1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"
  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/safepointMechanism.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 // Implementation of InterpreterMacroAssembler
  43 
  44 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  45   assert(entry, "Entry must have been generated by now");
  46   jump(RuntimeAddress(entry));
  47 }
  48 
  49 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
  50   Label update, next, none;
  51 
  52   verify_oop(obj);
  53 
  54   testptr(obj, obj);
  55   jccb(Assembler::notZero, update);
  56   orptr(mdo_addr, TypeEntries::null_seen);
  57   jmpb(next);
  58 
  59   bind(update);
  60   load_klass(obj, obj);
  61 
  62   xorptr(obj, mdo_addr);
  63   testptr(obj, TypeEntries::type_klass_mask);
  64   jccb(Assembler::zero, next); // klass seen before, nothing to
  65                                // do. The unknown bit may have been
  66                                // set already but no need to check.
  67 
  68   testptr(obj, TypeEntries::type_unknown);
  69   jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
  70 
  71   cmpptr(mdo_addr, 0);
  72   jccb(Assembler::equal, none);
  73   cmpptr(mdo_addr, TypeEntries::null_seen);
  74   jccb(Assembler::equal, none);
  75   // There is a chance that the checks above (re-reading profiling
  76   // data from memory) fail if another thread has just set the
  77   // profiling to this obj's klass
  78   xorptr(obj, mdo_addr);
  79   testptr(obj, TypeEntries::type_klass_mask);
  80   jccb(Assembler::zero, next);
  81 
  82   // different than before. Cannot keep accurate profile.
  83   orptr(mdo_addr, TypeEntries::type_unknown);
  84   jmpb(next);
  85 
  86   bind(none);
  87   // first time here. Set profile type.
  88   movptr(mdo_addr, obj);
  89 
  90   bind(next);
  91 }
  92 
  93 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
  94   if (!ProfileInterpreter) {
  95     return;
  96   }
  97 
  98   if (MethodData::profile_arguments() || MethodData::profile_return()) {
  99     Label profile_continue;
 100 
 101     test_method_data_pointer(mdp, profile_continue);
 102 
 103     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
 104 
 105     cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
 106     jcc(Assembler::notEqual, profile_continue);
 107 
 108     if (MethodData::profile_arguments()) {
 109       Label done;
 110       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
 111       addptr(mdp, off_to_args);
 112 
 113       for (int i = 0; i < TypeProfileArgsLimit; i++) {
 114         if (i > 0 || MethodData::profile_return()) {
 115           // If return value type is profiled we may have no argument to profile
 116           movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 117           subl(tmp, i*TypeStackSlotEntries::per_arg_count());
 118           cmpl(tmp, TypeStackSlotEntries::per_arg_count());
 119           jcc(Assembler::less, done);
 120         }
 121         movptr(tmp, Address(callee, Method::const_offset()));
 122         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
 123         // stack offset o (zero based) from the start of the argument
 124         // list, for n arguments translates into offset n - o - 1 from
 125         // the end of the argument list
 126         subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
 127         subl(tmp, 1);
 128         Address arg_addr = argument_address(tmp);
 129         movptr(tmp, arg_addr);
 130 
 131         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
 132         profile_obj_type(tmp, mdo_arg_addr);
 133 
 134         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
 135         addptr(mdp, to_add);
 136         off_to_args += to_add;
 137       }
 138 
 139       if (MethodData::profile_return()) {
 140         movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
 141         subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
 142       }
 143 
 144       bind(done);
 145 
 146       if (MethodData::profile_return()) {
 147         // We're right after the type profile for the last
 148         // argument. tmp is the number of cells left in the
 149         // CallTypeData/VirtualCallTypeData to reach its end. Non null
 150         // if there's a return to profile.
 151         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
 152         shll(tmp, exact_log2(DataLayout::cell_size));
 153         addptr(mdp, tmp);
 154       }
 155       movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
 156     } else {
 157       assert(MethodData::profile_return(), "either profile call args or call ret");
 158       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
 159     }
 160 
 161     // mdp points right after the end of the
 162     // CallTypeData/VirtualCallTypeData, right after the cells for the
 163     // return value type if there's one
 164 
 165     bind(profile_continue);
 166   }
 167 }
 168 
 169 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
 170   assert_different_registers(mdp, ret, tmp, _bcp_register);
 171   if (ProfileInterpreter && MethodData::profile_return()) {
 172     Label profile_continue, done;
 173 
 174     test_method_data_pointer(mdp, profile_continue);
 175 
 176     if (MethodData::profile_return_jsr292_only()) {
 177       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
 178 
 179       // If we don't profile all invoke bytecodes we must make sure
 180       // it's a bytecode we indeed profile. We can't go back to the
 181       // begining of the ProfileData we intend to update to check its
 182       // type because we're right after it and we don't known its
 183       // length
 184       Label do_profile;
 185       cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
 186       jcc(Assembler::equal, do_profile);
 187       cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
 188       jcc(Assembler::equal, do_profile);
 189       get_method(tmp);
 190       cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), vmIntrinsics::_compiledLambdaForm);
 191       jcc(Assembler::notEqual, profile_continue);
 192 
 193       bind(do_profile);
 194     }
 195 
 196     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
 197     mov(tmp, ret);
 198     profile_obj_type(tmp, mdo_ret_addr);
 199 
 200     bind(profile_continue);
 201   }
 202 }
 203 
 204 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
 205   if (ProfileInterpreter && MethodData::profile_parameters()) {
 206     Label profile_continue, done;
 207 
 208     test_method_data_pointer(mdp, profile_continue);
 209 
 210     // Load the offset of the area within the MDO used for
 211     // parameters. If it's negative we're not profiling any parameters
 212     movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
 213     testl(tmp1, tmp1);
 214     jcc(Assembler::negative, profile_continue);
 215 
 216     // Compute a pointer to the area for parameters from the offset
 217     // and move the pointer to the slot for the last
 218     // parameters. Collect profiling from last parameter down.
 219     // mdo start + parameters offset + array length - 1
 220     addptr(mdp, tmp1);
 221     movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
 222     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 223 
 224     Label loop;
 225     bind(loop);
 226 
 227     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
 228     int type_base = in_bytes(ParametersTypeData::type_offset(0));
 229     Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
 230     Address arg_off(mdp, tmp1, per_arg_scale, off_base);
 231     Address arg_type(mdp, tmp1, per_arg_scale, type_base);
 232 
 233     // load offset on the stack from the slot for this parameter
 234     movptr(tmp2, arg_off);
 235     negptr(tmp2);
 236     // read the parameter from the local area
 237     movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
 238 
 239     // profile the parameter
 240     profile_obj_type(tmp2, arg_type);
 241 
 242     // go to next parameter
 243     decrement(tmp1, TypeStackSlotEntries::per_arg_count());
 244     jcc(Assembler::positive, loop);
 245 
 246     bind(profile_continue);
 247   }
 248 }
 249 
 250 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
 251                                                   int number_of_arguments) {
 252   // interpreter specific
 253   //
 254   // Note: No need to save/restore bcp & locals registers
 255   //       since these are callee saved registers and no blocking/
 256   //       GC can happen in leaf calls.
 257   // Further Note: DO NOT save/restore bcp/locals. If a caller has
 258   // already saved them so that it can use rsi/rdi as temporaries
 259   // then a save/restore here will DESTROY the copy the caller
 260   // saved! There used to be a save_bcp() that only happened in
 261   // the ASSERT path (no restore_bcp). Which caused bizarre failures
 262   // when jvm built with ASSERTs.
 263 #ifdef ASSERT
 264   {
 265     Label L;
 266     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 267     jcc(Assembler::equal, L);
 268     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 269          " last_sp != NULL");
 270     bind(L);
 271   }
 272 #endif
 273   // super call
 274   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
 275   // interpreter specific
 276   // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
 277   // but since they may not have been saved (and we don't want to
 278   // save them here (see note above) the assert is invalid.
 279 }
 280 
 281 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
 282                                              Register java_thread,
 283                                              Register last_java_sp,
 284                                              address  entry_point,
 285                                              int      number_of_arguments,
 286                                              bool     check_exceptions) {
 287   // interpreter specific
 288   //
 289   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 290   //       really make a difference for these runtime calls, since they are
 291   //       slow anyway. Btw., bcp must be saved/restored since it may change
 292   //       due to GC.
 293   NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
 294   save_bcp();
 295 #ifdef ASSERT
 296   {
 297     Label L;
 298     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 299     jcc(Assembler::equal, L);
 300     stop("InterpreterMacroAssembler::call_VM_base:"
 301          " last_sp != NULL");
 302     bind(L);
 303   }
 304 #endif /* ASSERT */
 305   // super call
 306   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 307                                entry_point, number_of_arguments,
 308                                check_exceptions);
 309   // interpreter specific
 310   restore_bcp();
 311   restore_locals();
 312 }
 313 
 314 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 315   if (JvmtiExport::can_pop_frame()) {
 316     Label L;
 317     // Initiate popframe handling only if it is not already being
 318     // processed.  If the flag has the popframe_processing bit set, it
 319     // means that this code is called *during* popframe handling - we
 320     // don't want to reenter.
 321     // This method is only called just after the call into the vm in
 322     // call_VM_base, so the arg registers are available.
 323     Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
 324                         LP64_ONLY(c_rarg0);
 325     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 326     testl(pop_cond, JavaThread::popframe_pending_bit);
 327     jcc(Assembler::zero, L);
 328     testl(pop_cond, JavaThread::popframe_processing_bit);
 329     jcc(Assembler::notZero, L);
 330     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 331     // address of the same-named entrypoint in the generated interpreter code.
 332     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 333     jmp(rax);
 334     bind(L);
 335     NOT_LP64(get_thread(java_thread);)
 336   }
 337 }
 338 
 339 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 340   Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 341   NOT_LP64(get_thread(thread);)
 342   movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
 343   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 344   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 345   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 346 #ifdef _LP64
 347   switch (state) {
 348     case atos: movptr(rax, oop_addr);
 349                movptr(oop_addr, (int32_t)NULL_WORD);
 350                verify_oop(rax, state);              break;
 351     case ltos: movptr(rax, val_addr);                 break;
 352     case btos:                                   // fall through
 353     case ztos:                                   // fall through
 354     case ctos:                                   // fall through
 355     case stos:                                   // fall through
 356     case itos: movl(rax, val_addr);                 break;
 357     case ftos: load_float(val_addr);                break;
 358     case dtos: load_double(val_addr);               break;
 359     case vtos: /* nothing to do */                  break;
 360     default  : ShouldNotReachHere();
 361   }
 362   // Clean up tos value in the thread object
 363   movl(tos_addr,  (int) ilgl);
 364   movl(val_addr,  (int32_t) NULL_WORD);
 365 #else
 366   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 367                              + in_ByteSize(wordSize));
 368   switch (state) {
 369     case atos: movptr(rax, oop_addr);
 370                movptr(oop_addr, NULL_WORD);
 371                verify_oop(rax, state);                break;
 372     case ltos:
 373                movl(rdx, val_addr1);               // fall through
 374     case btos:                                     // fall through
 375     case ztos:                                     // fall through
 376     case ctos:                                     // fall through
 377     case stos:                                     // fall through
 378     case itos: movl(rax, val_addr);                   break;
 379     case ftos: load_float(val_addr);                  break;
 380     case dtos: load_double(val_addr);                 break;
 381     case vtos: /* nothing to do */                    break;
 382     default  : ShouldNotReachHere();
 383   }
 384 #endif // _LP64
 385   // Clean up tos value in the thread object
 386   movl(tos_addr,  (int32_t) ilgl);
 387   movptr(val_addr,  NULL_WORD);
 388   NOT_LP64(movptr(val_addr1, NULL_WORD);)
 389 }
 390 
 391 
 392 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 393   if (JvmtiExport::can_force_early_return()) {
 394     Label L;
 395     Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
 396     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
 397 
 398     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 399     testptr(tmp, tmp);
 400     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 401 
 402     // Initiate earlyret handling only if it is not already being processed.
 403     // If the flag has the earlyret_processing bit set, it means that this code
 404     // is called *during* earlyret handling - we don't want to reenter.
 405     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 406     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 407     jcc(Assembler::notEqual, L);
 408 
 409     // Call Interpreter::remove_activation_early_entry() to get the address of the
 410     // same-named entrypoint in the generated interpreter code.
 411     NOT_LP64(get_thread(java_thread);)
 412     movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 413 #ifdef _LP64
 414     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 415     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
 416 #else
 417     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 418     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 419 #endif // _LP64
 420     jmp(rax);
 421     bind(L);
 422     NOT_LP64(get_thread(java_thread);)
 423   }
 424 }
 425 
 426 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 427   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 428   load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
 429   bswapl(reg);
 430   shrl(reg, 16);
 431 }
 432 
 433 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 434                                                        int bcp_offset,
 435                                                        size_t index_size) {
 436   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 437   if (index_size == sizeof(u2)) {
 438     load_unsigned_short(index, Address(_bcp_register, bcp_offset));
 439   } else if (index_size == sizeof(u4)) {
 440     movl(index, Address(_bcp_register, bcp_offset));
 441     // Check if the secondary index definition is still ~x, otherwise
 442     // we have to change the following assembler code to calculate the
 443     // plain index.
 444     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 445     notl(index);  // convert to plain index
 446   } else if (index_size == sizeof(u1)) {
 447     load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
 448   } else {
 449     ShouldNotReachHere();
 450   }
 451 }
 452 
 453 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 454                                                            Register index,
 455                                                            int bcp_offset,
 456                                                            size_t index_size) {
 457   assert_different_registers(cache, index);
 458   get_cache_index_at_bcp(index, bcp_offset, index_size);
 459   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 460   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 461   // convert from field index to ConstantPoolCacheEntry index
 462   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 463   shll(index, 2);
 464 }
 465 
 466 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 467                                                                         Register index,
 468                                                                         Register bytecode,
 469                                                                         int byte_no,
 470                                                                         int bcp_offset,
 471                                                                         size_t index_size) {
 472   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 473   // We use a 32-bit load here since the layout of 64-bit words on
 474   // little-endian machines allow us that.
 475   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 476   const int shift_count = (1 + byte_no) * BitsPerByte;
 477   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 478          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 479          "correct shift count");
 480   shrl(bytecode, shift_count);
 481   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 482   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 483 }
 484 
 485 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 486                                                                Register tmp,
 487                                                                int bcp_offset,
 488                                                                size_t index_size) {
 489   assert(cache != tmp, "must use different register");
 490   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 491   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 492   // convert from field index to ConstantPoolCacheEntry index
 493   // and from word offset to byte offset
 494   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 495   shll(tmp, 2 + LogBytesPerWord);
 496   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 497   // skip past the header
 498   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 499   addptr(cache, tmp);  // construct pointer to cache entry
 500 }
 501 
 502 // Load object from cpool->resolved_references(index)
 503 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 504                                            Register result, Register index) {
 505   assert_different_registers(result, index);
 506   // convert from field index to resolved_references() index and from
 507   // word index to byte offset. Since this is a java object, it can be compressed
 508   Register tmp = index;  // reuse
 509   shll(tmp, LogBytesPerHeapOop);
 510 
 511   get_constant_pool(result);
 512   // load pointer for resolved_references[] objArray
 513   movptr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
 514   movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 515   resolve_oop_handle(result);
 516   // Add in the index
 517   addptr(result, tmp);
 518   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 519 }
 520 
 521 // load cpool->resolved_klass_at(index)
 522 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register cpool,
 523                                            Register index, Register klass) {
 524   movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
 525   Register resolved_klasses = cpool;
 526   movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes()));
 527   movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
 528 }
 529 
 530 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 531 // subtype of super_klass.
 532 //
 533 // Args:
 534 //      rax: superklass
 535 //      Rsub_klass: subklass
 536 //
 537 // Kills:
 538 //      rcx, rdi
 539 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 540                                                   Label& ok_is_subtype) {
 541   assert(Rsub_klass != rax, "rax holds superklass");
 542   LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
 543   LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
 544   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 545   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 546 
 547   // Profile the not-null value's klass.
 548   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 549 
 550   // Do the check.
 551   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 552 
 553   // Profile the failure of the check.
 554   profile_typecheck_failed(rcx); // blows rcx
 555 }
 556 
 557 
 558 #ifndef _LP64
 559 void InterpreterMacroAssembler::f2ieee() {
 560   if (IEEEPrecision) {
 561     fstp_s(Address(rsp, 0));
 562     fld_s(Address(rsp, 0));
 563   }
 564 }
 565 
 566 
 567 void InterpreterMacroAssembler::d2ieee() {
 568   if (IEEEPrecision) {
 569     fstp_d(Address(rsp, 0));
 570     fld_d(Address(rsp, 0));
 571   }
 572 }
 573 #endif // _LP64
 574 
 575 // Java Expression Stack
 576 
 577 void InterpreterMacroAssembler::pop_ptr(Register r) {
 578   pop(r);
 579 }
 580 
 581 void InterpreterMacroAssembler::push_ptr(Register r) {
 582   push(r);
 583 }
 584 
 585 void InterpreterMacroAssembler::push_i(Register r) {
 586   push(r);
 587 }
 588 
 589 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 590   subptr(rsp, wordSize);
 591   movflt(Address(rsp, 0), r);
 592 }
 593 
 594 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 595   movflt(r, Address(rsp, 0));
 596   addptr(rsp, wordSize);
 597 }
 598 
 599 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 600   subptr(rsp, 2 * wordSize);
 601   movdbl(Address(rsp, 0), r);
 602 }
 603 
 604 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 605   movdbl(r, Address(rsp, 0));
 606   addptr(rsp, 2 * Interpreter::stackElementSize);
 607 }
 608 
 609 #ifdef _LP64
 610 void InterpreterMacroAssembler::pop_i(Register r) {
 611   // XXX can't use pop currently, upper half non clean
 612   movl(r, Address(rsp, 0));
 613   addptr(rsp, wordSize);
 614 }
 615 
 616 void InterpreterMacroAssembler::pop_l(Register r) {
 617   movq(r, Address(rsp, 0));
 618   addptr(rsp, 2 * Interpreter::stackElementSize);
 619 }
 620 
 621 void InterpreterMacroAssembler::push_l(Register r) {
 622   subptr(rsp, 2 * wordSize);
 623   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r         );
 624   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
 625 }
 626 
 627 void InterpreterMacroAssembler::pop(TosState state) {
 628   switch (state) {
 629   case atos: pop_ptr();                 break;
 630   case btos:
 631   case ztos:
 632   case ctos:
 633   case stos:
 634   case itos: pop_i();                   break;
 635   case ltos: pop_l();                   break;
 636   case ftos: pop_f(xmm0);               break;
 637   case dtos: pop_d(xmm0);               break;
 638   case vtos: /* nothing to do */        break;
 639   default:   ShouldNotReachHere();
 640   }
 641   verify_oop(rax, state);
 642 }
 643 
 644 void InterpreterMacroAssembler::push(TosState state) {
 645   verify_oop(rax, state);
 646   switch (state) {
 647   case atos: push_ptr();                break;
 648   case btos:
 649   case ztos:
 650   case ctos:
 651   case stos:
 652   case itos: push_i();                  break;
 653   case ltos: push_l();                  break;
 654   case ftos: push_f(xmm0);              break;
 655   case dtos: push_d(xmm0);              break;
 656   case vtos: /* nothing to do */        break;
 657   default  : ShouldNotReachHere();
 658   }
 659 }
 660 #else
 661 void InterpreterMacroAssembler::pop_i(Register r) {
 662   pop(r);
 663 }
 664 
 665 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 666   pop(lo);
 667   pop(hi);
 668 }
 669 
 670 void InterpreterMacroAssembler::pop_f() {
 671   fld_s(Address(rsp, 0));
 672   addptr(rsp, 1 * wordSize);
 673 }
 674 
 675 void InterpreterMacroAssembler::pop_d() {
 676   fld_d(Address(rsp, 0));
 677   addptr(rsp, 2 * wordSize);
 678 }
 679 
 680 
 681 void InterpreterMacroAssembler::pop(TosState state) {
 682   switch (state) {
 683     case atos: pop_ptr(rax);                                 break;
 684     case btos:                                               // fall through
 685     case ztos:                                               // fall through
 686     case ctos:                                               // fall through
 687     case stos:                                               // fall through
 688     case itos: pop_i(rax);                                   break;
 689     case ltos: pop_l(rax, rdx);                              break;
 690     case ftos:
 691       if (UseSSE >= 1) {
 692         pop_f(xmm0);
 693       } else {
 694         pop_f();
 695       }
 696       break;
 697     case dtos:
 698       if (UseSSE >= 2) {
 699         pop_d(xmm0);
 700       } else {
 701         pop_d();
 702       }
 703       break;
 704     case vtos: /* nothing to do */                           break;
 705     default  : ShouldNotReachHere();
 706   }
 707   verify_oop(rax, state);
 708 }
 709 
 710 
 711 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 712   push(hi);
 713   push(lo);
 714 }
 715 
 716 void InterpreterMacroAssembler::push_f() {
 717   // Do not schedule for no AGI! Never write beyond rsp!
 718   subptr(rsp, 1 * wordSize);
 719   fstp_s(Address(rsp, 0));
 720 }
 721 
 722 void InterpreterMacroAssembler::push_d() {
 723   // Do not schedule for no AGI! Never write beyond rsp!
 724   subptr(rsp, 2 * wordSize);
 725   fstp_d(Address(rsp, 0));
 726 }
 727 
 728 
 729 void InterpreterMacroAssembler::push(TosState state) {
 730   verify_oop(rax, state);
 731   switch (state) {
 732     case atos: push_ptr(rax); break;
 733     case btos:                                               // fall through
 734     case ztos:                                               // fall through
 735     case ctos:                                               // fall through
 736     case stos:                                               // fall through
 737     case itos: push_i(rax);                                    break;
 738     case ltos: push_l(rax, rdx);                               break;
 739     case ftos:
 740       if (UseSSE >= 1) {
 741         push_f(xmm0);
 742       } else {
 743         push_f();
 744       }
 745       break;
 746     case dtos:
 747       if (UseSSE >= 2) {
 748         push_d(xmm0);
 749       } else {
 750         push_d();
 751       }
 752       break;
 753     case vtos: /* nothing to do */                             break;
 754     default  : ShouldNotReachHere();
 755   }
 756 }
 757 #endif // _LP64
 758 
 759 
 760 // Helpers for swap and dup
 761 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 762   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 763 }
 764 
 765 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 766   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 767 }
 768 
 769 
 770 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 771   // set sender sp
 772   lea(_bcp_register, Address(rsp, wordSize));
 773   // record last_sp
 774   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
 775 }
 776 
 777 
 778 // Jump to from_interpreted entry of a call unless single stepping is possible
 779 // in this thread in which case we must call the i2i entry
 780 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 781   prepare_to_jump_from_interpreted();
 782 
 783   if (JvmtiExport::can_post_interpreter_events()) {
 784     Label run_compiled_code;
 785     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 786     // compiled code in threads for which the event is enabled.  Check here for
 787     // interp_only_mode if these events CAN be enabled.
 788     // interp_only is an int, on little endian it is sufficient to test the byte only
 789     // Is a cmpl faster?
 790     LP64_ONLY(temp = r15_thread;)
 791     NOT_LP64(get_thread(temp);)
 792     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 793     jccb(Assembler::zero, run_compiled_code);
 794     jmp(Address(method, Method::interpreter_entry_offset()));
 795     bind(run_compiled_code);
 796   }
 797 
 798   jmp(Address(method, Method::from_interpreted_offset()));
 799 }
 800 
 801 // The following two routines provide a hook so that an implementation
 802 // can schedule the dispatch in two parts.  x86 does not do this.
 803 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 804   // Nothing x86 specific to be done here
 805 }
 806 
 807 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 808   dispatch_next(state, step);
 809 }
 810 
 811 void InterpreterMacroAssembler::dispatch_base(TosState state,
 812                                               address* table,
 813                                               bool verifyoop,
 814                                               bool generate_poll) {
 815   verify_FPU(1, state);
 816   if (VerifyActivationFrameSize) {
 817     Label L;
 818     mov(rcx, rbp);
 819     subptr(rcx, rsp);
 820     int32_t min_frame_size =
 821       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 822       wordSize;
 823     cmpptr(rcx, (int32_t)min_frame_size);
 824     jcc(Assembler::greaterEqual, L);
 825     stop("broken stack frame");
 826     bind(L);
 827   }
 828   if (verifyoop) {
 829     verify_oop(rax, state);
 830   }
 831 #ifdef _LP64
 832 
 833   Label no_safepoint, dispatch;
 834   address* const safepoint_table = Interpreter::safept_table(state);
 835   if (SafepointMechanism::uses_thread_local_poll() && table != safepoint_table && generate_poll) {
 836     NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
 837 
 838     testb(Address(r15_thread, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
 839 
 840     jccb(Assembler::zero, no_safepoint);
 841     lea(rscratch1, ExternalAddress((address)safepoint_table));
 842     jmpb(dispatch);
 843   }
 844 
 845   bind(no_safepoint);
 846   lea(rscratch1, ExternalAddress((address)table));
 847   bind(dispatch);
 848   jmp(Address(rscratch1, rbx, Address::times_8));
 849 
 850 #else
 851   Address index(noreg, rbx, Address::times_ptr);
 852   ExternalAddress tbl((address)table);
 853   ArrayAddress dispatch(tbl, index);
 854   jump(dispatch);
 855 #endif // _LP64
 856 }
 857 
 858 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
 859   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 860 }
 861 
 862 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 863   dispatch_base(state, Interpreter::normal_table(state));
 864 }
 865 
 866 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 867   dispatch_base(state, Interpreter::normal_table(state), false);
 868 }
 869 
 870 
 871 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
 872   // load next bytecode (load before advancing _bcp_register to prevent AGI)
 873   load_unsigned_byte(rbx, Address(_bcp_register, step));
 874   // advance _bcp_register
 875   increment(_bcp_register, step);
 876   dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
 877 }
 878 
 879 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 880   // load current bytecode
 881   load_unsigned_byte(rbx, Address(_bcp_register, 0));
 882   dispatch_base(state, table);
 883 }
 884 
 885 void InterpreterMacroAssembler::narrow(Register result) {
 886 
 887   // Get method->_constMethod->_result_type
 888   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 889   movptr(rcx, Address(rcx, Method::const_offset()));
 890   load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
 891 
 892   Label done, notBool, notByte, notChar;
 893 
 894   // common case first
 895   cmpl(rcx, T_INT);
 896   jcc(Assembler::equal, done);
 897 
 898   // mask integer result to narrower return type.
 899   cmpl(rcx, T_BOOLEAN);
 900   jcc(Assembler::notEqual, notBool);
 901   andl(result, 0x1);
 902   jmp(done);
 903 
 904   bind(notBool);
 905   cmpl(rcx, T_BYTE);
 906   jcc(Assembler::notEqual, notByte);
 907   LP64_ONLY(movsbl(result, result);)
 908   NOT_LP64(shll(result, 24);)      // truncate upper 24 bits
 909   NOT_LP64(sarl(result, 24);)      // and sign-extend byte
 910   jmp(done);
 911 
 912   bind(notByte);
 913   cmpl(rcx, T_CHAR);
 914   jcc(Assembler::notEqual, notChar);
 915   LP64_ONLY(movzwl(result, result);)
 916   NOT_LP64(andl(result, 0xFFFF);)  // truncate upper 16 bits
 917   jmp(done);
 918 
 919   bind(notChar);
 920   // cmpl(rcx, T_SHORT);  // all that's left
 921   // jcc(Assembler::notEqual, done);
 922   LP64_ONLY(movswl(result, result);)
 923   NOT_LP64(shll(result, 16);)      // truncate upper 16 bits
 924   NOT_LP64(sarl(result, 16);)      // and sign-extend short
 925 
 926   // Nothing to do for T_INT
 927   bind(done);
 928 }
 929 
 930 // remove activation
 931 //
 932 // Unlock the receiver if this is a synchronized method.
 933 // Unlock any Java monitors from syncronized blocks.
 934 // Remove the activation from the stack.
 935 //
 936 // If there are locked Java monitors
 937 //    If throw_monitor_exception
 938 //       throws IllegalMonitorStateException
 939 //    Else if install_monitor_exception
 940 //       installs IllegalMonitorStateException
 941 //    Else
 942 //       no error processing
 943 void InterpreterMacroAssembler::remove_activation(
 944         TosState state,
 945         Register ret_addr,
 946         bool throw_monitor_exception,
 947         bool install_monitor_exception,
 948         bool notify_jvmdi) {
 949   // Note: Registers rdx xmm0 may be in use for the
 950   // result check if synchronized method
 951   Label unlocked, unlock, no_unlock;
 952 
 953   const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
 954   const Register robj    = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
 955   const Register rmon    = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
 956                               // monitor pointers need different register
 957                               // because rdx may have the result in it
 958   NOT_LP64(get_thread(rcx);)
 959 
 960   // get the value of _do_not_unlock_if_synchronized into rdx
 961   const Address do_not_unlock_if_synchronized(rthread,
 962     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 963   movbool(rbx, do_not_unlock_if_synchronized);
 964   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 965 
 966  // get method access flags
 967   movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 968   movl(rcx, Address(rcx, Method::access_flags_offset()));
 969   testl(rcx, JVM_ACC_SYNCHRONIZED);
 970   jcc(Assembler::zero, unlocked);
 971 
 972   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 973   // is set.
 974   testbool(rbx);
 975   jcc(Assembler::notZero, no_unlock);
 976 
 977   // unlock monitor
 978   push(state); // save result
 979 
 980   // BasicObjectLock will be first in list, since this is a
 981   // synchronized method. However, need to check that the object has
 982   // not been unlocked by an explicit monitorexit bytecode.
 983   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 984                         wordSize - (int) sizeof(BasicObjectLock));
 985   // We use c_rarg1/rdx so that if we go slow path it will be the correct
 986   // register for unlock_object to pass to VM directly
 987   lea(robj, monitor); // address of first monitor
 988 
 989   movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
 990   testptr(rax, rax);
 991   jcc(Assembler::notZero, unlock);
 992 
 993   pop(state);
 994   if (throw_monitor_exception) {
 995     // Entry already unlocked, need to throw exception
 996     NOT_LP64(empty_FPU_stack();)  // remove possible return value from FPU-stack, otherwise stack could overflow
 997     call_VM(noreg, CAST_FROM_FN_PTR(address,
 998                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 999     should_not_reach_here();
1000   } else {
1001     // Monitor already unlocked during a stack unroll. If requested,
1002     // install an illegal_monitor_state_exception.  Continue with
1003     // stack unrolling.
1004     if (install_monitor_exception) {
1005       NOT_LP64(empty_FPU_stack();)
1006       call_VM(noreg, CAST_FROM_FN_PTR(address,
1007                      InterpreterRuntime::new_illegal_monitor_state_exception));
1008     }
1009     jmp(unlocked);
1010   }
1011 
1012   bind(unlock);
1013   unlock_object(robj);
1014   pop(state);
1015 
1016   // Check that for block-structured locking (i.e., that all locked
1017   // objects has been unlocked)
1018   bind(unlocked);
1019 
1020   // rax, rdx: Might contain return value
1021 
1022   // Check that all monitors are unlocked
1023   {
1024     Label loop, exception, entry, restart;
1025     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1026     const Address monitor_block_top(
1027         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1028     const Address monitor_block_bot(
1029         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1030 
1031     bind(restart);
1032     // We use c_rarg1 so that if we go slow path it will be the correct
1033     // register for unlock_object to pass to VM directly
1034     movptr(rmon, monitor_block_top); // points to current entry, starting
1035                                   // with top-most entry
1036     lea(rbx, monitor_block_bot);  // points to word before bottom of
1037                                   // monitor block
1038     jmp(entry);
1039 
1040     // Entry already locked, need to throw exception
1041     bind(exception);
1042 
1043     if (throw_monitor_exception) {
1044       // Throw exception
1045       NOT_LP64(empty_FPU_stack();)
1046       MacroAssembler::call_VM(noreg,
1047                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
1048                                    throw_illegal_monitor_state_exception));
1049       should_not_reach_here();
1050     } else {
1051       // Stack unrolling. Unlock object and install illegal_monitor_exception.
1052       // Unlock does not block, so don't have to worry about the frame.
1053       // We don't have to preserve c_rarg1 since we are going to throw an exception.
1054 
1055       push(state);
1056       mov(robj, rmon);   // nop if robj and rmon are the same
1057       unlock_object(robj);
1058       pop(state);
1059 
1060       if (install_monitor_exception) {
1061         NOT_LP64(empty_FPU_stack();)
1062         call_VM(noreg, CAST_FROM_FN_PTR(address,
1063                                         InterpreterRuntime::
1064                                         new_illegal_monitor_state_exception));
1065       }
1066 
1067       jmp(restart);
1068     }
1069 
1070     bind(loop);
1071     // check if current entry is used
1072     cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
1073     jcc(Assembler::notEqual, exception);
1074 
1075     addptr(rmon, entry_size); // otherwise advance to next entry
1076     bind(entry);
1077     cmpptr(rmon, rbx); // check if bottom reached
1078     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1079   }
1080 
1081   bind(no_unlock);
1082 
1083   // jvmti support
1084   if (notify_jvmdi) {
1085     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
1086   } else {
1087     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1088   }
1089 
1090   // remove activation
1091   // get sender sp
1092   movptr(rbx,
1093          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1094   if (StackReservedPages > 0) {
1095     // testing if reserved zone needs to be re-enabled
1096     Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1097     Label no_reserved_zone_enabling;
1098 
1099     NOT_LP64(get_thread(rthread);)
1100 
1101     cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_enabled);
1102     jcc(Assembler::equal, no_reserved_zone_enabling);
1103 
1104     cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1105     jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1106 
1107     call_VM_leaf(
1108       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1109     call_VM(noreg, CAST_FROM_FN_PTR(address,
1110                    InterpreterRuntime::throw_delayed_StackOverflowError));
1111     should_not_reach_here();
1112 
1113     bind(no_reserved_zone_enabling);
1114   }
1115   leave();                           // remove frame anchor
1116   pop(ret_addr);                     // get return address
1117   mov(rsp, rbx);                     // set sp to sender sp
1118 }
1119 
1120 void InterpreterMacroAssembler::get_method_counters(Register method,
1121                                                     Register mcs, Label& skip) {
1122   Label has_counters;
1123   movptr(mcs, Address(method, Method::method_counters_offset()));
1124   testptr(mcs, mcs);
1125   jcc(Assembler::notZero, has_counters);
1126   call_VM(noreg, CAST_FROM_FN_PTR(address,
1127           InterpreterRuntime::build_method_counters), method);
1128   movptr(mcs, Address(method,Method::method_counters_offset()));
1129   testptr(mcs, mcs);
1130   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1131   bind(has_counters);
1132 }
1133 
1134 
1135 // Lock object
1136 //
1137 // Args:
1138 //      rdx, c_rarg1: BasicObjectLock to be used for locking
1139 //
1140 // Kills:
1141 //      rax, rbx
1142 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1143   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1144          "The argument is only for looks. It must be c_rarg1");
1145 
1146   if (UseHeavyMonitors) {
1147     call_VM(noreg,
1148             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1149             lock_reg);
1150   } else {
1151     Label done;
1152 
1153     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1154     const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1155                                   // problematic case where tmp_reg = no_reg.
1156     const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1157 
1158     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1159     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1160     const int mark_offset = lock_offset +
1161                             BasicLock::displaced_header_offset_in_bytes();
1162 
1163     Label slow_case;
1164 
1165     // Load object pointer into obj_reg
1166     movptr(obj_reg, Address(lock_reg, obj_offset));
1167 
1168     if (UseBiasedLocking) {
1169       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, false, done, &slow_case);
1170     }
1171 
1172     // Load immediate 1 into swap_reg %rax
1173     movl(swap_reg, (int32_t)1);
1174 
1175     // Load (object->mark() | 1) into swap_reg %rax
1176     orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1177 
1178     // Save (object->mark() | 1) into BasicLock's displaced header
1179     movptr(Address(lock_reg, mark_offset), swap_reg);
1180 
1181     assert(lock_offset == 0,
1182            "displaced header must be first word in BasicObjectLock");
1183 
1184     if (os::is_MP()) lock();
1185     cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1186     if (PrintBiasedLockingStatistics) {
1187       cond_inc32(Assembler::zero,
1188                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1189     }
1190     jcc(Assembler::zero, done);
1191 
1192     const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1193 
1194     // Test if the oopMark is an obvious stack pointer, i.e.,
1195     //  1) (mark & zero_bits) == 0, and
1196     //  2) rsp <= mark < mark + os::pagesize()
1197     //
1198     // These 3 tests can be done by evaluating the following
1199     // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1200     // assuming both stack pointer and pagesize have their
1201     // least significant bits clear.
1202     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
1203     subptr(swap_reg, rsp);
1204     andptr(swap_reg, zero_bits - os::vm_page_size());
1205 
1206     // Save the test result, for recursive case, the result is zero
1207     movptr(Address(lock_reg, mark_offset), swap_reg);
1208 
1209     if (PrintBiasedLockingStatistics) {
1210       cond_inc32(Assembler::zero,
1211                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1212     }
1213     jcc(Assembler::zero, done);
1214 
1215     bind(slow_case);
1216 
1217     // Call the runtime routine for slow case
1218     call_VM(noreg,
1219             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1220             lock_reg);
1221 
1222     bind(done);
1223   }
1224 }
1225 
1226 
1227 // Unlocks an object. Used in monitorexit bytecode and
1228 // remove_activation.  Throws an IllegalMonitorException if object is
1229 // not locked by current thread.
1230 //
1231 // Args:
1232 //      rdx, c_rarg1: BasicObjectLock for lock
1233 //
1234 // Kills:
1235 //      rax
1236 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1237 //      rscratch1 (scratch reg)
1238 // rax, rbx, rcx, rdx
1239 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1240   assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1241          "The argument is only for looks. It must be c_rarg1");
1242 
1243   if (UseHeavyMonitors) {
1244     call_VM(noreg,
1245             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1246             lock_reg);
1247   } else {
1248     Label done;
1249 
1250     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
1251     const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx);  // Will contain the old oopMark
1252     const Register obj_reg    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);  // Will contain the oop
1253 
1254     save_bcp(); // Save in case of exception
1255 
1256     // Convert from BasicObjectLock structure to object and BasicLock
1257     // structure Store the BasicLock address into %rax
1258     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1259 
1260     // Load oop into obj_reg(%c_rarg3)
1261     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1262 
1263     // Free entry
1264     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1265 
1266     if (UseBiasedLocking) {
1267       biased_locking_exit(obj_reg, header_reg, done);
1268     }
1269 
1270     // Load the old header from BasicLock structure
1271     movptr(header_reg, Address(swap_reg,
1272                                BasicLock::displaced_header_offset_in_bytes()));
1273 
1274     // Test for recursion
1275     testptr(header_reg, header_reg);
1276 
1277     // zero for recursive case
1278     jcc(Assembler::zero, done);
1279 
1280     // Atomic swap back the old header
1281     if (os::is_MP()) lock();
1282     cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1283 
1284     // zero for simple unlock of a stack-lock case
1285     jcc(Assembler::zero, done);
1286 
1287     // Call the runtime routine for slow case.
1288     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
1289          obj_reg); // restore obj
1290     call_VM(noreg,
1291             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1292             lock_reg);
1293 
1294     bind(done);
1295 
1296     restore_bcp();
1297   }
1298 }
1299 
1300 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1301                                                          Label& zero_continue) {
1302   assert(ProfileInterpreter, "must be profiling interpreter");
1303   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1304   testptr(mdp, mdp);
1305   jcc(Assembler::zero, zero_continue);
1306 }
1307 
1308 
1309 // Set the method data pointer for the current bcp.
1310 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1311   assert(ProfileInterpreter, "must be profiling interpreter");
1312   Label set_mdp;
1313   push(rax);
1314   push(rbx);
1315 
1316   get_method(rbx);
1317   // Test MDO to avoid the call if it is NULL.
1318   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1319   testptr(rax, rax);
1320   jcc(Assembler::zero, set_mdp);
1321   // rbx: method
1322   // _bcp_register: bcp
1323   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1324   // rax: mdi
1325   // mdo is guaranteed to be non-zero here, we checked for it before the call.
1326   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1327   addptr(rbx, in_bytes(MethodData::data_offset()));
1328   addptr(rax, rbx);
1329   bind(set_mdp);
1330   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1331   pop(rbx);
1332   pop(rax);
1333 }
1334 
1335 void InterpreterMacroAssembler::verify_method_data_pointer() {
1336   assert(ProfileInterpreter, "must be profiling interpreter");
1337 #ifdef ASSERT
1338   Label verify_continue;
1339   push(rax);
1340   push(rbx);
1341   Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1342   Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1343   push(arg3_reg);
1344   push(arg2_reg);
1345   test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1346   get_method(rbx);
1347 
1348   // If the mdp is valid, it will point to a DataLayout header which is
1349   // consistent with the bcp.  The converse is highly probable also.
1350   load_unsigned_short(arg2_reg,
1351                       Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1352   addptr(arg2_reg, Address(rbx, Method::const_offset()));
1353   lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1354   cmpptr(arg2_reg, _bcp_register);
1355   jcc(Assembler::equal, verify_continue);
1356   // rbx: method
1357   // _bcp_register: bcp
1358   // c_rarg3: mdp
1359   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1360                rbx, _bcp_register, arg3_reg);
1361   bind(verify_continue);
1362   pop(arg2_reg);
1363   pop(arg3_reg);
1364   pop(rbx);
1365   pop(rax);
1366 #endif // ASSERT
1367 }
1368 
1369 
1370 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1371                                                 int constant,
1372                                                 Register value) {
1373   assert(ProfileInterpreter, "must be profiling interpreter");
1374   Address data(mdp_in, constant);
1375   movptr(data, value);
1376 }
1377 
1378 
1379 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1380                                                       int constant,
1381                                                       bool decrement) {
1382   // Counter address
1383   Address data(mdp_in, constant);
1384 
1385   increment_mdp_data_at(data, decrement);
1386 }
1387 
1388 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1389                                                       bool decrement) {
1390   assert(ProfileInterpreter, "must be profiling interpreter");
1391   // %%% this does 64bit counters at best it is wasting space
1392   // at worst it is a rare bug when counters overflow
1393 
1394   if (decrement) {
1395     // Decrement the register.  Set condition codes.
1396     addptr(data, (int32_t) -DataLayout::counter_increment);
1397     // If the decrement causes the counter to overflow, stay negative
1398     Label L;
1399     jcc(Assembler::negative, L);
1400     addptr(data, (int32_t) DataLayout::counter_increment);
1401     bind(L);
1402   } else {
1403     assert(DataLayout::counter_increment == 1,
1404            "flow-free idiom only works with 1");
1405     // Increment the register.  Set carry flag.
1406     addptr(data, DataLayout::counter_increment);
1407     // If the increment causes the counter to overflow, pull back by 1.
1408     sbbptr(data, (int32_t)0);
1409   }
1410 }
1411 
1412 
1413 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1414                                                       Register reg,
1415                                                       int constant,
1416                                                       bool decrement) {
1417   Address data(mdp_in, reg, Address::times_1, constant);
1418 
1419   increment_mdp_data_at(data, decrement);
1420 }
1421 
1422 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1423                                                 int flag_byte_constant) {
1424   assert(ProfileInterpreter, "must be profiling interpreter");
1425   int header_offset = in_bytes(DataLayout::header_offset());
1426   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
1427   // Set the flag
1428   orl(Address(mdp_in, header_offset), header_bits);
1429 }
1430 
1431 
1432 
1433 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1434                                                  int offset,
1435                                                  Register value,
1436                                                  Register test_value_out,
1437                                                  Label& not_equal_continue) {
1438   assert(ProfileInterpreter, "must be profiling interpreter");
1439   if (test_value_out == noreg) {
1440     cmpptr(value, Address(mdp_in, offset));
1441   } else {
1442     // Put the test value into a register, so caller can use it:
1443     movptr(test_value_out, Address(mdp_in, offset));
1444     cmpptr(test_value_out, value);
1445   }
1446   jcc(Assembler::notEqual, not_equal_continue);
1447 }
1448 
1449 
1450 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1451                                                      int offset_of_disp) {
1452   assert(ProfileInterpreter, "must be profiling interpreter");
1453   Address disp_address(mdp_in, offset_of_disp);
1454   addptr(mdp_in, disp_address);
1455   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1456 }
1457 
1458 
1459 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1460                                                      Register reg,
1461                                                      int offset_of_disp) {
1462   assert(ProfileInterpreter, "must be profiling interpreter");
1463   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1464   addptr(mdp_in, disp_address);
1465   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1466 }
1467 
1468 
1469 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1470                                                        int constant) {
1471   assert(ProfileInterpreter, "must be profiling interpreter");
1472   addptr(mdp_in, constant);
1473   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1474 }
1475 
1476 
1477 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1478   assert(ProfileInterpreter, "must be profiling interpreter");
1479   push(return_bci); // save/restore across call_VM
1480   call_VM(noreg,
1481           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1482           return_bci);
1483   pop(return_bci);
1484 }
1485 
1486 
1487 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1488                                                      Register bumped_count) {
1489   if (ProfileInterpreter) {
1490     Label profile_continue;
1491 
1492     // If no method data exists, go to profile_continue.
1493     // Otherwise, assign to mdp
1494     test_method_data_pointer(mdp, profile_continue);
1495 
1496     // We are taking a branch.  Increment the taken count.
1497     // We inline increment_mdp_data_at to return bumped_count in a register
1498     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1499     Address data(mdp, in_bytes(JumpData::taken_offset()));
1500     movptr(bumped_count, data);
1501     assert(DataLayout::counter_increment == 1,
1502             "flow-free idiom only works with 1");
1503     addptr(bumped_count, DataLayout::counter_increment);
1504     sbbptr(bumped_count, 0);
1505     movptr(data, bumped_count); // Store back out
1506 
1507     // The method data pointer needs to be updated to reflect the new target.
1508     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1509     bind(profile_continue);
1510   }
1511 }
1512 
1513 
1514 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1515   if (ProfileInterpreter) {
1516     Label profile_continue;
1517 
1518     // If no method data exists, go to profile_continue.
1519     test_method_data_pointer(mdp, profile_continue);
1520 
1521     // We are taking a branch.  Increment the not taken count.
1522     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1523 
1524     // The method data pointer needs to be updated to correspond to
1525     // the next bytecode
1526     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1527     bind(profile_continue);
1528   }
1529 }
1530 
1531 void InterpreterMacroAssembler::profile_call(Register mdp) {
1532   if (ProfileInterpreter) {
1533     Label profile_continue;
1534 
1535     // If no method data exists, go to profile_continue.
1536     test_method_data_pointer(mdp, profile_continue);
1537 
1538     // We are making a call.  Increment the count.
1539     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1540 
1541     // The method data pointer needs to be updated to reflect the new target.
1542     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1543     bind(profile_continue);
1544   }
1545 }
1546 
1547 
1548 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1549   if (ProfileInterpreter) {
1550     Label profile_continue;
1551 
1552     // If no method data exists, go to profile_continue.
1553     test_method_data_pointer(mdp, profile_continue);
1554 
1555     // We are making a call.  Increment the count.
1556     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1557 
1558     // The method data pointer needs to be updated to reflect the new target.
1559     update_mdp_by_constant(mdp,
1560                            in_bytes(VirtualCallData::
1561                                     virtual_call_data_size()));
1562     bind(profile_continue);
1563   }
1564 }
1565 
1566 
1567 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1568                                                      Register mdp,
1569                                                      Register reg2,
1570                                                      bool receiver_can_be_null) {
1571   if (ProfileInterpreter) {
1572     Label profile_continue;
1573 
1574     // If no method data exists, go to profile_continue.
1575     test_method_data_pointer(mdp, profile_continue);
1576 
1577     Label skip_receiver_profile;
1578     if (receiver_can_be_null) {
1579       Label not_null;
1580       testptr(receiver, receiver);
1581       jccb(Assembler::notZero, not_null);
1582       // We are making a call.  Increment the count for null receiver.
1583       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1584       jmp(skip_receiver_profile);
1585       bind(not_null);
1586     }
1587 
1588     // Record the receiver type.
1589     record_klass_in_profile(receiver, mdp, reg2, true);
1590     bind(skip_receiver_profile);
1591 
1592     // The method data pointer needs to be updated to reflect the new target.
1593 #if INCLUDE_JVMCI
1594     if (MethodProfileWidth == 0) {
1595       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1596     }
1597 #else // INCLUDE_JVMCI
1598     update_mdp_by_constant(mdp,
1599                            in_bytes(VirtualCallData::
1600                                     virtual_call_data_size()));
1601 #endif // INCLUDE_JVMCI
1602     bind(profile_continue);
1603   }
1604 }
1605 
1606 #if INCLUDE_JVMCI
1607 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1608   assert_different_registers(method, mdp, reg2);
1609   if (ProfileInterpreter && MethodProfileWidth > 0) {
1610     Label profile_continue;
1611 
1612     // If no method data exists, go to profile_continue.
1613     test_method_data_pointer(mdp, profile_continue);
1614 
1615     Label done;
1616     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1617       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1618     bind(done);
1619 
1620     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1621     bind(profile_continue);
1622   }
1623 }
1624 #endif // INCLUDE_JVMCI
1625 
1626 // This routine creates a state machine for updating the multi-row
1627 // type profile at a virtual call site (or other type-sensitive bytecode).
1628 // The machine visits each row (of receiver/count) until the receiver type
1629 // is found, or until it runs out of rows.  At the same time, it remembers
1630 // the location of the first empty row.  (An empty row records null for its
1631 // receiver, and can be allocated for a newly-observed receiver type.)
1632 // Because there are two degrees of freedom in the state, a simple linear
1633 // search will not work; it must be a decision tree.  Hence this helper
1634 // function is recursive, to generate the required tree structured code.
1635 // It's the interpreter, so we are trading off code space for speed.
1636 // See below for example code.
1637 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1638                                         Register receiver, Register mdp,
1639                                         Register reg2, int start_row,
1640                                         Label& done, bool is_virtual_call) {
1641   if (TypeProfileWidth == 0) {
1642     if (is_virtual_call) {
1643       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1644     }
1645 #if INCLUDE_JVMCI
1646     else if (EnableJVMCI) {
1647       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1648     }
1649 #endif // INCLUDE_JVMCI
1650   } else {
1651     int non_profiled_offset = -1;
1652     if (is_virtual_call) {
1653       non_profiled_offset = in_bytes(CounterData::count_offset());
1654     }
1655 #if INCLUDE_JVMCI
1656     else if (EnableJVMCI) {
1657       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1658     }
1659 #endif // INCLUDE_JVMCI
1660 
1661     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1662         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1663   }
1664 }
1665 
1666 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1667                                         Register reg2, int start_row, Label& done, int total_rows,
1668                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1669                                         int non_profiled_offset) {
1670   int last_row = total_rows - 1;
1671   assert(start_row <= last_row, "must be work left to do");
1672   // Test this row for both the item and for null.
1673   // Take any of three different outcomes:
1674   //   1. found item => increment count and goto done
1675   //   2. found null => keep looking for case 1, maybe allocate this cell
1676   //   3. found something else => keep looking for cases 1 and 2
1677   // Case 3 is handled by a recursive call.
1678   for (int row = start_row; row <= last_row; row++) {
1679     Label next_test;
1680     bool test_for_null_also = (row == start_row);
1681 
1682     // See if the item is item[n].
1683     int item_offset = in_bytes(item_offset_fn(row));
1684     test_mdp_data_at(mdp, item_offset, item,
1685                      (test_for_null_also ? reg2 : noreg),
1686                      next_test);
1687     // (Reg2 now contains the item from the CallData.)
1688 
1689     // The item is item[n].  Increment count[n].
1690     int count_offset = in_bytes(item_count_offset_fn(row));
1691     increment_mdp_data_at(mdp, count_offset);
1692     jmp(done);
1693     bind(next_test);
1694 
1695     if (test_for_null_also) {
1696       Label found_null;
1697       // Failed the equality check on item[n]...  Test for null.
1698       testptr(reg2, reg2);
1699       if (start_row == last_row) {
1700         // The only thing left to do is handle the null case.
1701         if (non_profiled_offset >= 0) {
1702           jccb(Assembler::zero, found_null);
1703           // Item did not match any saved item and there is no empty row for it.
1704           // Increment total counter to indicate polymorphic case.
1705           increment_mdp_data_at(mdp, non_profiled_offset);
1706           jmp(done);
1707           bind(found_null);
1708         } else {
1709           jcc(Assembler::notZero, done);
1710         }
1711         break;
1712       }
1713       // Since null is rare, make it be the branch-taken case.
1714       jcc(Assembler::zero, found_null);
1715 
1716       // Put all the "Case 3" tests here.
1717       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1718         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1719 
1720       // Found a null.  Keep searching for a matching item,
1721       // but remember that this is an empty (unused) slot.
1722       bind(found_null);
1723     }
1724   }
1725 
1726   // In the fall-through case, we found no matching item, but we
1727   // observed the item[start_row] is NULL.
1728 
1729   // Fill in the item field and increment the count.
1730   int item_offset = in_bytes(item_offset_fn(start_row));
1731   set_mdp_data_at(mdp, item_offset, item);
1732   int count_offset = in_bytes(item_count_offset_fn(start_row));
1733   movl(reg2, DataLayout::counter_increment);
1734   set_mdp_data_at(mdp, count_offset, reg2);
1735   if (start_row > 0) {
1736     jmp(done);
1737   }
1738 }
1739 
1740 // Example state machine code for three profile rows:
1741 //   // main copy of decision tree, rooted at row[1]
1742 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1743 //   if (row[0].rec != NULL) {
1744 //     // inner copy of decision tree, rooted at row[1]
1745 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1746 //     if (row[1].rec != NULL) {
1747 //       // degenerate decision tree, rooted at row[2]
1748 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1749 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1750 //       row[2].init(rec); goto done;
1751 //     } else {
1752 //       // remember row[1] is empty
1753 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1754 //       row[1].init(rec); goto done;
1755 //     }
1756 //   } else {
1757 //     // remember row[0] is empty
1758 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1759 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1760 //     row[0].init(rec); goto done;
1761 //   }
1762 //   done:
1763 
1764 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1765                                                         Register mdp, Register reg2,
1766                                                         bool is_virtual_call) {
1767   assert(ProfileInterpreter, "must be profiling");
1768   Label done;
1769 
1770   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1771 
1772   bind (done);
1773 }
1774 
1775 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1776                                             Register mdp) {
1777   if (ProfileInterpreter) {
1778     Label profile_continue;
1779     uint row;
1780 
1781     // If no method data exists, go to profile_continue.
1782     test_method_data_pointer(mdp, profile_continue);
1783 
1784     // Update the total ret count.
1785     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1786 
1787     for (row = 0; row < RetData::row_limit(); row++) {
1788       Label next_test;
1789 
1790       // See if return_bci is equal to bci[n]:
1791       test_mdp_data_at(mdp,
1792                        in_bytes(RetData::bci_offset(row)),
1793                        return_bci, noreg,
1794                        next_test);
1795 
1796       // return_bci is equal to bci[n].  Increment the count.
1797       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1798 
1799       // The method data pointer needs to be updated to reflect the new target.
1800       update_mdp_by_offset(mdp,
1801                            in_bytes(RetData::bci_displacement_offset(row)));
1802       jmp(profile_continue);
1803       bind(next_test);
1804     }
1805 
1806     update_mdp_for_ret(return_bci);
1807 
1808     bind(profile_continue);
1809   }
1810 }
1811 
1812 
1813 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1814   if (ProfileInterpreter) {
1815     Label profile_continue;
1816 
1817     // If no method data exists, go to profile_continue.
1818     test_method_data_pointer(mdp, profile_continue);
1819 
1820     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1821 
1822     // The method data pointer needs to be updated.
1823     int mdp_delta = in_bytes(BitData::bit_data_size());
1824     if (TypeProfileCasts) {
1825       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1826     }
1827     update_mdp_by_constant(mdp, mdp_delta);
1828 
1829     bind(profile_continue);
1830   }
1831 }
1832 
1833 
1834 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1835   if (ProfileInterpreter && TypeProfileCasts) {
1836     Label profile_continue;
1837 
1838     // If no method data exists, go to profile_continue.
1839     test_method_data_pointer(mdp, profile_continue);
1840 
1841     int count_offset = in_bytes(CounterData::count_offset());
1842     // Back up the address, since we have already bumped the mdp.
1843     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1844 
1845     // *Decrement* the counter.  We expect to see zero or small negatives.
1846     increment_mdp_data_at(mdp, count_offset, true);
1847 
1848     bind (profile_continue);
1849   }
1850 }
1851 
1852 
1853 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1854   if (ProfileInterpreter) {
1855     Label profile_continue;
1856 
1857     // If no method data exists, go to profile_continue.
1858     test_method_data_pointer(mdp, profile_continue);
1859 
1860     // The method data pointer needs to be updated.
1861     int mdp_delta = in_bytes(BitData::bit_data_size());
1862     if (TypeProfileCasts) {
1863       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1864 
1865       // Record the object type.
1866       record_klass_in_profile(klass, mdp, reg2, false);
1867       NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1868       NOT_LP64(restore_locals();)         // Restore EDI
1869     }
1870     update_mdp_by_constant(mdp, mdp_delta);
1871 
1872     bind(profile_continue);
1873   }
1874 }
1875 
1876 
1877 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1878   if (ProfileInterpreter) {
1879     Label profile_continue;
1880 
1881     // If no method data exists, go to profile_continue.
1882     test_method_data_pointer(mdp, profile_continue);
1883 
1884     // Update the default case count
1885     increment_mdp_data_at(mdp,
1886                           in_bytes(MultiBranchData::default_count_offset()));
1887 
1888     // The method data pointer needs to be updated.
1889     update_mdp_by_offset(mdp,
1890                          in_bytes(MultiBranchData::
1891                                   default_displacement_offset()));
1892 
1893     bind(profile_continue);
1894   }
1895 }
1896 
1897 
1898 void InterpreterMacroAssembler::profile_switch_case(Register index,
1899                                                     Register mdp,
1900                                                     Register reg2) {
1901   if (ProfileInterpreter) {
1902     Label profile_continue;
1903 
1904     // If no method data exists, go to profile_continue.
1905     test_method_data_pointer(mdp, profile_continue);
1906 
1907     // Build the base (index * per_case_size_in_bytes()) +
1908     // case_array_offset_in_bytes()
1909     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1910     imulptr(index, reg2); // XXX l ?
1911     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1912 
1913     // Update the case count
1914     increment_mdp_data_at(mdp,
1915                           index,
1916                           in_bytes(MultiBranchData::relative_count_offset()));
1917 
1918     // The method data pointer needs to be updated.
1919     update_mdp_by_offset(mdp,
1920                          index,
1921                          in_bytes(MultiBranchData::
1922                                   relative_displacement_offset()));
1923 
1924     bind(profile_continue);
1925   }
1926 }
1927 
1928 
1929 
1930 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1931   if (state == atos) {
1932     MacroAssembler::verify_oop(reg);
1933   }
1934 }
1935 
1936 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1937 #ifndef _LP64
1938   if ((state == ftos && UseSSE < 1) ||
1939       (state == dtos && UseSSE < 2)) {
1940     MacroAssembler::verify_FPU(stack_depth);
1941   }
1942 #endif
1943 }
1944 
1945 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1946 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1947                                                         int increment, Address mask,
1948                                                         Register scratch, bool preloaded,
1949                                                         Condition cond, Label* where) {
1950   if (!preloaded) {
1951     movl(scratch, counter_addr);
1952   }
1953   incrementl(scratch, increment);
1954   movl(counter_addr, scratch);
1955   andl(scratch, mask);
1956   jcc(cond, *where);
1957 }
1958 
1959 void InterpreterMacroAssembler::notify_method_entry() {
1960   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1961   // track stack depth.  If it is possible to enter interp_only_mode we add
1962   // the code to check if the event should be sent.
1963   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1964   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
1965   if (JvmtiExport::can_post_interpreter_events()) {
1966     Label L;
1967     NOT_LP64(get_thread(rthread);)
1968     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
1969     testl(rdx, rdx);
1970     jcc(Assembler::zero, L);
1971     call_VM(noreg, CAST_FROM_FN_PTR(address,
1972                                     InterpreterRuntime::post_method_entry));
1973     bind(L);
1974   }
1975 
1976   {
1977     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1978     NOT_LP64(get_thread(rthread);)
1979     get_method(rarg);
1980     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1981                  rthread, rarg);
1982   }
1983 
1984   // RedefineClasses() tracing support for obsolete method entry
1985   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1986     NOT_LP64(get_thread(rthread);)
1987     get_method(rarg);
1988     call_VM_leaf(
1989       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1990       rthread, rarg);
1991   }
1992 }
1993 
1994 
1995 void InterpreterMacroAssembler::notify_method_exit(
1996     TosState state, NotifyMethodExitMode mode) {
1997   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1998   // track stack depth.  If it is possible to enter interp_only_mode we add
1999   // the code to check if the event should be sent.
2000   Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2001   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2002   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2003     Label L;
2004     // Note: frame::interpreter_frame_result has a dependency on how the
2005     // method result is saved across the call to post_method_exit. If this
2006     // is changed then the interpreter_frame_result implementation will
2007     // need to be updated too.
2008 
2009     // template interpreter will leave the result on the top of the stack.
2010     push(state);
2011     NOT_LP64(get_thread(rthread);)
2012     movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2013     testl(rdx, rdx);
2014     jcc(Assembler::zero, L);
2015     call_VM(noreg,
2016             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2017     bind(L);
2018     pop(state);
2019   }
2020 
2021   {
2022     SkipIfEqual skip(this, &DTraceMethodProbes, false);
2023     push(state);
2024     NOT_LP64(get_thread(rthread);)
2025     get_method(rarg);
2026     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2027                  rthread, rarg);
2028     pop(state);
2029   }
2030 }