1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_sparc.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"
  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "oops/methodCounters.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/safepointMechanism.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 #include "utilities/align.hpp"
  43 
  44 // Implementation of InterpreterMacroAssembler
  45 
  46 // This file specializes the assember with interpreter-specific macros
  47 
  48 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  49 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  50 
  51 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  52   assert(entry, "Entry must have been generated by now");
  53   AddressLiteral al(entry);
  54   jump_to(al, G3_scratch);
  55   delayed()->nop();
  56 }
  57 
  58 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  59   // Note: this algorithm is also used by C1's OSR entry sequence.
  60   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  61   assert_different_registers(args_size, locals_size);
  62   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  63   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  64   // Use br/mov combination because it works on both V8 and V9 and is
  65   // faster.
  66   Label skip_move;
  67   br(Assembler::negative, true, Assembler::pt, skip_move);
  68   delayed()->mov(G0, delta);
  69   bind(skip_move);
  70   align_up(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  71   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  72 }
  73 
  74 // Dispatch code executed in the prolog of a bytecode which does not do it's
  75 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  76 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  77   assert_not_delayed();
  78   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  79   // dispatch table to use
  80   AddressLiteral tbl(Interpreter::dispatch_table(state));
  81   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  82   set(tbl, G3_scratch);                                 // compute addr of table
  83   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
  84 }
  85 
  86 
  87 // Dispatch code executed in the epilog of a bytecode which does not do it's
  88 // own dispatch. The dispatch address in IdispatchAddress is used for the
  89 // dispatch.
  90 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  91   assert_not_delayed();
  92   verify_FPU(1, state);
  93   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  94   jmp( IdispatchAddress, 0 );
  95   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
  96   else                delayed()->nop();
  97 }
  98 
  99 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
 100   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 101   assert_not_delayed();
 102   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 103   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, true, generate_poll);
 104 }
 105 
 106 
 107 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 108   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 109   assert_not_delayed();
 110   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 111   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 112 }
 113 
 114 
 115 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 116   // load current bytecode
 117   assert_not_delayed();
 118   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 119   dispatch_base(state, table);
 120 }
 121 
 122 
 123 void InterpreterMacroAssembler::call_VM_leaf_base(
 124   Register java_thread,
 125   address  entry_point,
 126   int      number_of_arguments
 127 ) {
 128   if (!java_thread->is_valid())
 129     java_thread = L7_thread_cache;
 130   // super call
 131   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 132 }
 133 
 134 
 135 void InterpreterMacroAssembler::call_VM_base(
 136   Register        oop_result,
 137   Register        java_thread,
 138   Register        last_java_sp,
 139   address         entry_point,
 140   int             number_of_arguments,
 141   bool            check_exception
 142 ) {
 143   if (!java_thread->is_valid())
 144     java_thread = L7_thread_cache;
 145   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 146   // takes responsibility for setting its own thread-state on call-out.
 147   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 148 
 149   //save_bcp();                                  // save bcp
 150   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 151   //restore_bcp();                               // restore bcp
 152   //restore_locals();                            // restore locals pointer
 153 }
 154 
 155 
 156 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 157   if (JvmtiExport::can_pop_frame()) {
 158     Label L;
 159 
 160     // Check the "pending popframe condition" flag in the current thread
 161     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 162 
 163     // Initiate popframe handling only if it is not already being processed.  If the flag
 164     // has the popframe_processing bit set, it means that this code is called *during* popframe
 165     // handling - we don't want to reenter.
 166     btst(JavaThread::popframe_pending_bit, scratch_reg);
 167     br(zero, false, pt, L);
 168     delayed()->nop();
 169     btst(JavaThread::popframe_processing_bit, scratch_reg);
 170     br(notZero, false, pt, L);
 171     delayed()->nop();
 172 
 173     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 174     // address of the same-named entrypoint in the generated interpreter code.
 175     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 176 
 177     // Jump to Interpreter::_remove_activation_preserving_args_entry
 178     jmpl(O0, G0, G0);
 179     delayed()->nop();
 180     bind(L);
 181   }
 182 }
 183 
 184 
 185 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 186   Register thr_state = G4_scratch;
 187   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 188   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 189   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 190   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 191   switch (state) {
 192   case ltos: ld_long(val_addr, Otos_l);                   break;
 193   case atos: ld_ptr(oop_addr, Otos_l);
 194              st_ptr(G0, oop_addr);                        break;
 195   case btos:                                           // fall through
 196   case ztos:                                           // fall through
 197   case ctos:                                           // fall through
 198   case stos:                                           // fall through
 199   case itos: ld(val_addr, Otos_l1);                       break;
 200   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 201   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 202   case vtos: /* nothing to do */                          break;
 203   default  : ShouldNotReachHere();
 204   }
 205   // Clean up tos value in the jvmti thread state
 206   or3(G0, ilgl, G3_scratch);
 207   stw(G3_scratch, tos_addr);
 208   st_long(G0, val_addr);
 209   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 210 }
 211 
 212 
 213 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 214   if (JvmtiExport::can_force_early_return()) {
 215     Label L;
 216     Register thr_state = G3_scratch;
 217     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 218     br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 219 
 220     // Initiate earlyret handling only if it is not already being processed.
 221     // If the flag has the earlyret_processing bit set, it means that this code
 222     // is called *during* earlyret handling - we don't want to reenter.
 223     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 224     cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
 225 
 226     // Call Interpreter::remove_activation_early_entry() to get the address of the
 227     // same-named entrypoint in the generated interpreter code
 228     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 229     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 230 
 231     // Jump to Interpreter::_remove_activation_early_entry
 232     jmpl(O0, G0, G0);
 233     delayed()->nop();
 234     bind(L);
 235   }
 236 }
 237 
 238 
 239 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 240   mov(arg_1, O0);
 241   mov(arg_2, O1);
 242   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 243 }
 244 
 245 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 246   assert_not_delayed();
 247   dispatch_Lbyte_code(state, table);
 248 }
 249 
 250 
 251 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 252   dispatch_base(state, Interpreter::normal_table(state));
 253 }
 254 
 255 
 256 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 257   dispatch_base(state, Interpreter::dispatch_table(state));
 258 }
 259 
 260 
 261 // common code to dispatch and dispatch_only
 262 // dispatch value in Lbyte_code and increment Lbcp
 263 
 264 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify, bool generate_poll) {
 265   verify_FPU(1, state);
 266   // %%%%% maybe implement +VerifyActivationFrameSize here
 267   //verify_thread(); //too slow; we will just verify on method entry & exit
 268   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 269   // dispatch table to use
 270   AddressLiteral tbl(table);
 271   Label dispatch;
 272 
 273   if (SafepointMechanism::uses_thread_local_poll() && generate_poll) {
 274     AddressLiteral sfpt_tbl(Interpreter::safept_table(state));
 275     Label no_safepoint;
 276 
 277     if (tbl.value() != sfpt_tbl.value()) {
 278       ldx(Address(G2_thread, Thread::polling_page_offset()), G3_scratch, 0);
 279       // Armed page has poll_bit set, if poll bit is cleared just continue.
 280       and3(G3_scratch, SafepointMechanism::poll_bit(), G3_scratch);
 281 
 282       br_null_short(G3_scratch, Assembler::pt, no_safepoint);
 283       set(sfpt_tbl, G3_scratch);
 284       ba_short(dispatch);
 285     }
 286     bind(no_safepoint);
 287   }
 288 
 289   set(tbl, G3_scratch);                               // compute addr of table
 290   bind(dispatch);
 291   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 292   ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 293   jmp( G3_scratch, 0 );
 294   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 295   else                delayed()->nop();
 296 }
 297 
 298 
 299 // Helpers for expression stack
 300 
 301 // Longs and doubles are Category 2 computational types in the
 302 // JVM specification (section 3.11.1) and take 2 expression stack or
 303 // local slots.
 304 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 305 // for the dup* bytecodes depends on what types are already on the stack.
 306 // If the types are split into the two stack/local slots, that is much easier
 307 // (and we can use 0 for non-reference tags).
 308 
 309 // Known good alignment in _LP64 but unknown otherwise
 310 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 311   assert_not_delayed();
 312 
 313   ldf(FloatRegisterImpl::D, r1, offset, d);
 314 }
 315 
 316 // Known good alignment in _LP64 but unknown otherwise
 317 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 318   assert_not_delayed();
 319 
 320   stf(FloatRegisterImpl::D, d, r1, offset);
 321   // store something more useful here
 322   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 323 }
 324 
 325 
 326 // Known good alignment in _LP64 but unknown otherwise
 327 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 328   assert_not_delayed();
 329   ldx(r1, offset, rd);
 330 }
 331 
 332 // Known good alignment in _LP64 but unknown otherwise
 333 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 334   assert_not_delayed();
 335 
 336   stx(l, r1, offset);
 337   // store something more useful here
 338   stx(G0, r1, offset+Interpreter::stackElementSize);
 339 }
 340 
 341 void InterpreterMacroAssembler::pop_i(Register r) {
 342   assert_not_delayed();
 343   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 344   inc(Lesp, Interpreter::stackElementSize);
 345   debug_only(verify_esp(Lesp));
 346 }
 347 
 348 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 349   assert_not_delayed();
 350   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 351   inc(Lesp, Interpreter::stackElementSize);
 352   debug_only(verify_esp(Lesp));
 353 }
 354 
 355 void InterpreterMacroAssembler::pop_l(Register r) {
 356   assert_not_delayed();
 357   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 358   inc(Lesp, 2*Interpreter::stackElementSize);
 359   debug_only(verify_esp(Lesp));
 360 }
 361 
 362 
 363 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 364   assert_not_delayed();
 365   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 366   inc(Lesp, Interpreter::stackElementSize);
 367   debug_only(verify_esp(Lesp));
 368 }
 369 
 370 
 371 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 372   assert_not_delayed();
 373   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 374   inc(Lesp, 2*Interpreter::stackElementSize);
 375   debug_only(verify_esp(Lesp));
 376 }
 377 
 378 
 379 void InterpreterMacroAssembler::push_i(Register r) {
 380   assert_not_delayed();
 381   debug_only(verify_esp(Lesp));
 382   st(r, Lesp, 0);
 383   dec(Lesp, Interpreter::stackElementSize);
 384 }
 385 
 386 void InterpreterMacroAssembler::push_ptr(Register r) {
 387   assert_not_delayed();
 388   st_ptr(r, Lesp, 0);
 389   dec(Lesp, Interpreter::stackElementSize);
 390 }
 391 
 392 // remember: our convention for longs in SPARC is:
 393 // O0 (Otos_l1) has high-order part in first word,
 394 // O1 (Otos_l2) has low-order part in second word
 395 
 396 void InterpreterMacroAssembler::push_l(Register r) {
 397   assert_not_delayed();
 398   debug_only(verify_esp(Lesp));
 399   // Longs are stored in memory-correct order, even if unaligned.
 400   int offset = -Interpreter::stackElementSize;
 401   store_unaligned_long(r, Lesp, offset);
 402   dec(Lesp, 2 * Interpreter::stackElementSize);
 403 }
 404 
 405 
 406 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 407   assert_not_delayed();
 408   debug_only(verify_esp(Lesp));
 409   stf(FloatRegisterImpl::S, f, Lesp, 0);
 410   dec(Lesp, Interpreter::stackElementSize);
 411 }
 412 
 413 
 414 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 415   assert_not_delayed();
 416   debug_only(verify_esp(Lesp));
 417   // Longs are stored in memory-correct order, even if unaligned.
 418   int offset = -Interpreter::stackElementSize;
 419   store_unaligned_double(d, Lesp, offset);
 420   dec(Lesp, 2 * Interpreter::stackElementSize);
 421 }
 422 
 423 
 424 void InterpreterMacroAssembler::push(TosState state) {
 425   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 426   switch (state) {
 427     case atos: push_ptr();            break;
 428     case btos:                        // fall through
 429     case ztos:                        // fall through
 430     case ctos:                        // fall through
 431     case stos:                        // fall through
 432     case itos: push_i();              break;
 433     case ltos: push_l();              break;
 434     case ftos: push_f();              break;
 435     case dtos: push_d();              break;
 436     case vtos: /* nothing to do */    break;
 437     default  : ShouldNotReachHere();
 438   }
 439 }
 440 
 441 
 442 void InterpreterMacroAssembler::pop(TosState state) {
 443   switch (state) {
 444     case atos: pop_ptr();            break;
 445     case btos:                       // fall through
 446     case ztos:                       // fall through
 447     case ctos:                       // fall through
 448     case stos:                       // fall through
 449     case itos: pop_i();              break;
 450     case ltos: pop_l();              break;
 451     case ftos: pop_f();              break;
 452     case dtos: pop_d();              break;
 453     case vtos: /* nothing to do */   break;
 454     default  : ShouldNotReachHere();
 455   }
 456   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 457 }
 458 
 459 
 460 // Helpers for swap and dup
 461 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 462   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 463 }
 464 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 465   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 466 }
 467 
 468 
 469 void InterpreterMacroAssembler::load_receiver(Register param_count,
 470                                               Register recv) {
 471   sll(param_count, Interpreter::logStackElementSize, param_count);
 472   ld_ptr(Lesp, param_count, recv);  // gets receiver oop
 473 }
 474 
 475 void InterpreterMacroAssembler::empty_expression_stack() {
 476   // Reset Lesp.
 477   sub( Lmonitors, wordSize, Lesp );
 478 
 479   // Reset SP by subtracting more space from Lesp.
 480   Label done;
 481   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 482 
 483   // A native does not need to do this, since its callee does not change SP.
 484   ld(Lmethod, Method::access_flags_offset(), Gframe_size);  // Load access flags.
 485   btst(JVM_ACC_NATIVE, Gframe_size);
 486   br(Assembler::notZero, false, Assembler::pt, done);
 487   delayed()->nop();
 488 
 489   // Compute max expression stack+register save area
 490   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size);
 491   lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);  // Load max stack.
 492   add(Gframe_size, frame::memory_parameter_word_sp_offset+Method::extra_stack_entries(), Gframe_size );
 493 
 494   //
 495   // now set up a stack frame with the size computed above
 496   //
 497   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 498   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 499   sub( Lesp, Gframe_size, Gframe_size );
 500   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 501   debug_only(verify_sp(Gframe_size, G4_scratch));
 502   sub(Gframe_size, STACK_BIAS, Gframe_size );
 503   mov(Gframe_size, SP);
 504 
 505   bind(done);
 506 }
 507 
 508 
 509 #ifdef ASSERT
 510 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 511   Label Bad, OK;
 512 
 513   // Saved SP must be aligned.
 514   btst(2*BytesPerWord-1, Rsp);
 515   br(Assembler::notZero, false, Assembler::pn, Bad);
 516   delayed()->nop();
 517 
 518   // Saved SP, plus register window size, must not be above FP.
 519   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 520   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 521   cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
 522 
 523   // Saved SP must not be ridiculously below current SP.
 524   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 525   set(maxstack, Rtemp);
 526   sub(SP, Rtemp, Rtemp);
 527   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 528   cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
 529 
 530   ba_short(OK);
 531 
 532   bind(Bad);
 533   stop("on return to interpreted call, restored SP is corrupted");
 534 
 535   bind(OK);
 536 }
 537 
 538 
 539 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 540   // about to read or write Resp[0]
 541   // make sure it is not in the monitors or the register save area
 542   Label OK1, OK2;
 543 
 544   cmp(Resp, Lmonitors);
 545   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 546   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 547   stop("too many pops:  Lesp points into monitor area");
 548   bind(OK1);
 549   sub(Resp, STACK_BIAS, Resp);
 550   cmp(Resp, SP);
 551   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 552   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 553   stop("too many pushes:  Lesp points into register window");
 554   bind(OK2);
 555 }
 556 #endif // ASSERT
 557 
 558 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 559 // do the call. Centralized so that all interpreter calls will do the same actions.
 560 // If jvmti single stepping is on for a thread we must not call compiled code.
 561 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 562 
 563   // Assume we want to go compiled if available
 564 
 565   ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
 566 
 567   if (JvmtiExport::can_post_interpreter_events()) {
 568     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 569     // compiled code in threads for which the event is enabled.  Check here for
 570     // interp_only_mode if these events CAN be enabled.
 571     verify_thread();
 572     Label skip_compiled_code;
 573 
 574     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 575     ld(interp_only, scratch);
 576     cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
 577     delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
 578     bind(skip_compiled_code);
 579   }
 580 
 581   // the i2c_adapters need Method* in G5_method (right? %%%)
 582   // do the call
 583 #ifdef ASSERT
 584   {
 585     Label ok;
 586     br_notnull_short(target, Assembler::pt, ok);
 587     stop("null entry point");
 588     bind(ok);
 589   }
 590 #endif // ASSERT
 591 
 592   // Adjust Rret first so Llast_SP can be same as Rret
 593   add(Rret, -frame::pc_return_offset, O7);
 594   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 595   // Record SP so we can remove any stack space allocated by adapter transition
 596   jmp(target, 0);
 597   delayed()->mov(SP, Llast_SP);
 598 }
 599 
 600 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 601   assert_not_delayed();
 602 
 603   Label not_taken;
 604   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 605   else             br (cc, false, Assembler::pn, not_taken);
 606   delayed()->nop();
 607 
 608   TemplateTable::branch(false,false);
 609 
 610   bind(not_taken);
 611 
 612   profile_not_taken_branch(G3_scratch);
 613 }
 614 
 615 
 616 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 617                                   int         bcp_offset,
 618                                   Register    Rtmp,
 619                                   Register    Rdst,
 620                                   signedOrNot is_signed,
 621                                   setCCOrNot  should_set_CC ) {
 622   assert(Rtmp != Rdst, "need separate temp register");
 623   assert_not_delayed();
 624   switch (is_signed) {
 625    default: ShouldNotReachHere();
 626 
 627    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 628    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 629   }
 630   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 631   sll( Rdst, BitsPerByte, Rdst);
 632   switch (should_set_CC ) {
 633    default: ShouldNotReachHere();
 634 
 635    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 636    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 637   }
 638 }
 639 
 640 
 641 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 642                                   int        bcp_offset,
 643                                   Register   Rtmp,
 644                                   Register   Rdst,
 645                                   setCCOrNot should_set_CC ) {
 646   assert(Rtmp != Rdst, "need separate temp register");
 647   assert_not_delayed();
 648   add( Lbcp, bcp_offset, Rtmp);
 649   andcc( Rtmp, 3, G0);
 650   Label aligned;
 651   switch (should_set_CC ) {
 652    default: ShouldNotReachHere();
 653 
 654    case      set_CC: break;
 655    case dont_set_CC: break;
 656   }
 657 
 658   br(Assembler::zero, true, Assembler::pn, aligned);
 659   delayed()->ldsw(Rtmp, 0, Rdst);
 660 
 661   ldub(Lbcp, bcp_offset + 3, Rdst);
 662   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 663   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 664   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 665   or3(Rtmp, Rdst, Rdst );
 666 
 667   bind(aligned);
 668   if (should_set_CC == set_CC) tst(Rdst);
 669 }
 670 
 671 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
 672                                                        int bcp_offset, size_t index_size) {
 673   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 674   if (index_size == sizeof(u2)) {
 675     get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
 676   } else if (index_size == sizeof(u4)) {
 677     get_4_byte_integer_at_bcp(bcp_offset, temp, index);
 678     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 679     xor3(index, -1, index);  // convert to plain index
 680   } else if (index_size == sizeof(u1)) {
 681     ldub(Lbcp, bcp_offset, index);
 682   } else {
 683     ShouldNotReachHere();
 684   }
 685 }
 686 
 687 
 688 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
 689                                                            int bcp_offset, size_t index_size) {
 690   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 691   assert_different_registers(cache, tmp);
 692   assert_not_delayed();
 693   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
 694   // convert from field index to ConstantPoolCacheEntry index and from
 695   // word index to byte offset
 696   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 697   add(LcpoolCache, tmp, cache);
 698 }
 699 
 700 
 701 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 702                                                                         Register temp,
 703                                                                         Register bytecode,
 704                                                                         int byte_no,
 705                                                                         int bcp_offset,
 706                                                                         size_t index_size) {
 707   get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
 708   ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
 709   const int shift_count = (1 + byte_no) * BitsPerByte;
 710   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 711          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 712          "correct shift count");
 713   srl(bytecode, shift_count, bytecode);
 714   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 715   and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
 716 }
 717 
 718 
 719 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 720                                                                int bcp_offset, size_t index_size) {
 721   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 722   assert_different_registers(cache, tmp);
 723   assert_not_delayed();
 724   if (index_size == sizeof(u2)) {
 725     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 726   } else {
 727     ShouldNotReachHere();  // other sizes not supported here
 728   }
 729               // convert from field index to ConstantPoolCacheEntry index
 730               // and from word index to byte offset
 731   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 732               // skip past the header
 733   add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
 734               // construct pointer to cache entry
 735   add(LcpoolCache, tmp, cache);
 736 }
 737 
 738 
 739 // Load object from cpool->resolved_references(index)
 740 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 741                                            Register result, Register index) {
 742   assert_different_registers(result, index);
 743   assert_not_delayed();
 744   // convert from field index to resolved_references() index and from
 745   // word index to byte offset. Since this is a java object, it can be compressed
 746   Register tmp = index;  // reuse
 747   sll(index, LogBytesPerHeapOop, tmp);
 748   get_constant_pool(result);
 749   // load pointer for resolved_references[] objArray
 750   ld_ptr(result, ConstantPool::cache_offset_in_bytes(), result);
 751   ld_ptr(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
 752   resolve_oop_handle(result);
 753   // Add in the index
 754   add(result, tmp, result);
 755   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
 756 }
 757 
 758 
 759 // load cpool->resolved_klass_at(index)
 760 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool,
 761                                            Register Roffset, Register Rklass) {
 762   // int value = *this_cp->int_at_addr(which);
 763   // int resolved_klass_index = extract_low_short_from_int(value);
 764   //
 765   // Because SPARC is big-endian, the low_short is at (cpool->int_at_addr(which) + 2 bytes)
 766   add(Roffset, Rcpool, Roffset);
 767   lduh(Roffset, sizeof(ConstantPool) + 2, Roffset);  // Roffset = resolved_klass_index
 768 
 769   Register Rresolved_klasses = Rklass;
 770   ld_ptr(Rcpool, ConstantPool::resolved_klasses_offset_in_bytes(), Rresolved_klasses);
 771   sll(Roffset, LogBytesPerWord, Roffset);
 772   add(Roffset, Array<Klass*>::base_offset_in_bytes(), Roffset);
 773   ld_ptr(Rresolved_klasses, Roffset, Rklass);
 774 }
 775 
 776 
 777 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 778 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 779 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 780                                                   Register Rsuper_klass,
 781                                                   Register Rtmp1,
 782                                                   Register Rtmp2,
 783                                                   Register Rtmp3,
 784                                                   Label &ok_is_subtype ) {
 785   Label not_subtype;
 786 
 787   // Profile the not-null value's klass.
 788   profile_typecheck(Rsub_klass, Rtmp1);
 789 
 790   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 791                                 Rtmp1, Rtmp2,
 792                                 &ok_is_subtype, &not_subtype, NULL);
 793 
 794   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 795                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 796                                 &ok_is_subtype, NULL);
 797 
 798   bind(not_subtype);
 799   profile_typecheck_failed(Rtmp1);
 800 }
 801 
 802 // Separate these two to allow for delay slot in middle
 803 // These are used to do a test and full jump to exception-throwing code.
 804 
 805 // %%%%% Could possibly reoptimize this by testing to see if could use
 806 // a single conditional branch (i.e. if span is small enough.
 807 // If you go that route, than get rid of the split and give up
 808 // on the delay-slot hack.
 809 
 810 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 811                                                     Label&    ok ) {
 812   assert_not_delayed();
 813   br(ok_condition, true, pt, ok);
 814   // DELAY SLOT
 815 }
 816 
 817 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 818                                                     Label&    ok ) {
 819   assert_not_delayed();
 820   bp( ok_condition, true, Assembler::xcc, pt, ok);
 821   // DELAY SLOT
 822 }
 823 
 824 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 825                                                   Label&    ok ) {
 826   assert_not_delayed();
 827   brx(ok_condition, true, pt, ok);
 828   // DELAY SLOT
 829 }
 830 
 831 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 832                                                 Register Rscratch,
 833                                                 Label&   ok ) {
 834   assert(throw_entry_point != NULL, "entry point must be generated by now");
 835   AddressLiteral dest(throw_entry_point);
 836   jump_to(dest, Rscratch);
 837   delayed()->nop();
 838   bind(ok);
 839 }
 840 
 841 
 842 // And if you cannot use the delay slot, here is a shorthand:
 843 
 844 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 845                                                   address   throw_entry_point,
 846                                                   Register  Rscratch ) {
 847   Label ok;
 848   if (ok_condition != never) {
 849     throw_if_not_1_icc( ok_condition, ok);
 850     delayed()->nop();
 851   }
 852   throw_if_not_2( throw_entry_point, Rscratch, ok);
 853 }
 854 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 855                                                   address   throw_entry_point,
 856                                                   Register  Rscratch ) {
 857   Label ok;
 858   if (ok_condition != never) {
 859     throw_if_not_1_xcc( ok_condition, ok);
 860     delayed()->nop();
 861   }
 862   throw_if_not_2( throw_entry_point, Rscratch, ok);
 863 }
 864 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 865                                                 address   throw_entry_point,
 866                                                 Register  Rscratch ) {
 867   Label ok;
 868   if (ok_condition != never) {
 869     throw_if_not_1_x( ok_condition, ok);
 870     delayed()->nop();
 871   }
 872   throw_if_not_2( throw_entry_point, Rscratch, ok);
 873 }
 874 
 875 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 876 // Note: res is still shy of address by array offset into object.
 877 
 878 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 879   assert_not_delayed();
 880 
 881   verify_oop(array);
 882   // sign extend since tos (index) can be a 32bit value
 883   sra(index, G0, index);
 884 
 885   // check array
 886   Label ptr_ok;
 887   tst(array);
 888   throw_if_not_1_x( notZero, ptr_ok );
 889   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
 890   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 891 
 892   Label index_ok;
 893   cmp(index, tmp);
 894   throw_if_not_1_icc( lessUnsigned, index_ok );
 895   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
 896   else                  delayed()->add(array, index, res); // addr - const offset in index
 897   // convention: move aberrant index into G3_scratch for exception message
 898   mov(index, G3_scratch);
 899   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 900 
 901   // add offset if didn't do it in delay slot
 902   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
 903 }
 904 
 905 
 906 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 907   assert_not_delayed();
 908 
 909   // pop array
 910   pop_ptr(array);
 911 
 912   // check array
 913   index_check_without_pop(array, index, index_shift, tmp, res);
 914 }
 915 
 916 
 917 void InterpreterMacroAssembler::get_const(Register Rdst) {
 918   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
 919 }
 920 
 921 
 922 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 923   get_const(Rdst);
 924   ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 925 }
 926 
 927 
 928 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 929   get_constant_pool(Rdst);
 930   ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 931 }
 932 
 933 
 934 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 935   get_constant_pool(Rcpool);
 936   ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
 937 }
 938 
 939 
 940 // unlock if synchronized method
 941 //
 942 // Unlock the receiver if this is a synchronized method.
 943 // Unlock any Java monitors from syncronized blocks.
 944 //
 945 // If there are locked Java monitors
 946 //    If throw_monitor_exception
 947 //       throws IllegalMonitorStateException
 948 //    Else if install_monitor_exception
 949 //       installs IllegalMonitorStateException
 950 //    Else
 951 //       no error processing
 952 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 953                                                               bool throw_monitor_exception,
 954                                                               bool install_monitor_exception) {
 955   Label unlocked, unlock, no_unlock;
 956 
 957   // get the value of _do_not_unlock_if_synchronized into G1_scratch
 958   const Address do_not_unlock_if_synchronized(G2_thread,
 959     JavaThread::do_not_unlock_if_synchronized_offset());
 960   ldbool(do_not_unlock_if_synchronized, G1_scratch);
 961   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
 962 
 963   // check if synchronized method
 964   const Address access_flags(Lmethod, Method::access_flags_offset());
 965   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 966   push(state); // save tos
 967   ld(access_flags, G3_scratch); // Load access flags.
 968   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
 969   br(zero, false, pt, unlocked);
 970   delayed()->nop();
 971 
 972   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 973   // is set.
 974   cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
 975   delayed()->nop();
 976 
 977   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 978   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 979 
 980   //Intel: if (throw_monitor_exception) ... else ...
 981   // Entry already unlocked, need to throw exception
 982   //...
 983 
 984   // pass top-most monitor elem
 985   add( top_most_monitor(), O1 );
 986 
 987   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
 988   br_notnull_short(G3_scratch, pt, unlock);
 989 
 990   if (throw_monitor_exception) {
 991     // Entry already unlocked need to throw an exception
 992     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 993     should_not_reach_here();
 994   } else {
 995     // Monitor already unlocked during a stack unroll.
 996     // If requested, install an illegal_monitor_state_exception.
 997     // Continue with stack unrolling.
 998     if (install_monitor_exception) {
 999       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1000     }
1001     ba_short(unlocked);
1002   }
1003 
1004   bind(unlock);
1005 
1006   unlock_object(O1);
1007 
1008   bind(unlocked);
1009 
1010   // I0, I1: Might contain return value
1011 
1012   // Check that all monitors are unlocked
1013   { Label loop, exception, entry, restart;
1014 
1015     Register Rmptr   = O0;
1016     Register Rtemp   = O1;
1017     Register Rlimit  = Lmonitors;
1018     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1019     assert( (delta & LongAlignmentMask) == 0,
1020             "sizeof BasicObjectLock must be even number of doublewords");
1021 
1022     #ifdef ASSERT
1023     add(top_most_monitor(), Rmptr, delta);
1024     { Label L;
1025       // ensure that Rmptr starts out above (or at) Rlimit
1026       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1027       stop("monitor stack has negative size");
1028       bind(L);
1029     }
1030     #endif
1031     bind(restart);
1032     ba(entry);
1033     delayed()->
1034     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1035 
1036     // Entry is still locked, need to throw exception
1037     bind(exception);
1038     if (throw_monitor_exception) {
1039       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1040       should_not_reach_here();
1041     } else {
1042       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1043       // Unlock does not block, so don't have to worry about the frame
1044       unlock_object(Rmptr);
1045       if (install_monitor_exception) {
1046         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1047       }
1048       ba_short(restart);
1049     }
1050 
1051     bind(loop);
1052     cmp(Rtemp, G0);                             // check if current entry is used
1053     brx(Assembler::notEqual, false, pn, exception);
1054     delayed()->
1055     dec(Rmptr, delta);                          // otherwise advance to next entry
1056     #ifdef ASSERT
1057     { Label L;
1058       // ensure that Rmptr has not somehow stepped below Rlimit
1059       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1060       stop("ran off the end of the monitor stack");
1061       bind(L);
1062     }
1063     #endif
1064     bind(entry);
1065     cmp(Rmptr, Rlimit);                         // check if bottom reached
1066     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1067     delayed()->
1068     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1069   }
1070 
1071   bind(no_unlock);
1072   pop(state);
1073   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1074 }
1075 
1076 void InterpreterMacroAssembler::narrow(Register result) {
1077 
1078   ld_ptr(Address(Lmethod, Method::const_offset()), G3_scratch);
1079   ldub(G3_scratch, in_bytes(ConstMethod::result_type_offset()), G3_scratch);
1080 
1081   Label notBool, notByte, notChar, done;
1082 
1083   // common case first
1084   cmp(G3_scratch, T_INT);
1085   br(Assembler::equal, true, pn, done);
1086   delayed()->nop();
1087 
1088   cmp(G3_scratch, T_BOOLEAN);
1089   br(Assembler::notEqual, true, pn, notBool);
1090   delayed()->cmp(G3_scratch, T_BYTE);
1091   and3(result, 1, result);
1092   ba(done);
1093   delayed()->nop();
1094 
1095   bind(notBool);
1096   // cmp(G3_scratch, T_BYTE);
1097   br(Assembler::notEqual, true, pn, notByte);
1098   delayed()->cmp(G3_scratch, T_CHAR);
1099   sll(result, 24, result);
1100   sra(result, 24, result);
1101   ba(done);
1102   delayed()->nop();
1103 
1104   bind(notByte);
1105   // cmp(G3_scratch, T_CHAR);
1106   sll(result, 16, result);
1107   br(Assembler::notEqual, true, pn, done);
1108   delayed()->sra(result, 16, result);
1109   // sll(result, 16, result);
1110   srl(result, 16, result);
1111 
1112   // bind(notChar);
1113   // must be short, instructions already executed in delay slot
1114   // sll(result, 16, result);
1115   // sra(result, 16, result);
1116 
1117   bind(done);
1118 }
1119 
1120 // remove activation
1121 //
1122 // Unlock the receiver if this is a synchronized method.
1123 // Unlock any Java monitors from syncronized blocks.
1124 // Remove the activation from the stack.
1125 //
1126 // If there are locked Java monitors
1127 //    If throw_monitor_exception
1128 //       throws IllegalMonitorStateException
1129 //    Else if install_monitor_exception
1130 //       installs IllegalMonitorStateException
1131 //    Else
1132 //       no error processing
1133 void InterpreterMacroAssembler::remove_activation(TosState state,
1134                                                   bool throw_monitor_exception,
1135                                                   bool install_monitor_exception) {
1136 
1137   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1138 
1139   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1140   notify_method_exit(false, state, NotifyJVMTI);
1141 
1142   if (StackReservedPages > 0) {
1143     // testing if Stack Reserved Area needs to be re-enabled
1144     Label no_reserved_zone_enabling;
1145     ld_ptr(G2_thread, JavaThread::reserved_stack_activation_offset(), G3_scratch);
1146     cmp_and_brx_short(SP, G3_scratch, Assembler::lessUnsigned, Assembler::pt, no_reserved_zone_enabling);
1147 
1148     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), G2_thread);
1149     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError), G2_thread);
1150     should_not_reach_here();
1151 
1152     bind(no_reserved_zone_enabling);
1153   }
1154 
1155   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1156   verify_thread();
1157 
1158   // return tos
1159   assert(Otos_l1 == Otos_i, "adjust code below");
1160   switch (state) {
1161   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1162   case btos:                                      // fall through
1163   case ztos:                                      // fall through
1164   case ctos:
1165   case stos:                                      // fall through
1166   case atos:                                      // fall through
1167   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1168   case ftos:                                      // fall through
1169   case dtos:                                      // fall through
1170   case vtos: /* nothing to do */                     break;
1171   default  : ShouldNotReachHere();
1172   }
1173 }
1174 
1175 // Lock object
1176 //
1177 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1178 //            it must be initialized with the object to lock
1179 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1180   if (UseHeavyMonitors) {
1181     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1182   }
1183   else {
1184     Register obj_reg = Object;
1185     Register mark_reg = G4_scratch;
1186     Register temp_reg = G1_scratch;
1187     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1188     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1189     Label    done;
1190 
1191     Label slow_case;
1192 
1193     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1194 
1195     // load markOop from object into mark_reg
1196     ld_ptr(mark_addr, mark_reg);
1197 
1198     if (UseBiasedLocking) {
1199       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1200     }
1201 
1202     // get the address of basicLock on stack that will be stored in the object
1203     // we need a temporary register here as we do not want to clobber lock_reg
1204     // (cas clobbers the destination register)
1205     mov(lock_reg, temp_reg);
1206     // set mark reg to be (markOop of object | UNLOCK_VALUE)
1207     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1208     // initialize the box  (Must happen before we update the object mark!)
1209     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1210     // compare and exchange object_addr, markOop | 1, stack address of basicLock
1211     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1212     cas_ptr(mark_addr.base(), mark_reg, temp_reg);
1213 
1214     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1215     cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1216 
1217     // We did not see an unlocked object so try the fast recursive case
1218 
1219     // Check if owner is self by comparing the value in the markOop of object
1220     // with the stack pointer
1221     sub(temp_reg, SP, temp_reg);
1222     sub(temp_reg, STACK_BIAS, temp_reg);
1223     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1224 
1225     // Composite "andcc" test:
1226     // (a) %sp -vs- markword proximity check, and,
1227     // (b) verify mark word LSBs == 0 (Stack-locked).
1228     //
1229     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1230     // Note that the page size used for %sp proximity testing is arbitrary and is
1231     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1232     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1233     // field of the andcc instruction.
1234     andcc (temp_reg, 0xFFFFF003, G0) ;
1235 
1236     // if condition is true we are done and hence we can store 0 in the displaced
1237     // header indicating it is a recursive lock and be done
1238     brx(Assembler::zero, true, Assembler::pt, done);
1239     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1240 
1241     // none of the above fast optimizations worked so we have to get into the
1242     // slow case of monitor enter
1243     bind(slow_case);
1244     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1245 
1246     bind(done);
1247   }
1248 }
1249 
1250 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1251 //
1252 // Argument - lock_reg points to the BasicObjectLock for lock
1253 // Throw IllegalMonitorException if object is not locked by current thread
1254 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1255   if (UseHeavyMonitors) {
1256     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1257   } else {
1258     Register obj_reg = G3_scratch;
1259     Register mark_reg = G4_scratch;
1260     Register displaced_header_reg = G1_scratch;
1261     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1262     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1263     Label    done;
1264 
1265     if (UseBiasedLocking) {
1266       // load the object out of the BasicObjectLock
1267       ld_ptr(lockobj_addr, obj_reg);
1268       biased_locking_exit(mark_addr, mark_reg, done, true);
1269       st_ptr(G0, lockobj_addr);  // free entry
1270     }
1271 
1272     // Test first if we are in the fast recursive case
1273     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1274     ld_ptr(lock_addr, displaced_header_reg);
1275     br_null(displaced_header_reg, true, Assembler::pn, done);
1276     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1277 
1278     // See if it is still a light weight lock, if so we just unlock
1279     // the object and we are done
1280 
1281     if (!UseBiasedLocking) {
1282       // load the object out of the BasicObjectLock
1283       ld_ptr(lockobj_addr, obj_reg);
1284     }
1285 
1286     // we have the displaced header in displaced_header_reg
1287     // we expect to see the stack address of the basicLock in case the
1288     // lock is still a light weight lock (lock_reg)
1289     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1290     cas_ptr(mark_addr.base(), lock_reg, displaced_header_reg);
1291     cmp(lock_reg, displaced_header_reg);
1292     brx(Assembler::equal, true, Assembler::pn, done);
1293     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1294 
1295     // The lock has been converted into a heavy lock and hence
1296     // we need to get into the slow case
1297 
1298     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1299 
1300     bind(done);
1301   }
1302 }
1303 
1304 // Get the method data pointer from the Method* and set the
1305 // specified register to its value.
1306 
1307 void InterpreterMacroAssembler::set_method_data_pointer() {
1308   assert(ProfileInterpreter, "must be profiling interpreter");
1309   Label get_continue;
1310 
1311   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1312   test_method_data_pointer(get_continue);
1313   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1314   bind(get_continue);
1315 }
1316 
1317 // Set the method data pointer for the current bcp.
1318 
1319 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1320   assert(ProfileInterpreter, "must be profiling interpreter");
1321   Label zero_continue;
1322 
1323   // Test MDO to avoid the call if it is NULL.
1324   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1325   test_method_data_pointer(zero_continue);
1326   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1327   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1328   add(ImethodDataPtr, O0, ImethodDataPtr);
1329   bind(zero_continue);
1330 }
1331 
1332 // Test ImethodDataPtr.  If it is null, continue at the specified label
1333 
1334 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1335   assert(ProfileInterpreter, "must be profiling interpreter");
1336   br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1337 }
1338 
1339 void InterpreterMacroAssembler::verify_method_data_pointer() {
1340   assert(ProfileInterpreter, "must be profiling interpreter");
1341 #ifdef ASSERT
1342   Label verify_continue;
1343   test_method_data_pointer(verify_continue);
1344 
1345   // If the mdp is valid, it will point to a DataLayout header which is
1346   // consistent with the bcp.  The converse is highly probable also.
1347   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1348   ld_ptr(Lmethod, Method::const_offset(), O5);
1349   add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1350   add(G3_scratch, O5, G3_scratch);
1351   cmp(Lbcp, G3_scratch);
1352   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1353 
1354   Register temp_reg = O5;
1355   delayed()->mov(ImethodDataPtr, temp_reg);
1356   // %%% should use call_VM_leaf here?
1357   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1358   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1359   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1360   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1361   mov(temp_reg->after_save(), O2);
1362   save_thread(L7_thread_cache);
1363   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1364   delayed()->nop();
1365   restore_thread(L7_thread_cache);
1366   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1367   restore();
1368   bind(verify_continue);
1369 #endif // ASSERT
1370 }
1371 
1372 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1373                                                                 Register method_counters,
1374                                                                 Register Rtmp,
1375                                                                 Label &profile_continue) {
1376   assert(ProfileInterpreter, "must be profiling interpreter");
1377   // Control will flow to "profile_continue" if the counter is less than the
1378   // limit or if we call profile_method()
1379 
1380   Label done;
1381 
1382   // if no method data exists, and the counter is high enough, make one
1383   br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1384 
1385   // Test to see if we should create a method data oop
1386   Address profile_limit(method_counters, MethodCounters::interpreter_profile_limit_offset());
1387   ld(profile_limit, Rtmp);
1388   cmp(invocation_count, Rtmp);
1389   // Use long branches because call_VM() code and following code generated by
1390   // test_backedge_count_for_osr() is large in debug VM.
1391   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1392   delayed()->nop();
1393 
1394   // Build it now.
1395   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1396   set_method_data_pointer_for_bcp();
1397   ba(profile_continue);
1398   delayed()->nop();
1399   bind(done);
1400 }
1401 
1402 // Store a value at some constant offset from the method data pointer.
1403 
1404 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1405   assert(ProfileInterpreter, "must be profiling interpreter");
1406   st_ptr(value, ImethodDataPtr, constant);
1407 }
1408 
1409 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1410                                                       Register bumped_count,
1411                                                       bool decrement) {
1412   assert(ProfileInterpreter, "must be profiling interpreter");
1413 
1414   // Load the counter.
1415   ld_ptr(counter, bumped_count);
1416 
1417   if (decrement) {
1418     // Decrement the register.  Set condition codes.
1419     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1420 
1421     // If the decrement causes the counter to overflow, stay negative
1422     Label L;
1423     brx(Assembler::negative, true, Assembler::pn, L);
1424 
1425     // Store the decremented counter, if it is still negative.
1426     delayed()->st_ptr(bumped_count, counter);
1427     bind(L);
1428   } else {
1429     // Increment the register.  Set carry flag.
1430     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1431 
1432     // If the increment causes the counter to overflow, pull back by 1.
1433     assert(DataLayout::counter_increment == 1, "subc works");
1434     subc(bumped_count, G0, bumped_count);
1435 
1436     // Store the incremented counter.
1437     st_ptr(bumped_count, counter);
1438   }
1439 }
1440 
1441 // Increment the value at some constant offset from the method data pointer.
1442 
1443 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1444                                                       Register bumped_count,
1445                                                       bool decrement) {
1446   // Locate the counter at a fixed offset from the mdp:
1447   Address counter(ImethodDataPtr, constant);
1448   increment_mdp_data_at(counter, bumped_count, decrement);
1449 }
1450 
1451 // Increment the value at some non-fixed (reg + constant) offset from
1452 // the method data pointer.
1453 
1454 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1455                                                       int constant,
1456                                                       Register bumped_count,
1457                                                       Register scratch2,
1458                                                       bool decrement) {
1459   // Add the constant to reg to get the offset.
1460   add(ImethodDataPtr, reg, scratch2);
1461   Address counter(scratch2, constant);
1462   increment_mdp_data_at(counter, bumped_count, decrement);
1463 }
1464 
1465 // Set a flag value at the current method data pointer position.
1466 // Updates a single byte of the header, to avoid races with other header bits.
1467 
1468 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1469                                                 Register scratch) {
1470   assert(ProfileInterpreter, "must be profiling interpreter");
1471   // Load the data header
1472   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1473 
1474   // Set the flag
1475   or3(scratch, flag_constant, scratch);
1476 
1477   // Store the modified header.
1478   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1479 }
1480 
1481 // Test the location at some offset from the method data pointer.
1482 // If it is not equal to value, branch to the not_equal_continue Label.
1483 // Set condition codes to match the nullness of the loaded value.
1484 
1485 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1486                                                  Register value,
1487                                                  Label& not_equal_continue,
1488                                                  Register scratch) {
1489   assert(ProfileInterpreter, "must be profiling interpreter");
1490   ld_ptr(ImethodDataPtr, offset, scratch);
1491   cmp(value, scratch);
1492   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1493   delayed()->tst(scratch);
1494 }
1495 
1496 // Update the method data pointer by the displacement located at some fixed
1497 // offset from the method data pointer.
1498 
1499 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1500                                                      Register scratch) {
1501   assert(ProfileInterpreter, "must be profiling interpreter");
1502   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1503   add(ImethodDataPtr, scratch, ImethodDataPtr);
1504 }
1505 
1506 // Update the method data pointer by the displacement located at the
1507 // offset (reg + offset_of_disp).
1508 
1509 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1510                                                      int offset_of_disp,
1511                                                      Register scratch) {
1512   assert(ProfileInterpreter, "must be profiling interpreter");
1513   add(reg, offset_of_disp, scratch);
1514   ld_ptr(ImethodDataPtr, scratch, scratch);
1515   add(ImethodDataPtr, scratch, ImethodDataPtr);
1516 }
1517 
1518 // Update the method data pointer by a simple constant displacement.
1519 
1520 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1521   assert(ProfileInterpreter, "must be profiling interpreter");
1522   add(ImethodDataPtr, constant, ImethodDataPtr);
1523 }
1524 
1525 // Update the method data pointer for a _ret bytecode whose target
1526 // was not among our cached targets.
1527 
1528 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1529                                                    Register return_bci) {
1530   assert(ProfileInterpreter, "must be profiling interpreter");
1531   push(state);
1532   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1533   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1534   ld_ptr(l_tmp, return_bci);
1535   pop(state);
1536 }
1537 
1538 // Count a taken branch in the bytecodes.
1539 
1540 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1541   if (ProfileInterpreter) {
1542     Label profile_continue;
1543 
1544     // If no method data exists, go to profile_continue.
1545     test_method_data_pointer(profile_continue);
1546 
1547     // We are taking a branch.  Increment the taken count.
1548     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1549 
1550     // The method data pointer needs to be updated to reflect the new target.
1551     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1552     bind (profile_continue);
1553   }
1554 }
1555 
1556 
1557 // Count a not-taken branch in the bytecodes.
1558 
1559 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1560   if (ProfileInterpreter) {
1561     Label profile_continue;
1562 
1563     // If no method data exists, go to profile_continue.
1564     test_method_data_pointer(profile_continue);
1565 
1566     // We are taking a branch.  Increment the not taken count.
1567     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1568 
1569     // The method data pointer needs to be updated to correspond to the
1570     // next bytecode.
1571     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1572     bind (profile_continue);
1573   }
1574 }
1575 
1576 
1577 // Count a non-virtual call in the bytecodes.
1578 
1579 void InterpreterMacroAssembler::profile_call(Register scratch) {
1580   if (ProfileInterpreter) {
1581     Label profile_continue;
1582 
1583     // If no method data exists, go to profile_continue.
1584     test_method_data_pointer(profile_continue);
1585 
1586     // We are making a call.  Increment the count.
1587     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1588 
1589     // The method data pointer needs to be updated to reflect the new target.
1590     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1591     bind (profile_continue);
1592   }
1593 }
1594 
1595 
1596 // Count a final call in the bytecodes.
1597 
1598 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1599   if (ProfileInterpreter) {
1600     Label profile_continue;
1601 
1602     // If no method data exists, go to profile_continue.
1603     test_method_data_pointer(profile_continue);
1604 
1605     // We are making a call.  Increment the count.
1606     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1607 
1608     // The method data pointer needs to be updated to reflect the new target.
1609     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1610     bind (profile_continue);
1611   }
1612 }
1613 
1614 
1615 // Count a virtual call in the bytecodes.
1616 
1617 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1618                                                      Register scratch,
1619                                                      bool receiver_can_be_null) {
1620   if (ProfileInterpreter) {
1621     Label profile_continue;
1622 
1623     // If no method data exists, go to profile_continue.
1624     test_method_data_pointer(profile_continue);
1625 
1626 
1627     Label skip_receiver_profile;
1628     if (receiver_can_be_null) {
1629       Label not_null;
1630       br_notnull_short(receiver, Assembler::pt, not_null);
1631       // We are making a call.  Increment the count for null receiver.
1632       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1633       ba_short(skip_receiver_profile);
1634       bind(not_null);
1635     }
1636 
1637     // Record the receiver type.
1638     record_klass_in_profile(receiver, scratch, true);
1639     bind(skip_receiver_profile);
1640 
1641     // The method data pointer needs to be updated to reflect the new target.
1642 #if INCLUDE_JVMCI
1643     if (MethodProfileWidth == 0) {
1644       update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1645     }
1646 #else
1647     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1648 #endif
1649     bind(profile_continue);
1650   }
1651 }
1652 
1653 #if INCLUDE_JVMCI
1654 void InterpreterMacroAssembler::profile_called_method(Register method, Register scratch) {
1655   assert_different_registers(method, scratch);
1656   if (ProfileInterpreter && MethodProfileWidth > 0) {
1657     Label profile_continue;
1658 
1659     // If no method data exists, go to profile_continue.
1660     test_method_data_pointer(profile_continue);
1661 
1662     Label done;
1663     record_item_in_profile_helper(method, scratch, 0, done, MethodProfileWidth,
1664       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1665     bind(done);
1666 
1667     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1668     bind(profile_continue);
1669   }
1670 }
1671 #endif // INCLUDE_JVMCI
1672 
1673 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register scratch,
1674                                                                Label& done, bool is_virtual_call) {
1675   if (TypeProfileWidth == 0) {
1676     if (is_virtual_call) {
1677       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1678     }
1679 #if INCLUDE_JVMCI
1680     else if (EnableJVMCI) {
1681       increment_mdp_data_at(in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()), scratch);
1682     }
1683 #endif
1684   } else {
1685     int non_profiled_offset = -1;
1686     if (is_virtual_call) {
1687       non_profiled_offset = in_bytes(CounterData::count_offset());
1688     }
1689 #if INCLUDE_JVMCI
1690     else if (EnableJVMCI) {
1691       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1692     }
1693 #endif
1694 
1695     record_item_in_profile_helper(receiver, scratch, 0, done, TypeProfileWidth,
1696       &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1697   }
1698 }
1699 
1700 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item,
1701                                           Register scratch, int start_row, Label& done, int total_rows,
1702                                           OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1703                                           int non_profiled_offset) {
1704   int last_row = total_rows - 1;
1705   assert(start_row <= last_row, "must be work left to do");
1706   // Test this row for both the item and for null.
1707   // Take any of three different outcomes:
1708   //   1. found item => increment count and goto done
1709   //   2. found null => keep looking for case 1, maybe allocate this cell
1710   //   3. found something else => keep looking for cases 1 and 2
1711   // Case 3 is handled by a recursive call.
1712   for (int row = start_row; row <= last_row; row++) {
1713     Label next_test;
1714     bool test_for_null_also = (row == start_row);
1715 
1716     // See if the item is item[n].
1717     int item_offset = in_bytes(item_offset_fn(row));
1718     test_mdp_data_at(item_offset, item, next_test, scratch);
1719     // delayed()->tst(scratch);
1720 
1721     // The receiver is item[n].  Increment count[n].
1722     int count_offset = in_bytes(item_count_offset_fn(row));
1723     increment_mdp_data_at(count_offset, scratch);
1724     ba_short(done);
1725     bind(next_test);
1726 
1727     if (test_for_null_also) {
1728       Label found_null;
1729       // Failed the equality check on item[n]...  Test for null.
1730       if (start_row == last_row) {
1731         // The only thing left to do is handle the null case.
1732         if (non_profiled_offset >= 0) {
1733           brx(Assembler::zero, false, Assembler::pn, found_null);
1734           delayed()->nop();
1735           // Item did not match any saved item and there is no empty row for it.
1736           // Increment total counter to indicate polymorphic case.
1737           increment_mdp_data_at(non_profiled_offset, scratch);
1738           ba_short(done);
1739           bind(found_null);
1740         } else {
1741           brx(Assembler::notZero, false, Assembler::pt, done);
1742           delayed()->nop();
1743         }
1744         break;
1745       }
1746       // Since null is rare, make it be the branch-taken case.
1747       brx(Assembler::zero, false, Assembler::pn, found_null);
1748       delayed()->nop();
1749 
1750       // Put all the "Case 3" tests here.
1751       record_item_in_profile_helper(item, scratch, start_row + 1, done, total_rows,
1752         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1753 
1754       // Found a null.  Keep searching for a matching item,
1755       // but remember that this is an empty (unused) slot.
1756       bind(found_null);
1757     }
1758   }
1759 
1760   // In the fall-through case, we found no matching item, but we
1761   // observed the item[start_row] is NULL.
1762 
1763   // Fill in the item field and increment the count.
1764   int item_offset = in_bytes(item_offset_fn(start_row));
1765   set_mdp_data_at(item_offset, item);
1766   int count_offset = in_bytes(item_count_offset_fn(start_row));
1767   mov(DataLayout::counter_increment, scratch);
1768   set_mdp_data_at(count_offset, scratch);
1769   if (start_row > 0) {
1770     ba_short(done);
1771   }
1772 }
1773 
1774 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1775                                                         Register scratch, bool is_virtual_call) {
1776   assert(ProfileInterpreter, "must be profiling");
1777   Label done;
1778 
1779   record_klass_in_profile_helper(receiver, scratch, done, is_virtual_call);
1780 
1781   bind (done);
1782 }
1783 
1784 
1785 // Count a ret in the bytecodes.
1786 
1787 void InterpreterMacroAssembler::profile_ret(TosState state,
1788                                             Register return_bci,
1789                                             Register scratch) {
1790   if (ProfileInterpreter) {
1791     Label profile_continue;
1792     uint row;
1793 
1794     // If no method data exists, go to profile_continue.
1795     test_method_data_pointer(profile_continue);
1796 
1797     // Update the total ret count.
1798     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1799 
1800     for (row = 0; row < RetData::row_limit(); row++) {
1801       Label next_test;
1802 
1803       // See if return_bci is equal to bci[n]:
1804       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1805                        return_bci, next_test, scratch);
1806 
1807       // return_bci is equal to bci[n].  Increment the count.
1808       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1809 
1810       // The method data pointer needs to be updated to reflect the new target.
1811       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1812       ba_short(profile_continue);
1813       bind(next_test);
1814     }
1815 
1816     update_mdp_for_ret(state, return_bci);
1817 
1818     bind (profile_continue);
1819   }
1820 }
1821 
1822 // Profile an unexpected null in the bytecodes.
1823 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1824   if (ProfileInterpreter) {
1825     Label profile_continue;
1826 
1827     // If no method data exists, go to profile_continue.
1828     test_method_data_pointer(profile_continue);
1829 
1830     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1831 
1832     // The method data pointer needs to be updated.
1833     int mdp_delta = in_bytes(BitData::bit_data_size());
1834     if (TypeProfileCasts) {
1835       mdp_delta = in_bytes(ReceiverTypeData::receiver_type_data_size());
1836     }
1837     update_mdp_by_constant(mdp_delta);
1838 
1839     bind (profile_continue);
1840   }
1841 }
1842 
1843 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1844                                                   Register scratch) {
1845   if (ProfileInterpreter) {
1846     Label profile_continue;
1847 
1848     // If no method data exists, go to profile_continue.
1849     test_method_data_pointer(profile_continue);
1850 
1851     int mdp_delta = in_bytes(BitData::bit_data_size());
1852     if (TypeProfileCasts) {
1853       mdp_delta = in_bytes(ReceiverTypeData::receiver_type_data_size());
1854 
1855       // Record the object type.
1856       record_klass_in_profile(klass, scratch, false);
1857     }
1858 
1859     // The method data pointer needs to be updated.
1860     update_mdp_by_constant(mdp_delta);
1861 
1862     bind (profile_continue);
1863   }
1864 }
1865 
1866 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1867   if (ProfileInterpreter && TypeProfileCasts) {
1868     Label profile_continue;
1869 
1870     // If no method data exists, go to profile_continue.
1871     test_method_data_pointer(profile_continue);
1872 
1873     int count_offset = in_bytes(CounterData::count_offset());
1874     // Back up the address, since we have already bumped the mdp.
1875     count_offset -= in_bytes(ReceiverTypeData::receiver_type_data_size());
1876 
1877     // *Decrement* the counter.  We expect to see zero or small negatives.
1878     increment_mdp_data_at(count_offset, scratch, true);
1879 
1880     bind (profile_continue);
1881   }
1882 }
1883 
1884 // Count the default case of a switch construct.
1885 
1886 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1887   if (ProfileInterpreter) {
1888     Label profile_continue;
1889 
1890     // If no method data exists, go to profile_continue.
1891     test_method_data_pointer(profile_continue);
1892 
1893     // Update the default case count
1894     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1895                           scratch);
1896 
1897     // The method data pointer needs to be updated.
1898     update_mdp_by_offset(
1899                     in_bytes(MultiBranchData::default_displacement_offset()),
1900                     scratch);
1901 
1902     bind (profile_continue);
1903   }
1904 }
1905 
1906 // Count the index'th case of a switch construct.
1907 
1908 void InterpreterMacroAssembler::profile_switch_case(Register index,
1909                                                     Register scratch,
1910                                                     Register scratch2,
1911                                                     Register scratch3) {
1912   if (ProfileInterpreter) {
1913     Label profile_continue;
1914 
1915     // If no method data exists, go to profile_continue.
1916     test_method_data_pointer(profile_continue);
1917 
1918     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1919     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1920     smul(index, scratch, scratch);
1921     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1922 
1923     // Update the case count
1924     increment_mdp_data_at(scratch,
1925                           in_bytes(MultiBranchData::relative_count_offset()),
1926                           scratch2,
1927                           scratch3);
1928 
1929     // The method data pointer needs to be updated.
1930     update_mdp_by_offset(scratch,
1931                      in_bytes(MultiBranchData::relative_displacement_offset()),
1932                      scratch2);
1933 
1934     bind (profile_continue);
1935   }
1936 }
1937 
1938 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
1939   Label not_null, do_nothing, do_update;
1940 
1941   assert_different_registers(obj, mdo_addr.base(), tmp);
1942 
1943   verify_oop(obj);
1944 
1945   ld_ptr(mdo_addr, tmp);
1946 
1947   br_notnull_short(obj, pt, not_null);
1948   or3(tmp, TypeEntries::null_seen, tmp);
1949   ba_short(do_update);
1950 
1951   bind(not_null);
1952   load_klass(obj, obj);
1953 
1954   xor3(obj, tmp, obj);
1955   btst(TypeEntries::type_klass_mask, obj);
1956   // klass seen before, nothing to do. The unknown bit may have been
1957   // set already but no need to check.
1958   brx(zero, false, pt, do_nothing);
1959   delayed()->
1960 
1961   btst(TypeEntries::type_unknown, obj);
1962   // already unknown. Nothing to do anymore.
1963   brx(notZero, false, pt, do_nothing);
1964   delayed()->
1965 
1966   btst(TypeEntries::type_mask, tmp);
1967   brx(zero, true, pt, do_update);
1968   // first time here. Set profile type.
1969   delayed()->or3(tmp, obj, tmp);
1970 
1971   // different than before. Cannot keep accurate profile.
1972   or3(tmp, TypeEntries::type_unknown, tmp);
1973 
1974   bind(do_update);
1975   // update profile
1976   st_ptr(tmp, mdo_addr);
1977 
1978   bind(do_nothing);
1979 }
1980 
1981 void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
1982   if (!ProfileInterpreter) {
1983     return;
1984   }
1985 
1986   assert_different_registers(callee, tmp1, tmp2, ImethodDataPtr);
1987 
1988   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1989     Label profile_continue;
1990 
1991     test_method_data_pointer(profile_continue);
1992 
1993     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1994 
1995     ldub(ImethodDataPtr, in_bytes(DataLayout::tag_offset()) - off_to_start, tmp1);
1996     cmp_and_br_short(tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag, notEqual, pn, profile_continue);
1997 
1998     if (MethodData::profile_arguments()) {
1999       Label done;
2000       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
2001       add(ImethodDataPtr, off_to_args, ImethodDataPtr);
2002 
2003       for (int i = 0; i < TypeProfileArgsLimit; i++) {
2004         if (i > 0 || MethodData::profile_return()) {
2005           // If return value type is profiled we may have no argument to profile
2006           ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
2007           sub(tmp1, i*TypeStackSlotEntries::per_arg_count(), tmp1);
2008           cmp_and_br_short(tmp1, TypeStackSlotEntries::per_arg_count(), less, pn, done);
2009         }
2010         ld_ptr(Address(callee, Method::const_offset()), tmp1);
2011         lduh(Address(tmp1, ConstMethod::size_of_parameters_offset()), tmp1);
2012         // stack offset o (zero based) from the start of the argument
2013         // list, for n arguments translates into offset n - o - 1 from
2014         // the end of the argument list. But there's an extra slot at
2015         // the stop of the stack. So the offset is n - o from Lesp.
2016         ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, tmp2);
2017         sub(tmp1, tmp2, tmp1);
2018 
2019         // Can't use MacroAssembler::argument_address() which needs Gargs to be set up
2020         sll(tmp1, Interpreter::logStackElementSize, tmp1);
2021         ld_ptr(Lesp, tmp1, tmp1);
2022 
2023         Address mdo_arg_addr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
2024         profile_obj_type(tmp1, mdo_arg_addr, tmp2);
2025 
2026         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
2027         add(ImethodDataPtr, to_add, ImethodDataPtr);
2028         off_to_args += to_add;
2029       }
2030 
2031       if (MethodData::profile_return()) {
2032         ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
2033         sub(tmp1, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count(), tmp1);
2034       }
2035 
2036       bind(done);
2037 
2038       if (MethodData::profile_return()) {
2039         // We're right after the type profile for the last
2040         // argument. tmp1 is the number of cells left in the
2041         // CallTypeData/VirtualCallTypeData to reach its end. Non null
2042         // if there's a return to profile.
2043         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
2044         sll(tmp1, exact_log2(DataLayout::cell_size), tmp1);
2045         add(ImethodDataPtr, tmp1, ImethodDataPtr);
2046       }
2047     } else {
2048       assert(MethodData::profile_return(), "either profile call args or call ret");
2049       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
2050     }
2051 
2052     // mdp points right after the end of the
2053     // CallTypeData/VirtualCallTypeData, right after the cells for the
2054     // return value type if there's one.
2055 
2056     bind(profile_continue);
2057   }
2058 }
2059 
2060 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
2061   assert_different_registers(ret, tmp1, tmp2);
2062   if (ProfileInterpreter && MethodData::profile_return()) {
2063     Label profile_continue, done;
2064 
2065     test_method_data_pointer(profile_continue);
2066 
2067     if (MethodData::profile_return_jsr292_only()) {
2068       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
2069 
2070       // If we don't profile all invoke bytecodes we must make sure
2071       // it's a bytecode we indeed profile. We can't go back to the
2072       // begining of the ProfileData we intend to update to check its
2073       // type because we're right after it and we don't known its
2074       // length.
2075       Label do_profile;
2076       ldub(Lbcp, 0, tmp1);
2077       cmp_and_br_short(tmp1, Bytecodes::_invokedynamic, equal, pn, do_profile);
2078       cmp(tmp1, Bytecodes::_invokehandle);
2079       br(equal, false, pn, do_profile);
2080       delayed()->lduh(Lmethod, Method::intrinsic_id_offset_in_bytes(), tmp1);
2081       cmp_and_br_short(tmp1, vmIntrinsics::_compiledLambdaForm, notEqual, pt, profile_continue);
2082 
2083       bind(do_profile);
2084     }
2085 
2086     Address mdo_ret_addr(ImethodDataPtr, -in_bytes(ReturnTypeEntry::size()));
2087     mov(ret, tmp1);
2088     profile_obj_type(tmp1, mdo_ret_addr, tmp2);
2089 
2090     bind(profile_continue);
2091   }
2092 }
2093 
2094 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2095   if (ProfileInterpreter && MethodData::profile_parameters()) {
2096     Label profile_continue, done;
2097 
2098     test_method_data_pointer(profile_continue);
2099 
2100     // Load the offset of the area within the MDO used for
2101     // parameters. If it's negative we're not profiling any parameters.
2102     lduw(ImethodDataPtr, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), tmp1);
2103     cmp_and_br_short(tmp1, 0, less, pn, profile_continue);
2104 
2105     // Compute a pointer to the area for parameters from the offset
2106     // and move the pointer to the slot for the last
2107     // parameters. Collect profiling from last parameter down.
2108     // mdo start + parameters offset + array length - 1
2109 
2110     // Pointer to the parameter area in the MDO
2111     Register mdp = tmp1;
2112     add(ImethodDataPtr, tmp1, mdp);
2113 
2114     // offset of the current profile entry to update
2115     Register entry_offset = tmp2;
2116     // entry_offset = array len in number of cells
2117     ld_ptr(mdp, ArrayData::array_len_offset(), entry_offset);
2118 
2119     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
2120     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
2121 
2122     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
2123     sub(entry_offset, TypeStackSlotEntries::per_arg_count() - (off_base / DataLayout::cell_size), entry_offset);
2124     // entry_offset in bytes
2125     sll(entry_offset, exact_log2(DataLayout::cell_size), entry_offset);
2126 
2127     Label loop;
2128     bind(loop);
2129 
2130     // load offset on the stack from the slot for this parameter
2131     ld_ptr(mdp, entry_offset, tmp3);
2132     sll(tmp3,Interpreter::logStackElementSize, tmp3);
2133     neg(tmp3);
2134     // read the parameter from the local area
2135     ld_ptr(Llocals, tmp3, tmp3);
2136 
2137     // make entry_offset now point to the type field for this parameter
2138     int type_base = in_bytes(ParametersTypeData::type_offset(0));
2139     assert(type_base > off_base, "unexpected");
2140     add(entry_offset, type_base - off_base, entry_offset);
2141 
2142     // profile the parameter
2143     Address arg_type(mdp, entry_offset);
2144     profile_obj_type(tmp3, arg_type, tmp4);
2145 
2146     // go to next parameter
2147     sub(entry_offset, TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base), entry_offset);
2148     cmp_and_br_short(entry_offset, off_base, greaterEqual, pt, loop);
2149 
2150     bind(profile_continue);
2151   }
2152 }
2153 
2154 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
2155 
2156 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
2157                                                       Register Rtemp,
2158                                                       Register Rtemp2 ) {
2159 
2160   Register Rlimit = Lmonitors;
2161   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2162   assert( (delta & LongAlignmentMask) == 0,
2163           "sizeof BasicObjectLock must be even number of doublewords");
2164 
2165   sub( SP,        delta, SP);
2166   sub( Lesp,      delta, Lesp);
2167   sub( Lmonitors, delta, Lmonitors);
2168 
2169   if (!stack_is_empty) {
2170 
2171     // must copy stack contents down
2172 
2173     Label start_copying, next;
2174 
2175     // untested("monitor stack expansion");
2176     compute_stack_base(Rtemp);
2177     ba(start_copying);
2178     delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
2179 
2180     // note: must copy from low memory upwards
2181     // On entry to loop,
2182     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
2183     // Loop mutates Rtemp
2184 
2185     bind( next);
2186 
2187     st_ptr(Rtemp2, Rtemp, 0);
2188     inc(Rtemp, wordSize);
2189     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
2190 
2191     bind( start_copying );
2192 
2193     brx( notEqual, true, pn, next );
2194     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
2195 
2196     // done copying stack
2197   }
2198 }
2199 
2200 // Locals
2201 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2202   assert_not_delayed();
2203   sll(index, Interpreter::logStackElementSize, index);
2204   sub(Llocals, index, index);
2205   ld_ptr(index, 0, dst);
2206   // Note:  index must hold the effective address--the iinc template uses it
2207 }
2208 
2209 // Just like access_local_ptr but the tag is a returnAddress
2210 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2211                                                            Register dst ) {
2212   assert_not_delayed();
2213   sll(index, Interpreter::logStackElementSize, index);
2214   sub(Llocals, index, index);
2215   ld_ptr(index, 0, dst);
2216 }
2217 
2218 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2219   assert_not_delayed();
2220   sll(index, Interpreter::logStackElementSize, index);
2221   sub(Llocals, index, index);
2222   ld(index, 0, dst);
2223   // Note:  index must hold the effective address--the iinc template uses it
2224 }
2225 
2226 
2227 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2228   assert_not_delayed();
2229   sll(index, Interpreter::logStackElementSize, index);
2230   sub(Llocals, index, index);
2231   // First half stored at index n+1 (which grows down from Llocals[n])
2232   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2233 }
2234 
2235 
2236 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2237   assert_not_delayed();
2238   sll(index, Interpreter::logStackElementSize, index);
2239   sub(Llocals, index, index);
2240   ldf(FloatRegisterImpl::S, index, 0, dst);
2241 }
2242 
2243 
2244 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2245   assert_not_delayed();
2246   sll(index, Interpreter::logStackElementSize, index);
2247   sub(Llocals, index, index);
2248   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2249 }
2250 
2251 
2252 #ifdef ASSERT
2253 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2254   Label L;
2255 
2256   assert(Rindex != Rscratch, "Registers cannot be same");
2257   assert(Rindex != Rscratch1, "Registers cannot be same");
2258   assert(Rlimit != Rscratch, "Registers cannot be same");
2259   assert(Rlimit != Rscratch1, "Registers cannot be same");
2260   assert(Rscratch1 != Rscratch, "Registers cannot be same");
2261 
2262   // untested("reg area corruption");
2263   add(Rindex, offset, Rscratch);
2264   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2265   cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2266   stop("regsave area is being clobbered");
2267   bind(L);
2268 }
2269 #endif // ASSERT
2270 
2271 
2272 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2273   assert_not_delayed();
2274   sll(index, Interpreter::logStackElementSize, index);
2275   sub(Llocals, index, index);
2276   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2277   st(src, index, 0);
2278 }
2279 
2280 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2281   assert_not_delayed();
2282   sll(index, Interpreter::logStackElementSize, index);
2283   sub(Llocals, index, index);
2284 #ifdef ASSERT
2285   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2286 #endif
2287   st_ptr(src, index, 0);
2288 }
2289 
2290 
2291 
2292 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2293   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2294 }
2295 
2296 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2297   assert_not_delayed();
2298   sll(index, Interpreter::logStackElementSize, index);
2299   sub(Llocals, index, index);
2300 #ifdef ASSERT
2301   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2302 #endif
2303   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2304 }
2305 
2306 
2307 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2308   assert_not_delayed();
2309   sll(index, Interpreter::logStackElementSize, index);
2310   sub(Llocals, index, index);
2311 #ifdef ASSERT
2312   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2313 #endif
2314   stf(FloatRegisterImpl::S, src, index, 0);
2315 }
2316 
2317 
2318 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2319   assert_not_delayed();
2320   sll(index, Interpreter::logStackElementSize, index);
2321   sub(Llocals, index, index);
2322 #ifdef ASSERT
2323   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2324 #endif
2325   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2326 }
2327 
2328 
2329 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2330   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2331   int rounded_vm_local_words = align_up((int)frame::interpreter_frame_vm_local_words, WordsPerLong);
2332   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2333 }
2334 
2335 
2336 Address InterpreterMacroAssembler::top_most_monitor() {
2337   return Address(FP, top_most_monitor_byte_offset());
2338 }
2339 
2340 
2341 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2342   add( Lesp,      wordSize,                                    Rdest );
2343 }
2344 
2345 void InterpreterMacroAssembler::get_method_counters(Register method,
2346                                                     Register Rcounters,
2347                                                     Label& skip) {
2348   Label has_counters;
2349   Address method_counters(method, in_bytes(Method::method_counters_offset()));
2350   ld_ptr(method_counters, Rcounters);
2351   br_notnull_short(Rcounters, Assembler::pt, has_counters);
2352   call_VM(noreg, CAST_FROM_FN_PTR(address,
2353           InterpreterRuntime::build_method_counters), method);
2354   ld_ptr(method_counters, Rcounters);
2355   br_null(Rcounters, false, Assembler::pn, skip); // No MethodCounters, OutOfMemory
2356   delayed()->nop();
2357   bind(has_counters);
2358 }
2359 
2360 void InterpreterMacroAssembler::increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2361   assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
2362   assert_different_registers(Rcounters, Rtmp, Rtmp2);
2363 
2364   Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2365                                  InvocationCounter::counter_offset());
2366   Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2367                                  InvocationCounter::counter_offset());
2368   int delta = InvocationCounter::count_increment;
2369 
2370   // Load each counter in a register
2371   ld( inv_counter, Rtmp );
2372   ld( be_counter, Rtmp2 );
2373 
2374   assert( is_simm13( delta ), " delta too large.");
2375 
2376   // Add the delta to the invocation counter and store the result
2377   add( Rtmp, delta, Rtmp );
2378 
2379   // Mask the backedge counter
2380   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2381 
2382   // Store value
2383   st( Rtmp, inv_counter);
2384 
2385   // Add invocation counter + backedge counter
2386   add( Rtmp, Rtmp2, Rtmp);
2387 
2388   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2389 }
2390 
2391 void InterpreterMacroAssembler::increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2392   assert(UseCompiler, "incrementing must be useful");
2393   assert_different_registers(Rcounters, Rtmp, Rtmp2);
2394 
2395   Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2396                                  InvocationCounter::counter_offset());
2397   Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2398                                  InvocationCounter::counter_offset());
2399 
2400   int delta = InvocationCounter::count_increment;
2401   // Load each counter in a register
2402   ld( be_counter, Rtmp );
2403   ld( inv_counter, Rtmp2 );
2404 
2405   // Add the delta to the backedge counter
2406   add( Rtmp, delta, Rtmp );
2407 
2408   // Mask the invocation counter, add to backedge counter
2409   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2410 
2411   // and store the result to memory
2412   st( Rtmp, be_counter );
2413 
2414   // Add backedge + invocation counter
2415   add( Rtmp, Rtmp2, Rtmp );
2416 
2417   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2418 }
2419 
2420 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2421                                                              Register method_counters,
2422                                                              Register branch_bcp,
2423                                                              Register Rtmp ) {
2424   Label did_not_overflow;
2425   Label overflow_with_error;
2426   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2427   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2428 
2429   Address limit(method_counters, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()));
2430   ld(limit, Rtmp);
2431   cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2432 
2433   // When ProfileInterpreter is on, the backedge_count comes from the
2434   // MethodData*, which value does not get reset on the call to
2435   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2436   // routine while the method is being compiled, add a second test to make sure
2437   // the overflow function is called only once every overflow_frequency.
2438   if (ProfileInterpreter) {
2439     const int overflow_frequency = 1024;
2440     andcc(backedge_count, overflow_frequency-1, Rtmp);
2441     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2442     delayed()->nop();
2443   }
2444 
2445   // overflow in loop, pass branch bytecode
2446   set(6,Rtmp);
2447   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2448 
2449   // Was an OSR adapter generated?
2450   // O0 = osr nmethod
2451   br_null_short(O0, Assembler::pn, overflow_with_error);
2452 
2453   // Has the nmethod been invalidated already?
2454   ldub(O0, nmethod::state_offset(), O2);
2455   cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, overflow_with_error);
2456 
2457   // migrate the interpreter frame off of the stack
2458 
2459   mov(G2_thread, L7);
2460   // save nmethod
2461   mov(O0, L6);
2462   set_last_Java_frame(SP, noreg);
2463   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2464   reset_last_Java_frame();
2465   mov(L7, G2_thread);
2466 
2467   // move OSR nmethod to I1
2468   mov(L6, I1);
2469 
2470   // OSR buffer to I0
2471   mov(O0, I0);
2472 
2473   // remove the interpreter frame
2474   restore(I5_savedSP, 0, SP);
2475 
2476   // Jump to the osr code.
2477   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2478   jmp(O2, G0);
2479   delayed()->nop();
2480 
2481   bind(overflow_with_error);
2482 
2483   bind(did_not_overflow);
2484 }
2485 
2486 
2487 
2488 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2489   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2490 }
2491 
2492 
2493 // local helper function for the verify_oop_or_return_address macro
2494 static bool verify_return_address(Method* m, int bci) {
2495 #ifndef PRODUCT
2496   address pc = (address)(m->constMethod())
2497              + in_bytes(ConstMethod::codes_offset()) + bci;
2498   // assume it is a valid return address if it is inside m and is preceded by a jsr
2499   if (!m->contains(pc))                                          return false;
2500   address jsr_pc;
2501   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2502   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2503   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2504   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2505 #endif // PRODUCT
2506   return false;
2507 }
2508 
2509 
2510 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2511   if (!VerifyOops)  return;
2512   // the VM documentation for the astore[_wide] bytecode allows
2513   // the TOS to be not only an oop but also a return address
2514   Label test;
2515   Label skip;
2516   // See if it is an address (in the current method):
2517 
2518   mov(reg, Rtmp);
2519   const int log2_bytecode_size_limit = 16;
2520   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2521   br_notnull_short( Rtmp, pt, test );
2522 
2523   // %%% should use call_VM_leaf here?
2524   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2525   save_thread(L7_thread_cache);
2526   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2527   delayed()->nop();
2528   restore_thread(L7_thread_cache);
2529   br_notnull( O0, false, pt, skip );
2530   delayed()->restore();
2531 
2532   // Perform a more elaborate out-of-line call
2533   // Not an address; verify it:
2534   bind(test);
2535   verify_oop(reg);
2536   bind(skip);
2537 }
2538 
2539 
2540 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2541   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2542 }
2543 
2544 
2545 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2546 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2547                                                         int increment, Address mask_addr,
2548                                                         Register scratch1, Register scratch2,
2549                                                         Condition cond, Label *where) {
2550   ld(counter_addr, scratch1);
2551   add(scratch1, increment, scratch1);
2552   ld(mask_addr, scratch2);
2553   andcc(scratch1, scratch2,  G0);
2554   br(cond, false, Assembler::pn, *where);
2555   delayed()->st(scratch1, counter_addr);
2556 }
2557 
2558 // Inline assembly for:
2559 //
2560 // if (thread is in interp_only_mode) {
2561 //   InterpreterRuntime::post_method_entry();
2562 // }
2563 // if (DTraceMethodProbes) {
2564 //   SharedRuntime::dtrace_method_entry(method, receiver);
2565 // }
2566 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2567 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2568 // }
2569 
2570 void InterpreterMacroAssembler::notify_method_entry() {
2571 
2572   // Whenever JVMTI puts a thread in interp_only_mode, method
2573   // entry/exit events are sent for that thread to track stack
2574   // depth.  If it is possible to enter interp_only_mode we add
2575   // the code to check if the event should be sent.
2576   if (JvmtiExport::can_post_interpreter_events()) {
2577     Label L;
2578     Register temp_reg = O5;
2579     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2580     ld(interp_only, temp_reg);
2581     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2582     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2583     bind(L);
2584   }
2585 
2586   {
2587     Register temp_reg = O5;
2588     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2589     call_VM_leaf(noreg,
2590       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2591       G2_thread, Lmethod);
2592   }
2593 
2594   // RedefineClasses() tracing support for obsolete method entry
2595   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2596     call_VM_leaf(noreg,
2597       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2598       G2_thread, Lmethod);
2599   }
2600 }
2601 
2602 
2603 // Inline assembly for:
2604 //
2605 // if (thread is in interp_only_mode) {
2606 //   // save result
2607 //   InterpreterRuntime::post_method_exit();
2608 //   // restore result
2609 // }
2610 // if (DTraceMethodProbes) {
2611 //   SharedRuntime::dtrace_method_exit(thread, method);
2612 // }
2613 //
2614 // Native methods have their result stored in d_tmp and l_tmp
2615 // Java methods have their result stored in the expression stack
2616 
2617 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2618                                                    TosState state,
2619                                                    NotifyMethodExitMode mode) {
2620 
2621   // Whenever JVMTI puts a thread in interp_only_mode, method
2622   // entry/exit events are sent for that thread to track stack
2623   // depth.  If it is possible to enter interp_only_mode we add
2624   // the code to check if the event should be sent.
2625   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2626     Label L;
2627     Register temp_reg = O5;
2628     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2629     ld(interp_only, temp_reg);
2630     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2631 
2632     // Note: frame::interpreter_frame_result has a dependency on how the
2633     // method result is saved across the call to post_method_exit. For
2634     // native methods it assumes the result registers are saved to
2635     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2636     // implementation will need to be updated too.
2637 
2638     save_return_value(state, is_native_method);
2639     call_VM(noreg,
2640             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2641     restore_return_value(state, is_native_method);
2642     bind(L);
2643   }
2644 
2645   {
2646     Register temp_reg = O5;
2647     // Dtrace notification
2648     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2649     save_return_value(state, is_native_method);
2650     call_VM_leaf(
2651       noreg,
2652       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2653       G2_thread, Lmethod);
2654     restore_return_value(state, is_native_method);
2655   }
2656 }
2657 
2658 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2659   if (is_native_call) {
2660     stf(FloatRegisterImpl::D, F0, d_tmp);
2661     stx(O0, l_tmp);
2662   } else {
2663     push(state);
2664   }
2665 }
2666 
2667 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2668   if (is_native_call) {
2669     ldf(FloatRegisterImpl::D, d_tmp, F0);
2670     ldx(l_tmp, O0);
2671   } else {
2672     pop(state);
2673   }
2674 }