1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // Stores
 297   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 298   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 299 
 300   void resolve_jobject(Register value, Register thread, Register tmp);
 301   void clear_jweak_tag(Register possibly_jweak);
 302 
 303 #if INCLUDE_ALL_GCS
 304 
 305   void g1_write_barrier_pre(Register obj,
 306                             Register pre_val,
 307                             Register thread,
 308                             Register tmp,
 309                             bool tosca_live,
 310                             bool expand_call);
 311 
 312   void g1_write_barrier_post(Register store_addr,
 313                              Register new_val,
 314                              Register thread,
 315                              Register tmp,
 316                              Register tmp2);
 317 
 318 #endif // INCLUDE_ALL_GCS
 319 
 320   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 321   void c2bool(Register x);
 322 
 323   // C++ bool manipulation
 324 
 325   void movbool(Register dst, Address src);
 326   void movbool(Address dst, bool boolconst);
 327   void movbool(Address dst, Register src);
 328   void testbool(Register dst);
 329 
 330   void resolve_oop_handle(Register result);
 331   void load_mirror(Register mirror, Register method);
 332 
 333   // oop manipulations
 334   void load_klass(Register dst, Register src);
 335   void store_klass(Register dst, Register src);
 336 
 337   void load_heap_oop(Register dst, Address src);
 338   void load_heap_oop_not_null(Register dst, Address src);
 339   void store_heap_oop(Address dst, Register src);
 340   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 341 
 342   // Used for storing NULL. All other oop constants should be
 343   // stored using routines that take a jobject.
 344   void store_heap_oop_null(Address dst);
 345 
 346   void load_prototype_header(Register dst, Register src);
 347 
 348 #ifdef _LP64
 349   void store_klass_gap(Register dst, Register src);
 350 
 351   // This dummy is to prevent a call to store_heap_oop from
 352   // converting a zero (like NULL) into a Register by giving
 353   // the compiler two choices it can't resolve
 354 
 355   void store_heap_oop(Address dst, void* dummy);
 356 
 357   void encode_heap_oop(Register r);
 358   void decode_heap_oop(Register r);
 359   void encode_heap_oop_not_null(Register r);
 360   void decode_heap_oop_not_null(Register r);
 361   void encode_heap_oop_not_null(Register dst, Register src);
 362   void decode_heap_oop_not_null(Register dst, Register src);
 363 
 364   void set_narrow_oop(Register dst, jobject obj);
 365   void set_narrow_oop(Address dst, jobject obj);
 366   void cmp_narrow_oop(Register dst, jobject obj);
 367   void cmp_narrow_oop(Address dst, jobject obj);
 368 
 369   void encode_klass_not_null(Register r);
 370   void decode_klass_not_null(Register r);
 371   void encode_klass_not_null(Register dst, Register src);
 372   void decode_klass_not_null(Register dst, Register src);
 373   void set_narrow_klass(Register dst, Klass* k);
 374   void set_narrow_klass(Address dst, Klass* k);
 375   void cmp_narrow_klass(Register dst, Klass* k);
 376   void cmp_narrow_klass(Address dst, Klass* k);
 377 
 378   // Returns the byte size of the instructions generated by decode_klass_not_null()
 379   // when compressed klass pointers are being used.
 380   static int instr_size_for_decode_klass_not_null();
 381 
 382   // if heap base register is used - reinit it with the correct value
 383   void reinit_heapbase();
 384 
 385   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 386 
 387 #endif // _LP64
 388 
 389   // Int division/remainder for Java
 390   // (as idivl, but checks for special case as described in JVM spec.)
 391   // returns idivl instruction offset for implicit exception handling
 392   int corrected_idivl(Register reg);
 393 
 394   // Long division/remainder for Java
 395   // (as idivq, but checks for special case as described in JVM spec.)
 396   // returns idivq instruction offset for implicit exception handling
 397   int corrected_idivq(Register reg);
 398 
 399   void int3();
 400 
 401   // Long operation macros for a 32bit cpu
 402   // Long negation for Java
 403   void lneg(Register hi, Register lo);
 404 
 405   // Long multiplication for Java
 406   // (destroys contents of eax, ebx, ecx and edx)
 407   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 408 
 409   // Long shifts for Java
 410   // (semantics as described in JVM spec.)
 411   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 412   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 413 
 414   // Long compare for Java
 415   // (semantics as described in JVM spec.)
 416   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 417 
 418 
 419   // misc
 420 
 421   // Sign extension
 422   void sign_extend_short(Register reg);
 423   void sign_extend_byte(Register reg);
 424 
 425   // Division by power of 2, rounding towards 0
 426   void division_with_shift(Register reg, int shift_value);
 427 
 428   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 429   //
 430   // CF (corresponds to C0) if x < y
 431   // PF (corresponds to C2) if unordered
 432   // ZF (corresponds to C3) if x = y
 433   //
 434   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 435   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 436   void fcmp(Register tmp);
 437   // Variant of the above which allows y to be further down the stack
 438   // and which only pops x and y if specified. If pop_right is
 439   // specified then pop_left must also be specified.
 440   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 441 
 442   // Floating-point comparison for Java
 443   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 444   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 445   // (semantics as described in JVM spec.)
 446   void fcmp2int(Register dst, bool unordered_is_less);
 447   // Variant of the above which allows y to be further down the stack
 448   // and which only pops x and y if specified. If pop_right is
 449   // specified then pop_left must also be specified.
 450   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 451 
 452   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 453   // tmp is a temporary register, if none is available use noreg
 454   void fremr(Register tmp);
 455 
 456   // dst = c = a * b + c
 457   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 458   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 459 
 460   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 461   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 462   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 463   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 464 
 465 
 466   // same as fcmp2int, but using SSE2
 467   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 468   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 469 
 470   // branch to L if FPU flag C2 is set/not set
 471   // tmp is a temporary register, if none is available use noreg
 472   void jC2 (Register tmp, Label& L);
 473   void jnC2(Register tmp, Label& L);
 474 
 475   // Pop ST (ffree & fincstp combined)
 476   void fpop();
 477 
 478   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 479   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 480   void load_float(Address src);
 481 
 482   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 483   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 484   void store_float(Address dst);
 485 
 486   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 487   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 488   void load_double(Address src);
 489 
 490   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 491   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 492   void store_double(Address dst);
 493 
 494   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 495   void push_fTOS();
 496 
 497   // pops double TOS element from CPU stack and pushes on FPU stack
 498   void pop_fTOS();
 499 
 500   void empty_FPU_stack();
 501 
 502   void push_IU_state();
 503   void pop_IU_state();
 504 
 505   void push_FPU_state();
 506   void pop_FPU_state();
 507 
 508   void push_CPU_state();
 509   void pop_CPU_state();
 510 
 511   // Round up to a power of two
 512   void round_to(Register reg, int modulus);
 513 
 514   // Callee saved registers handling
 515   void push_callee_saved_registers();
 516   void pop_callee_saved_registers();
 517 
 518   // allocation
 519   void eden_allocate(
 520     Register obj,                      // result: pointer to object after successful allocation
 521     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 522     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 523     Register t1,                       // temp register
 524     Label&   slow_case                 // continuation point if fast allocation fails
 525   );
 526   void tlab_allocate(
 527     Register obj,                      // result: pointer to object after successful allocation
 528     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 529     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 530     Register t1,                       // temp register
 531     Register t2,                       // temp register
 532     Label&   slow_case                 // continuation point if fast allocation fails
 533   );
 534   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 535   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 536 
 537   void incr_allocated_bytes(Register thread,
 538                             Register var_size_in_bytes, int con_size_in_bytes,
 539                             Register t1 = noreg);
 540 
 541   // interface method calling
 542   void lookup_interface_method(Register recv_klass,
 543                                Register intf_klass,
 544                                RegisterOrConstant itable_index,
 545                                Register method_result,
 546                                Register scan_temp,
 547                                Label& no_such_interface);
 548 
 549   // virtual method calling
 550   void lookup_virtual_method(Register recv_klass,
 551                              RegisterOrConstant vtable_index,
 552                              Register method_result);
 553 
 554   // Test sub_klass against super_klass, with fast and slow paths.
 555 
 556   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 557   // One of the three labels can be NULL, meaning take the fall-through.
 558   // If super_check_offset is -1, the value is loaded up from super_klass.
 559   // No registers are killed, except temp_reg.
 560   void check_klass_subtype_fast_path(Register sub_klass,
 561                                      Register super_klass,
 562                                      Register temp_reg,
 563                                      Label* L_success,
 564                                      Label* L_failure,
 565                                      Label* L_slow_path,
 566                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 567 
 568   // The rest of the type check; must be wired to a corresponding fast path.
 569   // It does not repeat the fast path logic, so don't use it standalone.
 570   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 571   // Updates the sub's secondary super cache as necessary.
 572   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 573   void check_klass_subtype_slow_path(Register sub_klass,
 574                                      Register super_klass,
 575                                      Register temp_reg,
 576                                      Register temp2_reg,
 577                                      Label* L_success,
 578                                      Label* L_failure,
 579                                      bool set_cond_codes = false);
 580 
 581   // Simplified, combined version, good for typical uses.
 582   // Falls through on failure.
 583   void check_klass_subtype(Register sub_klass,
 584                            Register super_klass,
 585                            Register temp_reg,
 586                            Label& L_success);
 587 
 588   // method handles (JSR 292)
 589   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 590 
 591   //----
 592   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 593 
 594   // Debugging
 595 
 596   // only if +VerifyOops
 597   // TODO: Make these macros with file and line like sparc version!
 598   void verify_oop(Register reg, const char* s = "broken oop");
 599   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 600 
 601   // TODO: verify method and klass metadata (compare against vptr?)
 602   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 603   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 604 
 605 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 606 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 607 
 608   // only if +VerifyFPU
 609   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 610 
 611   // Verify or restore cpu control state after JNI call
 612   void restore_cpu_control_state_after_jni();
 613 
 614   // prints msg, dumps registers and stops execution
 615   void stop(const char* msg);
 616 
 617   // prints msg and continues
 618   void warn(const char* msg);
 619 
 620   // dumps registers and other state
 621   void print_state();
 622 
 623   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 624   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 625   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 626   static void print_state64(int64_t pc, int64_t regs[]);
 627 
 628   void os_breakpoint();
 629 
 630   void untested()                                { stop("untested"); }
 631 
 632   void unimplemented(const char* what = "");
 633 
 634   void should_not_reach_here()                   { stop("should not reach here"); }
 635 
 636   void print_CPU_state();
 637 
 638   // Stack overflow checking
 639   void bang_stack_with_offset(int offset) {
 640     // stack grows down, caller passes positive offset
 641     assert(offset > 0, "must bang with negative offset");
 642     movl(Address(rsp, (-offset)), rax);
 643   }
 644 
 645   // Writes to stack successive pages until offset reached to check for
 646   // stack overflow + shadow pages.  Also, clobbers tmp
 647   void bang_stack_size(Register size, Register tmp);
 648 
 649   // Check for reserved stack access in method being exited (for JIT)
 650   void reserved_stack_check();
 651 
 652   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 653                                                 Register tmp,
 654                                                 int offset);
 655 
 656   // Support for serializing memory accesses between threads
 657   void serialize_memory(Register thread, Register tmp);
 658 
 659   void verify_tlab();
 660 
 661   // Biased locking support
 662   // lock_reg and obj_reg must be loaded up with the appropriate values.
 663   // swap_reg must be rax, and is killed.
 664   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 665   // be killed; if not supplied, push/pop will be used internally to
 666   // allocate a temporary (inefficient, avoid if possible).
 667   // Optional slow case is for implementations (interpreter and C1) which branch to
 668   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 669   // Returns offset of first potentially-faulting instruction for null
 670   // check info (currently consumed only by C1). If
 671   // swap_reg_contains_mark is true then returns -1 as it is assumed
 672   // the calling code has already passed any potential faults.
 673   int biased_locking_enter(Register lock_reg, Register obj_reg,
 674                            Register swap_reg, Register tmp_reg,
 675                            bool swap_reg_contains_mark,
 676                            Label& done, Label* slow_case = NULL,
 677                            BiasedLockingCounters* counters = NULL);
 678   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 679 #ifdef COMPILER2
 680   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 681   // See full desription in macroAssembler_x86.cpp.
 682   void fast_lock(Register obj, Register box, Register tmp,
 683                  Register scr, Register cx1, Register cx2,
 684                  BiasedLockingCounters* counters,
 685                  RTMLockingCounters* rtm_counters,
 686                  RTMLockingCounters* stack_rtm_counters,
 687                  Metadata* method_data,
 688                  bool use_rtm, bool profile_rtm);
 689   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 690 #if INCLUDE_RTM_OPT
 691   void rtm_counters_update(Register abort_status, Register rtm_counters);
 692   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 693   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 694                                    RTMLockingCounters* rtm_counters,
 695                                    Metadata* method_data);
 696   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 697                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 698   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 699   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 700   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 701                          Register retry_on_abort_count,
 702                          RTMLockingCounters* stack_rtm_counters,
 703                          Metadata* method_data, bool profile_rtm,
 704                          Label& DONE_LABEL, Label& IsInflated);
 705   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 706                             Register scr, Register retry_on_busy_count,
 707                             Register retry_on_abort_count,
 708                             RTMLockingCounters* rtm_counters,
 709                             Metadata* method_data, bool profile_rtm,
 710                             Label& DONE_LABEL);
 711 #endif
 712 #endif
 713 
 714   Condition negate_condition(Condition cond);
 715 
 716   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 717   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 718   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 719   // here in MacroAssembler. The major exception to this rule is call
 720 
 721   // Arithmetics
 722 
 723 
 724   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 725   void addptr(Address dst, Register src);
 726 
 727   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 728   void addptr(Register dst, int32_t src);
 729   void addptr(Register dst, Register src);
 730   void addptr(Register dst, RegisterOrConstant src) {
 731     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 732     else                   addptr(dst,       src.as_register());
 733   }
 734 
 735   void andptr(Register dst, int32_t src);
 736   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 737 
 738   void cmp8(AddressLiteral src1, int imm);
 739 
 740   // renamed to drag out the casting of address to int32_t/intptr_t
 741   void cmp32(Register src1, int32_t imm);
 742 
 743   void cmp32(AddressLiteral src1, int32_t imm);
 744   // compare reg - mem, or reg - &mem
 745   void cmp32(Register src1, AddressLiteral src2);
 746 
 747   void cmp32(Register src1, Address src2);
 748 
 749 #ifndef _LP64
 750   void cmpklass(Address dst, Metadata* obj);
 751   void cmpklass(Register dst, Metadata* obj);
 752   void cmpoop(Address dst, jobject obj);
 753 #endif // _LP64
 754 
 755   void cmpoop(Register src1, Register src2);
 756   void cmpoop(Register src1, Address src2);
 757   void cmpoop(Register dst, jobject obj);
 758 
 759   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 760   void cmpptr(Address src1, AddressLiteral src2);
 761 
 762   void cmpptr(Register src1, AddressLiteral src2);
 763 
 764   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 765   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 766   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 767 
 768   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 769   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 770 
 771   // cmp64 to avoild hiding cmpq
 772   void cmp64(Register src1, AddressLiteral src);
 773 
 774   void cmpxchgptr(Register reg, Address adr);
 775 
 776   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 777 
 778 
 779   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 780   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 781 
 782 
 783   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 784 
 785   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 786 
 787   void shlptr(Register dst, int32_t shift);
 788   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 789 
 790   void shrptr(Register dst, int32_t shift);
 791   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 792 
 793   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 794   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 795 
 796   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 797 
 798   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 799   void subptr(Register dst, int32_t src);
 800   // Force generation of a 4 byte immediate value even if it fits into 8bit
 801   void subptr_imm32(Register dst, int32_t src);
 802   void subptr(Register dst, Register src);
 803   void subptr(Register dst, RegisterOrConstant src) {
 804     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 805     else                   subptr(dst,       src.as_register());
 806   }
 807 
 808   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 809   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 810 
 811   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 812   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 813 
 814   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 815 
 816 
 817 
 818   // Helper functions for statistics gathering.
 819   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 820   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 821   // Unconditional atomic increment.
 822   void atomic_incl(Address counter_addr);
 823   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 824 #ifdef _LP64
 825   void atomic_incq(Address counter_addr);
 826   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 827 #endif
 828   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 829   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 830 
 831   void lea(Register dst, AddressLiteral adr);
 832   void lea(Address dst, AddressLiteral adr);
 833   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 834 
 835   void leal32(Register dst, Address src) { leal(dst, src); }
 836 
 837   // Import other testl() methods from the parent class or else
 838   // they will be hidden by the following overriding declaration.
 839   using Assembler::testl;
 840   void testl(Register dst, AddressLiteral src);
 841 
 842   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 843   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 844   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 845   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 846 
 847   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 848   void testptr(Register src1, Register src2);
 849 
 850   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 851   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 852 
 853   // Calls
 854 
 855   void call(Label& L, relocInfo::relocType rtype);
 856   void call(Register entry);
 857 
 858   // NOTE: this call transfers to the effective address of entry NOT
 859   // the address contained by entry. This is because this is more natural
 860   // for jumps/calls.
 861   void call(AddressLiteral entry);
 862 
 863   // Emit the CompiledIC call idiom
 864   void ic_call(address entry, jint method_index = 0);
 865 
 866   // Jumps
 867 
 868   // NOTE: these jumps tranfer to the effective address of dst NOT
 869   // the address contained by dst. This is because this is more natural
 870   // for jumps/calls.
 871   void jump(AddressLiteral dst);
 872   void jump_cc(Condition cc, AddressLiteral dst);
 873 
 874   // 32bit can do a case table jump in one instruction but we no longer allow the base
 875   // to be installed in the Address class. This jump will tranfers to the address
 876   // contained in the location described by entry (not the address of entry)
 877   void jump(ArrayAddress entry);
 878 
 879   // Floating
 880 
 881   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 882   void andpd(XMMRegister dst, AddressLiteral src);
 883   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 884 
 885   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 886   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 887   void andps(XMMRegister dst, AddressLiteral src);
 888 
 889   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 890   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 891   void comiss(XMMRegister dst, AddressLiteral src);
 892 
 893   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 894   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 895   void comisd(XMMRegister dst, AddressLiteral src);
 896 
 897   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 898   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 899 
 900   void fldcw(Address src) { Assembler::fldcw(src); }
 901   void fldcw(AddressLiteral src);
 902 
 903   void fld_s(int index)   { Assembler::fld_s(index); }
 904   void fld_s(Address src) { Assembler::fld_s(src); }
 905   void fld_s(AddressLiteral src);
 906 
 907   void fld_d(Address src) { Assembler::fld_d(src); }
 908   void fld_d(AddressLiteral src);
 909 
 910   void fld_x(Address src) { Assembler::fld_x(src); }
 911   void fld_x(AddressLiteral src);
 912 
 913   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 914   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 915 
 916   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 917   void ldmxcsr(AddressLiteral src);
 918 
 919 #ifdef _LP64
 920  private:
 921   void sha256_AVX2_one_round_compute(
 922     Register  reg_old_h,
 923     Register  reg_a,
 924     Register  reg_b,
 925     Register  reg_c,
 926     Register  reg_d,
 927     Register  reg_e,
 928     Register  reg_f,
 929     Register  reg_g,
 930     Register  reg_h,
 931     int iter);
 932   void sha256_AVX2_four_rounds_compute_first(int start);
 933   void sha256_AVX2_four_rounds_compute_last(int start);
 934   void sha256_AVX2_one_round_and_sched(
 935         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 936         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 937         XMMRegister xmm_2,     /* ymm6 */
 938         XMMRegister xmm_3,     /* ymm7 */
 939         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 940         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 941         Register    reg_c,      /* edi */
 942         Register    reg_d,      /* esi */
 943         Register    reg_e,      /* r8d */
 944         Register    reg_f,      /* r9d */
 945         Register    reg_g,      /* r10d */
 946         Register    reg_h,      /* r11d */
 947         int iter);
 948 
 949   void addm(int disp, Register r1, Register r2);
 950 
 951  public:
 952   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 953                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 954                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 955                    bool multi_block, XMMRegister shuf_mask);
 956 #endif
 957 
 958 #ifdef _LP64
 959  private:
 960   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 961                                      Register e, Register f, Register g, Register h, int iteration);
 962 
 963   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 964                                           Register a, Register b, Register c, Register d, Register e, Register f,
 965                                           Register g, Register h, int iteration);
 966 
 967   void addmq(int disp, Register r1, Register r2);
 968  public:
 969   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 970                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 971                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 972                    XMMRegister shuf_mask);
 973 #endif
 974 
 975   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 976                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 977                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 978                  bool multi_block);
 979 
 980 #ifdef _LP64
 981   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 982                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 983                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 984                    bool multi_block, XMMRegister shuf_mask);
 985 #else
 986   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 987                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 988                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 989                    bool multi_block);
 990 #endif
 991 
 992   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 993                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 994                 Register rax, Register rcx, Register rdx, Register tmp);
 995 
 996 #ifdef _LP64
 997   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 998                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 999                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1000 
1001   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1002                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1003                   Register rax, Register rcx, Register rdx, Register r11);
1004 
1005   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1006                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1007                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1008 
1009   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1010                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1011                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1012                 Register tmp3, Register tmp4);
1013 
1014   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1015                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1016                 Register rax, Register rcx, Register rdx, Register tmp1,
1017                 Register tmp2, Register tmp3, Register tmp4);
1018   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1019                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1020                 Register rax, Register rcx, Register rdx, Register tmp1,
1021                 Register tmp2, Register tmp3, Register tmp4);
1022 #else
1023   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1024                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1025                 Register rax, Register rcx, Register rdx, Register tmp1);
1026 
1027   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1028                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1029                 Register rax, Register rcx, Register rdx, Register tmp);
1030 
1031   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1032                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1033                 Register rdx, Register tmp);
1034 
1035   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1036                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1037                 Register rax, Register rbx, Register rdx);
1038 
1039   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1040                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1041                 Register rax, Register rcx, Register rdx, Register tmp);
1042 
1043   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1044                         Register edx, Register ebx, Register esi, Register edi,
1045                         Register ebp, Register esp);
1046 
1047   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1048                          Register esi, Register edi, Register ebp, Register esp);
1049 
1050   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1051                         Register edx, Register ebx, Register esi, Register edi,
1052                         Register ebp, Register esp);
1053 
1054   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1055                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1056                 Register rax, Register rcx, Register rdx, Register tmp);
1057 #endif
1058 
1059   void increase_precision();
1060   void restore_precision();
1061 
1062 private:
1063 
1064   // these are private because users should be doing movflt/movdbl
1065 
1066   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1067   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1068   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1069   void movss(XMMRegister dst, AddressLiteral src);
1070 
1071   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1072   void movlpd(XMMRegister dst, AddressLiteral src);
1073 
1074 public:
1075 
1076   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1077   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1078   void addsd(XMMRegister dst, AddressLiteral src);
1079 
1080   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1081   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1082   void addss(XMMRegister dst, AddressLiteral src);
1083 
1084   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1085   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1086   void addpd(XMMRegister dst, AddressLiteral src);
1087 
1088   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1089   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1090   void divsd(XMMRegister dst, AddressLiteral src);
1091 
1092   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1093   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1094   void divss(XMMRegister dst, AddressLiteral src);
1095 
1096   // Move Unaligned Double Quadword
1097   void movdqu(Address     dst, XMMRegister src);
1098   void movdqu(XMMRegister dst, Address src);
1099   void movdqu(XMMRegister dst, XMMRegister src);
1100   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1101   // AVX Unaligned forms
1102   void vmovdqu(Address     dst, XMMRegister src);
1103   void vmovdqu(XMMRegister dst, Address src);
1104   void vmovdqu(XMMRegister dst, XMMRegister src);
1105   void vmovdqu(XMMRegister dst, AddressLiteral src);
1106 
1107   // Move Aligned Double Quadword
1108   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1109   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1110   void movdqa(XMMRegister dst, AddressLiteral src);
1111 
1112   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1113   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1114   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1115   void movsd(XMMRegister dst, AddressLiteral src);
1116 
1117   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1118   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1119   void mulpd(XMMRegister dst, AddressLiteral src);
1120 
1121   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1122   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1123   void mulsd(XMMRegister dst, AddressLiteral src);
1124 
1125   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1126   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1127   void mulss(XMMRegister dst, AddressLiteral src);
1128 
1129   // Carry-Less Multiplication Quadword
1130   void pclmulldq(XMMRegister dst, XMMRegister src) {
1131     // 0x00 - multiply lower 64 bits [0:63]
1132     Assembler::pclmulqdq(dst, src, 0x00);
1133   }
1134   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1135     // 0x11 - multiply upper 64 bits [64:127]
1136     Assembler::pclmulqdq(dst, src, 0x11);
1137   }
1138 
1139   void pcmpeqb(XMMRegister dst, XMMRegister src);
1140   void pcmpeqw(XMMRegister dst, XMMRegister src);
1141 
1142   void pcmpestri(XMMRegister dst, Address src, int imm8);
1143   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1144 
1145   void pmovzxbw(XMMRegister dst, XMMRegister src);
1146   void pmovzxbw(XMMRegister dst, Address src);
1147 
1148   void pmovmskb(Register dst, XMMRegister src);
1149 
1150   void ptest(XMMRegister dst, XMMRegister src);
1151 
1152   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1153   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1154   void sqrtsd(XMMRegister dst, AddressLiteral src);
1155 
1156   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1157   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1158   void sqrtss(XMMRegister dst, AddressLiteral src);
1159 
1160   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1161   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1162   void subsd(XMMRegister dst, AddressLiteral src);
1163 
1164   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1165   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1166   void subss(XMMRegister dst, AddressLiteral src);
1167 
1168   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1169   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1170   void ucomiss(XMMRegister dst, AddressLiteral src);
1171 
1172   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1173   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1174   void ucomisd(XMMRegister dst, AddressLiteral src);
1175 
1176   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1177   void xorpd(XMMRegister dst, XMMRegister src);
1178   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1179   void xorpd(XMMRegister dst, AddressLiteral src);
1180 
1181   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1182   void xorps(XMMRegister dst, XMMRegister src);
1183   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1184   void xorps(XMMRegister dst, AddressLiteral src);
1185 
1186   // Shuffle Bytes
1187   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1188   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1189   void pshufb(XMMRegister dst, AddressLiteral src);
1190   // AVX 3-operands instructions
1191 
1192   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1193   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1194   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1195 
1196   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1197   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1198   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1199 
1200   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1201   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1202 
1203   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1204   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1205 
1206   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1207   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1208 
1209   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1210   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1211   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1212 
1213   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1214 
1215   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1216   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1217 
1218   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1219   void vpmovmskb(Register dst, XMMRegister src);
1220 
1221   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1222   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1223 
1224   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1225   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1226 
1227   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1228   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1229 
1230   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1231   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1232 
1233   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1234   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1235 
1236   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1237   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1238 
1239   void vptest(XMMRegister dst, XMMRegister src);
1240 
1241   void punpcklbw(XMMRegister dst, XMMRegister src);
1242   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1243 
1244   void pshufd(XMMRegister dst, Address src, int mode);
1245   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1246 
1247   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1248   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1249 
1250   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1251   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1252   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1253 
1254   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1255   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1256   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1257 
1258   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1259   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1260   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1261 
1262   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1263   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1264   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1265 
1266   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1267   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1268   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1269 
1270   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1271   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1272   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1273 
1274   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1275   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1276   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1277 
1278   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1279   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1280   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1281 
1282   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1283   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1284 
1285   // AVX Vector instructions
1286 
1287   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1288   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1289   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1290 
1291   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1292   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1293   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1294 
1295   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1296     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1297       Assembler::vpxor(dst, nds, src, vector_len);
1298     else
1299       Assembler::vxorpd(dst, nds, src, vector_len);
1300   }
1301   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1302     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1303       Assembler::vpxor(dst, nds, src, vector_len);
1304     else
1305       Assembler::vxorpd(dst, nds, src, vector_len);
1306   }
1307 
1308   // Simple version for AVX2 256bit vectors
1309   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1310   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1311 
1312   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1313     if (UseAVX > 2) {
1314       Assembler::vinserti32x4(dst, dst, src, imm8);
1315     } else if (UseAVX > 1) {
1316       // vinserti128 is available only in AVX2
1317       Assembler::vinserti128(dst, nds, src, imm8);
1318     } else {
1319       Assembler::vinsertf128(dst, nds, src, imm8);
1320     }
1321   }
1322 
1323   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1324     if (UseAVX > 2) {
1325       Assembler::vinserti32x4(dst, dst, src, imm8);
1326     } else if (UseAVX > 1) {
1327       // vinserti128 is available only in AVX2
1328       Assembler::vinserti128(dst, nds, src, imm8);
1329     } else {
1330       Assembler::vinsertf128(dst, nds, src, imm8);
1331     }
1332   }
1333 
1334   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1335     if (UseAVX > 2) {
1336       Assembler::vextracti32x4(dst, src, imm8);
1337     } else if (UseAVX > 1) {
1338       // vextracti128 is available only in AVX2
1339       Assembler::vextracti128(dst, src, imm8);
1340     } else {
1341       Assembler::vextractf128(dst, src, imm8);
1342     }
1343   }
1344 
1345   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1346     if (UseAVX > 2) {
1347       Assembler::vextracti32x4(dst, src, imm8);
1348     } else if (UseAVX > 1) {
1349       // vextracti128 is available only in AVX2
1350       Assembler::vextracti128(dst, src, imm8);
1351     } else {
1352       Assembler::vextractf128(dst, src, imm8);
1353     }
1354   }
1355 
1356   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1357   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1358     vinserti128(dst, dst, src, 1);
1359   }
1360   void vinserti128_high(XMMRegister dst, Address src) {
1361     vinserti128(dst, dst, src, 1);
1362   }
1363   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1364     vextracti128(dst, src, 1);
1365   }
1366   void vextracti128_high(Address dst, XMMRegister src) {
1367     vextracti128(dst, src, 1);
1368   }
1369 
1370   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1371     if (UseAVX > 2) {
1372       Assembler::vinsertf32x4(dst, dst, src, 1);
1373     } else {
1374       Assembler::vinsertf128(dst, dst, src, 1);
1375     }
1376   }
1377 
1378   void vinsertf128_high(XMMRegister dst, Address src) {
1379     if (UseAVX > 2) {
1380       Assembler::vinsertf32x4(dst, dst, src, 1);
1381     } else {
1382       Assembler::vinsertf128(dst, dst, src, 1);
1383     }
1384   }
1385 
1386   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1387     if (UseAVX > 2) {
1388       Assembler::vextractf32x4(dst, src, 1);
1389     } else {
1390       Assembler::vextractf128(dst, src, 1);
1391     }
1392   }
1393 
1394   void vextractf128_high(Address dst, XMMRegister src) {
1395     if (UseAVX > 2) {
1396       Assembler::vextractf32x4(dst, src, 1);
1397     } else {
1398       Assembler::vextractf128(dst, src, 1);
1399     }
1400   }
1401 
1402   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1403   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1404     Assembler::vinserti64x4(dst, dst, src, 1);
1405   }
1406   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1407     Assembler::vinsertf64x4(dst, dst, src, 1);
1408   }
1409   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1410     Assembler::vextracti64x4(dst, src, 1);
1411   }
1412   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1413     Assembler::vextractf64x4(dst, src, 1);
1414   }
1415   void vextractf64x4_high(Address dst, XMMRegister src) {
1416     Assembler::vextractf64x4(dst, src, 1);
1417   }
1418   void vinsertf64x4_high(XMMRegister dst, Address src) {
1419     Assembler::vinsertf64x4(dst, dst, src, 1);
1420   }
1421 
1422   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1423   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1424     vinserti128(dst, dst, src, 0);
1425   }
1426   void vinserti128_low(XMMRegister dst, Address src) {
1427     vinserti128(dst, dst, src, 0);
1428   }
1429   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1430     vextracti128(dst, src, 0);
1431   }
1432   void vextracti128_low(Address dst, XMMRegister src) {
1433     vextracti128(dst, src, 0);
1434   }
1435 
1436   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1437     if (UseAVX > 2) {
1438       Assembler::vinsertf32x4(dst, dst, src, 0);
1439     } else {
1440       Assembler::vinsertf128(dst, dst, src, 0);
1441     }
1442   }
1443 
1444   void vinsertf128_low(XMMRegister dst, Address src) {
1445     if (UseAVX > 2) {
1446       Assembler::vinsertf32x4(dst, dst, src, 0);
1447     } else {
1448       Assembler::vinsertf128(dst, dst, src, 0);
1449     }
1450   }
1451 
1452   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1453     if (UseAVX > 2) {
1454       Assembler::vextractf32x4(dst, src, 0);
1455     } else {
1456       Assembler::vextractf128(dst, src, 0);
1457     }
1458   }
1459 
1460   void vextractf128_low(Address dst, XMMRegister src) {
1461     if (UseAVX > 2) {
1462       Assembler::vextractf32x4(dst, src, 0);
1463     } else {
1464       Assembler::vextractf128(dst, src, 0);
1465     }
1466   }
1467 
1468   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1469   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1470     Assembler::vinserti64x4(dst, dst, src, 0);
1471   }
1472   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1473     Assembler::vinsertf64x4(dst, dst, src, 0);
1474   }
1475   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1476     Assembler::vextracti64x4(dst, src, 0);
1477   }
1478   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1479     Assembler::vextractf64x4(dst, src, 0);
1480   }
1481   void vextractf64x4_low(Address dst, XMMRegister src) {
1482     Assembler::vextractf64x4(dst, src, 0);
1483   }
1484   void vinsertf64x4_low(XMMRegister dst, Address src) {
1485     Assembler::vinsertf64x4(dst, dst, src, 0);
1486   }
1487 
1488   // Carry-Less Multiplication Quadword
1489   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1490     // 0x00 - multiply lower 64 bits [0:63]
1491     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1492   }
1493   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1494     // 0x11 - multiply upper 64 bits [64:127]
1495     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1496   }
1497 
1498   // Data
1499 
1500   void cmov32( Condition cc, Register dst, Address  src);
1501   void cmov32( Condition cc, Register dst, Register src);
1502 
1503   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1504 
1505   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1506   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1507 
1508   void movoop(Register dst, jobject obj);
1509   void movoop(Address dst, jobject obj);
1510 
1511   void mov_metadata(Register dst, Metadata* obj);
1512   void mov_metadata(Address dst, Metadata* obj);
1513 
1514   void movptr(ArrayAddress dst, Register src);
1515   // can this do an lea?
1516   void movptr(Register dst, ArrayAddress src);
1517 
1518   void movptr(Register dst, Address src);
1519 
1520 #ifdef _LP64
1521   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1522 #else
1523   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1524 #endif
1525 
1526   void movptr(Register dst, intptr_t src);
1527   void movptr(Register dst, Register src);
1528   void movptr(Address dst, intptr_t src);
1529 
1530   void movptr(Address dst, Register src);
1531 
1532   void movptr(Register dst, RegisterOrConstant src) {
1533     if (src.is_constant()) movptr(dst, src.as_constant());
1534     else                   movptr(dst, src.as_register());
1535   }
1536 
1537 #ifdef _LP64
1538   // Generally the next two are only used for moving NULL
1539   // Although there are situations in initializing the mark word where
1540   // they could be used. They are dangerous.
1541 
1542   // They only exist on LP64 so that int32_t and intptr_t are not the same
1543   // and we have ambiguous declarations.
1544 
1545   void movptr(Address dst, int32_t imm32);
1546   void movptr(Register dst, int32_t imm32);
1547 #endif // _LP64
1548 
1549   // to avoid hiding movl
1550   void mov32(AddressLiteral dst, Register src);
1551   void mov32(Register dst, AddressLiteral src);
1552 
1553   // to avoid hiding movb
1554   void movbyte(ArrayAddress dst, int src);
1555 
1556   // Import other mov() methods from the parent class or else
1557   // they will be hidden by the following overriding declaration.
1558   using Assembler::movdl;
1559   using Assembler::movq;
1560   void movdl(XMMRegister dst, AddressLiteral src);
1561   void movq(XMMRegister dst, AddressLiteral src);
1562 
1563   // Can push value or effective address
1564   void pushptr(AddressLiteral src);
1565 
1566   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1567   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1568 
1569   void pushoop(jobject obj);
1570   void pushklass(Metadata* obj);
1571 
1572   // sign extend as need a l to ptr sized element
1573   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1574   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1575 
1576   // C2 compiled method's prolog code.
1577   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1578 
1579   // clear memory of size 'cnt' qwords, starting at 'base';
1580   // if 'is_large' is set, do not try to produce short loop
1581   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1582 
1583 #ifdef COMPILER2
1584   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1585                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1586 
1587   // IndexOf strings.
1588   // Small strings are loaded through stack if they cross page boundary.
1589   void string_indexof(Register str1, Register str2,
1590                       Register cnt1, Register cnt2,
1591                       int int_cnt2,  Register result,
1592                       XMMRegister vec, Register tmp,
1593                       int ae);
1594 
1595   // IndexOf for constant substrings with size >= 8 elements
1596   // which don't need to be loaded through stack.
1597   void string_indexofC8(Register str1, Register str2,
1598                       Register cnt1, Register cnt2,
1599                       int int_cnt2,  Register result,
1600                       XMMRegister vec, Register tmp,
1601                       int ae);
1602 
1603     // Smallest code: we don't need to load through stack,
1604     // check string tail.
1605 
1606   // helper function for string_compare
1607   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1608                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1609                           Address::ScaleFactor scale2, Register index, int ae);
1610   // Compare strings.
1611   void string_compare(Register str1, Register str2,
1612                       Register cnt1, Register cnt2, Register result,
1613                       XMMRegister vec1, int ae);
1614 
1615   // Search for Non-ASCII character (Negative byte value) in a byte array,
1616   // return true if it has any and false otherwise.
1617   void has_negatives(Register ary1, Register len,
1618                      Register result, Register tmp1,
1619                      XMMRegister vec1, XMMRegister vec2);
1620 
1621   // Compare char[] or byte[] arrays.
1622   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1623                      Register limit, Register result, Register chr,
1624                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1625 
1626 #endif
1627 
1628   // Fill primitive arrays
1629   void generate_fill(BasicType t, bool aligned,
1630                      Register to, Register value, Register count,
1631                      Register rtmp, XMMRegister xtmp);
1632 
1633   void encode_iso_array(Register src, Register dst, Register len,
1634                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1635                         XMMRegister tmp4, Register tmp5, Register result);
1636 
1637 #ifdef _LP64
1638   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1639   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1640                              Register y, Register y_idx, Register z,
1641                              Register carry, Register product,
1642                              Register idx, Register kdx);
1643   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1644                               Register yz_idx, Register idx,
1645                               Register carry, Register product, int offset);
1646   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1647                                     Register carry, Register carry2,
1648                                     Register idx, Register jdx,
1649                                     Register yz_idx1, Register yz_idx2,
1650                                     Register tmp, Register tmp3, Register tmp4);
1651   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1652                                Register yz_idx, Register idx, Register jdx,
1653                                Register carry, Register product,
1654                                Register carry2);
1655   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1656                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1657   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1658                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1659   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1660                             Register tmp2);
1661   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1662                        Register rdxReg, Register raxReg);
1663   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1664   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1665                        Register tmp3, Register tmp4);
1666   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1667                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1668 
1669   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1670                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1671                Register raxReg);
1672   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1673                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1674                Register raxReg);
1675   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1676                            Register result, Register tmp1, Register tmp2,
1677                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1678 #endif
1679 
1680   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1681   void update_byte_crc32(Register crc, Register val, Register table);
1682   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1683   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1684   // Note on a naming convention:
1685   // Prefix w = register only used on a Westmere+ architecture
1686   // Prefix n = register only used on a Nehalem architecture
1687 #ifdef _LP64
1688   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1689                        Register tmp1, Register tmp2, Register tmp3);
1690 #else
1691   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1692                        Register tmp1, Register tmp2, Register tmp3,
1693                        XMMRegister xtmp1, XMMRegister xtmp2);
1694 #endif
1695   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1696                         Register in_out,
1697                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1698                         XMMRegister w_xtmp2,
1699                         Register tmp1,
1700                         Register n_tmp2, Register n_tmp3);
1701   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1702                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1703                        Register tmp1, Register tmp2,
1704                        Register n_tmp3);
1705   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1706                          Register in_out1, Register in_out2, Register in_out3,
1707                          Register tmp1, Register tmp2, Register tmp3,
1708                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1709                          Register tmp4, Register tmp5,
1710                          Register n_tmp6);
1711   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1712                             Register tmp1, Register tmp2, Register tmp3,
1713                             Register tmp4, Register tmp5, Register tmp6,
1714                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1715                             bool is_pclmulqdq_supported);
1716   // Fold 128-bit data chunk
1717   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1718   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1719   // Fold 8-bit data
1720   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1721   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1722 
1723   // Compress char[] array to byte[].
1724   void char_array_compress(Register src, Register dst, Register len,
1725                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1726                            XMMRegister tmp4, Register tmp5, Register result);
1727 
1728   // Inflate byte[] array to char[].
1729   void byte_array_inflate(Register src, Register dst, Register len,
1730                           XMMRegister tmp1, Register tmp2);
1731 
1732 };
1733 
1734 /**
1735  * class SkipIfEqual:
1736  *
1737  * Instantiating this class will result in assembly code being output that will
1738  * jump around any code emitted between the creation of the instance and it's
1739  * automatic destruction at the end of a scope block, depending on the value of
1740  * the flag passed to the constructor, which will be checked at run-time.
1741  */
1742 class SkipIfEqual {
1743  private:
1744   MacroAssembler* _masm;
1745   Label _label;
1746 
1747  public:
1748    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1749    ~SkipIfEqual();
1750 };
1751 
1752 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP