1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2017 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "classfile/classLoader.hpp"
  32 #include "classfile/systemDictionary.hpp"
  33 #include "classfile/vmSymbols.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "jvm_aix.h"
  39 #include "logging/log.hpp"
  40 #include "libo4.hpp"
  41 #include "libperfstat_aix.hpp"
  42 #include "libodm_aix.hpp"
  43 #include "loadlib_aix.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "misc_aix.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "os_aix.inline.hpp"
  49 #include "os_share_aix.hpp"
  50 #include "porting_aix.hpp"
  51 #include "prims/jniFastGetField.hpp"
  52 #include "prims/jvm.h"
  53 #include "prims/jvm_misc.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/extendedPC.hpp"
  57 #include "runtime/globals.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/objectMonitor.hpp"
  63 #include "runtime/orderAccess.inline.hpp"
  64 #include "runtime/os.hpp"
  65 #include "runtime/osThread.hpp"
  66 #include "runtime/perfMemory.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/statSampler.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/thread.inline.hpp"
  71 #include "runtime/threadCritical.hpp"
  72 #include "runtime/timer.hpp"
  73 #include "runtime/vm_version.hpp"
  74 #include "services/attachListener.hpp"
  75 #include "services/runtimeService.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/decoder.hpp"
  78 #include "utilities/defaultStream.hpp"
  79 #include "utilities/events.hpp"
  80 #include "utilities/growableArray.hpp"
  81 #include "utilities/vmError.hpp"
  82 
  83 // put OS-includes here (sorted alphabetically)
  84 #include <errno.h>
  85 #include <fcntl.h>
  86 #include <inttypes.h>
  87 #include <poll.h>
  88 #include <procinfo.h>
  89 #include <pthread.h>
  90 #include <pwd.h>
  91 #include <semaphore.h>
  92 #include <signal.h>
  93 #include <stdint.h>
  94 #include <stdio.h>
  95 #include <string.h>
  96 #include <unistd.h>
  97 #include <sys/ioctl.h>
  98 #include <sys/ipc.h>
  99 #include <sys/mman.h>
 100 #include <sys/resource.h>
 101 #include <sys/select.h>
 102 #include <sys/shm.h>
 103 #include <sys/socket.h>
 104 #include <sys/stat.h>
 105 #include <sys/sysinfo.h>
 106 #include <sys/systemcfg.h>
 107 #include <sys/time.h>
 108 #include <sys/times.h>
 109 #include <sys/types.h>
 110 #include <sys/utsname.h>
 111 #include <sys/vminfo.h>
 112 #include <sys/wait.h>
 113 
 114 // Missing prototypes for various system APIs.
 115 extern "C"
 116 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 117 
 118 #if !defined(_AIXVERSION_610)
 119 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 120 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 121 extern "C" int getargs   (procsinfo*, int, char*, int);
 122 #endif
 123 
 124 #define MAX_PATH (2 * K)
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 // for multipage initialization error analysis (in 'g_multipage_error')
 129 #define ERROR_MP_OS_TOO_OLD                          100
 130 #define ERROR_MP_EXTSHM_ACTIVE                       101
 131 #define ERROR_MP_VMGETINFO_FAILED                    102
 132 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 133 
 134 static address resolve_function_descriptor_to_code_pointer(address p);
 135 
 136 static void vmembk_print_on(outputStream* os);
 137 
 138 ////////////////////////////////////////////////////////////////////////////////
 139 // global variables (for a description see os_aix.hpp)
 140 
 141 julong    os::Aix::_physical_memory = 0;
 142 
 143 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 144 int       os::Aix::_page_size = -1;
 145 
 146 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 147 int       os::Aix::_on_pase = -1;
 148 
 149 // 0 = uninitialized, otherwise 32 bit number:
 150 //  0xVVRRTTSS
 151 //  VV - major version
 152 //  RR - minor version
 153 //  TT - tech level, if known, 0 otherwise
 154 //  SS - service pack, if known, 0 otherwise
 155 uint32_t  os::Aix::_os_version = 0;
 156 
 157 // -1 = uninitialized, 0 - no, 1 - yes
 158 int       os::Aix::_xpg_sus_mode = -1;
 159 
 160 // -1 = uninitialized, 0 - no, 1 - yes
 161 int       os::Aix::_extshm = -1;
 162 
 163 ////////////////////////////////////////////////////////////////////////////////
 164 // local variables
 165 
 166 static jlong    initial_time_count = 0;
 167 static int      clock_tics_per_sec = 100;
 168 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 169 static bool     check_signals      = true;
 170 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 171 static sigset_t SR_sigset;
 172 
 173 // Process break recorded at startup.
 174 static address g_brk_at_startup = NULL;
 175 
 176 // This describes the state of multipage support of the underlying
 177 // OS. Note that this is of no interest to the outsize world and
 178 // therefore should not be defined in AIX class.
 179 //
 180 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 181 // latter two (16M "large" resp. 16G "huge" pages) require special
 182 // setup and are normally not available.
 183 //
 184 // AIX supports multiple page sizes per process, for:
 185 //  - Stack (of the primordial thread, so not relevant for us)
 186 //  - Data - data, bss, heap, for us also pthread stacks
 187 //  - Text - text code
 188 //  - shared memory
 189 //
 190 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 191 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 192 //
 193 // For shared memory, page size can be set dynamically via
 194 // shmctl(). Different shared memory regions can have different page
 195 // sizes.
 196 //
 197 // More information can be found at AIBM info center:
 198 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 199 //
 200 static struct {
 201   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 202   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 203   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 204   size_t pthr_stack_pagesize; // stack page size of pthread threads
 205   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 206   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 207   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 208   int error;                  // Error describing if something went wrong at multipage init.
 209 } g_multipage_support = {
 210   (size_t) -1,
 211   (size_t) -1,
 212   (size_t) -1,
 213   (size_t) -1,
 214   (size_t) -1,
 215   false, false,
 216   0
 217 };
 218 
 219 // We must not accidentally allocate memory close to the BRK - even if
 220 // that would work - because then we prevent the BRK segment from
 221 // growing which may result in a malloc OOM even though there is
 222 // enough memory. The problem only arises if we shmat() or mmap() at
 223 // a specific wish address, e.g. to place the heap in a
 224 // compressed-oops-friendly way.
 225 static bool is_close_to_brk(address a) {
 226   assert0(g_brk_at_startup != NULL);
 227   if (a >= g_brk_at_startup &&
 228       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 229     return true;
 230   }
 231   return false;
 232 }
 233 
 234 julong os::available_memory() {
 235   return Aix::available_memory();
 236 }
 237 
 238 julong os::Aix::available_memory() {
 239   // Avoid expensive API call here, as returned value will always be null.
 240   if (os::Aix::on_pase()) {
 241     return 0x0LL;
 242   }
 243   os::Aix::meminfo_t mi;
 244   if (os::Aix::get_meminfo(&mi)) {
 245     return mi.real_free;
 246   } else {
 247     return ULONG_MAX;
 248   }
 249 }
 250 
 251 julong os::physical_memory() {
 252   return Aix::physical_memory();
 253 }
 254 
 255 // Return true if user is running as root.
 256 
 257 bool os::have_special_privileges() {
 258   static bool init = false;
 259   static bool privileges = false;
 260   if (!init) {
 261     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 262     init = true;
 263   }
 264   return privileges;
 265 }
 266 
 267 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 268 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 269 static bool my_disclaim64(char* addr, size_t size) {
 270 
 271   if (size == 0) {
 272     return true;
 273   }
 274 
 275   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 276   const unsigned int maxDisclaimSize = 0x40000000;
 277 
 278   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 279   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 280 
 281   char* p = addr;
 282 
 283   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 284     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 285       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 286       return false;
 287     }
 288     p += maxDisclaimSize;
 289   }
 290 
 291   if (lastDisclaimSize > 0) {
 292     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 293       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 294       return false;
 295     }
 296   }
 297 
 298   return true;
 299 }
 300 
 301 // Cpu architecture string
 302 #if defined(PPC32)
 303 static char cpu_arch[] = "ppc";
 304 #elif defined(PPC64)
 305 static char cpu_arch[] = "ppc64";
 306 #else
 307 #error Add appropriate cpu_arch setting
 308 #endif
 309 
 310 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 311 static int checked_vmgetinfo(void *out, int command, int arg) {
 312   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 313     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 314   }
 315   return ::vmgetinfo(out, command, arg);
 316 }
 317 
 318 // Given an address, returns the size of the page backing that address.
 319 size_t os::Aix::query_pagesize(void* addr) {
 320 
 321   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 322     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 323     return 4*K;
 324   }
 325 
 326   vm_page_info pi;
 327   pi.addr = (uint64_t)addr;
 328   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 329     return pi.pagesize;
 330   } else {
 331     assert(false, "vmgetinfo failed to retrieve page size");
 332     return 4*K;
 333   }
 334 }
 335 
 336 void os::Aix::initialize_system_info() {
 337 
 338   // Get the number of online(logical) cpus instead of configured.
 339   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 340   assert(_processor_count > 0, "_processor_count must be > 0");
 341 
 342   // Retrieve total physical storage.
 343   os::Aix::meminfo_t mi;
 344   if (!os::Aix::get_meminfo(&mi)) {
 345     assert(false, "os::Aix::get_meminfo failed.");
 346   }
 347   _physical_memory = (julong) mi.real_total;
 348 }
 349 
 350 // Helper function for tracing page sizes.
 351 static const char* describe_pagesize(size_t pagesize) {
 352   switch (pagesize) {
 353     case 4*K : return "4K";
 354     case 64*K: return "64K";
 355     case 16*M: return "16M";
 356     case 16*G: return "16G";
 357     default:
 358       assert(false, "surprise");
 359       return "??";
 360   }
 361 }
 362 
 363 // Probe OS for multipage support.
 364 // Will fill the global g_multipage_support structure.
 365 // Must be called before calling os::large_page_init().
 366 static void query_multipage_support() {
 367 
 368   guarantee(g_multipage_support.pagesize == -1,
 369             "do not call twice");
 370 
 371   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 372 
 373   // This really would surprise me.
 374   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 375 
 376   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 377   // Default data page size is defined either by linker options (-bdatapsize)
 378   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 379   // default should be 4K.
 380   {
 381     void* p = ::malloc(16*M);
 382     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 383     ::free(p);
 384   }
 385 
 386   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 387   // Note that this is pure curiosity. We do not rely on default page size but set
 388   // our own page size after allocated.
 389   {
 390     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 391     guarantee(shmid != -1, "shmget failed");
 392     void* p = ::shmat(shmid, NULL, 0);
 393     ::shmctl(shmid, IPC_RMID, NULL);
 394     guarantee(p != (void*) -1, "shmat failed");
 395     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 396     ::shmdt(p);
 397   }
 398 
 399   // Before querying the stack page size, make sure we are not running as primordial
 400   // thread (because primordial thread's stack may have different page size than
 401   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 402   // number of reasons so we may just as well guarantee it here.
 403   guarantee0(!os::Aix::is_primordial_thread());
 404 
 405   // Query pthread stack page size. Should be the same as data page size because
 406   // pthread stacks are allocated from C-Heap.
 407   {
 408     int dummy = 0;
 409     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 410   }
 411 
 412   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 413   {
 414     address any_function =
 415       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 416     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 417   }
 418 
 419   // Now probe for support of 64K pages and 16M pages.
 420 
 421   // Before OS/400 V6R1, there is no support for pages other than 4K.
 422   if (os::Aix::on_pase_V5R4_or_older()) {
 423     trcVerbose("OS/400 < V6R1 - no large page support.");
 424     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 425     goto query_multipage_support_end;
 426   }
 427 
 428   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 429   {
 430     const int MAX_PAGE_SIZES = 4;
 431     psize_t sizes[MAX_PAGE_SIZES];
 432     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 433     if (num_psizes == -1) {
 434       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 435       trcVerbose("disabling multipage support.");
 436       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 437       goto query_multipage_support_end;
 438     }
 439     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 440     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 441     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 442     for (int i = 0; i < num_psizes; i ++) {
 443       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 444     }
 445 
 446     // Can we use 64K, 16M pages?
 447     for (int i = 0; i < num_psizes; i ++) {
 448       const size_t pagesize = sizes[i];
 449       if (pagesize != 64*K && pagesize != 16*M) {
 450         continue;
 451       }
 452       bool can_use = false;
 453       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 454       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 455         IPC_CREAT | S_IRUSR | S_IWUSR);
 456       guarantee0(shmid != -1); // Should always work.
 457       // Try to set pagesize.
 458       struct shmid_ds shm_buf = { 0 };
 459       shm_buf.shm_pagesize = pagesize;
 460       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 461         const int en = errno;
 462         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 463         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%n",
 464           errno);
 465       } else {
 466         // Attach and double check pageisze.
 467         void* p = ::shmat(shmid, NULL, 0);
 468         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 469         guarantee0(p != (void*) -1); // Should always work.
 470         const size_t real_pagesize = os::Aix::query_pagesize(p);
 471         if (real_pagesize != pagesize) {
 472           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 473         } else {
 474           can_use = true;
 475         }
 476         ::shmdt(p);
 477       }
 478       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 479       if (pagesize == 64*K) {
 480         g_multipage_support.can_use_64K_pages = can_use;
 481       } else if (pagesize == 16*M) {
 482         g_multipage_support.can_use_16M_pages = can_use;
 483       }
 484     }
 485 
 486   } // end: check which pages can be used for shared memory
 487 
 488 query_multipage_support_end:
 489 
 490   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 491       describe_pagesize(g_multipage_support.pagesize));
 492   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 493       describe_pagesize(g_multipage_support.datapsize));
 494   trcVerbose("Text page size: %s",
 495       describe_pagesize(g_multipage_support.textpsize));
 496   trcVerbose("Thread stack page size (pthread): %s",
 497       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 498   trcVerbose("Default shared memory page size: %s",
 499       describe_pagesize(g_multipage_support.shmpsize));
 500   trcVerbose("Can use 64K pages dynamically with shared meory: %s",
 501       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 502   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 503       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 504   trcVerbose("Multipage error details: %d",
 505       g_multipage_support.error);
 506 
 507   // sanity checks
 508   assert0(g_multipage_support.pagesize == 4*K);
 509   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 510   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 511   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 512   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 513 
 514 }
 515 
 516 void os::init_system_properties_values() {
 517 
 518 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 519 #define EXTENSIONS_DIR  "/lib/ext"
 520 
 521   // Buffer that fits several sprintfs.
 522   // Note that the space for the trailing null is provided
 523   // by the nulls included by the sizeof operator.
 524   const size_t bufsize =
 525     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 526          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 527   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 528 
 529   // sysclasspath, java_home, dll_dir
 530   {
 531     char *pslash;
 532     os::jvm_path(buf, bufsize);
 533 
 534     // Found the full path to libjvm.so.
 535     // Now cut the path to <java_home>/jre if we can.
 536     pslash = strrchr(buf, '/');
 537     if (pslash != NULL) {
 538       *pslash = '\0';            // Get rid of /libjvm.so.
 539     }
 540     pslash = strrchr(buf, '/');
 541     if (pslash != NULL) {
 542       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 543     }
 544     Arguments::set_dll_dir(buf);
 545 
 546     if (pslash != NULL) {
 547       pslash = strrchr(buf, '/');
 548       if (pslash != NULL) {
 549         *pslash = '\0';        // Get rid of /lib.
 550       }
 551     }
 552     Arguments::set_java_home(buf);
 553     set_boot_path('/', ':');
 554   }
 555 
 556   // Where to look for native libraries.
 557 
 558   // On Aix we get the user setting of LIBPATH.
 559   // Eventually, all the library path setting will be done here.
 560   // Get the user setting of LIBPATH.
 561   const char *v = ::getenv("LIBPATH");
 562   const char *v_colon = ":";
 563   if (v == NULL) { v = ""; v_colon = ""; }
 564 
 565   // Concatenate user and invariant part of ld_library_path.
 566   // That's +1 for the colon and +1 for the trailing '\0'.
 567   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 568   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 569   Arguments::set_library_path(ld_library_path);
 570   FREE_C_HEAP_ARRAY(char, ld_library_path);
 571 
 572   // Extensions directories.
 573   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 574   Arguments::set_ext_dirs(buf);
 575 
 576   FREE_C_HEAP_ARRAY(char, buf);
 577 
 578 #undef DEFAULT_LIBPATH
 579 #undef EXTENSIONS_DIR
 580 }
 581 
 582 ////////////////////////////////////////////////////////////////////////////////
 583 // breakpoint support
 584 
 585 void os::breakpoint() {
 586   BREAKPOINT;
 587 }
 588 
 589 extern "C" void breakpoint() {
 590   // use debugger to set breakpoint here
 591 }
 592 
 593 ////////////////////////////////////////////////////////////////////////////////
 594 // signal support
 595 
 596 debug_only(static bool signal_sets_initialized = false);
 597 static sigset_t unblocked_sigs, vm_sigs;
 598 
 599 bool os::Aix::is_sig_ignored(int sig) {
 600   struct sigaction oact;
 601   sigaction(sig, (struct sigaction*)NULL, &oact);
 602   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
 603     : CAST_FROM_FN_PTR(void*, oact.sa_handler);
 604   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 605     return true;
 606   } else {
 607     return false;
 608   }
 609 }
 610 
 611 void os::Aix::signal_sets_init() {
 612   // Should also have an assertion stating we are still single-threaded.
 613   assert(!signal_sets_initialized, "Already initialized");
 614   // Fill in signals that are necessarily unblocked for all threads in
 615   // the VM. Currently, we unblock the following signals:
 616   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 617   //                         by -Xrs (=ReduceSignalUsage));
 618   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 619   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 620   // the dispositions or masks wrt these signals.
 621   // Programs embedding the VM that want to use the above signals for their
 622   // own purposes must, at this time, use the "-Xrs" option to prevent
 623   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 624   // (See bug 4345157, and other related bugs).
 625   // In reality, though, unblocking these signals is really a nop, since
 626   // these signals are not blocked by default.
 627   sigemptyset(&unblocked_sigs);
 628   sigaddset(&unblocked_sigs, SIGILL);
 629   sigaddset(&unblocked_sigs, SIGSEGV);
 630   sigaddset(&unblocked_sigs, SIGBUS);
 631   sigaddset(&unblocked_sigs, SIGFPE);
 632   sigaddset(&unblocked_sigs, SIGTRAP);
 633   sigaddset(&unblocked_sigs, SR_signum);
 634 
 635   if (!ReduceSignalUsage) {
 636    if (!os::Aix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 637      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 638    }
 639    if (!os::Aix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 640      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 641    }
 642    if (!os::Aix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 643      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 644    }
 645   }
 646   // Fill in signals that are blocked by all but the VM thread.
 647   sigemptyset(&vm_sigs);
 648   if (!ReduceSignalUsage)
 649     sigaddset(&vm_sigs, BREAK_SIGNAL);
 650   debug_only(signal_sets_initialized = true);
 651 }
 652 
 653 // These are signals that are unblocked while a thread is running Java.
 654 // (For some reason, they get blocked by default.)
 655 sigset_t* os::Aix::unblocked_signals() {
 656   assert(signal_sets_initialized, "Not initialized");
 657   return &unblocked_sigs;
 658 }
 659 
 660 // These are the signals that are blocked while a (non-VM) thread is
 661 // running Java. Only the VM thread handles these signals.
 662 sigset_t* os::Aix::vm_signals() {
 663   assert(signal_sets_initialized, "Not initialized");
 664   return &vm_sigs;
 665 }
 666 
 667 void os::Aix::hotspot_sigmask(Thread* thread) {
 668 
 669   //Save caller's signal mask before setting VM signal mask
 670   sigset_t caller_sigmask;
 671   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 672 
 673   OSThread* osthread = thread->osthread();
 674   osthread->set_caller_sigmask(caller_sigmask);
 675 
 676   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 677 
 678   if (!ReduceSignalUsage) {
 679     if (thread->is_VM_thread()) {
 680       // Only the VM thread handles BREAK_SIGNAL ...
 681       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 682     } else {
 683       // ... all other threads block BREAK_SIGNAL
 684       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 685     }
 686   }
 687 }
 688 
 689 // retrieve memory information.
 690 // Returns false if something went wrong;
 691 // content of pmi undefined in this case.
 692 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 693 
 694   assert(pmi, "get_meminfo: invalid parameter");
 695 
 696   memset(pmi, 0, sizeof(meminfo_t));
 697 
 698   if (os::Aix::on_pase()) {
 699     // On PASE, use the libo4 porting library.
 700 
 701     unsigned long long virt_total = 0;
 702     unsigned long long real_total = 0;
 703     unsigned long long real_free = 0;
 704     unsigned long long pgsp_total = 0;
 705     unsigned long long pgsp_free = 0;
 706     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 707       pmi->virt_total = virt_total;
 708       pmi->real_total = real_total;
 709       pmi->real_free = real_free;
 710       pmi->pgsp_total = pgsp_total;
 711       pmi->pgsp_free = pgsp_free;
 712       return true;
 713     }
 714     return false;
 715 
 716   } else {
 717 
 718     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 719     // See:
 720     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 721     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 722     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 723     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 724 
 725     perfstat_memory_total_t psmt;
 726     memset (&psmt, '\0', sizeof(psmt));
 727     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 728     if (rc == -1) {
 729       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 730       assert(0, "perfstat_memory_total() failed");
 731       return false;
 732     }
 733 
 734     assert(rc == 1, "perfstat_memory_total() - weird return code");
 735 
 736     // excerpt from
 737     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 738     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 739     // The fields of perfstat_memory_total_t:
 740     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 741     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 742     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 743     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 744     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 745 
 746     pmi->virt_total = psmt.virt_total * 4096;
 747     pmi->real_total = psmt.real_total * 4096;
 748     pmi->real_free = psmt.real_free * 4096;
 749     pmi->pgsp_total = psmt.pgsp_total * 4096;
 750     pmi->pgsp_free = psmt.pgsp_free * 4096;
 751 
 752     return true;
 753 
 754   }
 755 } // end os::Aix::get_meminfo
 756 
 757 //////////////////////////////////////////////////////////////////////////////
 758 // create new thread
 759 
 760 // Thread start routine for all newly created threads
 761 static void *thread_native_entry(Thread *thread) {
 762 
 763   // find out my own stack dimensions
 764   {
 765     // actually, this should do exactly the same as thread->record_stack_base_and_size...
 766     thread->set_stack_base(os::current_stack_base());
 767     thread->set_stack_size(os::current_stack_size());
 768   }
 769 
 770   const pthread_t pthread_id = ::pthread_self();
 771   const tid_t kernel_thread_id = ::thread_self();
 772 
 773   LogTarget(Info, os, thread) lt;
 774   if (lt.is_enabled()) {
 775     address low_address = thread->stack_end();
 776     address high_address = thread->stack_base();
 777     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 778              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 779              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 780              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 781   }
 782 
 783   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 784   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 785   // tools hook pthread_create(). In this case, we may run into problems establishing
 786   // guard pages on those stacks, because the stacks may reside in memory which is not
 787   // protectable (shmated).
 788   if (thread->stack_base() > ::sbrk(0)) {
 789     log_warning(os, thread)("Thread stack not in data segment.");
 790   }
 791 
 792   // Try to randomize the cache line index of hot stack frames.
 793   // This helps when threads of the same stack traces evict each other's
 794   // cache lines. The threads can be either from the same JVM instance, or
 795   // from different JVM instances. The benefit is especially true for
 796   // processors with hyperthreading technology.
 797 
 798   static int counter = 0;
 799   int pid = os::current_process_id();
 800   alloca(((pid ^ counter++) & 7) * 128);
 801 
 802   thread->initialize_thread_current();
 803 
 804   OSThread* osthread = thread->osthread();
 805 
 806   // Thread_id is pthread id.
 807   osthread->set_thread_id(pthread_id);
 808 
 809   // .. but keep kernel thread id too for diagnostics
 810   osthread->set_kernel_thread_id(kernel_thread_id);
 811 
 812   // Initialize signal mask for this thread.
 813   os::Aix::hotspot_sigmask(thread);
 814 
 815   // Initialize floating point control register.
 816   os::Aix::init_thread_fpu_state();
 817 
 818   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 819 
 820   // Call one more level start routine.
 821   thread->run();
 822 
 823   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 824     os::current_thread_id(), (uintx) kernel_thread_id);
 825 
 826   // If a thread has not deleted itself ("delete this") as part of its
 827   // termination sequence, we have to ensure thread-local-storage is
 828   // cleared before we actually terminate. No threads should ever be
 829   // deleted asynchronously with respect to their termination.
 830   if (Thread::current_or_null_safe() != NULL) {
 831     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 832     thread->clear_thread_current();
 833   }
 834 
 835   return 0;
 836 }
 837 
 838 bool os::create_thread(Thread* thread, ThreadType thr_type,
 839                        size_t req_stack_size) {
 840 
 841   assert(thread->osthread() == NULL, "caller responsible");
 842 
 843   // Allocate the OSThread object.
 844   OSThread* osthread = new OSThread(NULL, NULL);
 845   if (osthread == NULL) {
 846     return false;
 847   }
 848 
 849   // Set the correct thread state.
 850   osthread->set_thread_type(thr_type);
 851 
 852   // Initial state is ALLOCATED but not INITIALIZED
 853   osthread->set_state(ALLOCATED);
 854 
 855   thread->set_osthread(osthread);
 856 
 857   // Init thread attributes.
 858   pthread_attr_t attr;
 859   pthread_attr_init(&attr);
 860   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 861 
 862   // Make sure we run in 1:1 kernel-user-thread mode.
 863   if (os::Aix::on_aix()) {
 864     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 865     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 866   }
 867 
 868   // Start in suspended state, and in os::thread_start, wake the thread up.
 869   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 870 
 871   // Calculate stack size if it's not specified by caller.
 872   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 873 
 874   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 875   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 876   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 877   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 878   if (stack_size < 4096 * K) {
 879     stack_size += 64 * K;
 880   }
 881 
 882   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 883   // thread size in attr unchanged. If this is the minimal stack size as set
 884   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 885   // guard pages might not fit on the tiny stack created.
 886   int ret = pthread_attr_setstacksize(&attr, stack_size);
 887   if (ret != 0) {
 888     log_warning(os, thread)("The thread stack size specified is invalid: " SIZE_FORMAT "k",
 889                             stack_size / K);
 890   }
 891 
 892   // Save some cycles and a page by disabling OS guard pages where we have our own
 893   // VM guard pages (in java threads). For other threads, keep system default guard
 894   // pages in place.
 895   if (thr_type == java_thread || thr_type == compiler_thread) {
 896     ret = pthread_attr_setguardsize(&attr, 0);
 897   }
 898 
 899   pthread_t tid = 0;
 900   if (ret == 0) {
 901     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 902   }
 903 
 904   if (ret == 0) {
 905     char buf[64];
 906     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 907       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 908   } else {
 909     char buf[64];
 910     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 911       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 912   }
 913 
 914   pthread_attr_destroy(&attr);
 915 
 916   if (ret != 0) {
 917     // Need to clean up stuff we've allocated so far.
 918     thread->set_osthread(NULL);
 919     delete osthread;
 920     return false;
 921   }
 922 
 923   // OSThread::thread_id is the pthread id.
 924   osthread->set_thread_id(tid);
 925 
 926   return true;
 927 }
 928 
 929 /////////////////////////////////////////////////////////////////////////////
 930 // attach existing thread
 931 
 932 // bootstrap the main thread
 933 bool os::create_main_thread(JavaThread* thread) {
 934   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 935   return create_attached_thread(thread);
 936 }
 937 
 938 bool os::create_attached_thread(JavaThread* thread) {
 939 #ifdef ASSERT
 940     thread->verify_not_published();
 941 #endif
 942 
 943   // Allocate the OSThread object
 944   OSThread* osthread = new OSThread(NULL, NULL);
 945 
 946   if (osthread == NULL) {
 947     return false;
 948   }
 949 
 950   const pthread_t pthread_id = ::pthread_self();
 951   const tid_t kernel_thread_id = ::thread_self();
 952 
 953   // OSThread::thread_id is the pthread id.
 954   osthread->set_thread_id(pthread_id);
 955 
 956   // .. but keep kernel thread id too for diagnostics
 957   osthread->set_kernel_thread_id(kernel_thread_id);
 958 
 959   // initialize floating point control register
 960   os::Aix::init_thread_fpu_state();
 961 
 962   // Initial thread state is RUNNABLE
 963   osthread->set_state(RUNNABLE);
 964 
 965   thread->set_osthread(osthread);
 966 
 967   if (UseNUMA) {
 968     int lgrp_id = os::numa_get_group_id();
 969     if (lgrp_id != -1) {
 970       thread->set_lgrp_id(lgrp_id);
 971     }
 972   }
 973 
 974   // initialize signal mask for this thread
 975   // and save the caller's signal mask
 976   os::Aix::hotspot_sigmask(thread);
 977 
 978   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 979     os::current_thread_id(), (uintx) kernel_thread_id);
 980 
 981   return true;
 982 }
 983 
 984 void os::pd_start_thread(Thread* thread) {
 985   int status = pthread_continue_np(thread->osthread()->pthread_id());
 986   assert(status == 0, "thr_continue failed");
 987 }
 988 
 989 // Free OS resources related to the OSThread
 990 void os::free_thread(OSThread* osthread) {
 991   assert(osthread != NULL, "osthread not set");
 992 
 993   // We are told to free resources of the argument thread,
 994   // but we can only really operate on the current thread.
 995   assert(Thread::current()->osthread() == osthread,
 996          "os::free_thread but not current thread");
 997 
 998   // Restore caller's signal mask
 999   sigset_t sigmask = osthread->caller_sigmask();
1000   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1001 
1002   delete osthread;
1003 }
1004 
1005 ////////////////////////////////////////////////////////////////////////////////
1006 // time support
1007 
1008 // Time since start-up in seconds to a fine granularity.
1009 // Used by VMSelfDestructTimer and the MemProfiler.
1010 double os::elapsedTime() {
1011   return (double)(os::elapsed_counter()) * 0.000001;
1012 }
1013 
1014 jlong os::elapsed_counter() {
1015   timeval time;
1016   int status = gettimeofday(&time, NULL);
1017   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1018 }
1019 
1020 jlong os::elapsed_frequency() {
1021   return (1000 * 1000);
1022 }
1023 
1024 bool os::supports_vtime() { return true; }
1025 bool os::enable_vtime()   { return false; }
1026 bool os::vtime_enabled()  { return false; }
1027 
1028 double os::elapsedVTime() {
1029   struct rusage usage;
1030   int retval = getrusage(RUSAGE_THREAD, &usage);
1031   if (retval == 0) {
1032     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1033   } else {
1034     // better than nothing, but not much
1035     return elapsedTime();
1036   }
1037 }
1038 
1039 jlong os::javaTimeMillis() {
1040   timeval time;
1041   int status = gettimeofday(&time, NULL);
1042   assert(status != -1, "aix error at gettimeofday()");
1043   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1044 }
1045 
1046 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1047   timeval time;
1048   int status = gettimeofday(&time, NULL);
1049   assert(status != -1, "aix error at gettimeofday()");
1050   seconds = jlong(time.tv_sec);
1051   nanos = jlong(time.tv_usec) * 1000;
1052 }
1053 
1054 jlong os::javaTimeNanos() {
1055   if (os::Aix::on_pase()) {
1056 
1057     timeval time;
1058     int status = gettimeofday(&time, NULL);
1059     assert(status != -1, "PASE error at gettimeofday()");
1060     jlong usecs = jlong((unsigned long long) time.tv_sec * (1000 * 1000) + time.tv_usec);
1061     return 1000 * usecs;
1062 
1063   } else {
1064     // On AIX use the precision of processors real time clock
1065     // or time base registers.
1066     timebasestruct_t time;
1067     int rc;
1068 
1069     // If the CPU has a time register, it will be used and
1070     // we have to convert to real time first. After convertion we have following data:
1071     // time.tb_high [seconds since 00:00:00 UTC on 1.1.1970]
1072     // time.tb_low  [nanoseconds after the last full second above]
1073     // We better use mread_real_time here instead of read_real_time
1074     // to ensure that we will get a monotonic increasing time.
1075     if (mread_real_time(&time, TIMEBASE_SZ) != RTC_POWER) {
1076       rc = time_base_to_time(&time, TIMEBASE_SZ);
1077       assert(rc != -1, "aix error at time_base_to_time()");
1078     }
1079     return jlong(time.tb_high) * (1000 * 1000 * 1000) + jlong(time.tb_low);
1080   }
1081 }
1082 
1083 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1084   info_ptr->max_value = ALL_64_BITS;
1085   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1086   info_ptr->may_skip_backward = false;
1087   info_ptr->may_skip_forward = false;
1088   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1089 }
1090 
1091 // Return the real, user, and system times in seconds from an
1092 // arbitrary fixed point in the past.
1093 bool os::getTimesSecs(double* process_real_time,
1094                       double* process_user_time,
1095                       double* process_system_time) {
1096   struct tms ticks;
1097   clock_t real_ticks = times(&ticks);
1098 
1099   if (real_ticks == (clock_t) (-1)) {
1100     return false;
1101   } else {
1102     double ticks_per_second = (double) clock_tics_per_sec;
1103     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1104     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1105     *process_real_time = ((double) real_ticks) / ticks_per_second;
1106 
1107     return true;
1108   }
1109 }
1110 
1111 char * os::local_time_string(char *buf, size_t buflen) {
1112   struct tm t;
1113   time_t long_time;
1114   time(&long_time);
1115   localtime_r(&long_time, &t);
1116   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1117                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1118                t.tm_hour, t.tm_min, t.tm_sec);
1119   return buf;
1120 }
1121 
1122 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1123   return localtime_r(clock, res);
1124 }
1125 
1126 ////////////////////////////////////////////////////////////////////////////////
1127 // runtime exit support
1128 
1129 // Note: os::shutdown() might be called very early during initialization, or
1130 // called from signal handler. Before adding something to os::shutdown(), make
1131 // sure it is async-safe and can handle partially initialized VM.
1132 void os::shutdown() {
1133 
1134   // allow PerfMemory to attempt cleanup of any persistent resources
1135   perfMemory_exit();
1136 
1137   // needs to remove object in file system
1138   AttachListener::abort();
1139 
1140   // flush buffered output, finish log files
1141   ostream_abort();
1142 
1143   // Check for abort hook
1144   abort_hook_t abort_hook = Arguments::abort_hook();
1145   if (abort_hook != NULL) {
1146     abort_hook();
1147   }
1148 }
1149 
1150 // Note: os::abort() might be called very early during initialization, or
1151 // called from signal handler. Before adding something to os::abort(), make
1152 // sure it is async-safe and can handle partially initialized VM.
1153 void os::abort(bool dump_core, void* siginfo, const void* context) {
1154   os::shutdown();
1155   if (dump_core) {
1156 #ifndef PRODUCT
1157     fdStream out(defaultStream::output_fd());
1158     out.print_raw("Current thread is ");
1159     char buf[16];
1160     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1161     out.print_raw_cr(buf);
1162     out.print_raw_cr("Dumping core ...");
1163 #endif
1164     ::abort(); // dump core
1165   }
1166 
1167   ::exit(1);
1168 }
1169 
1170 // Die immediately, no exit hook, no abort hook, no cleanup.
1171 void os::die() {
1172   ::abort();
1173 }
1174 
1175 // This method is a copy of JDK's sysGetLastErrorString
1176 // from src/solaris/hpi/src/system_md.c
1177 
1178 size_t os::lasterror(char *buf, size_t len) {
1179   if (errno == 0) return 0;
1180 
1181   const char *s = os::strerror(errno);
1182   size_t n = ::strlen(s);
1183   if (n >= len) {
1184     n = len - 1;
1185   }
1186   ::strncpy(buf, s, n);
1187   buf[n] = '\0';
1188   return n;
1189 }
1190 
1191 intx os::current_thread_id() {
1192   return (intx)pthread_self();
1193 }
1194 
1195 int os::current_process_id() {
1196   return getpid();
1197 }
1198 
1199 // DLL functions
1200 
1201 const char* os::dll_file_extension() { return ".so"; }
1202 
1203 // This must be hard coded because it's the system's temporary
1204 // directory not the java application's temp directory, ala java.io.tmpdir.
1205 const char* os::get_temp_directory() { return "/tmp"; }
1206 
1207 // Check if addr is inside libjvm.so.
1208 bool os::address_is_in_vm(address addr) {
1209 
1210   // Input could be a real pc or a function pointer literal. The latter
1211   // would be a function descriptor residing in the data segment of a module.
1212   loaded_module_t lm;
1213   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1214     return lm.is_in_vm;
1215   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1216     return lm.is_in_vm;
1217   } else {
1218     return false;
1219   }
1220 
1221 }
1222 
1223 // Resolve an AIX function descriptor literal to a code pointer.
1224 // If the input is a valid code pointer to a text segment of a loaded module,
1225 //   it is returned unchanged.
1226 // If the input is a valid AIX function descriptor, it is resolved to the
1227 //   code entry point.
1228 // If the input is neither a valid function descriptor nor a valid code pointer,
1229 //   NULL is returned.
1230 static address resolve_function_descriptor_to_code_pointer(address p) {
1231 
1232   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1233     // It is a real code pointer.
1234     return p;
1235   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1236     // Pointer to data segment, potential function descriptor.
1237     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1238     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1239       // It is a function descriptor.
1240       return code_entry;
1241     }
1242   }
1243 
1244   return NULL;
1245 }
1246 
1247 bool os::dll_address_to_function_name(address addr, char *buf,
1248                                       int buflen, int *offset,
1249                                       bool demangle) {
1250   if (offset) {
1251     *offset = -1;
1252   }
1253   // Buf is not optional, but offset is optional.
1254   assert(buf != NULL, "sanity check");
1255   buf[0] = '\0';
1256 
1257   // Resolve function ptr literals first.
1258   addr = resolve_function_descriptor_to_code_pointer(addr);
1259   if (!addr) {
1260     return false;
1261   }
1262 
1263   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1264 }
1265 
1266 bool os::dll_address_to_library_name(address addr, char* buf,
1267                                      int buflen, int* offset) {
1268   if (offset) {
1269     *offset = -1;
1270   }
1271   // Buf is not optional, but offset is optional.
1272   assert(buf != NULL, "sanity check");
1273   buf[0] = '\0';
1274 
1275   // Resolve function ptr literals first.
1276   addr = resolve_function_descriptor_to_code_pointer(addr);
1277   if (!addr) {
1278     return false;
1279   }
1280 
1281   return AixSymbols::get_module_name(addr, buf, buflen);
1282 }
1283 
1284 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1285 // for the same architecture as Hotspot is running on.
1286 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1287 
1288   if (ebuf && ebuflen > 0) {
1289     ebuf[0] = '\0';
1290     ebuf[ebuflen - 1] = '\0';
1291   }
1292 
1293   if (!filename || strlen(filename) == 0) {
1294     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1295     return NULL;
1296   }
1297 
1298   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1299   void * result= ::dlopen(filename, RTLD_LAZY);
1300   if (result != NULL) {
1301     // Reload dll cache. Don't do this in signal handling.
1302     LoadedLibraries::reload();
1303     return result;
1304   } else {
1305     // error analysis when dlopen fails
1306     const char* const error_report = ::dlerror();
1307     if (error_report && ebuf && ebuflen > 0) {
1308       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1309                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1310     }
1311   }
1312   return NULL;
1313 }
1314 
1315 void* os::dll_lookup(void* handle, const char* name) {
1316   void* res = dlsym(handle, name);
1317   return res;
1318 }
1319 
1320 void* os::get_default_process_handle() {
1321   return (void*)::dlopen(NULL, RTLD_LAZY);
1322 }
1323 
1324 void os::print_dll_info(outputStream *st) {
1325   st->print_cr("Dynamic libraries:");
1326   LoadedLibraries::print(st);
1327 }
1328 
1329 void os::get_summary_os_info(char* buf, size_t buflen) {
1330   // There might be something more readable than uname results for AIX.
1331   struct utsname name;
1332   uname(&name);
1333   snprintf(buf, buflen, "%s %s", name.release, name.version);
1334 }
1335 
1336 void os::print_os_info(outputStream* st) {
1337   st->print("OS:");
1338 
1339   st->print("uname:");
1340   struct utsname name;
1341   uname(&name);
1342   st->print(name.sysname); st->print(" ");
1343   st->print(name.nodename); st->print(" ");
1344   st->print(name.release); st->print(" ");
1345   st->print(name.version); st->print(" ");
1346   st->print(name.machine);
1347   st->cr();
1348 
1349   uint32_t ver = os::Aix::os_version();
1350   st->print_cr("AIX kernel version %u.%u.%u.%u",
1351                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1352 
1353   os::Posix::print_rlimit_info(st);
1354 
1355   // load average
1356   st->print("load average:");
1357   double loadavg[3] = {-1.L, -1.L, -1.L};
1358   os::loadavg(loadavg, 3);
1359   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1360   st->cr();
1361 
1362   // print wpar info
1363   libperfstat::wparinfo_t wi;
1364   if (libperfstat::get_wparinfo(&wi)) {
1365     st->print_cr("wpar info");
1366     st->print_cr("name: %s", wi.name);
1367     st->print_cr("id:   %d", wi.wpar_id);
1368     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1369   }
1370 
1371   // print partition info
1372   libperfstat::partitioninfo_t pi;
1373   if (libperfstat::get_partitioninfo(&pi)) {
1374     st->print_cr("partition info");
1375     st->print_cr(" name: %s", pi.name);
1376   }
1377 
1378 }
1379 
1380 void os::print_memory_info(outputStream* st) {
1381 
1382   st->print_cr("Memory:");
1383 
1384   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1385     describe_pagesize(g_multipage_support.pagesize));
1386   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1387     describe_pagesize(g_multipage_support.datapsize));
1388   st->print_cr("  Text page size:                         %s",
1389     describe_pagesize(g_multipage_support.textpsize));
1390   st->print_cr("  Thread stack page size (pthread):       %s",
1391     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1392   st->print_cr("  Default shared memory page size:        %s",
1393     describe_pagesize(g_multipage_support.shmpsize));
1394   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1395     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1396   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1397     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1398   st->print_cr("  Multipage error: %d",
1399     g_multipage_support.error);
1400   st->cr();
1401   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1402 
1403   // print out LDR_CNTRL because it affects the default page sizes
1404   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1405   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1406 
1407   // Print out EXTSHM because it is an unsupported setting.
1408   const char* const extshm = ::getenv("EXTSHM");
1409   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1410   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1411     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1412   }
1413 
1414   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1415   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1416   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1417       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1418 
1419   os::Aix::meminfo_t mi;
1420   if (os::Aix::get_meminfo(&mi)) {
1421     char buffer[256];
1422     if (os::Aix::on_aix()) {
1423       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1424       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1425       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1426       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1427     } else {
1428       // PASE - Numbers are result of QWCRSSTS; they mean:
1429       // real_total: Sum of all system pools
1430       // real_free: always 0
1431       // pgsp_total: we take the size of the system ASP
1432       // pgsp_free: size of system ASP times percentage of system ASP unused
1433       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1434       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1435       st->print_cr("%% system asp used : " SIZE_FORMAT,
1436         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1437     }
1438     st->print_raw(buffer);
1439   }
1440   st->cr();
1441 
1442   // Print segments allocated with os::reserve_memory.
1443   st->print_cr("internal virtual memory regions used by vm:");
1444   vmembk_print_on(st);
1445 }
1446 
1447 // Get a string for the cpuinfo that is a summary of the cpu type
1448 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1449   // This looks good
1450   libperfstat::cpuinfo_t ci;
1451   if (libperfstat::get_cpuinfo(&ci)) {
1452     strncpy(buf, ci.version, buflen);
1453   } else {
1454     strncpy(buf, "AIX", buflen);
1455   }
1456 }
1457 
1458 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1459   // Nothing to do beyond what os::print_cpu_info() does.
1460 }
1461 
1462 static void print_signal_handler(outputStream* st, int sig,
1463                                  char* buf, size_t buflen);
1464 
1465 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1466   st->print_cr("Signal Handlers:");
1467   print_signal_handler(st, SIGSEGV, buf, buflen);
1468   print_signal_handler(st, SIGBUS , buf, buflen);
1469   print_signal_handler(st, SIGFPE , buf, buflen);
1470   print_signal_handler(st, SIGPIPE, buf, buflen);
1471   print_signal_handler(st, SIGXFSZ, buf, buflen);
1472   print_signal_handler(st, SIGILL , buf, buflen);
1473   print_signal_handler(st, SR_signum, buf, buflen);
1474   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1475   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1476   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1477   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1478   print_signal_handler(st, SIGTRAP, buf, buflen);
1479   // We also want to know if someone else adds a SIGDANGER handler because
1480   // that will interfere with OOM killling.
1481   print_signal_handler(st, SIGDANGER, buf, buflen);
1482 }
1483 
1484 static char saved_jvm_path[MAXPATHLEN] = {0};
1485 
1486 // Find the full path to the current module, libjvm.so.
1487 void os::jvm_path(char *buf, jint buflen) {
1488   // Error checking.
1489   if (buflen < MAXPATHLEN) {
1490     assert(false, "must use a large-enough buffer");
1491     buf[0] = '\0';
1492     return;
1493   }
1494   // Lazy resolve the path to current module.
1495   if (saved_jvm_path[0] != 0) {
1496     strcpy(buf, saved_jvm_path);
1497     return;
1498   }
1499 
1500   Dl_info dlinfo;
1501   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1502   assert(ret != 0, "cannot locate libjvm");
1503   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1504   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1505 
1506   if (Arguments::sun_java_launcher_is_altjvm()) {
1507     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1508     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1509     // If "/jre/lib/" appears at the right place in the string, then
1510     // assume we are installed in a JDK and we're done. Otherwise, check
1511     // for a JAVA_HOME environment variable and fix up the path so it
1512     // looks like libjvm.so is installed there (append a fake suffix
1513     // hotspot/libjvm.so).
1514     const char *p = buf + strlen(buf) - 1;
1515     for (int count = 0; p > buf && count < 4; ++count) {
1516       for (--p; p > buf && *p != '/'; --p)
1517         /* empty */ ;
1518     }
1519 
1520     if (strncmp(p, "/jre/lib/", 9) != 0) {
1521       // Look for JAVA_HOME in the environment.
1522       char* java_home_var = ::getenv("JAVA_HOME");
1523       if (java_home_var != NULL && java_home_var[0] != 0) {
1524         char* jrelib_p;
1525         int len;
1526 
1527         // Check the current module name "libjvm.so".
1528         p = strrchr(buf, '/');
1529         if (p == NULL) {
1530           return;
1531         }
1532         assert(strstr(p, "/libjvm") == p, "invalid library name");
1533 
1534         rp = os::Posix::realpath(java_home_var, buf, buflen);
1535         if (rp == NULL) {
1536           return;
1537         }
1538 
1539         // determine if this is a legacy image or modules image
1540         // modules image doesn't have "jre" subdirectory
1541         len = strlen(buf);
1542         assert(len < buflen, "Ran out of buffer room");
1543         jrelib_p = buf + len;
1544         snprintf(jrelib_p, buflen-len, "/jre/lib");
1545         if (0 != access(buf, F_OK)) {
1546           snprintf(jrelib_p, buflen-len, "/lib");
1547         }
1548 
1549         if (0 == access(buf, F_OK)) {
1550           // Use current module name "libjvm.so"
1551           len = strlen(buf);
1552           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1553         } else {
1554           // Go back to path of .so
1555           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1556           if (rp == NULL) {
1557             return;
1558           }
1559         }
1560       }
1561     }
1562   }
1563 
1564   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1565   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1566 }
1567 
1568 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1569   // no prefix required, not even "_"
1570 }
1571 
1572 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1573   // no suffix required
1574 }
1575 
1576 ////////////////////////////////////////////////////////////////////////////////
1577 // sun.misc.Signal support
1578 
1579 static volatile jint sigint_count = 0;
1580 
1581 static void
1582 UserHandler(int sig, void *siginfo, void *context) {
1583   // 4511530 - sem_post is serialized and handled by the manager thread. When
1584   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1585   // don't want to flood the manager thread with sem_post requests.
1586   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1587     return;
1588 
1589   // Ctrl-C is pressed during error reporting, likely because the error
1590   // handler fails to abort. Let VM die immediately.
1591   if (sig == SIGINT && VMError::is_error_reported()) {
1592     os::die();
1593   }
1594 
1595   os::signal_notify(sig);
1596 }
1597 
1598 void* os::user_handler() {
1599   return CAST_FROM_FN_PTR(void*, UserHandler);
1600 }
1601 
1602 extern "C" {
1603   typedef void (*sa_handler_t)(int);
1604   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1605 }
1606 
1607 void* os::signal(int signal_number, void* handler) {
1608   struct sigaction sigAct, oldSigAct;
1609 
1610   sigfillset(&(sigAct.sa_mask));
1611 
1612   // Do not block out synchronous signals in the signal handler.
1613   // Blocking synchronous signals only makes sense if you can really
1614   // be sure that those signals won't happen during signal handling,
1615   // when the blocking applies. Normal signal handlers are lean and
1616   // do not cause signals. But our signal handlers tend to be "risky"
1617   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1618   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1619   // by a SIGILL, which was blocked due to the signal mask. The process
1620   // just hung forever. Better to crash from a secondary signal than to hang.
1621   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1622   sigdelset(&(sigAct.sa_mask), SIGBUS);
1623   sigdelset(&(sigAct.sa_mask), SIGILL);
1624   sigdelset(&(sigAct.sa_mask), SIGFPE);
1625   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1626 
1627   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1628 
1629   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1630 
1631   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1632     // -1 means registration failed
1633     return (void *)-1;
1634   }
1635 
1636   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1637 }
1638 
1639 void os::signal_raise(int signal_number) {
1640   ::raise(signal_number);
1641 }
1642 
1643 //
1644 // The following code is moved from os.cpp for making this
1645 // code platform specific, which it is by its very nature.
1646 //
1647 
1648 // Will be modified when max signal is changed to be dynamic
1649 int os::sigexitnum_pd() {
1650   return NSIG;
1651 }
1652 
1653 // a counter for each possible signal value
1654 static volatile jint pending_signals[NSIG+1] = { 0 };
1655 
1656 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1657 // On AIX, we use sem_init(), sem_post(), sem_wait()
1658 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1659 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1660 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1661 // on AIX, msem_..() calls are suspected of causing problems.
1662 static sem_t sig_sem;
1663 static msemaphore* p_sig_msem = 0;
1664 
1665 static void local_sem_init() {
1666   if (os::Aix::on_aix()) {
1667     int rc = ::sem_init(&sig_sem, 0, 0);
1668     guarantee(rc != -1, "sem_init failed");
1669   } else {
1670     // Memory semaphores must live in shared mem.
1671     guarantee0(p_sig_msem == NULL);
1672     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1673     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1674     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1675   }
1676 }
1677 
1678 static void local_sem_post() {
1679   static bool warn_only_once = false;
1680   if (os::Aix::on_aix()) {
1681     int rc = ::sem_post(&sig_sem);
1682     if (rc == -1 && !warn_only_once) {
1683       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1684       warn_only_once = true;
1685     }
1686   } else {
1687     guarantee0(p_sig_msem != NULL);
1688     int rc = ::msem_unlock(p_sig_msem, 0);
1689     if (rc == -1 && !warn_only_once) {
1690       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1691       warn_only_once = true;
1692     }
1693   }
1694 }
1695 
1696 static void local_sem_wait() {
1697   static bool warn_only_once = false;
1698   if (os::Aix::on_aix()) {
1699     int rc = ::sem_wait(&sig_sem);
1700     if (rc == -1 && !warn_only_once) {
1701       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1702       warn_only_once = true;
1703     }
1704   } else {
1705     guarantee0(p_sig_msem != NULL); // must init before use
1706     int rc = ::msem_lock(p_sig_msem, 0);
1707     if (rc == -1 && !warn_only_once) {
1708       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1709       warn_only_once = true;
1710     }
1711   }
1712 }
1713 
1714 void os::signal_init_pd() {
1715   // Initialize signal structures
1716   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1717 
1718   // Initialize signal semaphore
1719   local_sem_init();
1720 }
1721 
1722 void os::signal_notify(int sig) {
1723   Atomic::inc(&pending_signals[sig]);
1724   local_sem_post();
1725 }
1726 
1727 static int check_pending_signals(bool wait) {
1728   Atomic::store(0, &sigint_count);
1729   for (;;) {
1730     for (int i = 0; i < NSIG + 1; i++) {
1731       jint n = pending_signals[i];
1732       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1733         return i;
1734       }
1735     }
1736     if (!wait) {
1737       return -1;
1738     }
1739     JavaThread *thread = JavaThread::current();
1740     ThreadBlockInVM tbivm(thread);
1741 
1742     bool threadIsSuspended;
1743     do {
1744       thread->set_suspend_equivalent();
1745       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1746 
1747       local_sem_wait();
1748 
1749       // were we externally suspended while we were waiting?
1750       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1751       if (threadIsSuspended) {
1752         //
1753         // The semaphore has been incremented, but while we were waiting
1754         // another thread suspended us. We don't want to continue running
1755         // while suspended because that would surprise the thread that
1756         // suspended us.
1757         //
1758 
1759         local_sem_post();
1760 
1761         thread->java_suspend_self();
1762       }
1763     } while (threadIsSuspended);
1764   }
1765 }
1766 
1767 int os::signal_lookup() {
1768   return check_pending_signals(false);
1769 }
1770 
1771 int os::signal_wait() {
1772   return check_pending_signals(true);
1773 }
1774 
1775 ////////////////////////////////////////////////////////////////////////////////
1776 // Virtual Memory
1777 
1778 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1779 
1780 #define VMEM_MAPPED  1
1781 #define VMEM_SHMATED 2
1782 
1783 struct vmembk_t {
1784   int type;         // 1 - mmap, 2 - shmat
1785   char* addr;
1786   size_t size;      // Real size, may be larger than usersize.
1787   size_t pagesize;  // page size of area
1788   vmembk_t* next;
1789 
1790   bool contains_addr(char* p) const {
1791     return p >= addr && p < (addr + size);
1792   }
1793 
1794   bool contains_range(char* p, size_t s) const {
1795     return contains_addr(p) && contains_addr(p + s - 1);
1796   }
1797 
1798   void print_on(outputStream* os) const {
1799     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1800       " bytes, %d %s pages), %s",
1801       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1802       (type == VMEM_SHMATED ? "shmat" : "mmap")
1803     );
1804   }
1805 
1806   // Check that range is a sub range of memory block (or equal to memory block);
1807   // also check that range is fully page aligned to the page size if the block.
1808   void assert_is_valid_subrange(char* p, size_t s) const {
1809     if (!contains_range(p, s)) {
1810       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1811               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1812               p, p + s, addr, addr + size);
1813       guarantee0(false);
1814     }
1815     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1816       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1817               " aligned to pagesize (%lu)", p, p + s, (unsigned long) pagesize);
1818       guarantee0(false);
1819     }
1820   }
1821 };
1822 
1823 static struct {
1824   vmembk_t* first;
1825   MiscUtils::CritSect cs;
1826 } vmem;
1827 
1828 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1829   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1830   assert0(p);
1831   if (p) {
1832     MiscUtils::AutoCritSect lck(&vmem.cs);
1833     p->addr = addr; p->size = size;
1834     p->pagesize = pagesize;
1835     p->type = type;
1836     p->next = vmem.first;
1837     vmem.first = p;
1838   }
1839 }
1840 
1841 static vmembk_t* vmembk_find(char* addr) {
1842   MiscUtils::AutoCritSect lck(&vmem.cs);
1843   for (vmembk_t* p = vmem.first; p; p = p->next) {
1844     if (p->addr <= addr && (p->addr + p->size) > addr) {
1845       return p;
1846     }
1847   }
1848   return NULL;
1849 }
1850 
1851 static void vmembk_remove(vmembk_t* p0) {
1852   MiscUtils::AutoCritSect lck(&vmem.cs);
1853   assert0(p0);
1854   assert0(vmem.first); // List should not be empty.
1855   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1856     if (*pp == p0) {
1857       *pp = p0->next;
1858       ::free(p0);
1859       return;
1860     }
1861   }
1862   assert0(false); // Not found?
1863 }
1864 
1865 static void vmembk_print_on(outputStream* os) {
1866   MiscUtils::AutoCritSect lck(&vmem.cs);
1867   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1868     vmi->print_on(os);
1869     os->cr();
1870   }
1871 }
1872 
1873 // Reserve and attach a section of System V memory.
1874 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1875 // address. Failing that, it will attach the memory anywhere.
1876 // If <requested_addr> is NULL, function will attach the memory anywhere.
1877 //
1878 // <alignment_hint> is being ignored by this function. It is very probable however that the
1879 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1880 // Should this be not enogh, we can put more work into it.
1881 static char* reserve_shmated_memory (
1882   size_t bytes,
1883   char* requested_addr,
1884   size_t alignment_hint) {
1885 
1886   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1887     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1888     bytes, requested_addr, alignment_hint);
1889 
1890   // Either give me wish address or wish alignment but not both.
1891   assert0(!(requested_addr != NULL && alignment_hint != 0));
1892 
1893   // We must prevent anyone from attaching too close to the
1894   // BRK because that may cause malloc OOM.
1895   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1896     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1897       "Will attach anywhere.", requested_addr);
1898     // Act like the OS refused to attach there.
1899     requested_addr = NULL;
1900   }
1901 
1902   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1903   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1904   if (os::Aix::on_pase_V5R4_or_older()) {
1905     ShouldNotReachHere();
1906   }
1907 
1908   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1909   const size_t size = align_up(bytes, 64*K);
1910 
1911   // Reserve the shared segment.
1912   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1913   if (shmid == -1) {
1914     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1915     return NULL;
1916   }
1917 
1918   // Important note:
1919   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
1920   // We must right after attaching it remove it from the system. System V shm segments are global and
1921   // survive the process.
1922   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
1923 
1924   struct shmid_ds shmbuf;
1925   memset(&shmbuf, 0, sizeof(shmbuf));
1926   shmbuf.shm_pagesize = 64*K;
1927   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
1928     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
1929                size / (64*K), errno);
1930     // I want to know if this ever happens.
1931     assert(false, "failed to set page size for shmat");
1932   }
1933 
1934   // Now attach the shared segment.
1935   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
1936   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
1937   // were not a segment boundary.
1938   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
1939   const int errno_shmat = errno;
1940 
1941   // (A) Right after shmat and before handing shmat errors delete the shm segment.
1942   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
1943     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
1944     assert(false, "failed to remove shared memory segment!");
1945   }
1946 
1947   // Handle shmat error. If we failed to attach, just return.
1948   if (addr == (char*)-1) {
1949     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
1950     return NULL;
1951   }
1952 
1953   // Just for info: query the real page size. In case setting the page size did not
1954   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
1955   const size_t real_pagesize = os::Aix::query_pagesize(addr);
1956   if (real_pagesize != shmbuf.shm_pagesize) {
1957     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
1958   }
1959 
1960   if (addr) {
1961     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
1962       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
1963   } else {
1964     if (requested_addr != NULL) {
1965       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
1966     } else {
1967       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
1968     }
1969   }
1970 
1971   // book-keeping
1972   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
1973   assert0(is_aligned_to(addr, os::vm_page_size()));
1974 
1975   return addr;
1976 }
1977 
1978 static bool release_shmated_memory(char* addr, size_t size) {
1979 
1980   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
1981     addr, addr + size - 1);
1982 
1983   bool rc = false;
1984 
1985   // TODO: is there a way to verify shm size without doing bookkeeping?
1986   if (::shmdt(addr) != 0) {
1987     trcVerbose("error (%d).", errno);
1988   } else {
1989     trcVerbose("ok.");
1990     rc = true;
1991   }
1992   return rc;
1993 }
1994 
1995 static bool uncommit_shmated_memory(char* addr, size_t size) {
1996   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
1997     addr, addr + size - 1);
1998 
1999   const bool rc = my_disclaim64(addr, size);
2000 
2001   if (!rc) {
2002     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2003     return false;
2004   }
2005   return true;
2006 }
2007 
2008 ////////////////////////////////  mmap-based routines /////////////////////////////////
2009 
2010 // Reserve memory via mmap.
2011 // If <requested_addr> is given, an attempt is made to attach at the given address.
2012 // Failing that, memory is allocated at any address.
2013 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2014 // allocate at an address aligned with the given alignment. Failing that, memory
2015 // is aligned anywhere.
2016 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2017   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2018     "alignment_hint " UINTX_FORMAT "...",
2019     bytes, requested_addr, alignment_hint);
2020 
2021   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2022   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2023     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2024     return NULL;
2025   }
2026 
2027   // We must prevent anyone from attaching too close to the
2028   // BRK because that may cause malloc OOM.
2029   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2030     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2031       "Will attach anywhere.", requested_addr);
2032     // Act like the OS refused to attach there.
2033     requested_addr = NULL;
2034   }
2035 
2036   // Specify one or the other but not both.
2037   assert0(!(requested_addr != NULL && alignment_hint > 0));
2038 
2039   // In 64K mode, we claim the global page size (os::vm_page_size())
2040   // is 64K. This is one of the few points where that illusion may
2041   // break, because mmap() will always return memory aligned to 4K. So
2042   // we must ensure we only ever return memory aligned to 64k.
2043   if (alignment_hint) {
2044     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2045   } else {
2046     alignment_hint = os::vm_page_size();
2047   }
2048 
2049   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2050   const size_t size = align_up(bytes, os::vm_page_size());
2051 
2052   // alignment: Allocate memory large enough to include an aligned range of the right size and
2053   // cut off the leading and trailing waste pages.
2054   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2055   const size_t extra_size = size + alignment_hint;
2056 
2057   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2058   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2059   int flags = MAP_ANONYMOUS | MAP_SHARED;
2060 
2061   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2062   // it means if wishaddress is given but MAP_FIXED is not set.
2063   //
2064   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2065   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2066   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2067   // get clobbered.
2068   if (requested_addr != NULL) {
2069     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2070       flags |= MAP_FIXED;
2071     }
2072   }
2073 
2074   char* addr = (char*)::mmap(requested_addr, extra_size,
2075       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2076 
2077   if (addr == MAP_FAILED) {
2078     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2079     return NULL;
2080   }
2081 
2082   // Handle alignment.
2083   char* const addr_aligned = align_up(addr, alignment_hint);
2084   const size_t waste_pre = addr_aligned - addr;
2085   char* const addr_aligned_end = addr_aligned + size;
2086   const size_t waste_post = extra_size - waste_pre - size;
2087   if (waste_pre > 0) {
2088     ::munmap(addr, waste_pre);
2089   }
2090   if (waste_post > 0) {
2091     ::munmap(addr_aligned_end, waste_post);
2092   }
2093   addr = addr_aligned;
2094 
2095   if (addr) {
2096     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2097       addr, addr + bytes, bytes);
2098   } else {
2099     if (requested_addr != NULL) {
2100       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2101     } else {
2102       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2103     }
2104   }
2105 
2106   // bookkeeping
2107   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2108 
2109   // Test alignment, see above.
2110   assert0(is_aligned_to(addr, os::vm_page_size()));
2111 
2112   return addr;
2113 }
2114 
2115 static bool release_mmaped_memory(char* addr, size_t size) {
2116   assert0(is_aligned_to(addr, os::vm_page_size()));
2117   assert0(is_aligned_to(size, os::vm_page_size()));
2118 
2119   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2120     addr, addr + size - 1);
2121   bool rc = false;
2122 
2123   if (::munmap(addr, size) != 0) {
2124     trcVerbose("failed (%d)\n", errno);
2125     rc = false;
2126   } else {
2127     trcVerbose("ok.");
2128     rc = true;
2129   }
2130 
2131   return rc;
2132 }
2133 
2134 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2135 
2136   assert0(is_aligned_to(addr, os::vm_page_size()));
2137   assert0(is_aligned_to(size, os::vm_page_size()));
2138 
2139   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2140     addr, addr + size - 1);
2141   bool rc = false;
2142 
2143   // Uncommit mmap memory with msync MS_INVALIDATE.
2144   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2145     trcVerbose("failed (%d)\n", errno);
2146     rc = false;
2147   } else {
2148     trcVerbose("ok.");
2149     rc = true;
2150   }
2151 
2152   return rc;
2153 }
2154 
2155 int os::vm_page_size() {
2156   // Seems redundant as all get out.
2157   assert(os::Aix::page_size() != -1, "must call os::init");
2158   return os::Aix::page_size();
2159 }
2160 
2161 // Aix allocates memory by pages.
2162 int os::vm_allocation_granularity() {
2163   assert(os::Aix::page_size() != -1, "must call os::init");
2164   return os::Aix::page_size();
2165 }
2166 
2167 #ifdef PRODUCT
2168 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2169                                     int err) {
2170   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2171           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2172           os::errno_name(err), err);
2173 }
2174 #endif
2175 
2176 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2177                                   const char* mesg) {
2178   assert(mesg != NULL, "mesg must be specified");
2179   if (!pd_commit_memory(addr, size, exec)) {
2180     // Add extra info in product mode for vm_exit_out_of_memory():
2181     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2182     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2183   }
2184 }
2185 
2186 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2187 
2188   assert(is_aligned_to(addr, os::vm_page_size()),
2189     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2190     p2i(addr), os::vm_page_size());
2191   assert(is_aligned_to(size, os::vm_page_size()),
2192     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2193     size, os::vm_page_size());
2194 
2195   vmembk_t* const vmi = vmembk_find(addr);
2196   guarantee0(vmi);
2197   vmi->assert_is_valid_subrange(addr, size);
2198 
2199   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2200 
2201   if (UseExplicitCommit) {
2202     // AIX commits memory on touch. So, touch all pages to be committed.
2203     for (char* p = addr; p < (addr + size); p += 4*K) {
2204       *p = '\0';
2205     }
2206   }
2207 
2208   return true;
2209 }
2210 
2211 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2212   return pd_commit_memory(addr, size, exec);
2213 }
2214 
2215 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2216                                   size_t alignment_hint, bool exec,
2217                                   const char* mesg) {
2218   // Alignment_hint is ignored on this OS.
2219   pd_commit_memory_or_exit(addr, size, exec, mesg);
2220 }
2221 
2222 bool os::pd_uncommit_memory(char* addr, size_t size) {
2223   assert(is_aligned_to(addr, os::vm_page_size()),
2224     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2225     p2i(addr), os::vm_page_size());
2226   assert(is_aligned_to(size, os::vm_page_size()),
2227     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2228     size, os::vm_page_size());
2229 
2230   // Dynamically do different things for mmap/shmat.
2231   const vmembk_t* const vmi = vmembk_find(addr);
2232   guarantee0(vmi);
2233   vmi->assert_is_valid_subrange(addr, size);
2234 
2235   if (vmi->type == VMEM_SHMATED) {
2236     return uncommit_shmated_memory(addr, size);
2237   } else {
2238     return uncommit_mmaped_memory(addr, size);
2239   }
2240 }
2241 
2242 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2243   // Do not call this; no need to commit stack pages on AIX.
2244   ShouldNotReachHere();
2245   return true;
2246 }
2247 
2248 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2249   // Do not call this; no need to commit stack pages on AIX.
2250   ShouldNotReachHere();
2251   return true;
2252 }
2253 
2254 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2255 }
2256 
2257 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2258 }
2259 
2260 void os::numa_make_global(char *addr, size_t bytes) {
2261 }
2262 
2263 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2264 }
2265 
2266 bool os::numa_topology_changed() {
2267   return false;
2268 }
2269 
2270 size_t os::numa_get_groups_num() {
2271   return 1;
2272 }
2273 
2274 int os::numa_get_group_id() {
2275   return 0;
2276 }
2277 
2278 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2279   if (size > 0) {
2280     ids[0] = 0;
2281     return 1;
2282   }
2283   return 0;
2284 }
2285 
2286 bool os::get_page_info(char *start, page_info* info) {
2287   return false;
2288 }
2289 
2290 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2291   return end;
2292 }
2293 
2294 // Reserves and attaches a shared memory segment.
2295 // Will assert if a wish address is given and could not be obtained.
2296 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2297 
2298   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2299   // thereby clobbering old mappings at that place. That is probably
2300   // not intended, never used and almost certainly an error were it
2301   // ever be used this way (to try attaching at a specified address
2302   // without clobbering old mappings an alternate API exists,
2303   // os::attempt_reserve_memory_at()).
2304   // Instead of mimicking the dangerous coding of the other platforms, here I
2305   // just ignore the request address (release) or assert(debug).
2306   assert0(requested_addr == NULL);
2307 
2308   // Always round to os::vm_page_size(), which may be larger than 4K.
2309   bytes = align_up(bytes, os::vm_page_size());
2310   const size_t alignment_hint0 =
2311     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2312 
2313   // In 4K mode always use mmap.
2314   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2315   if (os::vm_page_size() == 4*K) {
2316     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2317   } else {
2318     if (bytes >= Use64KPagesThreshold) {
2319       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2320     } else {
2321       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2322     }
2323   }
2324 }
2325 
2326 bool os::pd_release_memory(char* addr, size_t size) {
2327 
2328   // Dynamically do different things for mmap/shmat.
2329   vmembk_t* const vmi = vmembk_find(addr);
2330   guarantee0(vmi);
2331 
2332   // Always round to os::vm_page_size(), which may be larger than 4K.
2333   size = align_up(size, os::vm_page_size());
2334   addr = align_up(addr, os::vm_page_size());
2335 
2336   bool rc = false;
2337   bool remove_bookkeeping = false;
2338   if (vmi->type == VMEM_SHMATED) {
2339     // For shmatted memory, we do:
2340     // - If user wants to release the whole range, release the memory (shmdt).
2341     // - If user only wants to release a partial range, uncommit (disclaim) that
2342     //   range. That way, at least, we do not use memory anymore (bust still page
2343     //   table space).
2344     vmi->assert_is_valid_subrange(addr, size);
2345     if (addr == vmi->addr && size == vmi->size) {
2346       rc = release_shmated_memory(addr, size);
2347       remove_bookkeeping = true;
2348     } else {
2349       rc = uncommit_shmated_memory(addr, size);
2350     }
2351   } else {
2352     // User may unmap partial regions but region has to be fully contained.
2353 #ifdef ASSERT
2354     vmi->assert_is_valid_subrange(addr, size);
2355 #endif
2356     rc = release_mmaped_memory(addr, size);
2357     remove_bookkeeping = true;
2358   }
2359 
2360   // update bookkeeping
2361   if (rc && remove_bookkeeping) {
2362     vmembk_remove(vmi);
2363   }
2364 
2365   return rc;
2366 }
2367 
2368 static bool checked_mprotect(char* addr, size_t size, int prot) {
2369 
2370   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2371   // not tell me if protection failed when trying to protect an un-protectable range.
2372   //
2373   // This means if the memory was allocated using shmget/shmat, protection wont work
2374   // but mprotect will still return 0:
2375   //
2376   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2377 
2378   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2379 
2380   if (!rc) {
2381     const char* const s_errno = os::errno_name(errno);
2382     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2383     return false;
2384   }
2385 
2386   // mprotect success check
2387   //
2388   // Mprotect said it changed the protection but can I believe it?
2389   //
2390   // To be sure I need to check the protection afterwards. Try to
2391   // read from protected memory and check whether that causes a segfault.
2392   //
2393   if (!os::Aix::xpg_sus_mode()) {
2394 
2395     if (CanUseSafeFetch32()) {
2396 
2397       const bool read_protected =
2398         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2399          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2400 
2401       if (prot & PROT_READ) {
2402         rc = !read_protected;
2403       } else {
2404         rc = read_protected;
2405       }
2406 
2407       if (!rc) {
2408         if (os::Aix::on_pase()) {
2409           // There is an issue on older PASE systems where mprotect() will return success but the
2410           // memory will not be protected.
2411           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2412           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2413           // a stack. It is an OS error.
2414           //
2415           // A valid strategy is just to try again. This usually works. :-/
2416 
2417           ::usleep(1000);
2418           if (::mprotect(addr, size, prot) == 0) {
2419             const bool read_protected_2 =
2420               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2421               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2422             rc = true;
2423           }
2424         }
2425       }
2426     }
2427   }
2428 
2429   assert(rc == true, "mprotect failed.");
2430 
2431   return rc;
2432 }
2433 
2434 // Set protections specified
2435 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2436   unsigned int p = 0;
2437   switch (prot) {
2438   case MEM_PROT_NONE: p = PROT_NONE; break;
2439   case MEM_PROT_READ: p = PROT_READ; break;
2440   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2441   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2442   default:
2443     ShouldNotReachHere();
2444   }
2445   // is_committed is unused.
2446   return checked_mprotect(addr, size, p);
2447 }
2448 
2449 bool os::guard_memory(char* addr, size_t size) {
2450   return checked_mprotect(addr, size, PROT_NONE);
2451 }
2452 
2453 bool os::unguard_memory(char* addr, size_t size) {
2454   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2455 }
2456 
2457 // Large page support
2458 
2459 static size_t _large_page_size = 0;
2460 
2461 // Enable large page support if OS allows that.
2462 void os::large_page_init() {
2463   return; // Nothing to do. See query_multipage_support and friends.
2464 }
2465 
2466 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2467   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2468   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2469   // so this is not needed.
2470   assert(false, "should not be called on AIX");
2471   return NULL;
2472 }
2473 
2474 bool os::release_memory_special(char* base, size_t bytes) {
2475   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2476   Unimplemented();
2477   return false;
2478 }
2479 
2480 size_t os::large_page_size() {
2481   return _large_page_size;
2482 }
2483 
2484 bool os::can_commit_large_page_memory() {
2485   // Does not matter, we do not support huge pages.
2486   return false;
2487 }
2488 
2489 bool os::can_execute_large_page_memory() {
2490   // Does not matter, we do not support huge pages.
2491   return false;
2492 }
2493 
2494 // Reserve memory at an arbitrary address, only if that area is
2495 // available (and not reserved for something else).
2496 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2497   char* addr = NULL;
2498 
2499   // Always round to os::vm_page_size(), which may be larger than 4K.
2500   bytes = align_up(bytes, os::vm_page_size());
2501 
2502   // In 4K mode always use mmap.
2503   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2504   if (os::vm_page_size() == 4*K) {
2505     return reserve_mmaped_memory(bytes, requested_addr, 0);
2506   } else {
2507     if (bytes >= Use64KPagesThreshold) {
2508       return reserve_shmated_memory(bytes, requested_addr, 0);
2509     } else {
2510       return reserve_mmaped_memory(bytes, requested_addr, 0);
2511     }
2512   }
2513 
2514   return addr;
2515 }
2516 
2517 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2518   return ::read(fd, buf, nBytes);
2519 }
2520 
2521 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2522   return ::pread(fd, buf, nBytes, offset);
2523 }
2524 
2525 void os::naked_short_sleep(jlong ms) {
2526   struct timespec req;
2527 
2528   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2529   req.tv_sec = 0;
2530   if (ms > 0) {
2531     req.tv_nsec = (ms % 1000) * 1000000;
2532   }
2533   else {
2534     req.tv_nsec = 1;
2535   }
2536 
2537   nanosleep(&req, NULL);
2538 
2539   return;
2540 }
2541 
2542 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2543 void os::infinite_sleep() {
2544   while (true) {    // sleep forever ...
2545     ::sleep(100);   // ... 100 seconds at a time
2546   }
2547 }
2548 
2549 // Used to convert frequent JVM_Yield() to nops
2550 bool os::dont_yield() {
2551   return DontYieldALot;
2552 }
2553 
2554 void os::naked_yield() {
2555   sched_yield();
2556 }
2557 
2558 ////////////////////////////////////////////////////////////////////////////////
2559 // thread priority support
2560 
2561 // From AIX manpage to pthread_setschedparam
2562 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2563 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2564 //
2565 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2566 // range from 40 to 80, where 40 is the least favored priority and 80
2567 // is the most favored."
2568 //
2569 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2570 // scheduling there; however, this still leaves iSeries.)
2571 //
2572 // We use the same values for AIX and PASE.
2573 int os::java_to_os_priority[CriticalPriority + 1] = {
2574   54,             // 0 Entry should never be used
2575 
2576   55,             // 1 MinPriority
2577   55,             // 2
2578   56,             // 3
2579 
2580   56,             // 4
2581   57,             // 5 NormPriority
2582   57,             // 6
2583 
2584   58,             // 7
2585   58,             // 8
2586   59,             // 9 NearMaxPriority
2587 
2588   60,             // 10 MaxPriority
2589 
2590   60              // 11 CriticalPriority
2591 };
2592 
2593 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2594   if (!UseThreadPriorities) return OS_OK;
2595   pthread_t thr = thread->osthread()->pthread_id();
2596   int policy = SCHED_OTHER;
2597   struct sched_param param;
2598   param.sched_priority = newpri;
2599   int ret = pthread_setschedparam(thr, policy, &param);
2600 
2601   if (ret != 0) {
2602     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2603         (int)thr, newpri, ret, os::errno_name(ret));
2604   }
2605   return (ret == 0) ? OS_OK : OS_ERR;
2606 }
2607 
2608 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2609   if (!UseThreadPriorities) {
2610     *priority_ptr = java_to_os_priority[NormPriority];
2611     return OS_OK;
2612   }
2613   pthread_t thr = thread->osthread()->pthread_id();
2614   int policy = SCHED_OTHER;
2615   struct sched_param param;
2616   int ret = pthread_getschedparam(thr, &policy, &param);
2617   *priority_ptr = param.sched_priority;
2618 
2619   return (ret == 0) ? OS_OK : OS_ERR;
2620 }
2621 
2622 // Hint to the underlying OS that a task switch would not be good.
2623 // Void return because it's a hint and can fail.
2624 void os::hint_no_preempt() {}
2625 
2626 ////////////////////////////////////////////////////////////////////////////////
2627 // suspend/resume support
2628 
2629 //  The low-level signal-based suspend/resume support is a remnant from the
2630 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2631 //  within hotspot. Currently used by JFR's OSThreadSampler
2632 //
2633 //  The remaining code is greatly simplified from the more general suspension
2634 //  code that used to be used.
2635 //
2636 //  The protocol is quite simple:
2637 //  - suspend:
2638 //      - sends a signal to the target thread
2639 //      - polls the suspend state of the osthread using a yield loop
2640 //      - target thread signal handler (SR_handler) sets suspend state
2641 //        and blocks in sigsuspend until continued
2642 //  - resume:
2643 //      - sets target osthread state to continue
2644 //      - sends signal to end the sigsuspend loop in the SR_handler
2645 //
2646 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2647 //  but is checked for NULL in SR_handler as a thread termination indicator.
2648 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2649 //
2650 //  Note that resume_clear_context() and suspend_save_context() are needed
2651 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2652 //  which in part is used by:
2653 //    - Forte Analyzer: AsyncGetCallTrace()
2654 //    - StackBanging: get_frame_at_stack_banging_point()
2655 
2656 static void resume_clear_context(OSThread *osthread) {
2657   osthread->set_ucontext(NULL);
2658   osthread->set_siginfo(NULL);
2659 }
2660 
2661 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2662   osthread->set_ucontext(context);
2663   osthread->set_siginfo(siginfo);
2664 }
2665 
2666 //
2667 // Handler function invoked when a thread's execution is suspended or
2668 // resumed. We have to be careful that only async-safe functions are
2669 // called here (Note: most pthread functions are not async safe and
2670 // should be avoided.)
2671 //
2672 // Note: sigwait() is a more natural fit than sigsuspend() from an
2673 // interface point of view, but sigwait() prevents the signal hander
2674 // from being run. libpthread would get very confused by not having
2675 // its signal handlers run and prevents sigwait()'s use with the
2676 // mutex granting granting signal.
2677 //
2678 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2679 //
2680 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2681   // Save and restore errno to avoid confusing native code with EINTR
2682   // after sigsuspend.
2683   int old_errno = errno;
2684 
2685   Thread* thread = Thread::current_or_null_safe();
2686   assert(thread != NULL, "Missing current thread in SR_handler");
2687 
2688   // On some systems we have seen signal delivery get "stuck" until the signal
2689   // mask is changed as part of thread termination. Check that the current thread
2690   // has not already terminated (via SR_lock()) - else the following assertion
2691   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2692   // destructor has completed.
2693 
2694   if (thread->SR_lock() == NULL) {
2695     return;
2696   }
2697 
2698   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2699 
2700   OSThread* osthread = thread->osthread();
2701 
2702   os::SuspendResume::State current = osthread->sr.state();
2703   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2704     suspend_save_context(osthread, siginfo, context);
2705 
2706     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2707     os::SuspendResume::State state = osthread->sr.suspended();
2708     if (state == os::SuspendResume::SR_SUSPENDED) {
2709       sigset_t suspend_set;  // signals for sigsuspend()
2710 
2711       // get current set of blocked signals and unblock resume signal
2712       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2713       sigdelset(&suspend_set, SR_signum);
2714 
2715       // wait here until we are resumed
2716       while (1) {
2717         sigsuspend(&suspend_set);
2718 
2719         os::SuspendResume::State result = osthread->sr.running();
2720         if (result == os::SuspendResume::SR_RUNNING) {
2721           break;
2722         }
2723       }
2724 
2725     } else if (state == os::SuspendResume::SR_RUNNING) {
2726       // request was cancelled, continue
2727     } else {
2728       ShouldNotReachHere();
2729     }
2730 
2731     resume_clear_context(osthread);
2732   } else if (current == os::SuspendResume::SR_RUNNING) {
2733     // request was cancelled, continue
2734   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2735     // ignore
2736   } else {
2737     ShouldNotReachHere();
2738   }
2739 
2740   errno = old_errno;
2741 }
2742 
2743 static int SR_initialize() {
2744   struct sigaction act;
2745   char *s;
2746   // Get signal number to use for suspend/resume
2747   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2748     int sig = ::strtol(s, 0, 10);
2749     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2750         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2751       SR_signum = sig;
2752     } else {
2753       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2754               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2755     }
2756   }
2757 
2758   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2759         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2760 
2761   sigemptyset(&SR_sigset);
2762   sigaddset(&SR_sigset, SR_signum);
2763 
2764   // Set up signal handler for suspend/resume.
2765   act.sa_flags = SA_RESTART|SA_SIGINFO;
2766   act.sa_handler = (void (*)(int)) SR_handler;
2767 
2768   // SR_signum is blocked by default.
2769   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2770 
2771   if (sigaction(SR_signum, &act, 0) == -1) {
2772     return -1;
2773   }
2774 
2775   // Save signal flag
2776   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2777   return 0;
2778 }
2779 
2780 static int SR_finalize() {
2781   return 0;
2782 }
2783 
2784 static int sr_notify(OSThread* osthread) {
2785   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2786   assert_status(status == 0, status, "pthread_kill");
2787   return status;
2788 }
2789 
2790 // "Randomly" selected value for how long we want to spin
2791 // before bailing out on suspending a thread, also how often
2792 // we send a signal to a thread we want to resume
2793 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2794 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2795 
2796 // returns true on success and false on error - really an error is fatal
2797 // but this seems the normal response to library errors
2798 static bool do_suspend(OSThread* osthread) {
2799   assert(osthread->sr.is_running(), "thread should be running");
2800   // mark as suspended and send signal
2801 
2802   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2803     // failed to switch, state wasn't running?
2804     ShouldNotReachHere();
2805     return false;
2806   }
2807 
2808   if (sr_notify(osthread) != 0) {
2809     // try to cancel, switch to running
2810 
2811     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2812     if (result == os::SuspendResume::SR_RUNNING) {
2813       // cancelled
2814       return false;
2815     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2816       // somehow managed to suspend
2817       return true;
2818     } else {
2819       ShouldNotReachHere();
2820       return false;
2821     }
2822   }
2823 
2824   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2825 
2826   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2827     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2828       os::naked_yield();
2829     }
2830 
2831     // timeout, try to cancel the request
2832     if (n >= RANDOMLY_LARGE_INTEGER) {
2833       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2834       if (cancelled == os::SuspendResume::SR_RUNNING) {
2835         return false;
2836       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2837         return true;
2838       } else {
2839         ShouldNotReachHere();
2840         return false;
2841       }
2842     }
2843   }
2844 
2845   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2846   return true;
2847 }
2848 
2849 static void do_resume(OSThread* osthread) {
2850   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2851 
2852   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2853     // failed to switch to WAKEUP_REQUEST
2854     ShouldNotReachHere();
2855     return;
2856   }
2857 
2858   while (!osthread->sr.is_running()) {
2859     if (sr_notify(osthread) == 0) {
2860       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2861         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2862           os::naked_yield();
2863         }
2864       }
2865     } else {
2866       ShouldNotReachHere();
2867     }
2868   }
2869 
2870   guarantee(osthread->sr.is_running(), "Must be running!");
2871 }
2872 
2873 ///////////////////////////////////////////////////////////////////////////////////
2874 // signal handling (except suspend/resume)
2875 
2876 // This routine may be used by user applications as a "hook" to catch signals.
2877 // The user-defined signal handler must pass unrecognized signals to this
2878 // routine, and if it returns true (non-zero), then the signal handler must
2879 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2880 // routine will never retun false (zero), but instead will execute a VM panic
2881 // routine kill the process.
2882 //
2883 // If this routine returns false, it is OK to call it again. This allows
2884 // the user-defined signal handler to perform checks either before or after
2885 // the VM performs its own checks. Naturally, the user code would be making
2886 // a serious error if it tried to handle an exception (such as a null check
2887 // or breakpoint) that the VM was generating for its own correct operation.
2888 //
2889 // This routine may recognize any of the following kinds of signals:
2890 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2891 // It should be consulted by handlers for any of those signals.
2892 //
2893 // The caller of this routine must pass in the three arguments supplied
2894 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2895 // field of the structure passed to sigaction(). This routine assumes that
2896 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2897 //
2898 // Note that the VM will print warnings if it detects conflicting signal
2899 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2900 //
2901 extern "C" JNIEXPORT int
2902 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2903 
2904 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2905 // to be the thing to call; documentation is not terribly clear about whether
2906 // pthread_sigmask also works, and if it does, whether it does the same.
2907 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2908   const int rc = ::pthread_sigmask(how, set, oset);
2909   // return value semantics differ slightly for error case:
2910   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2911   // (so, pthread_sigmask is more theadsafe for error handling)
2912   // But success is always 0.
2913   return rc == 0 ? true : false;
2914 }
2915 
2916 // Function to unblock all signals which are, according
2917 // to POSIX, typical program error signals. If they happen while being blocked,
2918 // they typically will bring down the process immediately.
2919 bool unblock_program_error_signals() {
2920   sigset_t set;
2921   ::sigemptyset(&set);
2922   ::sigaddset(&set, SIGILL);
2923   ::sigaddset(&set, SIGBUS);
2924   ::sigaddset(&set, SIGFPE);
2925   ::sigaddset(&set, SIGSEGV);
2926   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
2927 }
2928 
2929 // Renamed from 'signalHandler' to avoid collision with other shared libs.
2930 void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
2931   assert(info != NULL && uc != NULL, "it must be old kernel");
2932 
2933   // Never leave program error signals blocked;
2934   // on all our platforms they would bring down the process immediately when
2935   // getting raised while being blocked.
2936   unblock_program_error_signals();
2937 
2938   int orig_errno = errno;  // Preserve errno value over signal handler.
2939   JVM_handle_aix_signal(sig, info, uc, true);
2940   errno = orig_errno;
2941 }
2942 
2943 // This boolean allows users to forward their own non-matching signals
2944 // to JVM_handle_aix_signal, harmlessly.
2945 bool os::Aix::signal_handlers_are_installed = false;
2946 
2947 // For signal-chaining
2948 struct sigaction sigact[NSIG];
2949 sigset_t sigs;
2950 bool os::Aix::libjsig_is_loaded = false;
2951 typedef struct sigaction *(*get_signal_t)(int);
2952 get_signal_t os::Aix::get_signal_action = NULL;
2953 
2954 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
2955   struct sigaction *actp = NULL;
2956 
2957   if (libjsig_is_loaded) {
2958     // Retrieve the old signal handler from libjsig
2959     actp = (*get_signal_action)(sig);
2960   }
2961   if (actp == NULL) {
2962     // Retrieve the preinstalled signal handler from jvm
2963     actp = get_preinstalled_handler(sig);
2964   }
2965 
2966   return actp;
2967 }
2968 
2969 static bool call_chained_handler(struct sigaction *actp, int sig,
2970                                  siginfo_t *siginfo, void *context) {
2971   // Call the old signal handler
2972   if (actp->sa_handler == SIG_DFL) {
2973     // It's more reasonable to let jvm treat it as an unexpected exception
2974     // instead of taking the default action.
2975     return false;
2976   } else if (actp->sa_handler != SIG_IGN) {
2977     if ((actp->sa_flags & SA_NODEFER) == 0) {
2978       // automaticlly block the signal
2979       sigaddset(&(actp->sa_mask), sig);
2980     }
2981 
2982     sa_handler_t hand = NULL;
2983     sa_sigaction_t sa = NULL;
2984     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2985     // retrieve the chained handler
2986     if (siginfo_flag_set) {
2987       sa = actp->sa_sigaction;
2988     } else {
2989       hand = actp->sa_handler;
2990     }
2991 
2992     if ((actp->sa_flags & SA_RESETHAND) != 0) {
2993       actp->sa_handler = SIG_DFL;
2994     }
2995 
2996     // try to honor the signal mask
2997     sigset_t oset;
2998     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
2999 
3000     // call into the chained handler
3001     if (siginfo_flag_set) {
3002       (*sa)(sig, siginfo, context);
3003     } else {
3004       (*hand)(sig);
3005     }
3006 
3007     // restore the signal mask
3008     pthread_sigmask(SIG_SETMASK, &oset, 0);
3009   }
3010   // Tell jvm's signal handler the signal is taken care of.
3011   return true;
3012 }
3013 
3014 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3015   bool chained = false;
3016   // signal-chaining
3017   if (UseSignalChaining) {
3018     struct sigaction *actp = get_chained_signal_action(sig);
3019     if (actp != NULL) {
3020       chained = call_chained_handler(actp, sig, siginfo, context);
3021     }
3022   }
3023   return chained;
3024 }
3025 
3026 struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
3027   if (sigismember(&sigs, sig)) {
3028     return &sigact[sig];
3029   }
3030   return NULL;
3031 }
3032 
3033 void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3034   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3035   sigact[sig] = oldAct;
3036   sigaddset(&sigs, sig);
3037 }
3038 
3039 // for diagnostic
3040 int sigflags[NSIG];
3041 
3042 int os::Aix::get_our_sigflags(int sig) {
3043   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3044   return sigflags[sig];
3045 }
3046 
3047 void os::Aix::set_our_sigflags(int sig, int flags) {
3048   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3049   if (sig > 0 && sig < NSIG) {
3050     sigflags[sig] = flags;
3051   }
3052 }
3053 
3054 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3055   // Check for overwrite.
3056   struct sigaction oldAct;
3057   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3058 
3059   void* oldhand = oldAct.sa_sigaction
3060     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3061     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3062   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3063       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3064       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3065     if (AllowUserSignalHandlers || !set_installed) {
3066       // Do not overwrite; user takes responsibility to forward to us.
3067       return;
3068     } else if (UseSignalChaining) {
3069       // save the old handler in jvm
3070       save_preinstalled_handler(sig, oldAct);
3071       // libjsig also interposes the sigaction() call below and saves the
3072       // old sigaction on it own.
3073     } else {
3074       fatal("Encountered unexpected pre-existing sigaction handler "
3075             "%#lx for signal %d.", (long)oldhand, sig);
3076     }
3077   }
3078 
3079   struct sigaction sigAct;
3080   sigfillset(&(sigAct.sa_mask));
3081   if (!set_installed) {
3082     sigAct.sa_handler = SIG_DFL;
3083     sigAct.sa_flags = SA_RESTART;
3084   } else {
3085     sigAct.sa_sigaction = javaSignalHandler;
3086     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3087   }
3088   // Save flags, which are set by ours
3089   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3090   sigflags[sig] = sigAct.sa_flags;
3091 
3092   int ret = sigaction(sig, &sigAct, &oldAct);
3093   assert(ret == 0, "check");
3094 
3095   void* oldhand2 = oldAct.sa_sigaction
3096                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3097                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3098   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3099 }
3100 
3101 // install signal handlers for signals that HotSpot needs to
3102 // handle in order to support Java-level exception handling.
3103 void os::Aix::install_signal_handlers() {
3104   if (!signal_handlers_are_installed) {
3105     signal_handlers_are_installed = true;
3106 
3107     // signal-chaining
3108     typedef void (*signal_setting_t)();
3109     signal_setting_t begin_signal_setting = NULL;
3110     signal_setting_t end_signal_setting = NULL;
3111     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3112                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3113     if (begin_signal_setting != NULL) {
3114       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3115                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3116       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3117                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3118       libjsig_is_loaded = true;
3119       assert(UseSignalChaining, "should enable signal-chaining");
3120     }
3121     if (libjsig_is_loaded) {
3122       // Tell libjsig jvm is setting signal handlers.
3123       (*begin_signal_setting)();
3124     }
3125 
3126     ::sigemptyset(&sigs);
3127     set_signal_handler(SIGSEGV, true);
3128     set_signal_handler(SIGPIPE, true);
3129     set_signal_handler(SIGBUS, true);
3130     set_signal_handler(SIGILL, true);
3131     set_signal_handler(SIGFPE, true);
3132     set_signal_handler(SIGTRAP, true);
3133     set_signal_handler(SIGXFSZ, true);
3134 
3135     if (libjsig_is_loaded) {
3136       // Tell libjsig jvm finishes setting signal handlers.
3137       (*end_signal_setting)();
3138     }
3139 
3140     // We don't activate signal checker if libjsig is in place, we trust ourselves
3141     // and if UserSignalHandler is installed all bets are off.
3142     // Log that signal checking is off only if -verbose:jni is specified.
3143     if (CheckJNICalls) {
3144       if (libjsig_is_loaded) {
3145         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3146         check_signals = false;
3147       }
3148       if (AllowUserSignalHandlers) {
3149         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3150         check_signals = false;
3151       }
3152       // Need to initialize check_signal_done.
3153       ::sigemptyset(&check_signal_done);
3154     }
3155   }
3156 }
3157 
3158 static const char* get_signal_handler_name(address handler,
3159                                            char* buf, int buflen) {
3160   int offset;
3161   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3162   if (found) {
3163     // skip directory names
3164     const char *p1, *p2;
3165     p1 = buf;
3166     size_t len = strlen(os::file_separator());
3167     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3168     // The way os::dll_address_to_library_name is implemented on Aix
3169     // right now, it always returns -1 for the offset which is not
3170     // terribly informative.
3171     // Will fix that. For now, omit the offset.
3172     jio_snprintf(buf, buflen, "%s", p1);
3173   } else {
3174     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3175   }
3176   return buf;
3177 }
3178 
3179 static void print_signal_handler(outputStream* st, int sig,
3180                                  char* buf, size_t buflen) {
3181   struct sigaction sa;
3182   sigaction(sig, NULL, &sa);
3183 
3184   st->print("%s: ", os::exception_name(sig, buf, buflen));
3185 
3186   address handler = (sa.sa_flags & SA_SIGINFO)
3187     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3188     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3189 
3190   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3191     st->print("SIG_DFL");
3192   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3193     st->print("SIG_IGN");
3194   } else {
3195     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3196   }
3197 
3198   // Print readable mask.
3199   st->print(", sa_mask[0]=");
3200   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3201 
3202   address rh = VMError::get_resetted_sighandler(sig);
3203   // May be, handler was resetted by VMError?
3204   if (rh != NULL) {
3205     handler = rh;
3206     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3207   }
3208 
3209   // Print textual representation of sa_flags.
3210   st->print(", sa_flags=");
3211   os::Posix::print_sa_flags(st, sa.sa_flags);
3212 
3213   // Check: is it our handler?
3214   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3215       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3216     // It is our signal handler.
3217     // Check for flags, reset system-used one!
3218     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3219       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3220                 os::Aix::get_our_sigflags(sig));
3221     }
3222   }
3223   st->cr();
3224 }
3225 
3226 #define DO_SIGNAL_CHECK(sig) \
3227   if (!sigismember(&check_signal_done, sig)) \
3228     os::Aix::check_signal_handler(sig)
3229 
3230 // This method is a periodic task to check for misbehaving JNI applications
3231 // under CheckJNI, we can add any periodic checks here
3232 
3233 void os::run_periodic_checks() {
3234 
3235   if (check_signals == false) return;
3236 
3237   // SEGV and BUS if overridden could potentially prevent
3238   // generation of hs*.log in the event of a crash, debugging
3239   // such a case can be very challenging, so we absolutely
3240   // check the following for a good measure:
3241   DO_SIGNAL_CHECK(SIGSEGV);
3242   DO_SIGNAL_CHECK(SIGILL);
3243   DO_SIGNAL_CHECK(SIGFPE);
3244   DO_SIGNAL_CHECK(SIGBUS);
3245   DO_SIGNAL_CHECK(SIGPIPE);
3246   DO_SIGNAL_CHECK(SIGXFSZ);
3247   if (UseSIGTRAP) {
3248     DO_SIGNAL_CHECK(SIGTRAP);
3249   }
3250 
3251   // ReduceSignalUsage allows the user to override these handlers
3252   // see comments at the very top and jvm_solaris.h
3253   if (!ReduceSignalUsage) {
3254     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3255     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3256     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3257     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3258   }
3259 
3260   DO_SIGNAL_CHECK(SR_signum);
3261 }
3262 
3263 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3264 
3265 static os_sigaction_t os_sigaction = NULL;
3266 
3267 void os::Aix::check_signal_handler(int sig) {
3268   char buf[O_BUFLEN];
3269   address jvmHandler = NULL;
3270 
3271   struct sigaction act;
3272   if (os_sigaction == NULL) {
3273     // only trust the default sigaction, in case it has been interposed
3274     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3275     if (os_sigaction == NULL) return;
3276   }
3277 
3278   os_sigaction(sig, (struct sigaction*)NULL, &act);
3279 
3280   address thisHandler = (act.sa_flags & SA_SIGINFO)
3281     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3282     : CAST_FROM_FN_PTR(address, act.sa_handler);
3283 
3284   switch(sig) {
3285   case SIGSEGV:
3286   case SIGBUS:
3287   case SIGFPE:
3288   case SIGPIPE:
3289   case SIGILL:
3290   case SIGXFSZ:
3291     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3292     break;
3293 
3294   case SHUTDOWN1_SIGNAL:
3295   case SHUTDOWN2_SIGNAL:
3296   case SHUTDOWN3_SIGNAL:
3297   case BREAK_SIGNAL:
3298     jvmHandler = (address)user_handler();
3299     break;
3300 
3301   default:
3302     if (sig == SR_signum) {
3303       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3304     } else {
3305       return;
3306     }
3307     break;
3308   }
3309 
3310   if (thisHandler != jvmHandler) {
3311     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3312     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3313     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3314     // No need to check this sig any longer
3315     sigaddset(&check_signal_done, sig);
3316     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3317     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3318       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3319                     exception_name(sig, buf, O_BUFLEN));
3320     }
3321   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3322     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3323     tty->print("expected:");
3324     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3325     tty->cr();
3326     tty->print("  found:");
3327     os::Posix::print_sa_flags(tty, act.sa_flags);
3328     tty->cr();
3329     // No need to check this sig any longer
3330     sigaddset(&check_signal_done, sig);
3331   }
3332 
3333   // Dump all the signal
3334   if (sigismember(&check_signal_done, sig)) {
3335     print_signal_handlers(tty, buf, O_BUFLEN);
3336   }
3337 }
3338 
3339 // To install functions for atexit system call
3340 extern "C" {
3341   static void perfMemory_exit_helper() {
3342     perfMemory_exit();
3343   }
3344 }
3345 
3346 // This is called _before_ the most of global arguments have been parsed.
3347 void os::init(void) {
3348   // This is basic, we want to know if that ever changes.
3349   // (Shared memory boundary is supposed to be a 256M aligned.)
3350   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3351 
3352   // Record process break at startup.
3353   g_brk_at_startup = (address) ::sbrk(0);
3354   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3355 
3356   // First off, we need to know whether we run on AIX or PASE, and
3357   // the OS level we run on.
3358   os::Aix::initialize_os_info();
3359 
3360   // Scan environment (SPEC1170 behaviour, etc).
3361   os::Aix::scan_environment();
3362 
3363   // Probe multipage support.
3364   query_multipage_support();
3365 
3366   // Act like we only have one page size by eliminating corner cases which
3367   // we did not support very well anyway.
3368   // We have two input conditions:
3369   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3370   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3371   //    setting.
3372   //    Data segment page size is important for us because it defines the thread stack page
3373   //    size, which is needed for guard page handling, stack banging etc.
3374   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3375   //    and should be allocated with 64k pages.
3376   //
3377   // So, we do the following:
3378   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3379   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3380   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3381   // 64k          no              --- AIX 5.2 ? ---
3382   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3383 
3384   // We explicitly leave no option to change page size, because only upgrading would work,
3385   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3386 
3387   if (g_multipage_support.datapsize == 4*K) {
3388     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3389     if (g_multipage_support.can_use_64K_pages) {
3390       // .. but we are able to use 64K pages dynamically.
3391       // This would be typical for java launchers which are not linked
3392       // with datapsize=64K (like, any other launcher but our own).
3393       //
3394       // In this case it would be smart to allocate the java heap with 64K
3395       // to get the performance benefit, and to fake 64k pages for the
3396       // data segment (when dealing with thread stacks).
3397       //
3398       // However, leave a possibility to downgrade to 4K, using
3399       // -XX:-Use64KPages.
3400       if (Use64KPages) {
3401         trcVerbose("64K page mode (faked for data segment)");
3402         Aix::_page_size = 64*K;
3403       } else {
3404         trcVerbose("4K page mode (Use64KPages=off)");
3405         Aix::_page_size = 4*K;
3406       }
3407     } else {
3408       // .. and not able to allocate 64k pages dynamically. Here, just
3409       // fall back to 4K paged mode and use mmap for everything.
3410       trcVerbose("4K page mode");
3411       Aix::_page_size = 4*K;
3412       FLAG_SET_ERGO(bool, Use64KPages, false);
3413     }
3414   } else {
3415     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3416     // This normally means that we can allocate 64k pages dynamically.
3417     // (There is one special case where this may be false: EXTSHM=on.
3418     // but we decided to not support that mode).
3419     assert0(g_multipage_support.can_use_64K_pages);
3420     Aix::_page_size = 64*K;
3421     trcVerbose("64K page mode");
3422     FLAG_SET_ERGO(bool, Use64KPages, true);
3423   }
3424 
3425   // For now UseLargePages is just ignored.
3426   FLAG_SET_ERGO(bool, UseLargePages, false);
3427   _page_sizes[0] = 0;
3428 
3429   // debug trace
3430   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3431 
3432   // Next, we need to initialize libo4 and libperfstat libraries.
3433   if (os::Aix::on_pase()) {
3434     os::Aix::initialize_libo4();
3435   } else {
3436     os::Aix::initialize_libperfstat();
3437   }
3438 
3439   // Reset the perfstat information provided by ODM.
3440   if (os::Aix::on_aix()) {
3441     libperfstat::perfstat_reset();
3442   }
3443 
3444   // Now initialze basic system properties. Note that for some of the values we
3445   // need libperfstat etc.
3446   os::Aix::initialize_system_info();
3447 
3448   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3449 
3450   init_random(1234567);
3451 
3452   // Main_thread points to the aboriginal thread.
3453   Aix::_main_thread = pthread_self();
3454 
3455   initial_time_count = os::elapsed_counter();
3456 
3457   os::Posix::init();
3458 }
3459 
3460 // This is called _after_ the global arguments have been parsed.
3461 jint os::init_2(void) {
3462 
3463   os::Posix::init_2();
3464 
3465   if (os::Aix::on_pase()) {
3466     trcVerbose("Running on PASE.");
3467   } else {
3468     trcVerbose("Running on AIX (not PASE).");
3469   }
3470 
3471   trcVerbose("processor count: %d", os::_processor_count);
3472   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3473 
3474   // Initially build up the loaded dll map.
3475   LoadedLibraries::reload();
3476   if (Verbose) {
3477     trcVerbose("Loaded Libraries: ");
3478     LoadedLibraries::print(tty);
3479   }
3480 
3481   // initialize suspend/resume support - must do this before signal_sets_init()
3482   if (SR_initialize() != 0) {
3483     perror("SR_initialize failed");
3484     return JNI_ERR;
3485   }
3486 
3487   Aix::signal_sets_init();
3488   Aix::install_signal_handlers();
3489 
3490   // Check and sets minimum stack sizes against command line options
3491   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3492     return JNI_ERR;
3493   }
3494 
3495   if (UseNUMA) {
3496     UseNUMA = false;
3497     warning("NUMA optimizations are not available on this OS.");
3498   }
3499 
3500   if (MaxFDLimit) {
3501     // Set the number of file descriptors to max. print out error
3502     // if getrlimit/setrlimit fails but continue regardless.
3503     struct rlimit nbr_files;
3504     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3505     if (status != 0) {
3506       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3507     } else {
3508       nbr_files.rlim_cur = nbr_files.rlim_max;
3509       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3510       if (status != 0) {
3511         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3512       }
3513     }
3514   }
3515 
3516   if (PerfAllowAtExitRegistration) {
3517     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3518     // At exit functions can be delayed until process exit time, which
3519     // can be problematic for embedded VM situations. Embedded VMs should
3520     // call DestroyJavaVM() to assure that VM resources are released.
3521 
3522     // Note: perfMemory_exit_helper atexit function may be removed in
3523     // the future if the appropriate cleanup code can be added to the
3524     // VM_Exit VMOperation's doit method.
3525     if (atexit(perfMemory_exit_helper) != 0) {
3526       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3527     }
3528   }
3529 
3530   return JNI_OK;
3531 }
3532 
3533 // Mark the polling page as unreadable
3534 void os::make_polling_page_unreadable(void) {
3535   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3536     fatal("Could not disable polling page");
3537   }
3538 };
3539 
3540 // Mark the polling page as readable
3541 void os::make_polling_page_readable(void) {
3542   // Changed according to os_linux.cpp.
3543   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3544     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3545   }
3546 };
3547 
3548 int os::active_processor_count() {
3549   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3550   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3551   return online_cpus;
3552 }
3553 
3554 void os::set_native_thread_name(const char *name) {
3555   // Not yet implemented.
3556   return;
3557 }
3558 
3559 bool os::distribute_processes(uint length, uint* distribution) {
3560   // Not yet implemented.
3561   return false;
3562 }
3563 
3564 bool os::bind_to_processor(uint processor_id) {
3565   // Not yet implemented.
3566   return false;
3567 }
3568 
3569 void os::SuspendedThreadTask::internal_do_task() {
3570   if (do_suspend(_thread->osthread())) {
3571     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3572     do_task(context);
3573     do_resume(_thread->osthread());
3574   }
3575 }
3576 
3577 ////////////////////////////////////////////////////////////////////////////////
3578 // debug support
3579 
3580 bool os::find(address addr, outputStream* st) {
3581 
3582   st->print(PTR_FORMAT ": ", addr);
3583 
3584   loaded_module_t lm;
3585   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3586       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3587     st->print_cr("%s", lm.path);
3588     return true;
3589   }
3590 
3591   return false;
3592 }
3593 
3594 ////////////////////////////////////////////////////////////////////////////////
3595 // misc
3596 
3597 // This does not do anything on Aix. This is basically a hook for being
3598 // able to use structured exception handling (thread-local exception filters)
3599 // on, e.g., Win32.
3600 void
3601 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3602                          JavaCallArguments* args, Thread* thread) {
3603   f(value, method, args, thread);
3604 }
3605 
3606 void os::print_statistics() {
3607 }
3608 
3609 bool os::message_box(const char* title, const char* message) {
3610   int i;
3611   fdStream err(defaultStream::error_fd());
3612   for (i = 0; i < 78; i++) err.print_raw("=");
3613   err.cr();
3614   err.print_raw_cr(title);
3615   for (i = 0; i < 78; i++) err.print_raw("-");
3616   err.cr();
3617   err.print_raw_cr(message);
3618   for (i = 0; i < 78; i++) err.print_raw("=");
3619   err.cr();
3620 
3621   char buf[16];
3622   // Prevent process from exiting upon "read error" without consuming all CPU
3623   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3624 
3625   return buf[0] == 'y' || buf[0] == 'Y';
3626 }
3627 
3628 int os::stat(const char *path, struct stat *sbuf) {
3629   char pathbuf[MAX_PATH];
3630   if (strlen(path) > MAX_PATH - 1) {
3631     errno = ENAMETOOLONG;
3632     return -1;
3633   }
3634   os::native_path(strcpy(pathbuf, path));
3635   return ::stat(pathbuf, sbuf);
3636 }
3637 
3638 // Is a (classpath) directory empty?
3639 bool os::dir_is_empty(const char* path) {
3640   DIR *dir = NULL;
3641   struct dirent *ptr;
3642 
3643   dir = opendir(path);
3644   if (dir == NULL) return true;
3645 
3646   /* Scan the directory */
3647   bool result = true;
3648   char buf[sizeof(struct dirent) + MAX_PATH];
3649   while (result && (ptr = ::readdir(dir)) != NULL) {
3650     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3651       result = false;
3652     }
3653   }
3654   closedir(dir);
3655   return result;
3656 }
3657 
3658 // This code originates from JDK's sysOpen and open64_w
3659 // from src/solaris/hpi/src/system_md.c
3660 
3661 int os::open(const char *path, int oflag, int mode) {
3662 
3663   if (strlen(path) > MAX_PATH - 1) {
3664     errno = ENAMETOOLONG;
3665     return -1;
3666   }
3667   int fd;
3668 
3669   fd = ::open64(path, oflag, mode);
3670   if (fd == -1) return -1;
3671 
3672   // If the open succeeded, the file might still be a directory.
3673   {
3674     struct stat64 buf64;
3675     int ret = ::fstat64(fd, &buf64);
3676     int st_mode = buf64.st_mode;
3677 
3678     if (ret != -1) {
3679       if ((st_mode & S_IFMT) == S_IFDIR) {
3680         errno = EISDIR;
3681         ::close(fd);
3682         return -1;
3683       }
3684     } else {
3685       ::close(fd);
3686       return -1;
3687     }
3688   }
3689 
3690   // All file descriptors that are opened in the JVM and not
3691   // specifically destined for a subprocess should have the
3692   // close-on-exec flag set. If we don't set it, then careless 3rd
3693   // party native code might fork and exec without closing all
3694   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3695   // UNIXProcess.c), and this in turn might:
3696   //
3697   // - cause end-of-file to fail to be detected on some file
3698   //   descriptors, resulting in mysterious hangs, or
3699   //
3700   // - might cause an fopen in the subprocess to fail on a system
3701   //   suffering from bug 1085341.
3702   //
3703   // (Yes, the default setting of the close-on-exec flag is a Unix
3704   // design flaw.)
3705   //
3706   // See:
3707   // 1085341: 32-bit stdio routines should support file descriptors >255
3708   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3709   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3710 #ifdef FD_CLOEXEC
3711   {
3712     int flags = ::fcntl(fd, F_GETFD);
3713     if (flags != -1)
3714       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3715   }
3716 #endif
3717 
3718   return fd;
3719 }
3720 
3721 // create binary file, rewriting existing file if required
3722 int os::create_binary_file(const char* path, bool rewrite_existing) {
3723   int oflags = O_WRONLY | O_CREAT;
3724   if (!rewrite_existing) {
3725     oflags |= O_EXCL;
3726   }
3727   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3728 }
3729 
3730 // return current position of file pointer
3731 jlong os::current_file_offset(int fd) {
3732   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3733 }
3734 
3735 // move file pointer to the specified offset
3736 jlong os::seek_to_file_offset(int fd, jlong offset) {
3737   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3738 }
3739 
3740 // This code originates from JDK's sysAvailable
3741 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3742 
3743 int os::available(int fd, jlong *bytes) {
3744   jlong cur, end;
3745   int mode;
3746   struct stat64 buf64;
3747 
3748   if (::fstat64(fd, &buf64) >= 0) {
3749     mode = buf64.st_mode;
3750     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3751       int n;
3752       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3753         *bytes = n;
3754         return 1;
3755       }
3756     }
3757   }
3758   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3759     return 0;
3760   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3761     return 0;
3762   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3763     return 0;
3764   }
3765   *bytes = end - cur;
3766   return 1;
3767 }
3768 
3769 // Map a block of memory.
3770 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3771                         char *addr, size_t bytes, bool read_only,
3772                         bool allow_exec) {
3773   int prot;
3774   int flags = MAP_PRIVATE;
3775 
3776   if (read_only) {
3777     prot = PROT_READ;
3778     flags = MAP_SHARED;
3779   } else {
3780     prot = PROT_READ | PROT_WRITE;
3781     flags = MAP_PRIVATE;
3782   }
3783 
3784   if (allow_exec) {
3785     prot |= PROT_EXEC;
3786   }
3787 
3788   if (addr != NULL) {
3789     flags |= MAP_FIXED;
3790   }
3791 
3792   // Allow anonymous mappings if 'fd' is -1.
3793   if (fd == -1) {
3794     flags |= MAP_ANONYMOUS;
3795   }
3796 
3797   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3798                                      fd, file_offset);
3799   if (mapped_address == MAP_FAILED) {
3800     return NULL;
3801   }
3802   return mapped_address;
3803 }
3804 
3805 // Remap a block of memory.
3806 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3807                           char *addr, size_t bytes, bool read_only,
3808                           bool allow_exec) {
3809   // same as map_memory() on this OS
3810   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3811                         allow_exec);
3812 }
3813 
3814 // Unmap a block of memory.
3815 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3816   return munmap(addr, bytes) == 0;
3817 }
3818 
3819 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3820 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3821 // of a thread.
3822 //
3823 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3824 // the fast estimate available on the platform.
3825 
3826 jlong os::current_thread_cpu_time() {
3827   // return user + sys since the cost is the same
3828   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3829   assert(n >= 0, "negative CPU time");
3830   return n;
3831 }
3832 
3833 jlong os::thread_cpu_time(Thread* thread) {
3834   // consistent with what current_thread_cpu_time() returns
3835   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3836   assert(n >= 0, "negative CPU time");
3837   return n;
3838 }
3839 
3840 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3841   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3842   assert(n >= 0, "negative CPU time");
3843   return n;
3844 }
3845 
3846 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3847   bool error = false;
3848 
3849   jlong sys_time = 0;
3850   jlong user_time = 0;
3851 
3852   // Reimplemented using getthrds64().
3853   //
3854   // Works like this:
3855   // For the thread in question, get the kernel thread id. Then get the
3856   // kernel thread statistics using that id.
3857   //
3858   // This only works of course when no pthread scheduling is used,
3859   // i.e. there is a 1:1 relationship to kernel threads.
3860   // On AIX, see AIXTHREAD_SCOPE variable.
3861 
3862   pthread_t pthtid = thread->osthread()->pthread_id();
3863 
3864   // retrieve kernel thread id for the pthread:
3865   tid64_t tid = 0;
3866   struct __pthrdsinfo pinfo;
3867   // I just love those otherworldly IBM APIs which force me to hand down
3868   // dummy buffers for stuff I dont care for...
3869   char dummy[1];
3870   int dummy_size = sizeof(dummy);
3871   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3872                           dummy, &dummy_size) == 0) {
3873     tid = pinfo.__pi_tid;
3874   } else {
3875     tty->print_cr("pthread_getthrds_np failed.");
3876     error = true;
3877   }
3878 
3879   // retrieve kernel timing info for that kernel thread
3880   if (!error) {
3881     struct thrdentry64 thrdentry;
3882     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3883       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3884       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3885     } else {
3886       tty->print_cr("pthread_getthrds_np failed.");
3887       error = true;
3888     }
3889   }
3890 
3891   if (p_sys_time) {
3892     *p_sys_time = sys_time;
3893   }
3894 
3895   if (p_user_time) {
3896     *p_user_time = user_time;
3897   }
3898 
3899   if (error) {
3900     return false;
3901   }
3902 
3903   return true;
3904 }
3905 
3906 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3907   jlong sys_time;
3908   jlong user_time;
3909 
3910   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
3911     return -1;
3912   }
3913 
3914   return user_sys_cpu_time ? sys_time + user_time : user_time;
3915 }
3916 
3917 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3918   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3919   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3920   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3921   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3922 }
3923 
3924 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3925   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3926   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3927   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3928   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3929 }
3930 
3931 bool os::is_thread_cpu_time_supported() {
3932   return true;
3933 }
3934 
3935 // System loadavg support. Returns -1 if load average cannot be obtained.
3936 // For now just return the system wide load average (no processor sets).
3937 int os::loadavg(double values[], int nelem) {
3938 
3939   guarantee(nelem >= 0 && nelem <= 3, "argument error");
3940   guarantee(values, "argument error");
3941 
3942   if (os::Aix::on_pase()) {
3943 
3944     // AS/400 PASE: use libo4 porting library
3945     double v[3] = { 0.0, 0.0, 0.0 };
3946 
3947     if (libo4::get_load_avg(v, v + 1, v + 2)) {
3948       for (int i = 0; i < nelem; i ++) {
3949         values[i] = v[i];
3950       }
3951       return nelem;
3952     } else {
3953       return -1;
3954     }
3955 
3956   } else {
3957 
3958     // AIX: use libperfstat
3959     libperfstat::cpuinfo_t ci;
3960     if (libperfstat::get_cpuinfo(&ci)) {
3961       for (int i = 0; i < nelem; i++) {
3962         values[i] = ci.loadavg[i];
3963       }
3964     } else {
3965       return -1;
3966     }
3967     return nelem;
3968   }
3969 }
3970 
3971 void os::pause() {
3972   char filename[MAX_PATH];
3973   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3974     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3975   } else {
3976     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3977   }
3978 
3979   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3980   if (fd != -1) {
3981     struct stat buf;
3982     ::close(fd);
3983     while (::stat(filename, &buf) == 0) {
3984       (void)::poll(NULL, 0, 100);
3985     }
3986   } else {
3987     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
3988   }
3989 }
3990 
3991 bool os::Aix::is_primordial_thread() {
3992   if (pthread_self() == (pthread_t)1) {
3993     return true;
3994   } else {
3995     return false;
3996   }
3997 }
3998 
3999 // OS recognitions (PASE/AIX, OS level) call this before calling any
4000 // one of Aix::on_pase(), Aix::os_version() static
4001 void os::Aix::initialize_os_info() {
4002 
4003   assert(_on_pase == -1 && _os_version == 0, "already called.");
4004 
4005   struct utsname uts;
4006   memset(&uts, 0, sizeof(uts));
4007   strcpy(uts.sysname, "?");
4008   if (::uname(&uts) == -1) {
4009     trcVerbose("uname failed (%d)", errno);
4010     guarantee(0, "Could not determine whether we run on AIX or PASE");
4011   } else {
4012     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4013                "node \"%s\" machine \"%s\"\n",
4014                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4015     const int major = atoi(uts.version);
4016     assert(major > 0, "invalid OS version");
4017     const int minor = atoi(uts.release);
4018     assert(minor > 0, "invalid OS release");
4019     _os_version = (major << 24) | (minor << 16);
4020     char ver_str[20] = {0};
4021     char *name_str = "unknown OS";
4022     if (strcmp(uts.sysname, "OS400") == 0) {
4023       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4024       _on_pase = 1;
4025       if (os_version_short() < 0x0504) {
4026         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4027         assert(false, "OS/400 release too old.");
4028       }
4029       name_str = "OS/400 (pase)";
4030       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4031     } else if (strcmp(uts.sysname, "AIX") == 0) {
4032       // We run on AIX. We do not support versions older than AIX 5.3.
4033       _on_pase = 0;
4034       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4035       odmWrapper::determine_os_kernel_version(&_os_version);
4036       if (os_version_short() < 0x0503) {
4037         trcVerbose("AIX release older than AIX 5.3 not supported.");
4038         assert(false, "AIX release too old.");
4039       }
4040       name_str = "AIX";
4041       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4042                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4043     } else {
4044       assert(false, name_str);
4045     }
4046     trcVerbose("We run on %s %s", name_str, ver_str);
4047   }
4048 
4049   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4050 } // end: os::Aix::initialize_os_info()
4051 
4052 // Scan environment for important settings which might effect the VM.
4053 // Trace out settings. Warn about invalid settings and/or correct them.
4054 //
4055 // Must run after os::Aix::initialue_os_info().
4056 void os::Aix::scan_environment() {
4057 
4058   char* p;
4059   int rc;
4060 
4061   // Warn explicity if EXTSHM=ON is used. That switch changes how
4062   // System V shared memory behaves. One effect is that page size of
4063   // shared memory cannot be change dynamically, effectivly preventing
4064   // large pages from working.
4065   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4066   // recommendation is (in OSS notes) to switch it off.
4067   p = ::getenv("EXTSHM");
4068   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4069   if (p && strcasecmp(p, "ON") == 0) {
4070     _extshm = 1;
4071     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4072     if (!AllowExtshm) {
4073       // We allow under certain conditions the user to continue. However, we want this
4074       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4075       // that the VM is not able to allocate 64k pages for the heap.
4076       // We do not want to run with reduced performance.
4077       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4078     }
4079   } else {
4080     _extshm = 0;
4081   }
4082 
4083   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4084   // Not tested, not supported.
4085   //
4086   // Note that it might be worth the trouble to test and to require it, if only to
4087   // get useful return codes for mprotect.
4088   //
4089   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4090   // exec() ? before loading the libjvm ? ....)
4091   p = ::getenv("XPG_SUS_ENV");
4092   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4093   if (p && strcmp(p, "ON") == 0) {
4094     _xpg_sus_mode = 1;
4095     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4096     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4097     // clobber address ranges. If we ever want to support that, we have to do some
4098     // testing first.
4099     guarantee(false, "XPG_SUS_ENV=ON not supported");
4100   } else {
4101     _xpg_sus_mode = 0;
4102   }
4103 
4104   if (os::Aix::on_pase()) {
4105     p = ::getenv("QIBM_MULTI_THREADED");
4106     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4107   }
4108 
4109   p = ::getenv("LDR_CNTRL");
4110   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4111   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4112     if (p && ::strstr(p, "TEXTPSIZE")) {
4113       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4114         "you may experience hangs or crashes on OS/400 V7R1.");
4115     }
4116   }
4117 
4118   p = ::getenv("AIXTHREAD_GUARDPAGES");
4119   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4120 
4121 } // end: os::Aix::scan_environment()
4122 
4123 // PASE: initialize the libo4 library (PASE porting library).
4124 void os::Aix::initialize_libo4() {
4125   guarantee(os::Aix::on_pase(), "OS/400 only.");
4126   if (!libo4::init()) {
4127     trcVerbose("libo4 initialization failed.");
4128     assert(false, "libo4 initialization failed");
4129   } else {
4130     trcVerbose("libo4 initialized.");
4131   }
4132 }
4133 
4134 // AIX: initialize the libperfstat library.
4135 void os::Aix::initialize_libperfstat() {
4136   assert(os::Aix::on_aix(), "AIX only");
4137   if (!libperfstat::init()) {
4138     trcVerbose("libperfstat initialization failed.");
4139     assert(false, "libperfstat initialization failed");
4140   } else {
4141     trcVerbose("libperfstat initialized.");
4142   }
4143 }
4144 
4145 /////////////////////////////////////////////////////////////////////////////
4146 // thread stack
4147 
4148 // Get the current stack base from the OS (actually, the pthread library).
4149 // Note: usually not page aligned.
4150 address os::current_stack_base() {
4151   AixMisc::stackbounds_t bounds;
4152   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4153   guarantee(rc, "Unable to retrieve stack bounds.");
4154   return bounds.base;
4155 }
4156 
4157 // Get the current stack size from the OS (actually, the pthread library).
4158 // Returned size is such that (base - size) is always aligned to page size.
4159 size_t os::current_stack_size() {
4160   AixMisc::stackbounds_t bounds;
4161   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4162   guarantee(rc, "Unable to retrieve stack bounds.");
4163   // Align the returned stack size such that the stack low address
4164   // is aligned to page size (Note: base is usually not and we do not care).
4165   // We need to do this because caller code will assume stack low address is
4166   // page aligned and will place guard pages without checking.
4167   address low = bounds.base - bounds.size;
4168   address low_aligned = (address)align_up(low, os::vm_page_size());
4169   size_t s = bounds.base - low_aligned;
4170   return s;
4171 }
4172 
4173 extern char** environ;
4174 
4175 // Run the specified command in a separate process. Return its exit value,
4176 // or -1 on failure (e.g. can't fork a new process).
4177 // Unlike system(), this function can be called from signal handler. It
4178 // doesn't block SIGINT et al.
4179 int os::fork_and_exec(char* cmd) {
4180   char * argv[4] = {"sh", "-c", cmd, NULL};
4181 
4182   pid_t pid = fork();
4183 
4184   if (pid < 0) {
4185     // fork failed
4186     return -1;
4187 
4188   } else if (pid == 0) {
4189     // child process
4190 
4191     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4192     execve("/usr/bin/sh", argv, environ);
4193 
4194     // execve failed
4195     _exit(-1);
4196 
4197   } else {
4198     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4199     // care about the actual exit code, for now.
4200 
4201     int status;
4202 
4203     // Wait for the child process to exit. This returns immediately if
4204     // the child has already exited. */
4205     while (waitpid(pid, &status, 0) < 0) {
4206       switch (errno) {
4207         case ECHILD: return 0;
4208         case EINTR: break;
4209         default: return -1;
4210       }
4211     }
4212 
4213     if (WIFEXITED(status)) {
4214       // The child exited normally; get its exit code.
4215       return WEXITSTATUS(status);
4216     } else if (WIFSIGNALED(status)) {
4217       // The child exited because of a signal.
4218       // The best value to return is 0x80 + signal number,
4219       // because that is what all Unix shells do, and because
4220       // it allows callers to distinguish between process exit and
4221       // process death by signal.
4222       return 0x80 + WTERMSIG(status);
4223     } else {
4224       // Unknown exit code; pass it through.
4225       return status;
4226     }
4227   }
4228   return -1;
4229 }
4230 
4231 // is_headless_jre()
4232 //
4233 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4234 // in order to report if we are running in a headless jre.
4235 //
4236 // Since JDK8 xawt/libmawt.so is moved into the same directory
4237 // as libawt.so, and renamed libawt_xawt.so
4238 bool os::is_headless_jre() {
4239   struct stat statbuf;
4240   char buf[MAXPATHLEN];
4241   char libmawtpath[MAXPATHLEN];
4242   const char *xawtstr = "/xawt/libmawt.so";
4243   const char *new_xawtstr = "/libawt_xawt.so";
4244 
4245   char *p;
4246 
4247   // Get path to libjvm.so
4248   os::jvm_path(buf, sizeof(buf));
4249 
4250   // Get rid of libjvm.so
4251   p = strrchr(buf, '/');
4252   if (p == NULL) return false;
4253   else *p = '\0';
4254 
4255   // Get rid of client or server
4256   p = strrchr(buf, '/');
4257   if (p == NULL) return false;
4258   else *p = '\0';
4259 
4260   // check xawt/libmawt.so
4261   strcpy(libmawtpath, buf);
4262   strcat(libmawtpath, xawtstr);
4263   if (::stat(libmawtpath, &statbuf) == 0) return false;
4264 
4265   // check libawt_xawt.so
4266   strcpy(libmawtpath, buf);
4267   strcat(libmawtpath, new_xawtstr);
4268   if (::stat(libmawtpath, &statbuf) == 0) return false;
4269 
4270   return true;
4271 }
4272 
4273 // Get the default path to the core file
4274 // Returns the length of the string
4275 int os::get_core_path(char* buffer, size_t bufferSize) {
4276   const char* p = get_current_directory(buffer, bufferSize);
4277 
4278   if (p == NULL) {
4279     assert(p != NULL, "failed to get current directory");
4280     return 0;
4281   }
4282 
4283   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4284                                                p, current_process_id());
4285 
4286   return strlen(buffer);
4287 }
4288 
4289 #ifndef PRODUCT
4290 void TestReserveMemorySpecial_test() {
4291   // No tests available for this platform
4292 }
4293 #endif
4294 
4295 bool os::start_debugging(char *buf, int buflen) {
4296   int len = (int)strlen(buf);
4297   char *p = &buf[len];
4298 
4299   jio_snprintf(p, buflen -len,
4300                  "\n\n"
4301                  "Do you want to debug the problem?\n\n"
4302                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4303                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4304                  "Otherwise, press RETURN to abort...",
4305                  os::current_process_id(),
4306                  os::current_thread_id(), thread_self());
4307 
4308   bool yes = os::message_box("Unexpected Error", buf);
4309 
4310   if (yes) {
4311     // yes, user asked VM to launch debugger
4312     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4313 
4314     os::fork_and_exec(buf);
4315     yes = false;
4316   }
4317   return yes;
4318 }
4319 
4320 static inline time_t get_mtime(const char* filename) {
4321   struct stat st;
4322   int ret = os::stat(filename, &st);
4323   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
4324   return st.st_mtime;
4325 }
4326 
4327 int os::compare_file_modified_times(const char* file1, const char* file2) {
4328   time_t t1 = get_mtime(file1);
4329   time_t t2 = get_mtime(file2);
4330   return t1 - t2;
4331 }