yellow zones
 519 // will not be made usable. The shadow zone must suffice to handle the
 520 // overflow.
 521 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 522                                                                  Register Rscratch) {
 523   const int page_size = os::vm_page_size();
 524   Label after_frame_check;
 525 
 526   assert_different_registers(Rframe_size, Rscratch);
 527 
 528   __ set(page_size, Rscratch);
 529   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 530 
 531   // Get the stack overflow limit, and in debug, verify it is non-zero.
 532   __ ld_ptr(G2_thread, JavaThread::stack_overflow_limit_offset(), Rscratch);
 533 #ifdef ASSERT
 534   Label limit_ok;
 535   __ br_notnull_short(Rscratch, Assembler::pn, limit_ok);
 536   __ stop("stack overflow limit is zero in generate_stack_overflow_check");
 537   __ bind(limit_ok);
 538 #endif
 539 
 540   // Add in the size of the frame (which is the same as subtracting it from the
 541   // SP, which would take another register.
 542   __ add(Rscratch, Rframe_size, Rscratch);
 543 
 544   // The frame is greater than one page in size, so check against
 545   // the bottom of the stack.
 546   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 547 
 548   // The stack will overflow, throw an exception.
 549 
 550   // Note that SP is restored to sender's sp (in the delay slot). This
 551   // is necessary if the sender's frame is an extended compiled frame
 552   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 553   // adaptations.
 554 
 555   // Note also that the restored frame is not necessarily interpreted.
 556   // Use the shared runtime version of the StackOverflowError.
 557   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 558   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 559   __ jump_to(stub, Rscratch);
 560   __ delayed()->mov(O5_savedSP, SP);
 561 
 562   // If you get to here, then there is enough stack space.
 563   __ bind(after_frame_check);
 564 }
 565 
 566 
 567 //
 568 // Generate a fixed interpreter frame. This is identical setup for interpreted
 569 // methods and for native methods hence the shared code.
 570 
 571 
 572 //----------------------------------------------------------------------------------------------------
 573 // Stack frame layout
 574 //
 575 // When control flow reaches any of the entry types for the interpreter
 576 // the following holds ->
 577 //
 578 // C2 Calling Conventions:
 579 //
 580 // The entry code below assumes that the following registers are set
 581 // when coming in:
 582 //    G5_method: holds the Method* of the method to call
 583 //    Lesp:    points to the TOS of the callers expression stack
 584 //             after having pushed all the parameters
 585 //
 586 // The entry code does the following to setup an interpreter frame
 587 //   pop parameters from the callers stack by adjusting Lesp
 588 //   set O0 to Lesp
 589 //   compute X = (max_locals - num_parameters)
 590 //   bump SP up by X to accommodate the extra locals
 591 //   compute X = max_expression_stack
 592 //               + vm_local_words
 593 //               + 16 words of register save area
 594 //   save frame doing a save sp, -X, sp growing towards lower addresses
 595 //   set Lbcp, Lmethod, LcpoolCache
 596 //   set Llocals to i0
 597 //   set Lmonitors to FP - rounded_vm_local_words
 598 //   set Lesp to Lmonitors - 4
 599 //
 600 //  The frame has now been setup to do the rest of the entry code
 601 
 602 // Try this optimization:  Most method entries could live in a
 603 // "one size fits all" stack frame without all the dynamic size
 604 // calculations.  It might be profitable to do all this calculation
 605 // statically and approximately for "small enough" methods.
 606 
 607 //-----------------------------------------------------------------------------------------------
 608 
 609 // C1 Calling conventions
 610 //
 611 // Upon method entry, the following registers are setup:
 612 //
 613 // g2 G2_thread: current thread
 614 // g5 G5_method: method to activate
 615 // g4 Gargs  : pointer to last argument
 616 //
 617 //
 618 // Stack:
 619 //
 620 // +---------------+ <--- sp
 621 // |               |
 622 // : reg save area :
 623 // |               |
 624 // +---------------+ <--- sp + 0x40
 625 // |               |
 626 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 627 // |               |
 628 // +---------------+ <--- sp + 0x5c
 629 // |               |
 630 // :     free      :
 631 // |               |
 632 // +---------------+ <--- Gargs
 633 // |               |
 634 // :   arguments   :
 635 // |               |
 636 // +---------------+
 637 // |               |
 638 //
 639 //
 640 //
 641 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
 642 //
 643 // +---------------+ <--- sp
 644 // |               |
 645 // : reg save area :
 646 // |               |
 647 // +---------------+ <--- sp + 0x40
 648 // |               |
 649 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 650 // |               |
 651 // +---------------+ <--- sp + 0x5c
 652 // |               |
 653 // :               :
 654 // |               | <--- Lesp
 655 // +---------------+ <--- Lmonitors (fp - 0x18)
 656 // |   VM locals   |
 657 // +---------------+ <--- fp
 658 // |               |
 659 // : reg save area :
 660 // |               |
 661 // +---------------+ <--- fp + 0x40
 662 // |               |
 663 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 664 // |               |
 665 // +---------------+ <--- fp + 0x5c
 666 // |               |
 667 // :     free      :
 668 // |               |
 669 // +---------------+
 670 // |               |
 671 // : nonarg locals :
 672 // |               |
 673 // +---------------+
 674 // |               |
 675 // :   arguments   :
 676 // |               | <--- Llocals
 677 // +---------------+ <--- Gargs
 678 // |               |
 679 
 680 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 681   //
 682   //
 683   // The entry code sets up a new interpreter frame in 4 steps:
 684   //
 685   // 1) Increase caller's SP by for the extra local space needed:
 686   //    (check for overflow)
 687   //    Efficient implementation of xload/xstore bytecodes requires
 688   //    that arguments and non-argument locals are in a contiguously
 689   //    addressable memory block => non-argument locals must be
 690   //    allocated in the caller's frame.
 691   //
 692   // 2) Create a new stack frame and register window:
 693   //    The new stack frame must provide space for the standard
 694   //    register save area, the maximum java expression stack size,
 695   //    the monitor slots (0 slots initially), and some frame local
 696   //    scratch locations.
 697   //
 698   // 3) The following interpreter activation registers must be setup:
 699   //    Lesp       : expression stack pointer
 700   //    Lbcp       : bytecode pointer
 701   //    Lmethod    : method
 702   //    Llocals    : locals pointer
 703   //    Lmonitors  : monitor pointer
 704   //    LcpoolCache: constant pool cache
 705   //
 706   // 4) Initialize the non-argument locals if necessary:
 707   //    Non-argument locals may need to be initialized to NULL
 708   //    for GC to work. If the oop-map information is accurate
 709   //    (in the absence of the JSR problem), no initialization
 710   //    is necessary.
 711   //
 712   // (gri - 2/25/2000)
 713 
 714 
 715   int rounded_vm_local_words = align_up((int)frame::interpreter_frame_vm_local_words, WordsPerLong );
 716 
 717   const int extra_space =
 718     rounded_vm_local_words +                   // frame local scratch space
 719     Method::extra_stack_entries() +            // extra stack for jsr 292
 720     frame::memory_parameter_word_sp_offset +   // register save area
 721     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 722 
 723   const Register Glocals_size = G3;
 724   const Register RconstMethod = Glocals_size;
 725   const Register Otmp1 = O3;
 726   const Register Otmp2 = O4;
 727   // Lscratch can't be used as a temporary because the call_stub uses
 728   // it to assert that the stack frame was setup correctly.
 729   const Address constMethod       (G5_method, Method::const_offset());
 730   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
 731 
 732   __ ld_ptr( constMethod, RconstMethod );
 733   __ lduh( size_of_parameters, Glocals_size);
 734 
 735   // Gargs points to first local + BytesPerWord
 736   // Set the saved SP after the register window save
 737   //
 738   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 739   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 740   __ add(Gargs, Otmp1, Gargs);
 741 
 742   if (native_call) {
 743     __ calc_mem_param_words( Glocals_size, Gframe_size );
 744     __ add( Gframe_size,  extra_space, Gframe_size);
 745     __ round_to( Gframe_size, WordsPerLong );
 746     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 747 
 748     // Native calls don't need the stack size check since they have no
 749     // expression stack and the arguments are already on the stack and
 750     // we only add a handful of words to the stack.
 751   } else {
 752 
 753     //
 754     // Compute number of locals in method apart from incoming parameters
 755     //
 756     const Address size_of_locals(Otmp1, ConstMethod::size_of_locals_offset());
 757     __ ld_ptr(constMethod, Otmp1);
 758     __ lduh(size_of_locals, Otmp1);
 759     __ sub(Otmp1, Glocals_size, Glocals_size);
 760     __ round_to(Glocals_size, WordsPerLong);
 761     __ sll(Glocals_size, Interpreter::logStackElementSize, Glocals_size);
 762 
 763     // See if the frame is greater than one page in size. If so,
 764     // then we need to verify there is enough stack space remaining.
 765     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 766     __ ld_ptr(constMethod, Gframe_size);
 767     __ lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);
 768     __ add(Gframe_size, extra_space, Gframe_size);
 769     __ round_to(Gframe_size, WordsPerLong);
 770     __ sll(Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 771 
 772     // Add in java locals size for stack overflow check only
 773     __ add(Gframe_size, Glocals_size, Gframe_size);
 774 
 775     const Register Otmp2 = O4;
 776     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 777     generate_stack_overflow_check(Gframe_size, Otmp1);
 778 
 779     __ sub(Gframe_size, Glocals_size, Gframe_size);
 780 
 781     //
 782     // bump SP to accommodate the extra locals
 783     //
 784     __ sub(SP, Glocals_size, SP);
 785   }
 786 
 787   //
 788   // now set up a stack frame with the size computed above
 789   //
 790   __ neg( Gframe_size );
 791   __ save( SP, Gframe_size, SP );
 792 
 793   //
 794   // now set up all the local cache registers
 795   //
 796   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 797   // that all present references to Lbyte_code initialize the register
 798   // immediately before use
 799   if (native_call) {
 800     __ mov(G0, Lbcp);
 801   } else {
 802     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 803     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 804   }
 805   __ mov( G5_method, Lmethod);                 // set Lmethod
 806   // Get mirror and store it in the frame as GC root for this Method*
 807   Register mirror = LcpoolCache;
 808   __ load_mirror(mirror, Lmethod);
 809   __ st_ptr(mirror, FP, (frame::interpreter_frame_mirror_offset * wordSize) + STACK_BIAS);
 810   __ get_constant_pool_cache(LcpoolCache);     // set LcpoolCache
 811   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 812   __ add(Lmonitors, STACK_BIAS, Lmonitors);    // Account for 64 bit stack bias
 813   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 814 
 815   // setup interpreter activation registers
 816   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 817 
 818   if (ProfileInterpreter) {
 819     __ set_method_data_pointer();
 820   }
 821 
 822 }
 823 
 824 // Method entry for java.lang.ref.Reference.get.
 825 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 826 #if INCLUDE_ALL_GCS
 827   // Code: _aload_0, _getfield, _areturn
 828   // parameter size = 1
 829   //
 830   // The code that gets generated by this routine is split into 2 parts:
 831   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 832   //    2. The slow path - which is an expansion of the regular method entry.
 833   //
 834   // Notes:-
 835   // * In the G1 code we do not check whether we need to block for
 836   //   a safepoint. If G1 is enabled then we must execute the specialized
 837   //   code for Reference.get (except when the Reference object is null)
 838   //   so that we can log the value in the referent field with an SATB
 839   //   update buffer.
 840   //   If the code for the getfield template is modified so that the
 841   //   G1 pre-barrier code is executed when the current method is
 842   //   Reference.get() then going through the normal method entry
 843   //   will be fine.
 844   // * The G1 code can, however, check the receiver object (the instance
 845   //   of java.lang.Reference) and jump to the slow path if null. If the
 846   //   Reference object is null then we obviously cannot fetch the referent
 847   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 848   //   regular method entry code to generate the NPE.
 849   //
 850   // This code is based on generate_accessor_enty.
 851 
 852   address entry = __ pc();
 853 
 854   const int referent_offset = java_lang_ref_Reference::referent_offset;
 855   guarantee(referent_offset > 0, "referent offset not initialized");
 856 
 857   if (UseG1GC) {
 858      Label slow_path;
 859 
 860     // In the G1 code we don't check if we need to reach a safepoint. We
 861     // continue and the thread will safepoint at the next bytecode dispatch.
 862 
 863     // Check if local 0 != NULL
 864     // If the receiver is null then it is OK to jump to the slow path.
 865     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 866     // check if local 0 == NULL and go the slow path
 867     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 868 
 869 
 870     // Load the value of the referent field.
 871     if (Assembler::is_simm13(referent_offset)) {
 872       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 873     } else {
 874       __ set(referent_offset, G3_scratch);
 875       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 876     }
 877 
 878     // Generate the G1 pre-barrier code to log the value of
 879     // the referent field in an SATB buffer. Note with
 880     // these parameters the pre-barrier does not generate
 881     // the load of the previous value
 882 
 883     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 884                             Otos_i /* pre_val */,
 885                             G3_scratch /* tmp */,
 886                             true /* preserve_o_regs */);
 887 
 888     // _areturn
 889     __ retl();                      // return from leaf routine
 890     __ delayed()->mov(O5_savedSP, SP);
 891 
 892     // Generate regular method entry
 893     __ bind(slow_path);
 894     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 895     return entry;
 896   }
 897 #endif // INCLUDE_ALL_GCS
 898 
 899   // If G1 is not enabled then attempt to go through the accessor entry point
 900   // Reference.get is an accessor
 901   return NULL;
 902 }
 903 
 904 /**
 905  * Method entry for static native methods:
 906  *   int java.util.zip.CRC32.update(int crc, int b)
 907  */
 908 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 909 
 910   if (UseCRC32Intrinsics) {
 911     address entry = __ pc();
 912 
 913     Label L_slow_path;
 914     // If we need a safepoint check, generate full interpreter entry.
 915     __ safepoint_poll(L_slow_path, false, G2_thread, O2);
 916     __ delayed()->nop();
 917 
 918     // Load parameters
 919     const Register crc   = O0; // initial crc
 920     const Register val   = O1; // byte to update with
 921     const Register table = O2; // address of 256-entry lookup table
 922 
 923     __ ldub(Gargs, 3, val);
 924     __ lduw(Gargs, 8, crc);
 925 
 926     __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
 927 
 928     __ not1(crc); // ~crc
 929     __ clruwu(crc);
 930     __ update_byte_crc32(crc, val, table);
 931     __ not1(crc); // ~crc
 932 
 933     // result in O0
 934     __ retl();
 935     __ delayed()->nop();
 936 
 937     // generate a vanilla native entry as the slow path
 938     __ bind(L_slow_path);
 939     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 940     return entry;
 941   }
 942   return NULL;
 943 }
 944 
 945 /**
 946  * Method entry for static native methods:
 947  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
 948  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
 949  */
 950 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
 951 
 952   if (UseCRC32Intrinsics) {
 953     address entry = __ pc();
 954 
 955     Label L_slow_path;
 956     // If we need a safepoint check, generate full interpreter entry.
 957 
 958     __ safepoint_poll(L_slow_path, false, G2_thread, O2);
 959     __ delayed()->nop();
 960 
 961     // Load parameters from the stack
 962     const Register crc    = O0; // initial crc
 963     const Register buf    = O1; // source java byte array address
 964     const Register len    = O2; // len
 965     const Register offset = O3; // offset
 966 
 967     // Arguments are reversed on java expression stack
 968     // Calculate address of start element
 969     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
 970       __ lduw(Gargs, 0,  len);
 971       __ lduw(Gargs, 8,  offset);
 972       __ ldx( Gargs, 16, buf);
 973       __ lduw(Gargs, 32, crc);
 974       __ add(buf, offset, buf);
 975     } else {
 976       __ lduw(Gargs, 0,  len);
 977       __ lduw(Gargs, 8,  offset);
 978       __ ldx( Gargs, 16, buf);
 979       __ lduw(Gargs, 24, crc);
 980       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
 981       __ add(buf, offset, buf);
 982     }
 983 
 984     // Call the crc32 kernel
 985     __ MacroAssembler::save_thread(L7_thread_cache);
 986     __ kernel_crc32(crc, buf, len, O3);
 987     __ MacroAssembler::restore_thread(L7_thread_cache);
 988 
 989     // result in O0
 990     __ retl();
 991     __ delayed()->nop();
 992 
 993     // generate a vanilla native entry as the slow path
 994     __ bind(L_slow_path);
 995     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 996     return entry;
 997   }
 998   return NULL;
 999 }
1000 
1001 /**
1002  * Method entry for intrinsic-candidate (non-native) methods:
1003  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1004  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1005  * Unlike CRC32, CRC32C does not have any methods marked as native
1006  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1007  */
1008 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1009 
1010   if (UseCRC32CIntrinsics) {
1011     address entry = __ pc();
1012 
1013     // Load parameters from the stack
1014     const Register crc    = O0; // initial crc
1015     const Register buf    = O1; // source java byte array address
1016     const Register offset = O2; // offset
1017     const Register end    = O3; // index of last element to process
1018     const Register len    = O2; // len argument to the kernel
1019     const Register table  = O3; // crc32c lookup table address
1020 
1021     // Arguments are reversed on java expression stack
1022     // Calculate address of start element
1023     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1024       __ lduw(Gargs, 0,  end);
1025       __ lduw(Gargs, 8,  offset);
1026       __ ldx( Gargs, 16, buf);
1027       __ lduw(Gargs, 32, crc);
1028       __ add(buf, offset, buf);
1029       __ sub(end, offset, len);
1030     } else {
1031       __ lduw(Gargs, 0,  end);
1032       __ lduw(Gargs, 8,  offset);
1033       __ ldx( Gargs, 16, buf);
1034       __ lduw(Gargs, 24, crc);
1035       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
1036       __ add(buf, offset, buf);
1037       __ sub(end, offset, len);
1038     }
1039 
1040     // Call the crc32c kernel
1041     __ MacroAssembler::save_thread(L7_thread_cache);
1042     __ kernel_crc32c(crc, buf, len, table);
1043     __ MacroAssembler::restore_thread(L7_thread_cache);
1044 
1045     // result in O0
1046     __ retl();
1047     __ delayed()->nop();
1048 
1049     return entry;
1050   }
1051   return NULL;
1052 }
1053 
1054 /* Math routines only partially supported.
1055  *
1056  *   Providing support for fma (float/double) only.
1057  */
1058 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind)
1059 {
1060   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
1061 
1062   address entry = __ pc();
1063 
1064   switch (kind) {
1065     case Interpreter::java_lang_math_fmaF:
1066       if (UseFMA) {
1067         // float .fma(float a, float b, float c)
1068         const FloatRegister ra = F1;
1069         const FloatRegister rb = F2;
1070         const FloatRegister rc = F3;
1071         const FloatRegister rd = F0; // Result.
1072 
1073         __ ldf(FloatRegisterImpl::S, Gargs,  0, rc);
1074         __ ldf(FloatRegisterImpl::S, Gargs,  8, rb);
1075         __ ldf(FloatRegisterImpl::S, Gargs, 16, ra);
1076 
1077         __ fmadd(FloatRegisterImpl::S, ra, rb, rc, rd);
1078         __ retl();  // Result in F0 (rd).
1079         __ delayed()->mov(O5_savedSP, SP);
1080 
1081         return entry;
1082       }
1083       break;
1084     case Interpreter::java_lang_math_fmaD:
1085       if (UseFMA) {
1086         // double .fma(double a, double b, double c)
1087         const FloatRegister ra = F2; // D1
1088         const FloatRegister rb = F4; // D2
1089         const FloatRegister rc = F6; // D3
1090         const FloatRegister rd = F0; // D0 Result.
1091 
1092         __ ldf(FloatRegisterImpl::D, Gargs,  0, rc);
1093         __ ldf(FloatRegisterImpl::D, Gargs, 16, rb);
1094         __ ldf(FloatRegisterImpl::D, Gargs, 32, ra);
1095 
1096         __ fmadd(FloatRegisterImpl::D, ra, rb, rc, rd);
1097         __ retl();  // Result in D0 (rd).
1098         __ delayed()->mov(O5_savedSP, SP);
1099 
1100         return entry;
1101       }
1102       break;
1103     default:
1104       break;
1105   }
1106   return NULL;
1107 }
1108 
1109 // TODO: rather than touching all pages, check against stack_overflow_limit and bang yellow page to
1110 // generate exception
1111 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1112   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1113   // Note that we do the banging after the frame is setup, since the exception
1114   // handling code expects to find a valid interpreter frame on the stack.
1115   // Doing the banging earlier fails if the caller frame is not an interpreter
1116   // frame.
1117   // (Also, the exception throwing code expects to unlock any synchronized
1118   // method receiver, so do the banging after locking the receiver.)
1119 
1120   // Bang each page in the shadow zone. We can't assume it's been done for
1121   // an interpreter frame with greater than a page of locals, so each page
1122   // needs to be checked.  Only true for non-native.
1123   if (UseStackBanging) {
1124     const int page_size = os::vm_page_size();
1125     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1126     const int start_page = native_call ? n_shadow_pages : 1;
1127     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1128       __ bang_stack_with_offset(pages*page_size);
1129     }
1130   }
1131 }
1132 
1133 //
1134 // Interpreter stub for calling a native method. (asm interpreter)
1135 // This sets up a somewhat different looking stack for calling the native method
1136 // than the typical interpreter frame setup.
1137 //
1138 
1139 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1140   address entry = __ pc();
1141 
1142   // the following temporary registers are used during frame creation
1143   const Register Gtmp1 = G3_scratch ;
1144   const Register Gtmp2 = G1_scratch;
1145   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1146 
1147   // make sure registers are different!
1148   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1149 
1150   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
1151 
1152   const Register Glocals_size = G3;
1153   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1154 
1155   // make sure method is native & not abstract
1156   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1157 #ifdef ASSERT
1158   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1159   { Label L;
1160     __ btst(JVM_ACC_NATIVE, Gtmp1);
1161     __ br(Assembler::notZero, false, Assembler::pt, L);
1162     __ delayed()->nop();
1163     __ stop("tried to execute non-native method as native");
1164     __ bind(L);
1165   }
1166   { Label L;
1167     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1168     __ br(Assembler::zero, false, Assembler::pt, L);
1169     __ delayed()->nop();
1170     __ stop("tried to execute abstract method as non-abstract");
1171     __ bind(L);
1172   }
1173 #endif // ASSERT
1174 
1175  // generate the code to allocate the interpreter stack frame
1176   generate_fixed_frame(true);
1177 
1178   //
1179   // No locals to initialize for native method
1180   //
1181 
1182   // this slot will be set later, we initialize it to null here just in
1183   // case we get a GC before the actual value is stored later
1184   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
1185 
1186   const Address do_not_unlock_if_synchronized(G2_thread,
1187     JavaThread::do_not_unlock_if_synchronized_offset());
1188   // Since at this point in the method invocation the exception handler
1189   // would try to exit the monitor of synchronized methods which hasn't
1190   // been entered yet, we set the thread local variable
1191   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1192   // runtime, exception handling i.e. unlock_if_synchronized_method will
1193   // check this thread local flag.
1194   // This flag has two effects, one is to force an unwind in the topmost
1195   // interpreter frame and not perform an unlock while doing so.
1196 
1197   __ movbool(true, G3_scratch);
1198   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1199 
1200   // increment invocation counter and check for overflow
1201   //
1202   // Note: checking for negative value instead of overflow
1203   //       so we have a 'sticky' overflow test (may be of
1204   //       importance as soon as we have true MT/MP)
1205   Label invocation_counter_overflow;
1206   Label Lcontinue;
1207   if (inc_counter) {
1208     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1209 
1210   }
1211   __ bind(Lcontinue);
1212 
1213   bang_stack_shadow_pages(true);
1214 
1215   // reset the _do_not_unlock_if_synchronized flag
1216   __ stbool(G0, do_not_unlock_if_synchronized);
1217 
1218   // check for synchronized methods
1219   // Must happen AFTER invocation_counter check and stack overflow check,
1220   // so method is not locked if overflows.
1221 
1222   if (synchronized) {
1223     lock_method();
1224   } else {
1225 #ifdef ASSERT
1226     { Label ok;
1227       __ ld(Laccess_flags, O0);
1228       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1229       __ br( Assembler::zero, false, Assembler::pt, ok);
1230       __ delayed()->nop();
1231       __ stop("method needs synchronization");
1232       __ bind(ok);
1233     }
1234 #endif // ASSERT
1235   }
1236 
1237 
1238   // start execution
1239   __ verify_thread();
1240 
1241   // JVMTI support
1242   __ notify_method_entry();
1243 
1244   // native call
1245 
1246   // (note that O0 is never an oop--at most it is a handle)
1247   // It is important not to smash any handles created by this call,
1248   // until any oop handle in O0 is dereferenced.
1249 
1250   // (note that the space for outgoing params is preallocated)
1251 
1252   // get signature handler
1253   { Label L;
1254     Address signature_handler(Lmethod, Method::signature_handler_offset());
1255     __ ld_ptr(signature_handler, G3_scratch);
1256     __ br_notnull_short(G3_scratch, Assembler::pt, L);
1257     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
1258     __ ld_ptr(signature_handler, G3_scratch);
1259     __ bind(L);
1260   }
1261 
1262   // Push a new frame so that the args will really be stored in
1263   // Copy a few locals across so the new frame has the variables
1264   // we need but these values will be dead at the jni call and
1265   // therefore not gc volatile like the values in the current
1266   // frame (Lmethod in particular)
1267 
1268   // Flush the method pointer to the register save area
1269   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
1270   __ mov(Llocals, O1);
1271 
1272   // calculate where the mirror handle body is allocated in the interpreter frame:
1273   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
1274 
1275   // Calculate current frame size
1276   __ sub(SP, FP, O3);         // Calculate negative of current frame size
1277   __ save(SP, O3, SP);        // Allocate an identical sized frame
1278 
1279   // Note I7 has leftover trash. Slow signature handler will fill it in
1280   // should we get there. Normal jni call will set reasonable last_Java_pc
1281   // below (and fix I7 so the stack trace doesn't have a meaningless frame
1282   // in it).
1283 
1284   // Load interpreter frame's Lmethod into same register here
1285 
1286   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1287 
1288   __ mov(I1, Llocals);
1289   __ mov(I2, Lscratch2);     // save the address of the mirror
1290 
1291 
1292   // ONLY Lmethod and Llocals are valid here!
1293 
1294   // call signature handler, It will move the arg properly since Llocals in current frame
1295   // matches that in outer frame
1296 
1297   __ callr(G3_scratch, 0);
1298   __ delayed()->nop();
1299 
1300   // Result handler is in Lscratch
1301 
1302   // Reload interpreter frame's Lmethod since slow signature handler may block
1303   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1304 
1305   { Label not_static;
1306 
1307     __ ld(Laccess_flags, O0);
1308     __ btst(JVM_ACC_STATIC, O0);
1309     __ br( Assembler::zero, false, Assembler::pt, not_static);
1310     // get native function entry point(O0 is a good temp until the very end)
1311     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
1312     // for static methods insert the mirror argument
1313     __ load_mirror(O1, Lmethod);
1314 #ifdef ASSERT
1315     if (!PrintSignatureHandlers)  // do not dirty the output with this
1316     { Label L;
1317       __ br_notnull_short(O1, Assembler::pt, L);
1318       __ stop("mirror is missing");
1319       __ bind(L);
1320     }
1321 #endif // ASSERT
1322     __ st_ptr(O1, Lscratch2, 0);
1323     __ mov(Lscratch2, O1);
1324     __ bind(not_static);
1325   }
1326 
1327   // At this point, arguments have been copied off of stack into
1328   // their JNI positions, which are O1..O5 and SP[68..].
1329   // Oops are boxed in-place on the stack, with handles copied to arguments.
1330   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1331 
1332 #ifdef ASSERT
1333   { Label L;
1334     __ br_notnull_short(O0, Assembler::pt, L);
1335     __ stop("native entry point is missing");
1336     __ bind(L);
1337   }
1338 #endif // ASSERT
1339 
1340   //
1341   // setup the frame anchor
1342   //
1343   // The scavenge function only needs to know that the PC of this frame is
1344   // in the interpreter method entry code, it doesn't need to know the exact
1345   // PC and hence we can use O7 which points to the return address from the
1346   // previous call in the code stream (signature handler function)
1347   //
1348   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1349   // we have pushed the extra frame in order to protect the volatile register(s)
1350   // in that frame when we return from the jni call
1351   //
1352 
1353   __ set_last_Java_frame(FP, O7);
1354   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1355                    // not meaningless information that'll confuse me.
1356 
1357   // flush the windows now. We don't care about the current (protection) frame
1358   // only the outer frames
1359 
1360   __ flushw();
1361 
1362   // mark windows as flushed
1363   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1364   __ set(JavaFrameAnchor::flushed, G3_scratch);
1365   __ st(G3_scratch, flags);
1366 
1367   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1368 
1369   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1370 #ifdef ASSERT
1371   { Label L;
1372     __ ld(thread_state, G3_scratch);
1373     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1374     __ stop("Wrong thread state in native stub");
1375     __ bind(L);
1376   }
1377 #endif // ASSERT
1378   __ set(_thread_in_native, G3_scratch);
1379   __ st(G3_scratch, thread_state);
1380 
1381   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1382   __ save_thread(L7_thread_cache); // save Gthread
1383   __ callr(O0, 0);
1384   __ delayed()->
1385      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1386 
1387   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1388 
1389   __ restore_thread(L7_thread_cache); // restore G2_thread
1390   __ reinit_heapbase();
1391 
1392   // must we block?
1393 
1394   // Block, if necessary, before resuming in _thread_in_Java state.
1395   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1396   { Label no_block;
1397 
1398     // Switch thread to "native transition" state before reading the synchronization state.
1399     // This additional state is necessary because reading and testing the synchronization
1400     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1401     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1402     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1403     //     Thread A is resumed to finish this native method, but doesn't block here since it
1404     //     didn't see any synchronization is progress, and escapes.
1405     __ set(_thread_in_native_trans, G3_scratch);
1406     __ st(G3_scratch, thread_state);
1407     if (os::is_MP()) {
1408       if (UseMembar) {
1409         // Force this write out before the read below
1410         __ membar(Assembler::StoreLoad);
1411       } else {
1412         // Write serialization page so VM thread can do a pseudo remote membar.
1413         // We use the current thread pointer to calculate a thread specific
1414         // offset to write to within the page. This minimizes bus traffic
1415         // due to cache line collision.
1416         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1417       }
1418     }
1419 
1420     Label L;
1421     __ safepoint_poll(L, false, G2_thread, G3_scratch);
1422     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1423     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1424     __ bind(L);
1425 
1426     // Block.  Save any potential method result value before the operation and
1427     // use a leaf call to leave the last_Java_frame setup undisturbed.
1428     save_native_result();
1429     __ call_VM_leaf(L7_thread_cache,
1430                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1431                     G2_thread);
1432 
1433     // Restore any method result value
1434     restore_native_result();
1435     __ bind(no_block);
1436   }
1437 
1438   // Clear the frame anchor now
1439 
1440   __ reset_last_Java_frame();
1441 
1442   // Move the result handler address
1443   __ mov(Lscratch, G3_scratch);
1444   // return possible result to the outer frame
1445   __ restore(O0, G0, O0);
1446 
1447   // Move result handler to expected register
1448   __ mov(G3_scratch, Lscratch);
1449 
1450   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1451   // switch to thread_in_Java.
1452 
1453   __ set(_thread_in_Java, G3_scratch);
1454   __ st(G3_scratch, thread_state);
1455 
1456   if (CheckJNICalls) {
1457     // clear_pending_jni_exception_check
1458     __ st_ptr(G0, G2_thread, JavaThread::pending_jni_exception_check_fn_offset());
1459   }
1460 
1461   // reset handle block
1462   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1463   __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1464 
1465   // If we have an oop result store it where it will be safe for any further gc
1466   // until we return now that we've released the handle it might be protected by
1467 
1468   { Label no_oop, store_result;
1469 
1470     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1471     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1472     // Unbox oop result, e.g. JNIHandles::resolve value in O0.
1473     __ br_null(O0, false, Assembler::pn, store_result); // Use NULL as-is.
1474     __ delayed()->andcc(O0, JNIHandles::weak_tag_mask, G0); // Test for jweak
1475     __ brx(Assembler::zero, true, Assembler::pt, store_result);
1476     __ delayed()->ld_ptr(O0, 0, O0); // Maybe resolve (untagged) jobject.
1477     // Resolve jweak.
1478     __ ld_ptr(O0, -JNIHandles::weak_tag_value, O0);
1479 #if INCLUDE_ALL_GCS
1480     if (UseG1GC) {
1481       __ g1_write_barrier_pre(noreg /* obj */,
1482                               noreg /* index */,
1483                               0 /* offset */,
1484                               O0 /* pre_val */,
1485                               G3_scratch /* tmp */,
1486                               true /* preserve_o_regs */);
1487     }
1488 #endif // INCLUDE_ALL_GCS
1489     __ bind(store_result);
1490     // Store it where gc will look for it and result handler expects it.
1491     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1492 
1493     __ bind(no_oop);
1494 
1495   }
1496 
1497 
1498   // handle exceptions (exception handling will handle unlocking!)
1499   { Label L;
1500     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1501     __ ld_ptr(exception_addr, Gtemp);
1502     __ br_null_short(Gtemp, Assembler::pt, L);
1503     // Note: This could be handled more efficiently since we know that the native
1504     //       method doesn't have an exception handler. We could directly return
1505     //       to the exception handler for the caller.
1506     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1507     __ should_not_reach_here();
1508     __ bind(L);
1509   }
1510 
1511   // JVMTI support (preserves thread register)
1512   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1513 
1514   if (synchronized) {
1515     // save and restore any potential method result value around the unlocking operation
1516     save_native_result();
1517 
1518     __ add( __ top_most_monitor(), O1);
1519     __ unlock_object(O1);
1520 
1521     restore_native_result();
1522   }
1523 
1524   // dispose of return address and remove activation
1525 #ifdef ASSERT
1526   { Label ok;
1527     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1528     __ stop("bad I5_savedSP value");
1529     __ should_not_reach_here();
1530     __ bind(ok);
1531   }
1532 #endif
1533   __ jmp(Lscratch, 0);
1534   __ delayed()->nop();
1535 
1536   if (inc_counter) {
1537     // handle invocation counter overflow
1538     __ bind(invocation_counter_overflow);
1539     generate_counter_overflow(Lcontinue);
1540   }
1541 
1542   return entry;
1543 }
1544 
1545 
1546 // Generic method entry to (asm) interpreter
1547 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1548   address entry = __ pc();
1549 
1550   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1551 
1552   // the following temporary registers are used during frame creation
1553   const Register Gtmp1 = G3_scratch ;
1554   const Register Gtmp2 = G1_scratch;
1555 
1556   // make sure registers are different!
1557   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1558 
1559   const Address constMethod       (G5_method, Method::const_offset());
1560   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1561   // and use in the asserts.
1562   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1563 
1564   const Register Glocals_size = G3;
1565   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1566 
1567   // make sure method is not native & not abstract
1568   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1569 #ifdef ASSERT
1570   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1571   { Label L;
1572     __ btst(JVM_ACC_NATIVE, Gtmp1);
1573     __ br(Assembler::zero, false, Assembler::pt, L);
1574     __ delayed()->nop();
1575     __ stop("tried to execute native method as non-native");
1576     __ bind(L);
1577   }
1578   { Label L;
1579     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1580     __ br(Assembler::zero, false, Assembler::pt, L);
1581     __ delayed()->nop();
1582     __ stop("tried to execute abstract method as non-abstract");
1583     __ bind(L);
1584   }
1585 #endif // ASSERT
1586 
1587   // generate the code to allocate the interpreter stack frame
1588 
1589   generate_fixed_frame(false);
1590 
1591   //
1592   // Code to initialize the extra (i.e. non-parm) locals
1593   //
1594   Register init_value = noreg;    // will be G0 if we must clear locals
1595   // The way the code was setup before zerolocals was always true for vanilla java entries.
1596   // It could only be false for the specialized entries like accessor or empty which have
1597   // no extra locals so the testing was a waste of time and the extra locals were always
1598   // initialized. We removed this extra complication to already over complicated code.
1599 
1600   init_value = G0;
1601   Label clear_loop;
1602 
1603   const Register RconstMethod = O1;
1604   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1605   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
1606 
1607   // NOTE: If you change the frame layout, this code will need to
1608   // be updated!
1609   __ ld_ptr( constMethod, RconstMethod );
1610   __ lduh( size_of_locals, O2 );
1611   __ lduh( size_of_parameters, O1 );
1612   __ sll( O2, Interpreter::logStackElementSize, O2);
1613   __ sll( O1, Interpreter::logStackElementSize, O1 );
1614   __ sub( Llocals, O2, O2 );
1615   __ sub( Llocals, O1, O1 );
1616 
1617   __ bind( clear_loop );
1618   __ inc( O2, wordSize );
1619 
1620   __ cmp( O2, O1 );
1621   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1622   __ delayed()->st_ptr( init_value, O2, 0 );
1623 
1624   const Address do_not_unlock_if_synchronized(G2_thread,
1625     JavaThread::do_not_unlock_if_synchronized_offset());
1626   // Since at this point in the method invocation the exception handler
1627   // would try to exit the monitor of synchronized methods which hasn't
1628   // been entered yet, we set the thread local variable
1629   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1630   // runtime, exception handling i.e. unlock_if_synchronized_method will
1631   // check this thread local flag.
1632   __ movbool(true, G3_scratch);
1633   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1634 
1635   __ profile_parameters_type(G1_scratch, G3_scratch, G4_scratch, Lscratch);
1636   // increment invocation counter and check for overflow
1637   //
1638   // Note: checking for negative value instead of overflow
1639   //       so we have a 'sticky' overflow test (may be of
1640   //       importance as soon as we have true MT/MP)
1641   Label invocation_counter_overflow;
1642   Label profile_method;
1643   Label profile_method_continue;
1644   Label Lcontinue;
1645   if (inc_counter) {
1646     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1647     if (ProfileInterpreter) {
1648       __ bind(profile_method_continue);
1649     }
1650   }
1651   __ bind(Lcontinue);
1652 
1653   bang_stack_shadow_pages(false);
1654 
1655   // reset the _do_not_unlock_if_synchronized flag
1656   __ stbool(G0, do_not_unlock_if_synchronized);
1657 
1658   // check for synchronized methods
1659   // Must happen AFTER invocation_counter check and stack overflow check,
1660   // so method is not locked if overflows.
1661 
1662   if (synchronized) {
1663     lock_method();
1664   } else {
1665 #ifdef ASSERT
1666     { Label ok;
1667       __ ld(access_flags, O0);
1668       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1669       __ br( Assembler::zero, false, Assembler::pt, ok);
1670       __ delayed()->nop();
1671       __ stop("method needs synchronization");
1672       __ bind(ok);
1673     }
1674 #endif // ASSERT
1675   }
1676 
1677   // start execution
1678 
1679   __ verify_thread();
1680 
1681   // jvmti support
1682   __ notify_method_entry();
1683 
1684   // start executing instructions
1685   __ dispatch_next(vtos);
1686 
1687 
1688   if (inc_counter) {
1689     if (ProfileInterpreter) {
1690       // We have decided to profile this method in the interpreter
1691       __ bind(profile_method);
1692 
1693       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1694       __ set_method_data_pointer_for_bcp();
1695       __ ba_short(profile_method_continue);
1696     }
1697 
1698     // handle invocation counter overflow
1699     __ bind(invocation_counter_overflow);
1700     generate_counter_overflow(Lcontinue);
1701   }
1702 
1703   return entry;
1704 }
1705 
1706 //----------------------------------------------------------------------------------------------------
1707 // Exceptions
1708 void TemplateInterpreterGenerator::generate_throw_exception() {
1709 
1710   // Entry point in previous activation (i.e., if the caller was interpreted)
1711   Interpreter::_rethrow_exception_entry = __ pc();
1712   // O0: exception
1713 
1714   // entry point for exceptions thrown within interpreter code
1715   Interpreter::_throw_exception_entry = __ pc();
1716   __ verify_thread();
1717   // expression stack is undefined here
1718   // O0: exception, i.e. Oexception
1719   // Lbcp: exception bcp
1720   __ verify_oop(Oexception);
1721 
1722 
1723   // expression stack must be empty before entering the VM in case of an exception
1724   __ empty_expression_stack();
1725   // find exception handler address and preserve exception oop
1726   // call C routine to find handler and jump to it
1727   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1728   __ push_ptr(O1); // push exception for exception handler bytecodes
1729 
1730   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1731   __ delayed()->nop();
1732 
1733 
1734   // if the exception is not handled in the current frame
1735   // the frame is removed and the exception is rethrown
1736   // (i.e. exception continuation is _rethrow_exception)
1737   //
1738   // Note: At this point the bci is still the bxi for the instruction which caused
1739   //       the exception and the expression stack is empty. Thus, for any VM calls
1740   //       at this point, GC will find a legal oop map (with empty expression stack).
1741 
1742   // in current activation
1743   // tos: exception
1744   // Lbcp: exception bcp
1745 
1746   //
1747   // JVMTI PopFrame support
1748   //
1749 
1750   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1751   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1752   // Set the popframe_processing bit in popframe_condition indicating that we are
1753   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1754   // popframe handling cycles.
1755 
1756   __ ld(popframe_condition_addr, G3_scratch);
1757   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1758   __ stw(G3_scratch, popframe_condition_addr);
1759 
1760   // Empty the expression stack, as in normal exception handling
1761   __ empty_expression_stack();
1762   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1763 
1764   {
1765     // Check to see whether we are returning to a deoptimized frame.
1766     // (The PopFrame call ensures that the caller of the popped frame is
1767     // either interpreted or compiled and deoptimizes it if compiled.)
1768     // In this case, we can't call dispatch_next() after the frame is
1769     // popped, but instead must save the incoming arguments and restore
1770     // them after deoptimization has occurred.
1771     //
1772     // Note that we don't compare the return PC against the
1773     // deoptimization blob's unpack entry because of the presence of
1774     // adapter frames in C2.
1775     Label caller_not_deoptimized;
1776     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1777     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1778 
1779     const Register Gtmp1 = G3_scratch;
1780     const Register Gtmp2 = G1_scratch;
1781     const Register RconstMethod = Gtmp1;
1782     const Address constMethod(Lmethod, Method::const_offset());
1783     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1784 
1785     // Compute size of arguments for saving when returning to deoptimized caller
1786     __ ld_ptr(constMethod, RconstMethod);
1787     __ lduh(size_of_parameters, Gtmp1);
1788     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1789     __ sub(Llocals, Gtmp1, Gtmp2);
1790     __ add(Gtmp2, wordSize, Gtmp2);
1791     // Save these arguments
1792     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1793     // Inform deoptimization that it is responsible for restoring these arguments
1794     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1795     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1796     __ st(Gtmp1, popframe_condition_addr);
1797 
1798     // Return from the current method
1799     // The caller's SP was adjusted upon method entry to accomodate
1800     // the callee's non-argument locals. Undo that adjustment.
1801     __ ret();
1802     __ delayed()->restore(I5_savedSP, G0, SP);
1803 
1804     __ bind(caller_not_deoptimized);
1805   }
1806 
1807   // Clear the popframe condition flag
1808   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1809 
1810   // Get out of the current method (how this is done depends on the particular compiler calling
1811   // convention that the interpreter currently follows)
1812   // The caller's SP was adjusted upon method entry to accomodate
1813   // the callee's non-argument locals. Undo that adjustment.
1814   __ restore(I5_savedSP, G0, SP);
1815   // The method data pointer was incremented already during
1816   // call profiling. We have to restore the mdp for the current bcp.
1817   if (ProfileInterpreter) {
1818     __ set_method_data_pointer_for_bcp();
1819   }
1820 
1821 #if INCLUDE_JVMTI
1822   { Label L_done;
1823 
1824     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
1825     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
1826 
1827     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1828     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1829 
1830     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
1831 
1832     __ br_null(G1_scratch, false, Assembler::pn, L_done);
1833     __ delayed()->nop();
1834 
1835     __ st_ptr(G1_scratch, Lesp, wordSize);
1836     __ bind(L_done);
1837   }
1838 #endif // INCLUDE_JVMTI
1839 
1840   // Resume bytecode interpretation at the current bcp
1841   __ dispatch_next(vtos);
1842   // end of JVMTI PopFrame support
1843 
1844   Interpreter::_remove_activation_entry = __ pc();
1845 
1846   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1847   __ pop_ptr(Oexception);                                  // get exception
1848 
1849   // Intel has the following comment:
1850   //// remove the activation (without doing throws on illegalMonitorExceptions)
1851   // They remove the activation without checking for bad monitor state.
1852   // %%% We should make sure this is the right semantics before implementing.
1853 
1854   __ set_vm_result(Oexception);
1855   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1856 
1857   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1858 
1859   __ get_vm_result(Oexception);
1860   __ verify_oop(Oexception);
1861 
1862   const int return_reg_adjustment = frame::pc_return_offset;
1863   Address issuing_pc_addr(I7, return_reg_adjustment);
1864 
1865   // We are done with this activation frame; find out where to go next.
1866   // The continuation point will be an exception handler, which expects
1867   // the following registers set up:
1868   //
1869   // Oexception: exception
1870   // Oissuing_pc: the local call that threw exception
1871   // Other On: garbage
1872   // In/Ln:  the contents of the caller's register window
1873   //
1874   // We do the required restore at the last possible moment, because we
1875   // need to preserve some state across a runtime call.
1876   // (Remember that the caller activation is unknown--it might not be
1877   // interpreted, so things like Lscratch are useless in the caller.)
1878 
1879   // Although the Intel version uses call_C, we can use the more
1880   // compact call_VM.  (The only real difference on SPARC is a
1881   // harmlessly ignored [re]set_last_Java_frame, compared with
1882   // the Intel code which lacks this.)
1883   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1884   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1885   __ super_call_VM_leaf(L7_thread_cache,
1886                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1887                         G2_thread, Oissuing_pc->after_save());
1888 
1889   // The caller's SP was adjusted upon method entry to accomodate
1890   // the callee's non-argument locals. Undo that adjustment.
1891   __ JMP(O0, 0);                         // return exception handler in caller
1892   __ delayed()->restore(I5_savedSP, G0, SP);
1893 
1894   // (same old exception object is already in Oexception; see above)
1895   // Note that an "issuing PC" is actually the next PC after the call
1896 }
1897 
1898 
1899 //
1900 // JVMTI ForceEarlyReturn support
1901 //
1902 
1903 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1904   address entry = __ pc();
1905 
1906   __ empty_expression_stack();
1907   __ load_earlyret_value(state);
1908 
1909   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1910   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1911 
1912   // Clear the earlyret state
1913   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1914 
1915   __ remove_activation(state,
1916                        /* throw_monitor_exception */ false,
1917                        /* install_monitor_exception */ false);
1918 
1919   // The caller's SP was adjusted upon method entry to accomodate
1920   // the callee's non-argument locals. Undo that adjustment.
1921   __ ret();                             // return to caller
1922   __ delayed()->restore(I5_savedSP, G0, SP);
1923 
1924   return entry;
1925 } // end of JVMTI ForceEarlyReturn support
1926 
1927 
1928 //------------------------------------------------------------------------------------------------------------------------
1929 // Helper for vtos entry point generation
1930 
1931 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1932   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1933   Label L;
1934   aep = __ pc(); __ push_ptr(); __ ba_short(L);
1935   fep = __ pc(); __ push_f();   __ ba_short(L);
1936   dep = __ pc(); __ push_d();   __ ba_short(L);
1937   lep = __ pc(); __ push_l();   __ ba_short(L);
1938   iep = __ pc(); __ push_i();
1939   bep = cep = sep = iep;                        // there aren't any
1940   vep = __ pc(); __ bind(L);                    // fall through
1941   generate_and_dispatch(t);
1942 }
1943 
1944 // --------------------------------------------------------------------------------
1945 
1946 // Non-product code
1947 #ifndef PRODUCT
1948 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1949   address entry = __ pc();
1950 
1951   __ push(state);
1952   __ mov(O7, Lscratch); // protect return address within interpreter
1953 
1954   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
1955   __ mov( Otos_l2, G3_scratch );
1956   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
1957   __ mov(Lscratch, O7); // restore return address
1958   __ pop(state);
1959   __ retl();
1960   __ delayed()->nop();
1961 
1962   return entry;
1963 }
1964 
1965 
1966 // helpers for generate_and_dispatch
1967 
1968 void TemplateInterpreterGenerator::count_bytecode() {
1969   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
1970 }
1971 
1972 
1973 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1974   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
1975 }
1976 
1977 
1978 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1979   AddressLiteral index   (&BytecodePairHistogram::_index);
1980   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
1981 
1982   // get index, shift out old bytecode, bring in new bytecode, and store it
1983   // _index = (_index >> log2_number_of_codes) |
1984   //          (bytecode << log2_number_of_codes);
1985 
1986   __ load_contents(index, G4_scratch);
1987   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
1988   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
1989   __ or3( G3_scratch,  G4_scratch, G4_scratch );
1990   __ store_contents(G4_scratch, index, G3_scratch);
1991 
1992   // bump bucket contents
1993   // _counters[_index] ++;
1994 
1995   __ set(counters, G3_scratch);                       // loads into G3_scratch
1996   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
1997   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
1998   __ ld (G3_scratch, 0, G4_scratch);
1999   __ inc (G4_scratch);
2000   __ st (G4_scratch, 0, G3_scratch);
2001 }
2002 
2003 
2004 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2005   // Call a little run-time stub to avoid blow-up for each bytecode.
2006   // The run-time runtime saves the right registers, depending on
2007   // the tosca in-state for the given template.
2008   address entry = Interpreter::trace_code(t->tos_in());
2009   guarantee(entry != NULL, "entry must have been generated");
2010   __ call(entry, relocInfo::none);
2011   __ delayed()->nop();
2012 }
2013 
2014 
2015 void TemplateInterpreterGenerator::stop_interpreter_at() {
2016   AddressLiteral counter(&BytecodeCounter::_counter_value);
2017   __ load_contents(counter, G3_scratch);
2018   AddressLiteral stop_at(&StopInterpreterAt);
2019   __ load_ptr_contents(stop_at, G4_scratch);
2020   __ cmp(G3_scratch, G4_scratch);
2021   __ breakpoint_trap(Assembler::equal, Assembler::icc);
2022 }
2023 #endif // not PRODUCT