1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/interp_masm.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/synchronizer.hpp"
  45 #include "runtime/timer.hpp"
  46 #include "runtime/vframeArray.hpp"
  47 #include "utilities/align.hpp"
  48 #include "utilities/debug.hpp"
  49 #include "utilities/macros.hpp"
  50 
  51 // Size of interpreter code.  Increase if too small.  Interpreter will
  52 // fail with a guarantee ("not enough space for interpreter generation");
  53 // if too small.
  54 // Run with +PrintInterpreter to get the VM to print out the size.
  55 // Max size with JVMTI
  56 // The sethi() instruction generates lots more instructions when shell
  57 // stack limit is unlimited, so that's why this is much bigger.
  58 int TemplateInterpreter::InterpreterCodeSize = 260 * K;
  59 
  60 // Generation of Interpreter
  61 //
  62 // The TemplateInterpreterGenerator generates the interpreter into Interpreter::_code.
  63 
  64 
  65 #define __ _masm->
  66 
  67 
  68 //----------------------------------------------------------------------------------------------------
  69 
  70 // LP64 passes floating point arguments in F1, F3, F5, etc. instead of
  71 // O0, O1, O2 etc..
  72 // Doubles are passed in D0, D2, D4
  73 // We store the signature of the first 16 arguments in the first argument
  74 // slot because it will be overwritten prior to calling the native
  75 // function, with the pointer to the JNIEnv.
  76 // If LP64 there can be up to 16 floating point arguments in registers
  77 // or 6 integer registers.
  78 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  79 
  80   enum {
  81     non_float  = 0,
  82     float_sig  = 1,
  83     double_sig = 2,
  84     sig_mask   = 3
  85   };
  86 
  87   address entry = __ pc();
  88   Argument argv(0, true);
  89 
  90   // We are in the jni transition frame. Save the last_java_frame corresponding to the
  91   // outer interpreter frame
  92   //
  93   __ set_last_Java_frame(FP, noreg);
  94   // make sure the interpreter frame we've pushed has a valid return pc
  95   __ mov(O7, I7);
  96   __ mov(Lmethod, G3_scratch);
  97   __ mov(Llocals, G4_scratch);
  98   __ save_frame(0);
  99   __ mov(G2_thread, L7_thread_cache);
 100   __ add(argv.address_in_frame(), O3);
 101   __ mov(G2_thread, O0);
 102   __ mov(G3_scratch, O1);
 103   __ call(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), relocInfo::runtime_call_type);
 104   __ delayed()->mov(G4_scratch, O2);
 105   __ mov(L7_thread_cache, G2_thread);
 106   __ reset_last_Java_frame();
 107 
 108 
 109   // load the register arguments (the C code packed them as varargs)
 110   Address Sig = argv.address_in_frame();        // Argument 0 holds the signature
 111   __ ld_ptr( Sig, G3_scratch );                   // Get register argument signature word into G3_scratch
 112   __ mov( G3_scratch, G4_scratch);
 113   __ srl( G4_scratch, 2, G4_scratch);             // Skip Arg 0
 114   Label done;
 115   for (Argument ldarg = argv.successor(); ldarg.is_float_register(); ldarg = ldarg.successor()) {
 116     Label NonFloatArg;
 117     Label LoadFloatArg;
 118     Label LoadDoubleArg;
 119     Label NextArg;
 120     Address a = ldarg.address_in_frame();
 121     __ andcc(G4_scratch, sig_mask, G3_scratch);
 122     __ br(Assembler::zero, false, Assembler::pt, NonFloatArg);
 123     __ delayed()->nop();
 124 
 125     __ cmp(G3_scratch, float_sig );
 126     __ br(Assembler::equal, false, Assembler::pt, LoadFloatArg);
 127     __ delayed()->nop();
 128 
 129     __ cmp(G3_scratch, double_sig );
 130     __ br(Assembler::equal, false, Assembler::pt, LoadDoubleArg);
 131     __ delayed()->nop();
 132 
 133     __ bind(NonFloatArg);
 134     // There are only 6 integer register arguments!
 135     if ( ldarg.is_register() )
 136       __ ld_ptr(ldarg.address_in_frame(), ldarg.as_register());
 137     else {
 138     // Optimization, see if there are any more args and get out prior to checking
 139     // all 16 float registers.  My guess is that this is rare.
 140     // If is_register is false, then we are done the first six integer args.
 141       __ br_null_short(G4_scratch, Assembler::pt, done);
 142     }
 143     __ ba(NextArg);
 144     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 145 
 146     __ bind(LoadFloatArg);
 147     __ ldf( FloatRegisterImpl::S, a, ldarg.as_float_register(), 4);
 148     __ ba(NextArg);
 149     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 150 
 151     __ bind(LoadDoubleArg);
 152     __ ldf( FloatRegisterImpl::D, a, ldarg.as_double_register() );
 153     __ ba(NextArg);
 154     __ delayed()->srl( G4_scratch, 2, G4_scratch );
 155 
 156     __ bind(NextArg);
 157   }
 158 
 159   __ bind(done);
 160   __ ret();
 161   __ delayed()->restore(O0, 0, Lscratch);  // caller's Lscratch gets the result handler
 162 
 163   return entry;
 164 }
 165 
 166 void TemplateInterpreterGenerator::generate_counter_overflow(Label& Lcontinue) {
 167 
 168   // Generate code to initiate compilation on the counter overflow.
 169 
 170   // InterpreterRuntime::frequency_counter_overflow takes two arguments,
 171   // the first indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 172   // and the second is only used when the first is true.  We pass zero for both.
 173   // The call returns the address of the verified entry point for the method or NULL
 174   // if the compilation did not complete (either went background or bailed out).
 175   __ set((int)false, O2);
 176   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), O2, O2, true);
 177   // returns verified_entry_point or NULL
 178   // we ignore it in any case
 179   __ ba_short(Lcontinue);
 180 }
 181 
 182 
 183 // End of helpers
 184 
 185 // Various method entries
 186 
 187 // Abstract method entry
 188 // Attempt to execute abstract method. Throw exception
 189 //
 190 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 191   address entry = __ pc();
 192   // abstract method entry
 193   // throw exception
 194   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
 195   // the call_VM checks for exception, so we should never return here.
 196   __ should_not_reach_here();
 197   return entry;
 198 }
 199 
 200 void TemplateInterpreterGenerator::save_native_result(void) {
 201   // result potentially in O0/O1: save it across calls
 202   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 203 
 204   // result potentially in F0/F1: save it across calls
 205   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 206 
 207   // save and restore any potential method result value around the unlocking operation
 208   __ stf(FloatRegisterImpl::D, F0, d_tmp);
 209   __ stx(O0, l_tmp);
 210 }
 211 
 212 void TemplateInterpreterGenerator::restore_native_result(void) {
 213   const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
 214   const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
 215 
 216   // Restore any method result value
 217   __ ldf(FloatRegisterImpl::D, d_tmp, F0);
 218   __ ldx(l_tmp, O0);
 219 }
 220 
 221 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 222   assert(!pass_oop || message == NULL, "either oop or message but not both");
 223   address entry = __ pc();
 224   // expression stack must be empty before entering the VM if an exception happened
 225   __ empty_expression_stack();
 226   // load exception object
 227   __ set((intptr_t)name, G3_scratch);
 228   if (pass_oop) {
 229     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
 230   } else {
 231     __ set((intptr_t)message, G4_scratch);
 232     __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
 233   }
 234   // throw exception
 235   assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
 236   AddressLiteral thrower(Interpreter::throw_exception_entry());
 237   __ jump_to(thrower, G3_scratch);
 238   __ delayed()->nop();
 239   return entry;
 240 }
 241 
 242 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 243   address entry = __ pc();
 244   // expression stack must be empty before entering the VM if an exception
 245   // happened
 246   __ empty_expression_stack();
 247   // load exception object
 248   __ call_VM(Oexception,
 249              CAST_FROM_FN_PTR(address,
 250                               InterpreterRuntime::throw_ClassCastException),
 251              Otos_i);
 252   __ should_not_reach_here();
 253   return entry;
 254 }
 255 
 256 
 257 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 258   address entry = __ pc();
 259   // expression stack must be empty before entering the VM if an exception happened
 260   __ empty_expression_stack();
 261   // convention: expect aberrant index in register G3_scratch, then shuffle the
 262   // index to G4_scratch for the VM call
 263   __ mov(G3_scratch, G4_scratch);
 264   __ set((intptr_t)name, G3_scratch);
 265   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
 266   __ should_not_reach_here();
 267   return entry;
 268 }
 269 
 270 
 271 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 272   address entry = __ pc();
 273   // expression stack must be empty before entering the VM if an exception happened
 274   __ empty_expression_stack();
 275   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 276   __ should_not_reach_here();
 277   return entry;
 278 }
 279 
 280 
 281 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 282   address entry = __ pc();
 283 
 284   if (state == atos) {
 285     __ profile_return_type(O0, G3_scratch, G1_scratch);
 286   }
 287 
 288   // The callee returns with the stack possibly adjusted by adapter transition
 289   // We remove that possible adjustment here.
 290   // All interpreter local registers are untouched. Any result is passed back
 291   // in the O0/O1 or float registers. Before continuing, the arguments must be
 292   // popped from the java expression stack; i.e., Lesp must be adjusted.
 293 
 294   __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
 295 
 296   const Register cache = G3_scratch;
 297   const Register index  = G1_scratch;
 298   __ get_cache_and_index_at_bcp(cache, index, 1, index_size);
 299 
 300   const Register flags = cache;
 301   __ ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset(), flags);
 302   const Register parameter_size = flags;
 303   __ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, parameter_size);  // argument size in words
 304   __ sll(parameter_size, Interpreter::logStackElementSize, parameter_size);     // each argument size in bytes
 305   __ add(Lesp, parameter_size, Lesp);                                           // pop arguments
 306 
 307   __ check_and_handle_popframe(Gtemp);
 308   __ check_and_handle_earlyret(Gtemp);
 309 
 310   __ dispatch_next(state, step);
 311 
 312   return entry;
 313 }
 314 
 315 
 316 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 317   address entry = __ pc();
 318   __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
 319 #if INCLUDE_JVMCI
 320   // Check if we need to take lock at entry of synchronized method.  This can
 321   // only occur on method entry so emit it only for vtos with step 0.
 322   if (UseJVMCICompiler && state == vtos && step == 0) {
 323     Label L;
 324     Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 325     __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 326     __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 327     // Clear flag.
 328     __ stbool(G0, pending_monitor_enter_addr);
 329     // Take lock.
 330     lock_method();
 331     __ bind(L);
 332   } else {
 333 #ifdef ASSERT
 334     if (UseJVMCICompiler) {
 335       Label L;
 336       Address pending_monitor_enter_addr(G2_thread, JavaThread::pending_monitorenter_offset());
 337       __ ldbool(pending_monitor_enter_addr, Gtemp);  // Load if pending monitor enter
 338       __ cmp_and_br_short(Gtemp, G0, Assembler::equal, Assembler::pn, L);
 339       __ stop("unexpected pending monitor in deopt entry");
 340       __ bind(L);
 341     }
 342 #endif
 343   }
 344 #endif
 345   { Label L;
 346     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 347     __ ld_ptr(exception_addr, Gtemp);  // Load pending exception.
 348     __ br_null_short(Gtemp, Assembler::pt, L);
 349     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 350     __ should_not_reach_here();
 351     __ bind(L);
 352   }
 353   __ dispatch_next(state, step);
 354   return entry;
 355 }
 356 
 357 // A result handler converts/unboxes a native call result into
 358 // a java interpreter/compiler result. The current frame is an
 359 // interpreter frame. The activation frame unwind code must be
 360 // consistent with that of TemplateTable::_return(...). In the
 361 // case of native methods, the caller's SP was not modified.
 362 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 363   address entry = __ pc();
 364   Register Itos_i  = Otos_i ->after_save();
 365   Register Itos_l  = Otos_l ->after_save();
 366   Register Itos_l1 = Otos_l1->after_save();
 367   Register Itos_l2 = Otos_l2->after_save();
 368   switch (type) {
 369     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 370     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 371     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 372     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 373     case T_LONG   :
 374     case T_INT    : __ mov(O0, Itos_i);                         break;
 375     case T_VOID   : /* nothing to do */                         break;
 376     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 377     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 378     case T_OBJECT :
 379       __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
 380       __ verify_oop(Itos_i);
 381       break;
 382     default       : ShouldNotReachHere();
 383   }
 384   __ ret();                           // return from interpreter activation
 385   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 386   NOT_PRODUCT(__ emit_int32(0);)       // marker for disassembly
 387   return entry;
 388 }
 389 
 390 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 391   address entry = __ pc();
 392   __ push(state);
 393   __ call_VM(noreg, runtime_entry);
 394   __ dispatch_via(vtos, Interpreter::normal_table(vtos));
 395   return entry;
 396 }
 397 
 398 
 399 //
 400 // Helpers for commoning out cases in the various type of method entries.
 401 //
 402 
 403 // increment invocation count & check for overflow
 404 //
 405 // Note: checking for negative value instead of overflow
 406 //       so we have a 'sticky' overflow test
 407 //
 408 // Lmethod: method
 409 // ??: invocation counter
 410 //
 411 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 412   // Note: In tiered we increment either counters in MethodCounters* or in
 413   // MDO depending if we're profiling or not.
 414   const Register G3_method_counters = G3_scratch;
 415   Label done;
 416 
 417   if (TieredCompilation) {
 418     const int increment = InvocationCounter::count_increment;
 419     Label no_mdo;
 420     if (ProfileInterpreter) {
 421       // If no method data exists, go to profile_continue.
 422       __ ld_ptr(Lmethod, Method::method_data_offset(), G4_scratch);
 423       __ br_null_short(G4_scratch, Assembler::pn, no_mdo);
 424       // Increment counter
 425       Address mdo_invocation_counter(G4_scratch,
 426                                      in_bytes(MethodData::invocation_counter_offset()) +
 427                                      in_bytes(InvocationCounter::counter_offset()));
 428       Address mask(G4_scratch, in_bytes(MethodData::invoke_mask_offset()));
 429       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask,
 430                                  G3_scratch, Lscratch,
 431                                  Assembler::zero, overflow);
 432       __ ba_short(done);
 433     }
 434 
 435     // Increment counter in MethodCounters*
 436     __ bind(no_mdo);
 437     Address invocation_counter(G3_method_counters,
 438             in_bytes(MethodCounters::invocation_counter_offset()) +
 439             in_bytes(InvocationCounter::counter_offset()));
 440     __ get_method_counters(Lmethod, G3_method_counters, done);
 441     Address mask(G3_method_counters, in_bytes(MethodCounters::invoke_mask_offset()));
 442     __ increment_mask_and_jump(invocation_counter, increment, mask,
 443                                G4_scratch, Lscratch,
 444                                Assembler::zero, overflow);
 445     __ bind(done);
 446   } else { // not TieredCompilation
 447     // Update standard invocation counters
 448     __ get_method_counters(Lmethod, G3_method_counters, done);
 449     __ increment_invocation_counter(G3_method_counters, O0, G4_scratch);
 450     if (ProfileInterpreter) {
 451       Address interpreter_invocation_counter(G3_method_counters,
 452             in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
 453       __ ld(interpreter_invocation_counter, G4_scratch);
 454       __ inc(G4_scratch);
 455       __ st(G4_scratch, interpreter_invocation_counter);
 456     }
 457 
 458     if (ProfileInterpreter && profile_method != NULL) {
 459       // Test to see if we should create a method data oop
 460       Address profile_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
 461       __ ld(profile_limit, G1_scratch);
 462       __ cmp_and_br_short(O0, G1_scratch, Assembler::lessUnsigned, Assembler::pn, *profile_method_continue);
 463 
 464       // if no method data exists, go to profile_method
 465       __ test_method_data_pointer(*profile_method);
 466     }
 467 
 468     Address invocation_limit(G3_method_counters, in_bytes(MethodCounters::interpreter_invocation_limit_offset()));
 469     __ ld(invocation_limit, G3_scratch);
 470     __ cmp(O0, G3_scratch);
 471     __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow); // Far distance
 472     __ delayed()->nop();
 473     __ bind(done);
 474   }
 475 }
 476 
 477 // Allocate monitor and lock method (asm interpreter)
 478 // ebx - Method*
 479 //
 480 void TemplateInterpreterGenerator::lock_method() {
 481   __ ld(Lmethod, in_bytes(Method::access_flags_offset()), O0);  // Load access flags.
 482 
 483 #ifdef ASSERT
 484  { Label ok;
 485    __ btst(JVM_ACC_SYNCHRONIZED, O0);
 486    __ br( Assembler::notZero, false, Assembler::pt, ok);
 487    __ delayed()->nop();
 488    __ stop("method doesn't need synchronization");
 489    __ bind(ok);
 490   }
 491 #endif // ASSERT
 492 
 493   // get synchronization object to O0
 494   { Label done;
 495     __ btst(JVM_ACC_STATIC, O0);
 496     __ br( Assembler::zero, true, Assembler::pt, done);
 497     __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
 498 
 499     // lock the mirror, not the Klass*
 500     __ load_mirror(O0, Lmethod);
 501 
 502 #ifdef ASSERT
 503     __ tst(O0);
 504     __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
 505 #endif // ASSERT
 506 
 507     __ bind(done);
 508   }
 509 
 510   __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
 511   __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
 512   // __ untested("lock_object from method entry");
 513   __ lock_object(Lmonitors, O0);
 514 }
 515 
 516 // See if we've got enough room on the stack for locals plus overhead below
 517 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 518 // without going through the signal handler, i.e., reserved and yellow zones
 519 // will not be made usable. The shadow zone must suffice to handle the
 520 // overflow.
 521 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
 522                                                                  Register Rscratch) {
 523   const int page_size = os::vm_page_size();
 524   Label after_frame_check;
 525 
 526   assert_different_registers(Rframe_size, Rscratch);
 527 
 528   __ set(page_size, Rscratch);
 529   __ cmp_and_br_short(Rframe_size, Rscratch, Assembler::lessEqual, Assembler::pt, after_frame_check);
 530 
 531   // Get the stack overflow limit, and in debug, verify it is non-zero.
 532   __ ld_ptr(G2_thread, JavaThread::stack_overflow_limit_offset(), Rscratch);
 533 #ifdef ASSERT
 534   Label limit_ok;
 535   __ br_notnull_short(Rscratch, Assembler::pn, limit_ok);
 536   __ stop("stack overflow limit is zero in generate_stack_overflow_check");
 537   __ bind(limit_ok);
 538 #endif
 539 
 540   // Add in the size of the frame (which is the same as subtracting it from the
 541   // SP, which would take another register.
 542   __ add(Rscratch, Rframe_size, Rscratch);
 543 
 544   // The frame is greater than one page in size, so check against
 545   // the bottom of the stack.
 546   __ cmp_and_brx_short(SP, Rscratch, Assembler::greaterUnsigned, Assembler::pt, after_frame_check);
 547 
 548   // The stack will overflow, throw an exception.
 549 
 550   // Note that SP is restored to sender's sp (in the delay slot). This
 551   // is necessary if the sender's frame is an extended compiled frame
 552   // (see gen_c2i_adapter()) and safer anyway in case of JSR292
 553   // adaptations.
 554 
 555   // Note also that the restored frame is not necessarily interpreted.
 556   // Use the shared runtime version of the StackOverflowError.
 557   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
 558   AddressLiteral stub(StubRoutines::throw_StackOverflowError_entry());
 559   __ jump_to(stub, Rscratch);
 560   __ delayed()->mov(O5_savedSP, SP);
 561 
 562   // If you get to here, then there is enough stack space.
 563   __ bind(after_frame_check);
 564 }
 565 
 566 
 567 //
 568 // Generate a fixed interpreter frame. This is identical setup for interpreted
 569 // methods and for native methods hence the shared code.
 570 
 571 
 572 //----------------------------------------------------------------------------------------------------
 573 // Stack frame layout
 574 //
 575 // When control flow reaches any of the entry types for the interpreter
 576 // the following holds ->
 577 //
 578 // C2 Calling Conventions:
 579 //
 580 // The entry code below assumes that the following registers are set
 581 // when coming in:
 582 //    G5_method: holds the Method* of the method to call
 583 //    Lesp:    points to the TOS of the callers expression stack
 584 //             after having pushed all the parameters
 585 //
 586 // The entry code does the following to setup an interpreter frame
 587 //   pop parameters from the callers stack by adjusting Lesp
 588 //   set O0 to Lesp
 589 //   compute X = (max_locals - num_parameters)
 590 //   bump SP up by X to accommodate the extra locals
 591 //   compute X = max_expression_stack
 592 //               + vm_local_words
 593 //               + 16 words of register save area
 594 //   save frame doing a save sp, -X, sp growing towards lower addresses
 595 //   set Lbcp, Lmethod, LcpoolCache
 596 //   set Llocals to i0
 597 //   set Lmonitors to FP - rounded_vm_local_words
 598 //   set Lesp to Lmonitors - 4
 599 //
 600 //  The frame has now been setup to do the rest of the entry code
 601 
 602 // Try this optimization:  Most method entries could live in a
 603 // "one size fits all" stack frame without all the dynamic size
 604 // calculations.  It might be profitable to do all this calculation
 605 // statically and approximately for "small enough" methods.
 606 
 607 //-----------------------------------------------------------------------------------------------
 608 
 609 // C1 Calling conventions
 610 //
 611 // Upon method entry, the following registers are setup:
 612 //
 613 // g2 G2_thread: current thread
 614 // g5 G5_method: method to activate
 615 // g4 Gargs  : pointer to last argument
 616 //
 617 //
 618 // Stack:
 619 //
 620 // +---------------+ <--- sp
 621 // |               |
 622 // : reg save area :
 623 // |               |
 624 // +---------------+ <--- sp + 0x40
 625 // |               |
 626 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 627 // |               |
 628 // +---------------+ <--- sp + 0x5c
 629 // |               |
 630 // :     free      :
 631 // |               |
 632 // +---------------+ <--- Gargs
 633 // |               |
 634 // :   arguments   :
 635 // |               |
 636 // +---------------+
 637 // |               |
 638 //
 639 //
 640 //
 641 // AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
 642 //
 643 // +---------------+ <--- sp
 644 // |               |
 645 // : reg save area :
 646 // |               |
 647 // +---------------+ <--- sp + 0x40
 648 // |               |
 649 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 650 // |               |
 651 // +---------------+ <--- sp + 0x5c
 652 // |               |
 653 // :               :
 654 // |               | <--- Lesp
 655 // +---------------+ <--- Lmonitors (fp - 0x18)
 656 // |   VM locals   |
 657 // +---------------+ <--- fp
 658 // |               |
 659 // : reg save area :
 660 // |               |
 661 // +---------------+ <--- fp + 0x40
 662 // |               |
 663 // : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
 664 // |               |
 665 // +---------------+ <--- fp + 0x5c
 666 // |               |
 667 // :     free      :
 668 // |               |
 669 // +---------------+
 670 // |               |
 671 // : nonarg locals :
 672 // |               |
 673 // +---------------+
 674 // |               |
 675 // :   arguments   :
 676 // |               | <--- Llocals
 677 // +---------------+ <--- Gargs
 678 // |               |
 679 
 680 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 681   //
 682   //
 683   // The entry code sets up a new interpreter frame in 4 steps:
 684   //
 685   // 1) Increase caller's SP by for the extra local space needed:
 686   //    (check for overflow)
 687   //    Efficient implementation of xload/xstore bytecodes requires
 688   //    that arguments and non-argument locals are in a contiguously
 689   //    addressable memory block => non-argument locals must be
 690   //    allocated in the caller's frame.
 691   //
 692   // 2) Create a new stack frame and register window:
 693   //    The new stack frame must provide space for the standard
 694   //    register save area, the maximum java expression stack size,
 695   //    the monitor slots (0 slots initially), and some frame local
 696   //    scratch locations.
 697   //
 698   // 3) The following interpreter activation registers must be setup:
 699   //    Lesp       : expression stack pointer
 700   //    Lbcp       : bytecode pointer
 701   //    Lmethod    : method
 702   //    Llocals    : locals pointer
 703   //    Lmonitors  : monitor pointer
 704   //    LcpoolCache: constant pool cache
 705   //
 706   // 4) Initialize the non-argument locals if necessary:
 707   //    Non-argument locals may need to be initialized to NULL
 708   //    for GC to work. If the oop-map information is accurate
 709   //    (in the absence of the JSR problem), no initialization
 710   //    is necessary.
 711   //
 712   // (gri - 2/25/2000)
 713 
 714 
 715   int rounded_vm_local_words = align_up((int)frame::interpreter_frame_vm_local_words, WordsPerLong );
 716 
 717   const int extra_space =
 718     rounded_vm_local_words +                   // frame local scratch space
 719     Method::extra_stack_entries() +            // extra stack for jsr 292
 720     frame::memory_parameter_word_sp_offset +   // register save area
 721     (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
 722 
 723   const Register Glocals_size = G3;
 724   const Register RconstMethod = Glocals_size;
 725   const Register Otmp1 = O3;
 726   const Register Otmp2 = O4;
 727   // Lscratch can't be used as a temporary because the call_stub uses
 728   // it to assert that the stack frame was setup correctly.
 729   const Address constMethod       (G5_method, Method::const_offset());
 730   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
 731 
 732   __ ld_ptr( constMethod, RconstMethod );
 733   __ lduh( size_of_parameters, Glocals_size);
 734 
 735   // Gargs points to first local + BytesPerWord
 736   // Set the saved SP after the register window save
 737   //
 738   assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
 739   __ sll(Glocals_size, Interpreter::logStackElementSize, Otmp1);
 740   __ add(Gargs, Otmp1, Gargs);
 741 
 742   if (native_call) {
 743     __ calc_mem_param_words( Glocals_size, Gframe_size );
 744     __ add( Gframe_size,  extra_space, Gframe_size);
 745     __ round_to( Gframe_size, WordsPerLong );
 746     __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
 747 
 748     // Native calls don't need the stack size check since they have no
 749     // expression stack and the arguments are already on the stack and
 750     // we only add a handful of words to the stack.
 751   } else {
 752 
 753     //
 754     // Compute number of locals in method apart from incoming parameters
 755     //
 756     const Address size_of_locals(Otmp1, ConstMethod::size_of_locals_offset());
 757     __ ld_ptr(constMethod, Otmp1);
 758     __ lduh(size_of_locals, Otmp1);
 759     __ sub(Otmp1, Glocals_size, Glocals_size);
 760     __ round_to(Glocals_size, WordsPerLong);
 761     __ sll(Glocals_size, Interpreter::logStackElementSize, Glocals_size);
 762 
 763     // See if the frame is greater than one page in size. If so,
 764     // then we need to verify there is enough stack space remaining.
 765     // Frame_size = (max_stack + extra_space) * BytesPerWord;
 766     __ ld_ptr(constMethod, Gframe_size);
 767     __ lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);
 768     __ add(Gframe_size, extra_space, Gframe_size);
 769     __ round_to(Gframe_size, WordsPerLong);
 770     __ sll(Gframe_size, Interpreter::logStackElementSize, Gframe_size);
 771 
 772     // Add in java locals size for stack overflow check only
 773     __ add(Gframe_size, Glocals_size, Gframe_size);
 774 
 775     const Register Otmp2 = O4;
 776     assert_different_registers(Otmp1, Otmp2, O5_savedSP);
 777     generate_stack_overflow_check(Gframe_size, Otmp1);
 778 
 779     __ sub(Gframe_size, Glocals_size, Gframe_size);
 780 
 781     //
 782     // bump SP to accommodate the extra locals
 783     //
 784     __ sub(SP, Glocals_size, SP);
 785   }
 786 
 787   //
 788   // now set up a stack frame with the size computed above
 789   //
 790   __ neg( Gframe_size );
 791   __ save( SP, Gframe_size, SP );
 792 
 793   //
 794   // now set up all the local cache registers
 795   //
 796   // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
 797   // that all present references to Lbyte_code initialize the register
 798   // immediately before use
 799   if (native_call) {
 800     __ mov(G0, Lbcp);
 801   } else {
 802     __ ld_ptr(G5_method, Method::const_offset(), Lbcp);
 803     __ add(Lbcp, in_bytes(ConstMethod::codes_offset()), Lbcp);
 804   }
 805   __ mov( G5_method, Lmethod);                 // set Lmethod
 806   // Get mirror and store it in the frame as GC root for this Method*
 807   Register mirror = LcpoolCache;
 808   __ load_mirror(mirror, Lmethod);
 809   __ st_ptr(mirror, FP, (frame::interpreter_frame_mirror_offset * wordSize) + STACK_BIAS);
 810   __ get_constant_pool_cache(LcpoolCache);     // set LcpoolCache
 811   __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
 812   __ add(Lmonitors, STACK_BIAS, Lmonitors);    // Account for 64 bit stack bias
 813   __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
 814 
 815   // setup interpreter activation registers
 816   __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
 817 
 818   if (ProfileInterpreter) {
 819     __ set_method_data_pointer();
 820   }
 821 
 822 }
 823 
 824 // Method entry for java.lang.ref.Reference.get.
 825 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 826 #if INCLUDE_ALL_GCS
 827   // Code: _aload_0, _getfield, _areturn
 828   // parameter size = 1
 829   //
 830   // The code that gets generated by this routine is split into 2 parts:
 831   //    1. The "intrinsified" code for G1 (or any SATB based GC),
 832   //    2. The slow path - which is an expansion of the regular method entry.
 833   //
 834   // Notes:-
 835   // * In the G1 code we do not check whether we need to block for
 836   //   a safepoint. If G1 is enabled then we must execute the specialized
 837   //   code for Reference.get (except when the Reference object is null)
 838   //   so that we can log the value in the referent field with an SATB
 839   //   update buffer.
 840   //   If the code for the getfield template is modified so that the
 841   //   G1 pre-barrier code is executed when the current method is
 842   //   Reference.get() then going through the normal method entry
 843   //   will be fine.
 844   // * The G1 code can, however, check the receiver object (the instance
 845   //   of java.lang.Reference) and jump to the slow path if null. If the
 846   //   Reference object is null then we obviously cannot fetch the referent
 847   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 848   //   regular method entry code to generate the NPE.
 849   //
 850   // This code is based on generate_accessor_enty.
 851 
 852   address entry = __ pc();
 853 
 854   const int referent_offset = java_lang_ref_Reference::referent_offset;
 855   guarantee(referent_offset > 0, "referent offset not initialized");
 856 
 857   if (UseG1GC) {
 858      Label slow_path;
 859 
 860     // In the G1 code we don't check if we need to reach a safepoint. We
 861     // continue and the thread will safepoint at the next bytecode dispatch.
 862 
 863     // Check if local 0 != NULL
 864     // If the receiver is null then it is OK to jump to the slow path.
 865     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 866     // check if local 0 == NULL and go the slow path
 867     __ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
 868 
 869 
 870     // Load the value of the referent field.
 871     if (Assembler::is_simm13(referent_offset)) {
 872       __ load_heap_oop(Otos_i, referent_offset, Otos_i);
 873     } else {
 874       __ set(referent_offset, G3_scratch);
 875       __ load_heap_oop(Otos_i, G3_scratch, Otos_i);
 876     }
 877 
 878     // Generate the G1 pre-barrier code to log the value of
 879     // the referent field in an SATB buffer. Note with
 880     // these parameters the pre-barrier does not generate
 881     // the load of the previous value
 882 
 883     __ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
 884                             Otos_i /* pre_val */,
 885                             G3_scratch /* tmp */,
 886                             true /* preserve_o_regs */);
 887 
 888     // _areturn
 889     __ retl();                      // return from leaf routine
 890     __ delayed()->mov(O5_savedSP, SP);
 891 
 892     // Generate regular method entry
 893     __ bind(slow_path);
 894     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 895     return entry;
 896   }
 897 #endif // INCLUDE_ALL_GCS
 898 
 899   // If G1 is not enabled then attempt to go through the accessor entry point
 900   // Reference.get is an accessor
 901   return NULL;
 902 }
 903 
 904 /**
 905  * Method entry for static native methods:
 906  *   int java.util.zip.CRC32.update(int crc, int b)
 907  */
 908 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
 909 
 910   if (UseCRC32Intrinsics) {
 911     address entry = __ pc();
 912 
 913     Label L_slow_path;
 914     // If we need a safepoint check, generate full interpreter entry.
 915     ExternalAddress state(SafepointSynchronize::address_of_state());
 916     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
 917     __ set(SafepointSynchronize::_not_synchronized, O3);
 918     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
 919 
 920     // Load parameters
 921     const Register crc   = O0; // initial crc
 922     const Register val   = O1; // byte to update with
 923     const Register table = O2; // address of 256-entry lookup table
 924 
 925     __ ldub(Gargs, 3, val);
 926     __ lduw(Gargs, 8, crc);
 927 
 928     __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
 929 
 930     __ not1(crc); // ~crc
 931     __ clruwu(crc);
 932     __ update_byte_crc32(crc, val, table);
 933     __ not1(crc); // ~crc
 934 
 935     // result in O0
 936     __ retl();
 937     __ delayed()->nop();
 938 
 939     // generate a vanilla native entry as the slow path
 940     __ bind(L_slow_path);
 941     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 942     return entry;
 943   }
 944   return NULL;
 945 }
 946 
 947 /**
 948  * Method entry for static native methods:
 949  *   int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
 950  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
 951  */
 952 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
 953 
 954   if (UseCRC32Intrinsics) {
 955     address entry = __ pc();
 956 
 957     Label L_slow_path;
 958     // If we need a safepoint check, generate full interpreter entry.
 959     ExternalAddress state(SafepointSynchronize::address_of_state());
 960     __ set(ExternalAddress(SafepointSynchronize::address_of_state()), O2);
 961     __ set(SafepointSynchronize::_not_synchronized, O3);
 962     __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pt, L_slow_path);
 963 
 964     // Load parameters from the stack
 965     const Register crc    = O0; // initial crc
 966     const Register buf    = O1; // source java byte array address
 967     const Register len    = O2; // len
 968     const Register offset = O3; // offset
 969 
 970     // Arguments are reversed on java expression stack
 971     // Calculate address of start element
 972     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
 973       __ lduw(Gargs, 0,  len);
 974       __ lduw(Gargs, 8,  offset);
 975       __ ldx( Gargs, 16, buf);
 976       __ lduw(Gargs, 32, crc);
 977       __ add(buf, offset, buf);
 978     } else {
 979       __ lduw(Gargs, 0,  len);
 980       __ lduw(Gargs, 8,  offset);
 981       __ ldx( Gargs, 16, buf);
 982       __ lduw(Gargs, 24, crc);
 983       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
 984       __ add(buf, offset, buf);
 985     }
 986 
 987     // Call the crc32 kernel
 988     __ MacroAssembler::save_thread(L7_thread_cache);
 989     __ kernel_crc32(crc, buf, len, O3);
 990     __ MacroAssembler::restore_thread(L7_thread_cache);
 991 
 992     // result in O0
 993     __ retl();
 994     __ delayed()->nop();
 995 
 996     // generate a vanilla native entry as the slow path
 997     __ bind(L_slow_path);
 998     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native));
 999     return entry;
1000   }
1001   return NULL;
1002 }
1003 
1004 /**
1005  * Method entry for intrinsic-candidate (non-native) methods:
1006  *   int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
1007  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
1008  * Unlike CRC32, CRC32C does not have any methods marked as native
1009  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1010  */
1011 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1012 
1013   if (UseCRC32CIntrinsics) {
1014     address entry = __ pc();
1015 
1016     // Load parameters from the stack
1017     const Register crc    = O0; // initial crc
1018     const Register buf    = O1; // source java byte array address
1019     const Register offset = O2; // offset
1020     const Register end    = O3; // index of last element to process
1021     const Register len    = O2; // len argument to the kernel
1022     const Register table  = O3; // crc32c lookup table address
1023 
1024     // Arguments are reversed on java expression stack
1025     // Calculate address of start element
1026     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) {
1027       __ lduw(Gargs, 0,  end);
1028       __ lduw(Gargs, 8,  offset);
1029       __ ldx( Gargs, 16, buf);
1030       __ lduw(Gargs, 32, crc);
1031       __ add(buf, offset, buf);
1032       __ sub(end, offset, len);
1033     } else {
1034       __ lduw(Gargs, 0,  end);
1035       __ lduw(Gargs, 8,  offset);
1036       __ ldx( Gargs, 16, buf);
1037       __ lduw(Gargs, 24, crc);
1038       __ add(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE), buf); // account for the header size
1039       __ add(buf, offset, buf);
1040       __ sub(end, offset, len);
1041     }
1042 
1043     // Call the crc32c kernel
1044     __ MacroAssembler::save_thread(L7_thread_cache);
1045     __ kernel_crc32c(crc, buf, len, table);
1046     __ MacroAssembler::restore_thread(L7_thread_cache);
1047 
1048     // result in O0
1049     __ retl();
1050     __ delayed()->nop();
1051 
1052     return entry;
1053   }
1054   return NULL;
1055 }
1056 
1057 /* Math routines only partially supported.
1058  *
1059  *   Providing support for fma (float/double) only.
1060  */
1061 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind)
1062 {
1063   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
1064 
1065   address entry = __ pc();
1066 
1067   switch (kind) {
1068     case Interpreter::java_lang_math_fmaF:
1069       if (UseFMA) {
1070         // float .fma(float a, float b, float c)
1071         const FloatRegister ra = F1;
1072         const FloatRegister rb = F2;
1073         const FloatRegister rc = F3;
1074         const FloatRegister rd = F0; // Result.
1075 
1076         __ ldf(FloatRegisterImpl::S, Gargs,  0, rc);
1077         __ ldf(FloatRegisterImpl::S, Gargs,  8, rb);
1078         __ ldf(FloatRegisterImpl::S, Gargs, 16, ra);
1079 
1080         __ fmadd(FloatRegisterImpl::S, ra, rb, rc, rd);
1081         __ retl();  // Result in F0 (rd).
1082         __ delayed()->mov(O5_savedSP, SP);
1083 
1084         return entry;
1085       }
1086       break;
1087     case Interpreter::java_lang_math_fmaD:
1088       if (UseFMA) {
1089         // double .fma(double a, double b, double c)
1090         const FloatRegister ra = F2; // D1
1091         const FloatRegister rb = F4; // D2
1092         const FloatRegister rc = F6; // D3
1093         const FloatRegister rd = F0; // D0 Result.
1094 
1095         __ ldf(FloatRegisterImpl::D, Gargs,  0, rc);
1096         __ ldf(FloatRegisterImpl::D, Gargs, 16, rb);
1097         __ ldf(FloatRegisterImpl::D, Gargs, 32, ra);
1098 
1099         __ fmadd(FloatRegisterImpl::D, ra, rb, rc, rd);
1100         __ retl();  // Result in D0 (rd).
1101         __ delayed()->mov(O5_savedSP, SP);
1102 
1103         return entry;
1104       }
1105       break;
1106     default:
1107       break;
1108   }
1109   return NULL;
1110 }
1111 
1112 // TODO: rather than touching all pages, check against stack_overflow_limit and bang yellow page to
1113 // generate exception
1114 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1115   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1116   // Note that we do the banging after the frame is setup, since the exception
1117   // handling code expects to find a valid interpreter frame on the stack.
1118   // Doing the banging earlier fails if the caller frame is not an interpreter
1119   // frame.
1120   // (Also, the exception throwing code expects to unlock any synchronized
1121   // method receiver, so do the banging after locking the receiver.)
1122 
1123   // Bang each page in the shadow zone. We can't assume it's been done for
1124   // an interpreter frame with greater than a page of locals, so each page
1125   // needs to be checked.  Only true for non-native.
1126   if (UseStackBanging) {
1127     const int page_size = os::vm_page_size();
1128     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1129     const int start_page = native_call ? n_shadow_pages : 1;
1130     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1131       __ bang_stack_with_offset(pages*page_size);
1132     }
1133   }
1134 }
1135 
1136 //
1137 // Interpreter stub for calling a native method. (asm interpreter)
1138 // This sets up a somewhat different looking stack for calling the native method
1139 // than the typical interpreter frame setup.
1140 //
1141 
1142 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1143   address entry = __ pc();
1144 
1145   // the following temporary registers are used during frame creation
1146   const Register Gtmp1 = G3_scratch ;
1147   const Register Gtmp2 = G1_scratch;
1148   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1149 
1150   // make sure registers are different!
1151   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1152 
1153   const Address Laccess_flags(Lmethod, Method::access_flags_offset());
1154 
1155   const Register Glocals_size = G3;
1156   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1157 
1158   // make sure method is native & not abstract
1159   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1160 #ifdef ASSERT
1161   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1162   { Label L;
1163     __ btst(JVM_ACC_NATIVE, Gtmp1);
1164     __ br(Assembler::notZero, false, Assembler::pt, L);
1165     __ delayed()->nop();
1166     __ stop("tried to execute non-native method as native");
1167     __ bind(L);
1168   }
1169   { Label L;
1170     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1171     __ br(Assembler::zero, false, Assembler::pt, L);
1172     __ delayed()->nop();
1173     __ stop("tried to execute abstract method as non-abstract");
1174     __ bind(L);
1175   }
1176 #endif // ASSERT
1177 
1178  // generate the code to allocate the interpreter stack frame
1179   generate_fixed_frame(true);
1180 
1181   //
1182   // No locals to initialize for native method
1183   //
1184 
1185   // this slot will be set later, we initialize it to null here just in
1186   // case we get a GC before the actual value is stored later
1187   __ st_ptr(G0, FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS);
1188 
1189   const Address do_not_unlock_if_synchronized(G2_thread,
1190     JavaThread::do_not_unlock_if_synchronized_offset());
1191   // Since at this point in the method invocation the exception handler
1192   // would try to exit the monitor of synchronized methods which hasn't
1193   // been entered yet, we set the thread local variable
1194   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1195   // runtime, exception handling i.e. unlock_if_synchronized_method will
1196   // check this thread local flag.
1197   // This flag has two effects, one is to force an unwind in the topmost
1198   // interpreter frame and not perform an unlock while doing so.
1199 
1200   __ movbool(true, G3_scratch);
1201   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1202 
1203   // increment invocation counter and check for overflow
1204   //
1205   // Note: checking for negative value instead of overflow
1206   //       so we have a 'sticky' overflow test (may be of
1207   //       importance as soon as we have true MT/MP)
1208   Label invocation_counter_overflow;
1209   Label Lcontinue;
1210   if (inc_counter) {
1211     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1212 
1213   }
1214   __ bind(Lcontinue);
1215 
1216   bang_stack_shadow_pages(true);
1217 
1218   // reset the _do_not_unlock_if_synchronized flag
1219   __ stbool(G0, do_not_unlock_if_synchronized);
1220 
1221   // check for synchronized methods
1222   // Must happen AFTER invocation_counter check and stack overflow check,
1223   // so method is not locked if overflows.
1224 
1225   if (synchronized) {
1226     lock_method();
1227   } else {
1228 #ifdef ASSERT
1229     { Label ok;
1230       __ ld(Laccess_flags, O0);
1231       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1232       __ br( Assembler::zero, false, Assembler::pt, ok);
1233       __ delayed()->nop();
1234       __ stop("method needs synchronization");
1235       __ bind(ok);
1236     }
1237 #endif // ASSERT
1238   }
1239 
1240 
1241   // start execution
1242   __ verify_thread();
1243 
1244   // JVMTI support
1245   __ notify_method_entry();
1246 
1247   // native call
1248 
1249   // (note that O0 is never an oop--at most it is a handle)
1250   // It is important not to smash any handles created by this call,
1251   // until any oop handle in O0 is dereferenced.
1252 
1253   // (note that the space for outgoing params is preallocated)
1254 
1255   // get signature handler
1256   { Label L;
1257     Address signature_handler(Lmethod, Method::signature_handler_offset());
1258     __ ld_ptr(signature_handler, G3_scratch);
1259     __ br_notnull_short(G3_scratch, Assembler::pt, L);
1260     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
1261     __ ld_ptr(signature_handler, G3_scratch);
1262     __ bind(L);
1263   }
1264 
1265   // Push a new frame so that the args will really be stored in
1266   // Copy a few locals across so the new frame has the variables
1267   // we need but these values will be dead at the jni call and
1268   // therefore not gc volatile like the values in the current
1269   // frame (Lmethod in particular)
1270 
1271   // Flush the method pointer to the register save area
1272   __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
1273   __ mov(Llocals, O1);
1274 
1275   // calculate where the mirror handle body is allocated in the interpreter frame:
1276   __ add(FP, (frame::interpreter_frame_oop_temp_offset * wordSize) + STACK_BIAS, O2);
1277 
1278   // Calculate current frame size
1279   __ sub(SP, FP, O3);         // Calculate negative of current frame size
1280   __ save(SP, O3, SP);        // Allocate an identical sized frame
1281 
1282   // Note I7 has leftover trash. Slow signature handler will fill it in
1283   // should we get there. Normal jni call will set reasonable last_Java_pc
1284   // below (and fix I7 so the stack trace doesn't have a meaningless frame
1285   // in it).
1286 
1287   // Load interpreter frame's Lmethod into same register here
1288 
1289   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1290 
1291   __ mov(I1, Llocals);
1292   __ mov(I2, Lscratch2);     // save the address of the mirror
1293 
1294 
1295   // ONLY Lmethod and Llocals are valid here!
1296 
1297   // call signature handler, It will move the arg properly since Llocals in current frame
1298   // matches that in outer frame
1299 
1300   __ callr(G3_scratch, 0);
1301   __ delayed()->nop();
1302 
1303   // Result handler is in Lscratch
1304 
1305   // Reload interpreter frame's Lmethod since slow signature handler may block
1306   __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
1307 
1308   { Label not_static;
1309 
1310     __ ld(Laccess_flags, O0);
1311     __ btst(JVM_ACC_STATIC, O0);
1312     __ br( Assembler::zero, false, Assembler::pt, not_static);
1313     // get native function entry point(O0 is a good temp until the very end)
1314     __ delayed()->ld_ptr(Lmethod, in_bytes(Method::native_function_offset()), O0);
1315     // for static methods insert the mirror argument
1316     __ load_mirror(O1, Lmethod);
1317 #ifdef ASSERT
1318     if (!PrintSignatureHandlers)  // do not dirty the output with this
1319     { Label L;
1320       __ br_notnull_short(O1, Assembler::pt, L);
1321       __ stop("mirror is missing");
1322       __ bind(L);
1323     }
1324 #endif // ASSERT
1325     __ st_ptr(O1, Lscratch2, 0);
1326     __ mov(Lscratch2, O1);
1327     __ bind(not_static);
1328   }
1329 
1330   // At this point, arguments have been copied off of stack into
1331   // their JNI positions, which are O1..O5 and SP[68..].
1332   // Oops are boxed in-place on the stack, with handles copied to arguments.
1333   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
1334 
1335 #ifdef ASSERT
1336   { Label L;
1337     __ br_notnull_short(O0, Assembler::pt, L);
1338     __ stop("native entry point is missing");
1339     __ bind(L);
1340   }
1341 #endif // ASSERT
1342 
1343   //
1344   // setup the frame anchor
1345   //
1346   // The scavenge function only needs to know that the PC of this frame is
1347   // in the interpreter method entry code, it doesn't need to know the exact
1348   // PC and hence we can use O7 which points to the return address from the
1349   // previous call in the code stream (signature handler function)
1350   //
1351   // The other trick is we set last_Java_sp to FP instead of the usual SP because
1352   // we have pushed the extra frame in order to protect the volatile register(s)
1353   // in that frame when we return from the jni call
1354   //
1355 
1356   __ set_last_Java_frame(FP, O7);
1357   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
1358                    // not meaningless information that'll confuse me.
1359 
1360   // flush the windows now. We don't care about the current (protection) frame
1361   // only the outer frames
1362 
1363   __ flushw();
1364 
1365   // mark windows as flushed
1366   Address flags(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1367   __ set(JavaFrameAnchor::flushed, G3_scratch);
1368   __ st(G3_scratch, flags);
1369 
1370   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
1371 
1372   Address thread_state(G2_thread, JavaThread::thread_state_offset());
1373 #ifdef ASSERT
1374   { Label L;
1375     __ ld(thread_state, G3_scratch);
1376     __ cmp_and_br_short(G3_scratch, _thread_in_Java, Assembler::equal, Assembler::pt, L);
1377     __ stop("Wrong thread state in native stub");
1378     __ bind(L);
1379   }
1380 #endif // ASSERT
1381   __ set(_thread_in_native, G3_scratch);
1382   __ st(G3_scratch, thread_state);
1383 
1384   // Call the jni method, using the delay slot to set the JNIEnv* argument.
1385   __ save_thread(L7_thread_cache); // save Gthread
1386   __ callr(O0, 0);
1387   __ delayed()->
1388      add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
1389 
1390   // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
1391 
1392   __ restore_thread(L7_thread_cache); // restore G2_thread
1393   __ reinit_heapbase();
1394 
1395   // must we block?
1396 
1397   // Block, if necessary, before resuming in _thread_in_Java state.
1398   // In order for GC to work, don't clear the last_Java_sp until after blocking.
1399   { Label no_block;
1400     AddressLiteral sync_state(SafepointSynchronize::address_of_state());
1401 
1402     // Switch thread to "native transition" state before reading the synchronization state.
1403     // This additional state is necessary because reading and testing the synchronization
1404     // state is not atomic w.r.t. GC, as this scenario demonstrates:
1405     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1406     //     VM thread changes sync state to synchronizing and suspends threads for GC.
1407     //     Thread A is resumed to finish this native method, but doesn't block here since it
1408     //     didn't see any synchronization is progress, and escapes.
1409     __ set(_thread_in_native_trans, G3_scratch);
1410     __ st(G3_scratch, thread_state);
1411     if (os::is_MP()) {
1412       if (UseMembar) {
1413         // Force this write out before the read below
1414         __ membar(Assembler::StoreLoad);
1415       } else {
1416         // Write serialization page so VM thread can do a pseudo remote membar.
1417         // We use the current thread pointer to calculate a thread specific
1418         // offset to write to within the page. This minimizes bus traffic
1419         // due to cache line collision.
1420         __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
1421       }
1422     }
1423     __ load_contents(sync_state, G3_scratch);
1424     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
1425 
1426     Label L;
1427     __ br(Assembler::notEqual, false, Assembler::pn, L);
1428     __ delayed()->ld(G2_thread, JavaThread::suspend_flags_offset(), G3_scratch);
1429     __ cmp_and_br_short(G3_scratch, 0, Assembler::equal, Assembler::pt, no_block);
1430     __ bind(L);
1431 
1432     // Block.  Save any potential method result value before the operation and
1433     // use a leaf call to leave the last_Java_frame setup undisturbed.
1434     save_native_result();
1435     __ call_VM_leaf(L7_thread_cache,
1436                     CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1437                     G2_thread);
1438 
1439     // Restore any method result value
1440     restore_native_result();
1441     __ bind(no_block);
1442   }
1443 
1444   // Clear the frame anchor now
1445 
1446   __ reset_last_Java_frame();
1447 
1448   // Move the result handler address
1449   __ mov(Lscratch, G3_scratch);
1450   // return possible result to the outer frame
1451   __ restore(O0, G0, O0);
1452 
1453   // Move result handler to expected register
1454   __ mov(G3_scratch, Lscratch);
1455 
1456   // Back in normal (native) interpreter frame. State is thread_in_native_trans
1457   // switch to thread_in_Java.
1458 
1459   __ set(_thread_in_Java, G3_scratch);
1460   __ st(G3_scratch, thread_state);
1461 
1462   if (CheckJNICalls) {
1463     // clear_pending_jni_exception_check
1464     __ st_ptr(G0, G2_thread, JavaThread::pending_jni_exception_check_fn_offset());
1465   }
1466 
1467   // reset handle block
1468   __ ld_ptr(G2_thread, JavaThread::active_handles_offset(), G3_scratch);
1469   __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
1470 
1471   // If we have an oop result store it where it will be safe for any further gc
1472   // until we return now that we've released the handle it might be protected by
1473 
1474   { Label no_oop, store_result;
1475 
1476     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
1477     __ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
1478     // Unbox oop result, e.g. JNIHandles::resolve value in O0.
1479     __ br_null(O0, false, Assembler::pn, store_result); // Use NULL as-is.
1480     __ delayed()->andcc(O0, JNIHandles::weak_tag_mask, G0); // Test for jweak
1481     __ brx(Assembler::zero, true, Assembler::pt, store_result);
1482     __ delayed()->ld_ptr(O0, 0, O0); // Maybe resolve (untagged) jobject.
1483     // Resolve jweak.
1484     __ ld_ptr(O0, -JNIHandles::weak_tag_value, O0);
1485 #if INCLUDE_ALL_GCS
1486     if (UseG1GC) {
1487       __ g1_write_barrier_pre(noreg /* obj */,
1488                               noreg /* index */,
1489                               0 /* offset */,
1490                               O0 /* pre_val */,
1491                               G3_scratch /* tmp */,
1492                               true /* preserve_o_regs */);
1493     }
1494 #endif // INCLUDE_ALL_GCS
1495     __ bind(store_result);
1496     // Store it where gc will look for it and result handler expects it.
1497     __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
1498 
1499     __ bind(no_oop);
1500 
1501   }
1502 
1503 
1504   // handle exceptions (exception handling will handle unlocking!)
1505   { Label L;
1506     Address exception_addr(G2_thread, Thread::pending_exception_offset());
1507     __ ld_ptr(exception_addr, Gtemp);
1508     __ br_null_short(Gtemp, Assembler::pt, L);
1509     // Note: This could be handled more efficiently since we know that the native
1510     //       method doesn't have an exception handler. We could directly return
1511     //       to the exception handler for the caller.
1512     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
1513     __ should_not_reach_here();
1514     __ bind(L);
1515   }
1516 
1517   // JVMTI support (preserves thread register)
1518   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
1519 
1520   if (synchronized) {
1521     // save and restore any potential method result value around the unlocking operation
1522     save_native_result();
1523 
1524     __ add( __ top_most_monitor(), O1);
1525     __ unlock_object(O1);
1526 
1527     restore_native_result();
1528   }
1529 
1530   // dispose of return address and remove activation
1531 #ifdef ASSERT
1532   { Label ok;
1533     __ cmp_and_brx_short(I5_savedSP, FP, Assembler::greaterEqualUnsigned, Assembler::pt, ok);
1534     __ stop("bad I5_savedSP value");
1535     __ should_not_reach_here();
1536     __ bind(ok);
1537   }
1538 #endif
1539   __ jmp(Lscratch, 0);
1540   __ delayed()->nop();
1541 
1542   if (inc_counter) {
1543     // handle invocation counter overflow
1544     __ bind(invocation_counter_overflow);
1545     generate_counter_overflow(Lcontinue);
1546   }
1547 
1548   return entry;
1549 }
1550 
1551 
1552 // Generic method entry to (asm) interpreter
1553 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1554   address entry = __ pc();
1555 
1556   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1557 
1558   // the following temporary registers are used during frame creation
1559   const Register Gtmp1 = G3_scratch ;
1560   const Register Gtmp2 = G1_scratch;
1561 
1562   // make sure registers are different!
1563   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
1564 
1565   const Address constMethod       (G5_method, Method::const_offset());
1566   // Seems like G5_method is live at the point this is used. So we could make this look consistent
1567   // and use in the asserts.
1568   const Address access_flags      (Lmethod,   Method::access_flags_offset());
1569 
1570   const Register Glocals_size = G3;
1571   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
1572 
1573   // make sure method is not native & not abstract
1574   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
1575 #ifdef ASSERT
1576   __ ld(G5_method, Method::access_flags_offset(), Gtmp1);
1577   { Label L;
1578     __ btst(JVM_ACC_NATIVE, Gtmp1);
1579     __ br(Assembler::zero, false, Assembler::pt, L);
1580     __ delayed()->nop();
1581     __ stop("tried to execute native method as non-native");
1582     __ bind(L);
1583   }
1584   { Label L;
1585     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
1586     __ br(Assembler::zero, false, Assembler::pt, L);
1587     __ delayed()->nop();
1588     __ stop("tried to execute abstract method as non-abstract");
1589     __ bind(L);
1590   }
1591 #endif // ASSERT
1592 
1593   // generate the code to allocate the interpreter stack frame
1594 
1595   generate_fixed_frame(false);
1596 
1597   //
1598   // Code to initialize the extra (i.e. non-parm) locals
1599   //
1600   Register init_value = noreg;    // will be G0 if we must clear locals
1601   // The way the code was setup before zerolocals was always true for vanilla java entries.
1602   // It could only be false for the specialized entries like accessor or empty which have
1603   // no extra locals so the testing was a waste of time and the extra locals were always
1604   // initialized. We removed this extra complication to already over complicated code.
1605 
1606   init_value = G0;
1607   Label clear_loop;
1608 
1609   const Register RconstMethod = O1;
1610   const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1611   const Address size_of_locals    (RconstMethod, ConstMethod::size_of_locals_offset());
1612 
1613   // NOTE: If you change the frame layout, this code will need to
1614   // be updated!
1615   __ ld_ptr( constMethod, RconstMethod );
1616   __ lduh( size_of_locals, O2 );
1617   __ lduh( size_of_parameters, O1 );
1618   __ sll( O2, Interpreter::logStackElementSize, O2);
1619   __ sll( O1, Interpreter::logStackElementSize, O1 );
1620   __ sub( Llocals, O2, O2 );
1621   __ sub( Llocals, O1, O1 );
1622 
1623   __ bind( clear_loop );
1624   __ inc( O2, wordSize );
1625 
1626   __ cmp( O2, O1 );
1627   __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1628   __ delayed()->st_ptr( init_value, O2, 0 );
1629 
1630   const Address do_not_unlock_if_synchronized(G2_thread,
1631     JavaThread::do_not_unlock_if_synchronized_offset());
1632   // Since at this point in the method invocation the exception handler
1633   // would try to exit the monitor of synchronized methods which hasn't
1634   // been entered yet, we set the thread local variable
1635   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1636   // runtime, exception handling i.e. unlock_if_synchronized_method will
1637   // check this thread local flag.
1638   __ movbool(true, G3_scratch);
1639   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
1640 
1641   __ profile_parameters_type(G1_scratch, G3_scratch, G4_scratch, Lscratch);
1642   // increment invocation counter and check for overflow
1643   //
1644   // Note: checking for negative value instead of overflow
1645   //       so we have a 'sticky' overflow test (may be of
1646   //       importance as soon as we have true MT/MP)
1647   Label invocation_counter_overflow;
1648   Label profile_method;
1649   Label profile_method_continue;
1650   Label Lcontinue;
1651   if (inc_counter) {
1652     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1653     if (ProfileInterpreter) {
1654       __ bind(profile_method_continue);
1655     }
1656   }
1657   __ bind(Lcontinue);
1658 
1659   bang_stack_shadow_pages(false);
1660 
1661   // reset the _do_not_unlock_if_synchronized flag
1662   __ stbool(G0, do_not_unlock_if_synchronized);
1663 
1664   // check for synchronized methods
1665   // Must happen AFTER invocation_counter check and stack overflow check,
1666   // so method is not locked if overflows.
1667 
1668   if (synchronized) {
1669     lock_method();
1670   } else {
1671 #ifdef ASSERT
1672     { Label ok;
1673       __ ld(access_flags, O0);
1674       __ btst(JVM_ACC_SYNCHRONIZED, O0);
1675       __ br( Assembler::zero, false, Assembler::pt, ok);
1676       __ delayed()->nop();
1677       __ stop("method needs synchronization");
1678       __ bind(ok);
1679     }
1680 #endif // ASSERT
1681   }
1682 
1683   // start execution
1684 
1685   __ verify_thread();
1686 
1687   // jvmti support
1688   __ notify_method_entry();
1689 
1690   // start executing instructions
1691   __ dispatch_next(vtos);
1692 
1693 
1694   if (inc_counter) {
1695     if (ProfileInterpreter) {
1696       // We have decided to profile this method in the interpreter
1697       __ bind(profile_method);
1698 
1699       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1700       __ set_method_data_pointer_for_bcp();
1701       __ ba_short(profile_method_continue);
1702     }
1703 
1704     // handle invocation counter overflow
1705     __ bind(invocation_counter_overflow);
1706     generate_counter_overflow(Lcontinue);
1707   }
1708 
1709   return entry;
1710 }
1711 
1712 //----------------------------------------------------------------------------------------------------
1713 // Exceptions
1714 void TemplateInterpreterGenerator::generate_throw_exception() {
1715 
1716   // Entry point in previous activation (i.e., if the caller was interpreted)
1717   Interpreter::_rethrow_exception_entry = __ pc();
1718   // O0: exception
1719 
1720   // entry point for exceptions thrown within interpreter code
1721   Interpreter::_throw_exception_entry = __ pc();
1722   __ verify_thread();
1723   // expression stack is undefined here
1724   // O0: exception, i.e. Oexception
1725   // Lbcp: exception bcp
1726   __ verify_oop(Oexception);
1727 
1728 
1729   // expression stack must be empty before entering the VM in case of an exception
1730   __ empty_expression_stack();
1731   // find exception handler address and preserve exception oop
1732   // call C routine to find handler and jump to it
1733   __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
1734   __ push_ptr(O1); // push exception for exception handler bytecodes
1735 
1736   __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
1737   __ delayed()->nop();
1738 
1739 
1740   // if the exception is not handled in the current frame
1741   // the frame is removed and the exception is rethrown
1742   // (i.e. exception continuation is _rethrow_exception)
1743   //
1744   // Note: At this point the bci is still the bxi for the instruction which caused
1745   //       the exception and the expression stack is empty. Thus, for any VM calls
1746   //       at this point, GC will find a legal oop map (with empty expression stack).
1747 
1748   // in current activation
1749   // tos: exception
1750   // Lbcp: exception bcp
1751 
1752   //
1753   // JVMTI PopFrame support
1754   //
1755 
1756   Interpreter::_remove_activation_preserving_args_entry = __ pc();
1757   Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1758   // Set the popframe_processing bit in popframe_condition indicating that we are
1759   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1760   // popframe handling cycles.
1761 
1762   __ ld(popframe_condition_addr, G3_scratch);
1763   __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
1764   __ stw(G3_scratch, popframe_condition_addr);
1765 
1766   // Empty the expression stack, as in normal exception handling
1767   __ empty_expression_stack();
1768   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
1769 
1770   {
1771     // Check to see whether we are returning to a deoptimized frame.
1772     // (The PopFrame call ensures that the caller of the popped frame is
1773     // either interpreted or compiled and deoptimizes it if compiled.)
1774     // In this case, we can't call dispatch_next() after the frame is
1775     // popped, but instead must save the incoming arguments and restore
1776     // them after deoptimization has occurred.
1777     //
1778     // Note that we don't compare the return PC against the
1779     // deoptimization blob's unpack entry because of the presence of
1780     // adapter frames in C2.
1781     Label caller_not_deoptimized;
1782     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
1783     __ br_notnull_short(O0, Assembler::pt, caller_not_deoptimized);
1784 
1785     const Register Gtmp1 = G3_scratch;
1786     const Register Gtmp2 = G1_scratch;
1787     const Register RconstMethod = Gtmp1;
1788     const Address constMethod(Lmethod, Method::const_offset());
1789     const Address size_of_parameters(RconstMethod, ConstMethod::size_of_parameters_offset());
1790 
1791     // Compute size of arguments for saving when returning to deoptimized caller
1792     __ ld_ptr(constMethod, RconstMethod);
1793     __ lduh(size_of_parameters, Gtmp1);
1794     __ sll(Gtmp1, Interpreter::logStackElementSize, Gtmp1);
1795     __ sub(Llocals, Gtmp1, Gtmp2);
1796     __ add(Gtmp2, wordSize, Gtmp2);
1797     // Save these arguments
1798     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
1799     // Inform deoptimization that it is responsible for restoring these arguments
1800     __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
1801     Address popframe_condition_addr(G2_thread, JavaThread::popframe_condition_offset());
1802     __ st(Gtmp1, popframe_condition_addr);
1803 
1804     // Return from the current method
1805     // The caller's SP was adjusted upon method entry to accomodate
1806     // the callee's non-argument locals. Undo that adjustment.
1807     __ ret();
1808     __ delayed()->restore(I5_savedSP, G0, SP);
1809 
1810     __ bind(caller_not_deoptimized);
1811   }
1812 
1813   // Clear the popframe condition flag
1814   __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
1815 
1816   // Get out of the current method (how this is done depends on the particular compiler calling
1817   // convention that the interpreter currently follows)
1818   // The caller's SP was adjusted upon method entry to accomodate
1819   // the callee's non-argument locals. Undo that adjustment.
1820   __ restore(I5_savedSP, G0, SP);
1821   // The method data pointer was incremented already during
1822   // call profiling. We have to restore the mdp for the current bcp.
1823   if (ProfileInterpreter) {
1824     __ set_method_data_pointer_for_bcp();
1825   }
1826 
1827 #if INCLUDE_JVMTI
1828   { Label L_done;
1829 
1830     __ ldub(Address(Lbcp, 0), G1_scratch);  // Load current bytecode
1831     __ cmp_and_br_short(G1_scratch, Bytecodes::_invokestatic, Assembler::notEqual, Assembler::pn, L_done);
1832 
1833     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1834     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1835 
1836     __ call_VM(G1_scratch, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), I0, Lmethod, Lbcp);
1837 
1838     __ br_null(G1_scratch, false, Assembler::pn, L_done);
1839     __ delayed()->nop();
1840 
1841     __ st_ptr(G1_scratch, Lesp, wordSize);
1842     __ bind(L_done);
1843   }
1844 #endif // INCLUDE_JVMTI
1845 
1846   // Resume bytecode interpretation at the current bcp
1847   __ dispatch_next(vtos);
1848   // end of JVMTI PopFrame support
1849 
1850   Interpreter::_remove_activation_entry = __ pc();
1851 
1852   // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
1853   __ pop_ptr(Oexception);                                  // get exception
1854 
1855   // Intel has the following comment:
1856   //// remove the activation (without doing throws on illegalMonitorExceptions)
1857   // They remove the activation without checking for bad monitor state.
1858   // %%% We should make sure this is the right semantics before implementing.
1859 
1860   __ set_vm_result(Oexception);
1861   __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
1862 
1863   __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
1864 
1865   __ get_vm_result(Oexception);
1866   __ verify_oop(Oexception);
1867 
1868   const int return_reg_adjustment = frame::pc_return_offset;
1869   Address issuing_pc_addr(I7, return_reg_adjustment);
1870 
1871   // We are done with this activation frame; find out where to go next.
1872   // The continuation point will be an exception handler, which expects
1873   // the following registers set up:
1874   //
1875   // Oexception: exception
1876   // Oissuing_pc: the local call that threw exception
1877   // Other On: garbage
1878   // In/Ln:  the contents of the caller's register window
1879   //
1880   // We do the required restore at the last possible moment, because we
1881   // need to preserve some state across a runtime call.
1882   // (Remember that the caller activation is unknown--it might not be
1883   // interpreted, so things like Lscratch are useless in the caller.)
1884 
1885   // Although the Intel version uses call_C, we can use the more
1886   // compact call_VM.  (The only real difference on SPARC is a
1887   // harmlessly ignored [re]set_last_Java_frame, compared with
1888   // the Intel code which lacks this.)
1889   __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
1890   __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
1891   __ super_call_VM_leaf(L7_thread_cache,
1892                         CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1893                         G2_thread, Oissuing_pc->after_save());
1894 
1895   // The caller's SP was adjusted upon method entry to accomodate
1896   // the callee's non-argument locals. Undo that adjustment.
1897   __ JMP(O0, 0);                         // return exception handler in caller
1898   __ delayed()->restore(I5_savedSP, G0, SP);
1899 
1900   // (same old exception object is already in Oexception; see above)
1901   // Note that an "issuing PC" is actually the next PC after the call
1902 }
1903 
1904 
1905 //
1906 // JVMTI ForceEarlyReturn support
1907 //
1908 
1909 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1910   address entry = __ pc();
1911 
1912   __ empty_expression_stack();
1913   __ load_earlyret_value(state);
1914 
1915   __ ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), G3_scratch);
1916   Address cond_addr(G3_scratch, JvmtiThreadState::earlyret_state_offset());
1917 
1918   // Clear the earlyret state
1919   __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
1920 
1921   __ remove_activation(state,
1922                        /* throw_monitor_exception */ false,
1923                        /* install_monitor_exception */ false);
1924 
1925   // The caller's SP was adjusted upon method entry to accomodate
1926   // the callee's non-argument locals. Undo that adjustment.
1927   __ ret();                             // return to caller
1928   __ delayed()->restore(I5_savedSP, G0, SP);
1929 
1930   return entry;
1931 } // end of JVMTI ForceEarlyReturn support
1932 
1933 
1934 //------------------------------------------------------------------------------------------------------------------------
1935 // Helper for vtos entry point generation
1936 
1937 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1938   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1939   Label L;
1940   aep = __ pc(); __ push_ptr(); __ ba_short(L);
1941   fep = __ pc(); __ push_f();   __ ba_short(L);
1942   dep = __ pc(); __ push_d();   __ ba_short(L);
1943   lep = __ pc(); __ push_l();   __ ba_short(L);
1944   iep = __ pc(); __ push_i();
1945   bep = cep = sep = iep;                        // there aren't any
1946   vep = __ pc(); __ bind(L);                    // fall through
1947   generate_and_dispatch(t);
1948 }
1949 
1950 // --------------------------------------------------------------------------------
1951 
1952 // Non-product code
1953 #ifndef PRODUCT
1954 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1955   address entry = __ pc();
1956 
1957   __ push(state);
1958   __ mov(O7, Lscratch); // protect return address within interpreter
1959 
1960   // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
1961   __ mov( Otos_l2, G3_scratch );
1962   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
1963   __ mov(Lscratch, O7); // restore return address
1964   __ pop(state);
1965   __ retl();
1966   __ delayed()->nop();
1967 
1968   return entry;
1969 }
1970 
1971 
1972 // helpers for generate_and_dispatch
1973 
1974 void TemplateInterpreterGenerator::count_bytecode() {
1975   __ inc_counter(&BytecodeCounter::_counter_value, G3_scratch, G4_scratch);
1976 }
1977 
1978 
1979 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1980   __ inc_counter(&BytecodeHistogram::_counters[t->bytecode()], G3_scratch, G4_scratch);
1981 }
1982 
1983 
1984 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1985   AddressLiteral index   (&BytecodePairHistogram::_index);
1986   AddressLiteral counters((address) &BytecodePairHistogram::_counters);
1987 
1988   // get index, shift out old bytecode, bring in new bytecode, and store it
1989   // _index = (_index >> log2_number_of_codes) |
1990   //          (bytecode << log2_number_of_codes);
1991 
1992   __ load_contents(index, G4_scratch);
1993   __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
1994   __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
1995   __ or3( G3_scratch,  G4_scratch, G4_scratch );
1996   __ store_contents(G4_scratch, index, G3_scratch);
1997 
1998   // bump bucket contents
1999   // _counters[_index] ++;
2000 
2001   __ set(counters, G3_scratch);                       // loads into G3_scratch
2002   __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
2003   __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
2004   __ ld (G3_scratch, 0, G4_scratch);
2005   __ inc (G4_scratch);
2006   __ st (G4_scratch, 0, G3_scratch);
2007 }
2008 
2009 
2010 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2011   // Call a little run-time stub to avoid blow-up for each bytecode.
2012   // The run-time runtime saves the right registers, depending on
2013   // the tosca in-state for the given template.
2014   address entry = Interpreter::trace_code(t->tos_in());
2015   guarantee(entry != NULL, "entry must have been generated");
2016   __ call(entry, relocInfo::none);
2017   __ delayed()->nop();
2018 }
2019 
2020 
2021 void TemplateInterpreterGenerator::stop_interpreter_at() {
2022   AddressLiteral counter(&BytecodeCounter::_counter_value);
2023   __ load_contents(counter, G3_scratch);
2024   AddressLiteral stop_at(&StopInterpreterAt);
2025   __ load_ptr_contents(stop_at, G4_scratch);
2026   __ cmp(G3_scratch, G4_scratch);
2027   __ breakpoint_trap(Assembler::equal, Assembler::icc);
2028 }
2029 #endif // not PRODUCT