1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1ThreadLocalData.hpp"
  57 #include "gc/g1/g1YCTypes.hpp"
  58 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  59 #include "gc/g1/heapRegion.inline.hpp"
  60 #include "gc/g1/heapRegionRemSet.hpp"
  61 #include "gc/g1/heapRegionSet.inline.hpp"
  62 #include "gc/g1/vm_operations_g1.hpp"
  63 #include "gc/shared/adaptiveSizePolicy.hpp"
  64 #include "gc/shared/gcHeapSummary.hpp"
  65 #include "gc/shared/gcId.hpp"
  66 #include "gc/shared/gcLocker.hpp"
  67 #include "gc/shared/gcTimer.hpp"
  68 #include "gc/shared/gcTrace.hpp"
  69 #include "gc/shared/gcTraceTime.inline.hpp"
  70 #include "gc/shared/generationSpec.hpp"
  71 #include "gc/shared/isGCActiveMark.hpp"
  72 #include "gc/shared/oopStorageParState.hpp"
  73 #include "gc/shared/preservedMarks.inline.hpp"
  74 #include "gc/shared/suspendibleThreadSet.hpp"
  75 #include "gc/shared/referenceProcessor.inline.hpp"
  76 #include "gc/shared/taskqueue.inline.hpp"
  77 #include "gc/shared/weakProcessor.hpp"
  78 #include "logging/log.hpp"
  79 #include "memory/allocation.hpp"
  80 #include "memory/iterator.hpp"
  81 #include "memory/resourceArea.hpp"
  82 #include "oops/access.inline.hpp"
  83 #include "oops/compressedOops.inline.hpp"
  84 #include "oops/oop.inline.hpp"
  85 #include "prims/resolvedMethodTable.hpp"
  86 #include "runtime/atomic.hpp"
  87 #include "runtime/flags/flagSetting.hpp"
  88 #include "runtime/handles.inline.hpp"
  89 #include "runtime/init.hpp"
  90 #include "runtime/orderAccess.inline.hpp"
  91 #include "runtime/threadSMR.hpp"
  92 #include "runtime/vmThread.hpp"
  93 #include "utilities/align.hpp"
  94 #include "utilities/globalDefinitions.hpp"
  95 #include "utilities/stack.inline.hpp"
  96 
  97 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  98 
  99 // INVARIANTS/NOTES
 100 //
 101 // All allocation activity covered by the G1CollectedHeap interface is
 102 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 103 // and allocate_new_tlab, which are the "entry" points to the
 104 // allocation code from the rest of the JVM.  (Note that this does not
 105 // apply to TLAB allocation, which is not part of this interface: it
 106 // is done by clients of this interface.)
 107 
 108 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 109  private:
 110   size_t _num_dirtied;
 111   G1CollectedHeap* _g1h;
 112   G1CardTable* _g1_ct;
 113 
 114   HeapRegion* region_for_card(jbyte* card_ptr) const {
 115     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 116   }
 117 
 118   bool will_become_free(HeapRegion* hr) const {
 119     // A region will be freed by free_collection_set if the region is in the
 120     // collection set and has not had an evacuation failure.
 121     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 122   }
 123 
 124  public:
 125   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 126     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 127 
 128   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 129     HeapRegion* hr = region_for_card(card_ptr);
 130 
 131     // Should only dirty cards in regions that won't be freed.
 132     if (!will_become_free(hr)) {
 133       *card_ptr = G1CardTable::dirty_card_val();
 134       _num_dirtied++;
 135     }
 136 
 137     return true;
 138   }
 139 
 140   size_t num_dirtied()   const { return _num_dirtied; }
 141 };
 142 
 143 
 144 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 145   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 146 }
 147 
 148 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 149   // The from card cache is not the memory that is actually committed. So we cannot
 150   // take advantage of the zero_filled parameter.
 151   reset_from_card_cache(start_idx, num_regions);
 152 }
 153 
 154 
 155 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 156                                              MemRegion mr) {
 157   return new HeapRegion(hrs_index, bot(), mr);
 158 }
 159 
 160 // Private methods.
 161 
 162 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 163   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 164          "the only time we use this to allocate a humongous region is "
 165          "when we are allocating a single humongous region");
 166 
 167   HeapRegion* res = _hrm.allocate_free_region(is_old);
 168 
 169   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 170     // Currently, only attempts to allocate GC alloc regions set
 171     // do_expand to true. So, we should only reach here during a
 172     // safepoint. If this assumption changes we might have to
 173     // reconsider the use of _expand_heap_after_alloc_failure.
 174     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 175 
 176     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 177                               word_size * HeapWordSize);
 178 
 179     if (expand(word_size * HeapWordSize)) {
 180       // Given that expand() succeeded in expanding the heap, and we
 181       // always expand the heap by an amount aligned to the heap
 182       // region size, the free list should in theory not be empty.
 183       // In either case allocate_free_region() will check for NULL.
 184       res = _hrm.allocate_free_region(is_old);
 185     } else {
 186       _expand_heap_after_alloc_failure = false;
 187     }
 188   }
 189   return res;
 190 }
 191 
 192 HeapWord*
 193 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 194                                                            uint num_regions,
 195                                                            size_t word_size) {
 196   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 197   assert(is_humongous(word_size), "word_size should be humongous");
 198   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 199 
 200   // Index of last region in the series.
 201   uint last = first + num_regions - 1;
 202 
 203   // We need to initialize the region(s) we just discovered. This is
 204   // a bit tricky given that it can happen concurrently with
 205   // refinement threads refining cards on these regions and
 206   // potentially wanting to refine the BOT as they are scanning
 207   // those cards (this can happen shortly after a cleanup; see CR
 208   // 6991377). So we have to set up the region(s) carefully and in
 209   // a specific order.
 210 
 211   // The word size sum of all the regions we will allocate.
 212   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 213   assert(word_size <= word_size_sum, "sanity");
 214 
 215   // This will be the "starts humongous" region.
 216   HeapRegion* first_hr = region_at(first);
 217   // The header of the new object will be placed at the bottom of
 218   // the first region.
 219   HeapWord* new_obj = first_hr->bottom();
 220   // This will be the new top of the new object.
 221   HeapWord* obj_top = new_obj + word_size;
 222 
 223   // First, we need to zero the header of the space that we will be
 224   // allocating. When we update top further down, some refinement
 225   // threads might try to scan the region. By zeroing the header we
 226   // ensure that any thread that will try to scan the region will
 227   // come across the zero klass word and bail out.
 228   //
 229   // NOTE: It would not have been correct to have used
 230   // CollectedHeap::fill_with_object() and make the space look like
 231   // an int array. The thread that is doing the allocation will
 232   // later update the object header to a potentially different array
 233   // type and, for a very short period of time, the klass and length
 234   // fields will be inconsistent. This could cause a refinement
 235   // thread to calculate the object size incorrectly.
 236   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 237 
 238   // Next, pad out the unused tail of the last region with filler
 239   // objects, for improved usage accounting.
 240   // How many words we use for filler objects.
 241   size_t word_fill_size = word_size_sum - word_size;
 242 
 243   // How many words memory we "waste" which cannot hold a filler object.
 244   size_t words_not_fillable = 0;
 245 
 246   if (word_fill_size >= min_fill_size()) {
 247     fill_with_objects(obj_top, word_fill_size);
 248   } else if (word_fill_size > 0) {
 249     // We have space to fill, but we cannot fit an object there.
 250     words_not_fillable = word_fill_size;
 251     word_fill_size = 0;
 252   }
 253 
 254   // We will set up the first region as "starts humongous". This
 255   // will also update the BOT covering all the regions to reflect
 256   // that there is a single object that starts at the bottom of the
 257   // first region.
 258   first_hr->set_starts_humongous(obj_top, word_fill_size);
 259   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 260   // Then, if there are any, we will set up the "continues
 261   // humongous" regions.
 262   HeapRegion* hr = NULL;
 263   for (uint i = first + 1; i <= last; ++i) {
 264     hr = region_at(i);
 265     hr->set_continues_humongous(first_hr);
 266     _g1_policy->remset_tracker()->update_at_allocate(hr);
 267   }
 268 
 269   // Up to this point no concurrent thread would have been able to
 270   // do any scanning on any region in this series. All the top
 271   // fields still point to bottom, so the intersection between
 272   // [bottom,top] and [card_start,card_end] will be empty. Before we
 273   // update the top fields, we'll do a storestore to make sure that
 274   // no thread sees the update to top before the zeroing of the
 275   // object header and the BOT initialization.
 276   OrderAccess::storestore();
 277 
 278   // Now, we will update the top fields of the "continues humongous"
 279   // regions except the last one.
 280   for (uint i = first; i < last; ++i) {
 281     hr = region_at(i);
 282     hr->set_top(hr->end());
 283   }
 284 
 285   hr = region_at(last);
 286   // If we cannot fit a filler object, we must set top to the end
 287   // of the humongous object, otherwise we cannot iterate the heap
 288   // and the BOT will not be complete.
 289   hr->set_top(hr->end() - words_not_fillable);
 290 
 291   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 292          "obj_top should be in last region");
 293 
 294   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 295 
 296   assert(words_not_fillable == 0 ||
 297          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 298          "Miscalculation in humongous allocation");
 299 
 300   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 301 
 302   for (uint i = first; i <= last; ++i) {
 303     hr = region_at(i);
 304     _humongous_set.add(hr);
 305     _hr_printer.alloc(hr);
 306   }
 307 
 308   return new_obj;
 309 }
 310 
 311 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 312   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 313   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 314 }
 315 
 316 // If could fit into free regions w/o expansion, try.
 317 // Otherwise, if can expand, do so.
 318 // Otherwise, if using ex regions might help, try with ex given back.
 319 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 320   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 321 
 322   _verifier->verify_region_sets_optional();
 323 
 324   uint first = G1_NO_HRM_INDEX;
 325   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 326 
 327   if (obj_regions == 1) {
 328     // Only one region to allocate, try to use a fast path by directly allocating
 329     // from the free lists. Do not try to expand here, we will potentially do that
 330     // later.
 331     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 332     if (hr != NULL) {
 333       first = hr->hrm_index();
 334     }
 335   } else {
 336     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 337     // are lucky enough to find some.
 338     first = _hrm.find_contiguous_only_empty(obj_regions);
 339     if (first != G1_NO_HRM_INDEX) {
 340       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 341     }
 342   }
 343 
 344   if (first == G1_NO_HRM_INDEX) {
 345     // Policy: We could not find enough regions for the humongous object in the
 346     // free list. Look through the heap to find a mix of free and uncommitted regions.
 347     // If so, try expansion.
 348     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 349     if (first != G1_NO_HRM_INDEX) {
 350       // We found something. Make sure these regions are committed, i.e. expand
 351       // the heap. Alternatively we could do a defragmentation GC.
 352       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 353                                     word_size * HeapWordSize);
 354 
 355       _hrm.expand_at(first, obj_regions, workers());
 356       g1_policy()->record_new_heap_size(num_regions());
 357 
 358 #ifdef ASSERT
 359       for (uint i = first; i < first + obj_regions; ++i) {
 360         HeapRegion* hr = region_at(i);
 361         assert(hr->is_free(), "sanity");
 362         assert(hr->is_empty(), "sanity");
 363         assert(is_on_master_free_list(hr), "sanity");
 364       }
 365 #endif
 366       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 367     } else {
 368       // Policy: Potentially trigger a defragmentation GC.
 369     }
 370   }
 371 
 372   HeapWord* result = NULL;
 373   if (first != G1_NO_HRM_INDEX) {
 374     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 375     assert(result != NULL, "it should always return a valid result");
 376 
 377     // A successful humongous object allocation changes the used space
 378     // information of the old generation so we need to recalculate the
 379     // sizes and update the jstat counters here.
 380     g1mm()->update_sizes();
 381   }
 382 
 383   _verifier->verify_region_sets_optional();
 384 
 385   return result;
 386 }
 387 
 388 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 389                                              size_t requested_size,
 390                                              size_t* actual_size) {
 391   assert_heap_not_locked_and_not_at_safepoint();
 392   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 393 
 394   return attempt_allocation(min_size, requested_size, actual_size);
 395 }
 396 
 397 HeapWord*
 398 G1CollectedHeap::mem_allocate(size_t word_size,
 399                               bool*  gc_overhead_limit_was_exceeded) {
 400   assert_heap_not_locked_and_not_at_safepoint();
 401 
 402   if (is_humongous(word_size)) {
 403     return attempt_allocation_humongous(word_size);
 404   }
 405   size_t dummy = 0;
 406   return attempt_allocation(word_size, word_size, &dummy);
 407 }
 408 
 409 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 410   ResourceMark rm; // For retrieving the thread names in log messages.
 411 
 412   // Make sure you read the note in attempt_allocation_humongous().
 413 
 414   assert_heap_not_locked_and_not_at_safepoint();
 415   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 416          "be called for humongous allocation requests");
 417 
 418   // We should only get here after the first-level allocation attempt
 419   // (attempt_allocation()) failed to allocate.
 420 
 421   // We will loop until a) we manage to successfully perform the
 422   // allocation or b) we successfully schedule a collection which
 423   // fails to perform the allocation. b) is the only case when we'll
 424   // return NULL.
 425   HeapWord* result = NULL;
 426   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 427     bool should_try_gc;
 428     uint gc_count_before;
 429 
 430     {
 431       MutexLockerEx x(Heap_lock);
 432       result = _allocator->attempt_allocation_locked(word_size);
 433       if (result != NULL) {
 434         return result;
 435       }
 436 
 437       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 438       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 439       // waiting because the GCLocker is active to not wait too long.
 440       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 441         // No need for an ergo message here, can_expand_young_list() does this when
 442         // it returns true.
 443         result = _allocator->attempt_allocation_force(word_size);
 444         if (result != NULL) {
 445           return result;
 446         }
 447       }
 448       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 449       // the GCLocker initiated GC has been performed and then retry. This includes
 450       // the case when the GC Locker is not active but has not been performed.
 451       should_try_gc = !GCLocker::needs_gc();
 452       // Read the GC count while still holding the Heap_lock.
 453       gc_count_before = total_collections();
 454     }
 455 
 456     if (should_try_gc) {
 457       bool succeeded;
 458       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 459                                    GCCause::_g1_inc_collection_pause);
 460       if (result != NULL) {
 461         assert(succeeded, "only way to get back a non-NULL result");
 462         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 463                              Thread::current()->name(), p2i(result));
 464         return result;
 465       }
 466 
 467       if (succeeded) {
 468         // We successfully scheduled a collection which failed to allocate. No
 469         // point in trying to allocate further. We'll just return NULL.
 470         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 471                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 472         return NULL;
 473       }
 474       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 475                            Thread::current()->name(), word_size);
 476     } else {
 477       // Failed to schedule a collection.
 478       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 479         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 480                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 481         return NULL;
 482       }
 483       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 484       // The GCLocker is either active or the GCLocker initiated
 485       // GC has not yet been performed. Stall until it is and
 486       // then retry the allocation.
 487       GCLocker::stall_until_clear();
 488       gclocker_retry_count += 1;
 489     }
 490 
 491     // We can reach here if we were unsuccessful in scheduling a
 492     // collection (because another thread beat us to it) or if we were
 493     // stalled due to the GC locker. In either can we should retry the
 494     // allocation attempt in case another thread successfully
 495     // performed a collection and reclaimed enough space. We do the
 496     // first attempt (without holding the Heap_lock) here and the
 497     // follow-on attempt will be at the start of the next loop
 498     // iteration (after taking the Heap_lock).
 499     size_t dummy = 0;
 500     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 501     if (result != NULL) {
 502       return result;
 503     }
 504 
 505     // Give a warning if we seem to be looping forever.
 506     if ((QueuedAllocationWarningCount > 0) &&
 507         (try_count % QueuedAllocationWarningCount == 0)) {
 508       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 509                              Thread::current()->name(), try_count, word_size);
 510     }
 511   }
 512 
 513   ShouldNotReachHere();
 514   return NULL;
 515 }
 516 
 517 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 518   assert_at_safepoint_on_vm_thread();
 519   if (_archive_allocator == NULL) {
 520     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 521   }
 522 }
 523 
 524 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 525   // Allocations in archive regions cannot be of a size that would be considered
 526   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 527   // may be different at archive-restore time.
 528   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 529 }
 530 
 531 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 532   assert_at_safepoint_on_vm_thread();
 533   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 534   if (is_archive_alloc_too_large(word_size)) {
 535     return NULL;
 536   }
 537   return _archive_allocator->archive_mem_allocate(word_size);
 538 }
 539 
 540 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 541                                               size_t end_alignment_in_bytes) {
 542   assert_at_safepoint_on_vm_thread();
 543   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 544 
 545   // Call complete_archive to do the real work, filling in the MemRegion
 546   // array with the archive regions.
 547   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 548   delete _archive_allocator;
 549   _archive_allocator = NULL;
 550 }
 551 
 552 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 553   assert(ranges != NULL, "MemRegion array NULL");
 554   assert(count != 0, "No MemRegions provided");
 555   MemRegion reserved = _hrm.reserved();
 556   for (size_t i = 0; i < count; i++) {
 557     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 558       return false;
 559     }
 560   }
 561   return true;
 562 }
 563 
 564 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 565                                             size_t count,
 566                                             bool open) {
 567   assert(!is_init_completed(), "Expect to be called at JVM init time");
 568   assert(ranges != NULL, "MemRegion array NULL");
 569   assert(count != 0, "No MemRegions provided");
 570   MutexLockerEx x(Heap_lock);
 571 
 572   MemRegion reserved = _hrm.reserved();
 573   HeapWord* prev_last_addr = NULL;
 574   HeapRegion* prev_last_region = NULL;
 575 
 576   // Temporarily disable pretouching of heap pages. This interface is used
 577   // when mmap'ing archived heap data in, so pre-touching is wasted.
 578   FlagSetting fs(AlwaysPreTouch, false);
 579 
 580   // Enable archive object checking used by G1MarkSweep. We have to let it know
 581   // about each archive range, so that objects in those ranges aren't marked.
 582   G1ArchiveAllocator::enable_archive_object_check();
 583 
 584   // For each specified MemRegion range, allocate the corresponding G1
 585   // regions and mark them as archive regions. We expect the ranges
 586   // in ascending starting address order, without overlap.
 587   for (size_t i = 0; i < count; i++) {
 588     MemRegion curr_range = ranges[i];
 589     HeapWord* start_address = curr_range.start();
 590     size_t word_size = curr_range.word_size();
 591     HeapWord* last_address = curr_range.last();
 592     size_t commits = 0;
 593 
 594     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 595               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 596               p2i(start_address), p2i(last_address));
 597     guarantee(start_address > prev_last_addr,
 598               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 599               p2i(start_address), p2i(prev_last_addr));
 600     prev_last_addr = last_address;
 601 
 602     // Check for ranges that start in the same G1 region in which the previous
 603     // range ended, and adjust the start address so we don't try to allocate
 604     // the same region again. If the current range is entirely within that
 605     // region, skip it, just adjusting the recorded top.
 606     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 607     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 608       start_address = start_region->end();
 609       if (start_address > last_address) {
 610         increase_used(word_size * HeapWordSize);
 611         start_region->set_top(last_address + 1);
 612         continue;
 613       }
 614       start_region->set_top(start_address);
 615       curr_range = MemRegion(start_address, last_address + 1);
 616       start_region = _hrm.addr_to_region(start_address);
 617     }
 618 
 619     // Perform the actual region allocation, exiting if it fails.
 620     // Then note how much new space we have allocated.
 621     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 622       return false;
 623     }
 624     increase_used(word_size * HeapWordSize);
 625     if (commits != 0) {
 626       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 627                                 HeapRegion::GrainWords * HeapWordSize * commits);
 628 
 629     }
 630 
 631     // Mark each G1 region touched by the range as archive, add it to
 632     // the old set, and set top.
 633     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 634     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 635     prev_last_region = last_region;
 636 
 637     while (curr_region != NULL) {
 638       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 639              "Region already in use (index %u)", curr_region->hrm_index());
 640       if (open) {
 641         curr_region->set_open_archive();
 642       } else {
 643         curr_region->set_closed_archive();
 644       }
 645       _hr_printer.alloc(curr_region);
 646       _old_set.add(curr_region);
 647       HeapWord* top;
 648       HeapRegion* next_region;
 649       if (curr_region != last_region) {
 650         top = curr_region->end();
 651         next_region = _hrm.next_region_in_heap(curr_region);
 652       } else {
 653         top = last_address + 1;
 654         next_region = NULL;
 655       }
 656       curr_region->set_top(top);
 657       curr_region->set_first_dead(top);
 658       curr_region->set_end_of_live(top);
 659       curr_region = next_region;
 660     }
 661 
 662     // Notify mark-sweep of the archive
 663     G1ArchiveAllocator::set_range_archive(curr_range, open);
 664   }
 665   return true;
 666 }
 667 
 668 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 669   assert(!is_init_completed(), "Expect to be called at JVM init time");
 670   assert(ranges != NULL, "MemRegion array NULL");
 671   assert(count != 0, "No MemRegions provided");
 672   MemRegion reserved = _hrm.reserved();
 673   HeapWord *prev_last_addr = NULL;
 674   HeapRegion* prev_last_region = NULL;
 675 
 676   // For each MemRegion, create filler objects, if needed, in the G1 regions
 677   // that contain the address range. The address range actually within the
 678   // MemRegion will not be modified. That is assumed to have been initialized
 679   // elsewhere, probably via an mmap of archived heap data.
 680   MutexLockerEx x(Heap_lock);
 681   for (size_t i = 0; i < count; i++) {
 682     HeapWord* start_address = ranges[i].start();
 683     HeapWord* last_address = ranges[i].last();
 684 
 685     assert(reserved.contains(start_address) && reserved.contains(last_address),
 686            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 687            p2i(start_address), p2i(last_address));
 688     assert(start_address > prev_last_addr,
 689            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 690            p2i(start_address), p2i(prev_last_addr));
 691 
 692     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 693     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 694     HeapWord* bottom_address = start_region->bottom();
 695 
 696     // Check for a range beginning in the same region in which the
 697     // previous one ended.
 698     if (start_region == prev_last_region) {
 699       bottom_address = prev_last_addr + 1;
 700     }
 701 
 702     // Verify that the regions were all marked as archive regions by
 703     // alloc_archive_regions.
 704     HeapRegion* curr_region = start_region;
 705     while (curr_region != NULL) {
 706       guarantee(curr_region->is_archive(),
 707                 "Expected archive region at index %u", curr_region->hrm_index());
 708       if (curr_region != last_region) {
 709         curr_region = _hrm.next_region_in_heap(curr_region);
 710       } else {
 711         curr_region = NULL;
 712       }
 713     }
 714 
 715     prev_last_addr = last_address;
 716     prev_last_region = last_region;
 717 
 718     // Fill the memory below the allocated range with dummy object(s),
 719     // if the region bottom does not match the range start, or if the previous
 720     // range ended within the same G1 region, and there is a gap.
 721     if (start_address != bottom_address) {
 722       size_t fill_size = pointer_delta(start_address, bottom_address);
 723       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 724       increase_used(fill_size * HeapWordSize);
 725     }
 726   }
 727 }
 728 
 729 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 730                                                      size_t desired_word_size,
 731                                                      size_t* actual_word_size) {
 732   assert_heap_not_locked_and_not_at_safepoint();
 733   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 734          "be called for humongous allocation requests");
 735 
 736   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 737 
 738   if (result == NULL) {
 739     *actual_word_size = desired_word_size;
 740     result = attempt_allocation_slow(desired_word_size);
 741   }
 742 
 743   assert_heap_not_locked();
 744   if (result != NULL) {
 745     assert(*actual_word_size != 0, "Actual size must have been set here");
 746     dirty_young_block(result, *actual_word_size);
 747   } else {
 748     *actual_word_size = 0;
 749   }
 750 
 751   return result;
 752 }
 753 
 754 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 755   assert(!is_init_completed(), "Expect to be called at JVM init time");
 756   assert(ranges != NULL, "MemRegion array NULL");
 757   assert(count != 0, "No MemRegions provided");
 758   MemRegion reserved = _hrm.reserved();
 759   HeapWord* prev_last_addr = NULL;
 760   HeapRegion* prev_last_region = NULL;
 761   size_t size_used = 0;
 762   size_t uncommitted_regions = 0;
 763 
 764   // For each Memregion, free the G1 regions that constitute it, and
 765   // notify mark-sweep that the range is no longer to be considered 'archive.'
 766   MutexLockerEx x(Heap_lock);
 767   for (size_t i = 0; i < count; i++) {
 768     HeapWord* start_address = ranges[i].start();
 769     HeapWord* last_address = ranges[i].last();
 770 
 771     assert(reserved.contains(start_address) && reserved.contains(last_address),
 772            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 773            p2i(start_address), p2i(last_address));
 774     assert(start_address > prev_last_addr,
 775            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 776            p2i(start_address), p2i(prev_last_addr));
 777     size_used += ranges[i].byte_size();
 778     prev_last_addr = last_address;
 779 
 780     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 781     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 782 
 783     // Check for ranges that start in the same G1 region in which the previous
 784     // range ended, and adjust the start address so we don't try to free
 785     // the same region again. If the current range is entirely within that
 786     // region, skip it.
 787     if (start_region == prev_last_region) {
 788       start_address = start_region->end();
 789       if (start_address > last_address) {
 790         continue;
 791       }
 792       start_region = _hrm.addr_to_region(start_address);
 793     }
 794     prev_last_region = last_region;
 795 
 796     // After verifying that each region was marked as an archive region by
 797     // alloc_archive_regions, set it free and empty and uncommit it.
 798     HeapRegion* curr_region = start_region;
 799     while (curr_region != NULL) {
 800       guarantee(curr_region->is_archive(),
 801                 "Expected archive region at index %u", curr_region->hrm_index());
 802       uint curr_index = curr_region->hrm_index();
 803       _old_set.remove(curr_region);
 804       curr_region->set_free();
 805       curr_region->set_top(curr_region->bottom());
 806       if (curr_region != last_region) {
 807         curr_region = _hrm.next_region_in_heap(curr_region);
 808       } else {
 809         curr_region = NULL;
 810       }
 811       _hrm.shrink_at(curr_index, 1);
 812       uncommitted_regions++;
 813     }
 814 
 815     // Notify mark-sweep that this is no longer an archive range.
 816     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 817   }
 818 
 819   if (uncommitted_regions != 0) {
 820     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 821                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 822   }
 823   decrease_used(size_used);
 824 }
 825 
 826 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 827   ResourceMark rm; // For retrieving the thread names in log messages.
 828 
 829   // The structure of this method has a lot of similarities to
 830   // attempt_allocation_slow(). The reason these two were not merged
 831   // into a single one is that such a method would require several "if
 832   // allocation is not humongous do this, otherwise do that"
 833   // conditional paths which would obscure its flow. In fact, an early
 834   // version of this code did use a unified method which was harder to
 835   // follow and, as a result, it had subtle bugs that were hard to
 836   // track down. So keeping these two methods separate allows each to
 837   // be more readable. It will be good to keep these two in sync as
 838   // much as possible.
 839 
 840   assert_heap_not_locked_and_not_at_safepoint();
 841   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 842          "should only be called for humongous allocations");
 843 
 844   // Humongous objects can exhaust the heap quickly, so we should check if we
 845   // need to start a marking cycle at each humongous object allocation. We do
 846   // the check before we do the actual allocation. The reason for doing it
 847   // before the allocation is that we avoid having to keep track of the newly
 848   // allocated memory while we do a GC.
 849   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 850                                            word_size)) {
 851     collect(GCCause::_g1_humongous_allocation);
 852   }
 853 
 854   // We will loop until a) we manage to successfully perform the
 855   // allocation or b) we successfully schedule a collection which
 856   // fails to perform the allocation. b) is the only case when we'll
 857   // return NULL.
 858   HeapWord* result = NULL;
 859   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 860     bool should_try_gc;
 861     uint gc_count_before;
 862 
 863 
 864     {
 865       MutexLockerEx x(Heap_lock);
 866 
 867       // Given that humongous objects are not allocated in young
 868       // regions, we'll first try to do the allocation without doing a
 869       // collection hoping that there's enough space in the heap.
 870       result = humongous_obj_allocate(word_size);
 871       if (result != NULL) {
 872         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 873         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 874         return result;
 875       }
 876 
 877       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 878       // the GCLocker initiated GC has been performed and then retry. This includes
 879       // the case when the GC Locker is not active but has not been performed.
 880       should_try_gc = !GCLocker::needs_gc();
 881       // Read the GC count while still holding the Heap_lock.
 882       gc_count_before = total_collections();
 883     }
 884 
 885     if (should_try_gc) {
 886       bool succeeded;
 887       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 888                                    GCCause::_g1_humongous_allocation);
 889       if (result != NULL) {
 890         assert(succeeded, "only way to get back a non-NULL result");
 891         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 892                              Thread::current()->name(), p2i(result));
 893         return result;
 894       }
 895 
 896       if (succeeded) {
 897         // We successfully scheduled a collection which failed to allocate. No
 898         // point in trying to allocate further. We'll just return NULL.
 899         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 900                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 901         return NULL;
 902       }
 903       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 904                            Thread::current()->name(), word_size);
 905     } else {
 906       // Failed to schedule a collection.
 907       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 908         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 909                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 910         return NULL;
 911       }
 912       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 913       // The GCLocker is either active or the GCLocker initiated
 914       // GC has not yet been performed. Stall until it is and
 915       // then retry the allocation.
 916       GCLocker::stall_until_clear();
 917       gclocker_retry_count += 1;
 918     }
 919 
 920 
 921     // We can reach here if we were unsuccessful in scheduling a
 922     // collection (because another thread beat us to it) or if we were
 923     // stalled due to the GC locker. In either can we should retry the
 924     // allocation attempt in case another thread successfully
 925     // performed a collection and reclaimed enough space.
 926     // Humongous object allocation always needs a lock, so we wait for the retry
 927     // in the next iteration of the loop, unlike for the regular iteration case.
 928     // Give a warning if we seem to be looping forever.
 929 
 930     if ((QueuedAllocationWarningCount > 0) &&
 931         (try_count % QueuedAllocationWarningCount == 0)) {
 932       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 933                              Thread::current()->name(), try_count, word_size);
 934     }
 935   }
 936 
 937   ShouldNotReachHere();
 938   return NULL;
 939 }
 940 
 941 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 942                                                            bool expect_null_mutator_alloc_region) {
 943   assert_at_safepoint_on_vm_thread();
 944   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 945          "the current alloc region was unexpectedly found to be non-NULL");
 946 
 947   if (!is_humongous(word_size)) {
 948     return _allocator->attempt_allocation_locked(word_size);
 949   } else {
 950     HeapWord* result = humongous_obj_allocate(word_size);
 951     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 952       collector_state()->set_initiate_conc_mark_if_possible(true);
 953     }
 954     return result;
 955   }
 956 
 957   ShouldNotReachHere();
 958 }
 959 
 960 class PostCompactionPrinterClosure: public HeapRegionClosure {
 961 private:
 962   G1HRPrinter* _hr_printer;
 963 public:
 964   bool do_heap_region(HeapRegion* hr) {
 965     assert(!hr->is_young(), "not expecting to find young regions");
 966     _hr_printer->post_compaction(hr);
 967     return false;
 968   }
 969 
 970   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 971     : _hr_printer(hr_printer) { }
 972 };
 973 
 974 void G1CollectedHeap::print_hrm_post_compaction() {
 975   if (_hr_printer.is_active()) {
 976     PostCompactionPrinterClosure cl(hr_printer());
 977     heap_region_iterate(&cl);
 978   }
 979 }
 980 
 981 void G1CollectedHeap::abort_concurrent_cycle() {
 982   // If we start the compaction before the CM threads finish
 983   // scanning the root regions we might trip them over as we'll
 984   // be moving objects / updating references. So let's wait until
 985   // they are done. By telling them to abort, they should complete
 986   // early.
 987   _cm->root_regions()->abort();
 988   _cm->root_regions()->wait_until_scan_finished();
 989 
 990   // Disable discovery and empty the discovered lists
 991   // for the CM ref processor.
 992   _ref_processor_cm->disable_discovery();
 993   _ref_processor_cm->abandon_partial_discovery();
 994   _ref_processor_cm->verify_no_references_recorded();
 995 
 996   // Abandon current iterations of concurrent marking and concurrent
 997   // refinement, if any are in progress.
 998   concurrent_mark()->concurrent_cycle_abort();
 999 }
1000 
1001 void G1CollectedHeap::prepare_heap_for_full_collection() {
1002   // Make sure we'll choose a new allocation region afterwards.
1003   _allocator->release_mutator_alloc_region();
1004   _allocator->abandon_gc_alloc_regions();
1005   g1_rem_set()->cleanupHRRS();
1006 
1007   // We may have added regions to the current incremental collection
1008   // set between the last GC or pause and now. We need to clear the
1009   // incremental collection set and then start rebuilding it afresh
1010   // after this full GC.
1011   abandon_collection_set(collection_set());
1012 
1013   tear_down_region_sets(false /* free_list_only */);
1014 }
1015 
1016 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1017   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1018   assert(used() == recalculate_used(), "Should be equal");
1019   _verifier->verify_region_sets_optional();
1020   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1021   _verifier->check_bitmaps("Full GC Start");
1022 }
1023 
1024 void G1CollectedHeap::prepare_heap_for_mutators() {
1025   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1026   ClassLoaderDataGraph::purge();
1027   MetaspaceUtils::verify_metrics();
1028 
1029   // Prepare heap for normal collections.
1030   assert(num_free_regions() == 0, "we should not have added any free regions");
1031   rebuild_region_sets(false /* free_list_only */);
1032   abort_refinement();
1033   resize_if_necessary_after_full_collection();
1034 
1035   // Rebuild the strong code root lists for each region
1036   rebuild_strong_code_roots();
1037 
1038   // Start a new incremental collection set for the next pause
1039   start_new_collection_set();
1040 
1041   _allocator->init_mutator_alloc_region();
1042 
1043   // Post collection state updates.
1044   MetaspaceGC::compute_new_size();
1045 }
1046 
1047 void G1CollectedHeap::abort_refinement() {
1048   if (_hot_card_cache->use_cache()) {
1049     _hot_card_cache->reset_hot_cache();
1050   }
1051 
1052   // Discard all remembered set updates.
1053   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1054   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1055 }
1056 
1057 void G1CollectedHeap::verify_after_full_collection() {
1058   _hrm.verify_optional();
1059   _verifier->verify_region_sets_optional();
1060   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1061   // Clear the previous marking bitmap, if needed for bitmap verification.
1062   // Note we cannot do this when we clear the next marking bitmap in
1063   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1064   // objects marked during a full GC against the previous bitmap.
1065   // But we need to clear it before calling check_bitmaps below since
1066   // the full GC has compacted objects and updated TAMS but not updated
1067   // the prev bitmap.
1068   if (G1VerifyBitmaps) {
1069     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1070     _cm->clear_prev_bitmap(workers());
1071   }
1072   _verifier->check_bitmaps("Full GC End");
1073 
1074   // At this point there should be no regions in the
1075   // entire heap tagged as young.
1076   assert(check_young_list_empty(), "young list should be empty at this point");
1077 
1078   // Note: since we've just done a full GC, concurrent
1079   // marking is no longer active. Therefore we need not
1080   // re-enable reference discovery for the CM ref processor.
1081   // That will be done at the start of the next marking cycle.
1082   // We also know that the STW processor should no longer
1083   // discover any new references.
1084   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1085   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1086   _ref_processor_stw->verify_no_references_recorded();
1087   _ref_processor_cm->verify_no_references_recorded();
1088 }
1089 
1090 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1091   // Post collection logging.
1092   // We should do this after we potentially resize the heap so
1093   // that all the COMMIT / UNCOMMIT events are generated before
1094   // the compaction events.
1095   print_hrm_post_compaction();
1096   heap_transition->print();
1097   print_heap_after_gc();
1098   print_heap_regions();
1099 #ifdef TRACESPINNING
1100   ParallelTaskTerminator::print_termination_counts();
1101 #endif
1102 }
1103 
1104 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1105                                          bool clear_all_soft_refs) {
1106   assert_at_safepoint_on_vm_thread();
1107 
1108   if (GCLocker::check_active_before_gc()) {
1109     // Full GC was not completed.
1110     return false;
1111   }
1112 
1113   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1114       soft_ref_policy()->should_clear_all_soft_refs();
1115 
1116   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1117   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1118 
1119   collector.prepare_collection();
1120   collector.collect();
1121   collector.complete_collection();
1122 
1123   // Full collection was successfully completed.
1124   return true;
1125 }
1126 
1127 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1128   // Currently, there is no facility in the do_full_collection(bool) API to notify
1129   // the caller that the collection did not succeed (e.g., because it was locked
1130   // out by the GC locker). So, right now, we'll ignore the return value.
1131   bool dummy = do_full_collection(true,                /* explicit_gc */
1132                                   clear_all_soft_refs);
1133 }
1134 
1135 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1136   // Capacity, free and used after the GC counted as full regions to
1137   // include the waste in the following calculations.
1138   const size_t capacity_after_gc = capacity();
1139   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1140 
1141   // This is enforced in arguments.cpp.
1142   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1143          "otherwise the code below doesn't make sense");
1144 
1145   // We don't have floating point command-line arguments
1146   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1147   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1148   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1149   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1150 
1151   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1152   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1153 
1154   // We have to be careful here as these two calculations can overflow
1155   // 32-bit size_t's.
1156   double used_after_gc_d = (double) used_after_gc;
1157   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1158   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1159 
1160   // Let's make sure that they are both under the max heap size, which
1161   // by default will make them fit into a size_t.
1162   double desired_capacity_upper_bound = (double) max_heap_size;
1163   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1164                                     desired_capacity_upper_bound);
1165   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1166                                     desired_capacity_upper_bound);
1167 
1168   // We can now safely turn them into size_t's.
1169   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1170   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1171 
1172   // This assert only makes sense here, before we adjust them
1173   // with respect to the min and max heap size.
1174   assert(minimum_desired_capacity <= maximum_desired_capacity,
1175          "minimum_desired_capacity = " SIZE_FORMAT ", "
1176          "maximum_desired_capacity = " SIZE_FORMAT,
1177          minimum_desired_capacity, maximum_desired_capacity);
1178 
1179   // Should not be greater than the heap max size. No need to adjust
1180   // it with respect to the heap min size as it's a lower bound (i.e.,
1181   // we'll try to make the capacity larger than it, not smaller).
1182   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1183   // Should not be less than the heap min size. No need to adjust it
1184   // with respect to the heap max size as it's an upper bound (i.e.,
1185   // we'll try to make the capacity smaller than it, not greater).
1186   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1187 
1188   if (capacity_after_gc < minimum_desired_capacity) {
1189     // Don't expand unless it's significant
1190     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1191 
1192     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1193                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1194                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1195                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1196 
1197     expand(expand_bytes, _workers);
1198 
1199     // No expansion, now see if we want to shrink
1200   } else if (capacity_after_gc > maximum_desired_capacity) {
1201     // Capacity too large, compute shrinking size
1202     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1203 
1204     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1205                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1206                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1207                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1208 
1209     shrink(shrink_bytes);
1210   }
1211 }
1212 
1213 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1214                                                             bool do_gc,
1215                                                             bool clear_all_soft_refs,
1216                                                             bool expect_null_mutator_alloc_region,
1217                                                             bool* gc_succeeded) {
1218   *gc_succeeded = true;
1219   // Let's attempt the allocation first.
1220   HeapWord* result =
1221     attempt_allocation_at_safepoint(word_size,
1222                                     expect_null_mutator_alloc_region);
1223   if (result != NULL) {
1224     return result;
1225   }
1226 
1227   // In a G1 heap, we're supposed to keep allocation from failing by
1228   // incremental pauses.  Therefore, at least for now, we'll favor
1229   // expansion over collection.  (This might change in the future if we can
1230   // do something smarter than full collection to satisfy a failed alloc.)
1231   result = expand_and_allocate(word_size);
1232   if (result != NULL) {
1233     return result;
1234   }
1235 
1236   if (do_gc) {
1237     // Expansion didn't work, we'll try to do a Full GC.
1238     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1239                                        clear_all_soft_refs);
1240   }
1241 
1242   return NULL;
1243 }
1244 
1245 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1246                                                      bool* succeeded) {
1247   assert_at_safepoint_on_vm_thread();
1248 
1249   // Attempts to allocate followed by Full GC.
1250   HeapWord* result =
1251     satisfy_failed_allocation_helper(word_size,
1252                                      true,  /* do_gc */
1253                                      false, /* clear_all_soft_refs */
1254                                      false, /* expect_null_mutator_alloc_region */
1255                                      succeeded);
1256 
1257   if (result != NULL || !*succeeded) {
1258     return result;
1259   }
1260 
1261   // Attempts to allocate followed by Full GC that will collect all soft references.
1262   result = satisfy_failed_allocation_helper(word_size,
1263                                             true, /* do_gc */
1264                                             true, /* clear_all_soft_refs */
1265                                             true, /* expect_null_mutator_alloc_region */
1266                                             succeeded);
1267 
1268   if (result != NULL || !*succeeded) {
1269     return result;
1270   }
1271 
1272   // Attempts to allocate, no GC
1273   result = satisfy_failed_allocation_helper(word_size,
1274                                             false, /* do_gc */
1275                                             false, /* clear_all_soft_refs */
1276                                             true,  /* expect_null_mutator_alloc_region */
1277                                             succeeded);
1278 
1279   if (result != NULL) {
1280     return result;
1281   }
1282 
1283   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1284          "Flag should have been handled and cleared prior to this point");
1285 
1286   // What else?  We might try synchronous finalization later.  If the total
1287   // space available is large enough for the allocation, then a more
1288   // complete compaction phase than we've tried so far might be
1289   // appropriate.
1290   return NULL;
1291 }
1292 
1293 // Attempting to expand the heap sufficiently
1294 // to support an allocation of the given "word_size".  If
1295 // successful, perform the allocation and return the address of the
1296 // allocated block, or else "NULL".
1297 
1298 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1299   assert_at_safepoint_on_vm_thread();
1300 
1301   _verifier->verify_region_sets_optional();
1302 
1303   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1304   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1305                             word_size * HeapWordSize);
1306 
1307 
1308   if (expand(expand_bytes, _workers)) {
1309     _hrm.verify_optional();
1310     _verifier->verify_region_sets_optional();
1311     return attempt_allocation_at_safepoint(word_size,
1312                                            false /* expect_null_mutator_alloc_region */);
1313   }
1314   return NULL;
1315 }
1316 
1317 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1318   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1319   aligned_expand_bytes = align_up(aligned_expand_bytes,
1320                                        HeapRegion::GrainBytes);
1321 
1322   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1323                             expand_bytes, aligned_expand_bytes);
1324 
1325   if (is_maximal_no_gc()) {
1326     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1327     return false;
1328   }
1329 
1330   double expand_heap_start_time_sec = os::elapsedTime();
1331   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1332   assert(regions_to_expand > 0, "Must expand by at least one region");
1333 
1334   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1335   if (expand_time_ms != NULL) {
1336     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1337   }
1338 
1339   if (expanded_by > 0) {
1340     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1341     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1342     g1_policy()->record_new_heap_size(num_regions());
1343   } else {
1344     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1345 
1346     // The expansion of the virtual storage space was unsuccessful.
1347     // Let's see if it was because we ran out of swap.
1348     if (G1ExitOnExpansionFailure &&
1349         _hrm.available() >= regions_to_expand) {
1350       // We had head room...
1351       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1352     }
1353   }
1354   return regions_to_expand > 0;
1355 }
1356 
1357 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1358   size_t aligned_shrink_bytes =
1359     ReservedSpace::page_align_size_down(shrink_bytes);
1360   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1361                                          HeapRegion::GrainBytes);
1362   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1363 
1364   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1365   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1366 
1367 
1368   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1369                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1370   if (num_regions_removed > 0) {
1371     g1_policy()->record_new_heap_size(num_regions());
1372   } else {
1373     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1374   }
1375 }
1376 
1377 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1378   _verifier->verify_region_sets_optional();
1379 
1380   // We should only reach here at the end of a Full GC which means we
1381   // should not not be holding to any GC alloc regions. The method
1382   // below will make sure of that and do any remaining clean up.
1383   _allocator->abandon_gc_alloc_regions();
1384 
1385   // Instead of tearing down / rebuilding the free lists here, we
1386   // could instead use the remove_all_pending() method on free_list to
1387   // remove only the ones that we need to remove.
1388   tear_down_region_sets(true /* free_list_only */);
1389   shrink_helper(shrink_bytes);
1390   rebuild_region_sets(true /* free_list_only */);
1391 
1392   _hrm.verify_optional();
1393   _verifier->verify_region_sets_optional();
1394 }
1395 
1396 // Public methods.
1397 
1398 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1399   CollectedHeap(),
1400   _young_gen_sampling_thread(NULL),
1401   _collector_policy(collector_policy),
1402   _soft_ref_policy(),
1403   _card_table(NULL),
1404   _memory_manager("G1 Young Generation", "end of minor GC"),
1405   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1406   _eden_pool(NULL),
1407   _survivor_pool(NULL),
1408   _old_pool(NULL),
1409   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1410   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1411   _g1_policy(new G1Policy(_gc_timer_stw)),
1412   _collection_set(this, _g1_policy),
1413   _dirty_card_queue_set(false),
1414   _ref_processor_stw(NULL),
1415   _is_alive_closure_stw(this),
1416   _is_subject_to_discovery_stw(this),
1417   _ref_processor_cm(NULL),
1418   _is_alive_closure_cm(this),
1419   _is_subject_to_discovery_cm(this),
1420   _bot(NULL),
1421   _hot_card_cache(NULL),
1422   _g1_rem_set(NULL),
1423   _cr(NULL),
1424   _g1mm(NULL),
1425   _preserved_marks_set(true /* in_c_heap */),
1426   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1427   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1428   _humongous_reclaim_candidates(),
1429   _has_humongous_reclaim_candidates(false),
1430   _archive_allocator(NULL),
1431   _summary_bytes_used(0),
1432   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1433   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1434   _expand_heap_after_alloc_failure(true),
1435   _old_marking_cycles_started(0),
1436   _old_marking_cycles_completed(0),
1437   _in_cset_fast_test() {
1438 
1439   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1440                           /* are_GC_task_threads */true,
1441                           /* are_ConcurrentGC_threads */false);
1442   _workers->initialize_workers();
1443   _verifier = new G1HeapVerifier(this);
1444 
1445   _allocator = new G1Allocator(this);
1446 
1447   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1448 
1449   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1450 
1451   // Override the default _filler_array_max_size so that no humongous filler
1452   // objects are created.
1453   _filler_array_max_size = _humongous_object_threshold_in_words;
1454 
1455   uint n_queues = ParallelGCThreads;
1456   _task_queues = new RefToScanQueueSet(n_queues);
1457 
1458   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1459 
1460   for (uint i = 0; i < n_queues; i++) {
1461     RefToScanQueue* q = new RefToScanQueue();
1462     q->initialize();
1463     _task_queues->register_queue(i, q);
1464     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1465   }
1466 
1467   // Initialize the G1EvacuationFailureALot counters and flags.
1468   NOT_PRODUCT(reset_evacuation_should_fail();)
1469 
1470   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1471 }
1472 
1473 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1474                                                                  size_t size,
1475                                                                  size_t translation_factor) {
1476   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1477   // Allocate a new reserved space, preferring to use large pages.
1478   ReservedSpace rs(size, preferred_page_size);
1479   G1RegionToSpaceMapper* result  =
1480     G1RegionToSpaceMapper::create_mapper(rs,
1481                                          size,
1482                                          rs.alignment(),
1483                                          HeapRegion::GrainBytes,
1484                                          translation_factor,
1485                                          mtGC);
1486 
1487   os::trace_page_sizes_for_requested_size(description,
1488                                           size,
1489                                           preferred_page_size,
1490                                           rs.alignment(),
1491                                           rs.base(),
1492                                           rs.size());
1493 
1494   return result;
1495 }
1496 
1497 jint G1CollectedHeap::initialize_concurrent_refinement() {
1498   jint ecode = JNI_OK;
1499   _cr = G1ConcurrentRefine::create(&ecode);
1500   return ecode;
1501 }
1502 
1503 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1504   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1505   if (_young_gen_sampling_thread->osthread() == NULL) {
1506     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1507     return JNI_ENOMEM;
1508   }
1509   return JNI_OK;
1510 }
1511 
1512 jint G1CollectedHeap::initialize() {
1513   os::enable_vtime();
1514 
1515   // Necessary to satisfy locking discipline assertions.
1516 
1517   MutexLocker x(Heap_lock);
1518 
1519   // While there are no constraints in the GC code that HeapWordSize
1520   // be any particular value, there are multiple other areas in the
1521   // system which believe this to be true (e.g. oop->object_size in some
1522   // cases incorrectly returns the size in wordSize units rather than
1523   // HeapWordSize).
1524   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1525 
1526   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1527   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1528   size_t heap_alignment = collector_policy()->heap_alignment();
1529 
1530   // Ensure that the sizes are properly aligned.
1531   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1532   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1533   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1534 
1535   // Reserve the maximum.
1536 
1537   // When compressed oops are enabled, the preferred heap base
1538   // is calculated by subtracting the requested size from the
1539   // 32Gb boundary and using the result as the base address for
1540   // heap reservation. If the requested size is not aligned to
1541   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1542   // into the ReservedHeapSpace constructor) then the actual
1543   // base of the reserved heap may end up differing from the
1544   // address that was requested (i.e. the preferred heap base).
1545   // If this happens then we could end up using a non-optimal
1546   // compressed oops mode.
1547 
1548   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1549                                                  heap_alignment);
1550 
1551   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1552 
1553   // Create the barrier set for the entire reserved region.
1554   G1CardTable* ct = new G1CardTable(reserved_region());
1555   ct->initialize();
1556   G1BarrierSet* bs = new G1BarrierSet(ct);
1557   bs->initialize();
1558   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1559   BarrierSet::set_barrier_set(bs);
1560   _card_table = ct;
1561 
1562   // Create the hot card cache.
1563   _hot_card_cache = new G1HotCardCache(this);
1564 
1565   // Carve out the G1 part of the heap.
1566   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1567   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1568   G1RegionToSpaceMapper* heap_storage =
1569     G1RegionToSpaceMapper::create_mapper(g1_rs,
1570                                          g1_rs.size(),
1571                                          page_size,
1572                                          HeapRegion::GrainBytes,
1573                                          1,
1574                                          mtJavaHeap);
1575   os::trace_page_sizes("Heap",
1576                        collector_policy()->min_heap_byte_size(),
1577                        max_byte_size,
1578                        page_size,
1579                        heap_rs.base(),
1580                        heap_rs.size());
1581   heap_storage->set_mapping_changed_listener(&_listener);
1582 
1583   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1584   G1RegionToSpaceMapper* bot_storage =
1585     create_aux_memory_mapper("Block Offset Table",
1586                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1587                              G1BlockOffsetTable::heap_map_factor());
1588 
1589   G1RegionToSpaceMapper* cardtable_storage =
1590     create_aux_memory_mapper("Card Table",
1591                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1592                              G1CardTable::heap_map_factor());
1593 
1594   G1RegionToSpaceMapper* card_counts_storage =
1595     create_aux_memory_mapper("Card Counts Table",
1596                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1597                              G1CardCounts::heap_map_factor());
1598 
1599   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1600   G1RegionToSpaceMapper* prev_bitmap_storage =
1601     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1602   G1RegionToSpaceMapper* next_bitmap_storage =
1603     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1604 
1605   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1606   _card_table->initialize(cardtable_storage);
1607   // Do later initialization work for concurrent refinement.
1608   _hot_card_cache->initialize(card_counts_storage);
1609 
1610   // 6843694 - ensure that the maximum region index can fit
1611   // in the remembered set structures.
1612   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1613   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1614 
1615   // Also create a G1 rem set.
1616   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1617   _g1_rem_set->initialize(max_capacity(), max_regions());
1618 
1619   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1620   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1621   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1622             "too many cards per region");
1623 
1624   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1625 
1626   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1627 
1628   {
1629     HeapWord* start = _hrm.reserved().start();
1630     HeapWord* end = _hrm.reserved().end();
1631     size_t granularity = HeapRegion::GrainBytes;
1632 
1633     _in_cset_fast_test.initialize(start, end, granularity);
1634     _humongous_reclaim_candidates.initialize(start, end, granularity);
1635   }
1636 
1637   // Create the G1ConcurrentMark data structure and thread.
1638   // (Must do this late, so that "max_regions" is defined.)
1639   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1640   if (_cm == NULL || !_cm->completed_initialization()) {
1641     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1642     return JNI_ENOMEM;
1643   }
1644   _cm_thread = _cm->cm_thread();
1645 
1646   // Now expand into the initial heap size.
1647   if (!expand(init_byte_size, _workers)) {
1648     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1649     return JNI_ENOMEM;
1650   }
1651 
1652   // Perform any initialization actions delegated to the policy.
1653   g1_policy()->init(this, &_collection_set);
1654 
1655   G1BarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1656                                                  SATB_Q_FL_lock,
1657                                                  G1SATBProcessCompletedThreshold,
1658                                                  Shared_SATB_Q_lock);
1659 
1660   jint ecode = initialize_concurrent_refinement();
1661   if (ecode != JNI_OK) {
1662     return ecode;
1663   }
1664 
1665   ecode = initialize_young_gen_sampling_thread();
1666   if (ecode != JNI_OK) {
1667     return ecode;
1668   }
1669 
1670   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1671                                                   DirtyCardQ_FL_lock,
1672                                                   (int)concurrent_refine()->yellow_zone(),
1673                                                   (int)concurrent_refine()->red_zone(),
1674                                                   Shared_DirtyCardQ_lock,
1675                                                   NULL,  // fl_owner
1676                                                   true); // init_free_ids
1677 
1678   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1679                                     DirtyCardQ_FL_lock,
1680                                     -1, // never trigger processing
1681                                     -1, // no limit on length
1682                                     Shared_DirtyCardQ_lock,
1683                                     &G1BarrierSet::dirty_card_queue_set());
1684 
1685   // Here we allocate the dummy HeapRegion that is required by the
1686   // G1AllocRegion class.
1687   HeapRegion* dummy_region = _hrm.get_dummy_region();
1688 
1689   // We'll re-use the same region whether the alloc region will
1690   // require BOT updates or not and, if it doesn't, then a non-young
1691   // region will complain that it cannot support allocations without
1692   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1693   dummy_region->set_eden();
1694   // Make sure it's full.
1695   dummy_region->set_top(dummy_region->end());
1696   G1AllocRegion::setup(this, dummy_region);
1697 
1698   _allocator->init_mutator_alloc_region();
1699 
1700   // Do create of the monitoring and management support so that
1701   // values in the heap have been properly initialized.
1702   _g1mm = new G1MonitoringSupport(this);
1703 
1704   G1StringDedup::initialize();
1705 
1706   _preserved_marks_set.init(ParallelGCThreads);
1707 
1708   _collection_set.initialize(max_regions());
1709 
1710   return JNI_OK;
1711 }
1712 
1713 void G1CollectedHeap::initialize_serviceability() {
1714   _eden_pool = new G1EdenPool(this);
1715   _survivor_pool = new G1SurvivorPool(this);
1716   _old_pool = new G1OldGenPool(this);
1717 
1718   _full_gc_memory_manager.add_pool(_eden_pool);
1719   _full_gc_memory_manager.add_pool(_survivor_pool);
1720   _full_gc_memory_manager.add_pool(_old_pool);
1721 
1722   _memory_manager.add_pool(_eden_pool);
1723   _memory_manager.add_pool(_survivor_pool);
1724 
1725 }
1726 
1727 void G1CollectedHeap::stop() {
1728   // Stop all concurrent threads. We do this to make sure these threads
1729   // do not continue to execute and access resources (e.g. logging)
1730   // that are destroyed during shutdown.
1731   _cr->stop();
1732   _young_gen_sampling_thread->stop();
1733   _cm_thread->stop();
1734   if (G1StringDedup::is_enabled()) {
1735     G1StringDedup::stop();
1736   }
1737 }
1738 
1739 void G1CollectedHeap::safepoint_synchronize_begin() {
1740   SuspendibleThreadSet::synchronize();
1741 }
1742 
1743 void G1CollectedHeap::safepoint_synchronize_end() {
1744   SuspendibleThreadSet::desynchronize();
1745 }
1746 
1747 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1748   return HeapRegion::max_region_size();
1749 }
1750 
1751 void G1CollectedHeap::post_initialize() {
1752   CollectedHeap::post_initialize();
1753   ref_processing_init();
1754 }
1755 
1756 void G1CollectedHeap::ref_processing_init() {
1757   // Reference processing in G1 currently works as follows:
1758   //
1759   // * There are two reference processor instances. One is
1760   //   used to record and process discovered references
1761   //   during concurrent marking; the other is used to
1762   //   record and process references during STW pauses
1763   //   (both full and incremental).
1764   // * Both ref processors need to 'span' the entire heap as
1765   //   the regions in the collection set may be dotted around.
1766   //
1767   // * For the concurrent marking ref processor:
1768   //   * Reference discovery is enabled at initial marking.
1769   //   * Reference discovery is disabled and the discovered
1770   //     references processed etc during remarking.
1771   //   * Reference discovery is MT (see below).
1772   //   * Reference discovery requires a barrier (see below).
1773   //   * Reference processing may or may not be MT
1774   //     (depending on the value of ParallelRefProcEnabled
1775   //     and ParallelGCThreads).
1776   //   * A full GC disables reference discovery by the CM
1777   //     ref processor and abandons any entries on it's
1778   //     discovered lists.
1779   //
1780   // * For the STW processor:
1781   //   * Non MT discovery is enabled at the start of a full GC.
1782   //   * Processing and enqueueing during a full GC is non-MT.
1783   //   * During a full GC, references are processed after marking.
1784   //
1785   //   * Discovery (may or may not be MT) is enabled at the start
1786   //     of an incremental evacuation pause.
1787   //   * References are processed near the end of a STW evacuation pause.
1788   //   * For both types of GC:
1789   //     * Discovery is atomic - i.e. not concurrent.
1790   //     * Reference discovery will not need a barrier.
1791 
1792   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1793 
1794   // Concurrent Mark ref processor
1795   _ref_processor_cm =
1796     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1797                            mt_processing,                                  // mt processing
1798                            ParallelGCThreads,                              // degree of mt processing
1799                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1800                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1801                            false,                                          // Reference discovery is not atomic
1802                            &_is_alive_closure_cm);                         // is alive closure
1803 
1804   // STW ref processor
1805   _ref_processor_stw =
1806     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1807                            mt_processing,                        // mt processing
1808                            ParallelGCThreads,                    // degree of mt processing
1809                            (ParallelGCThreads > 1),              // mt discovery
1810                            ParallelGCThreads,                    // degree of mt discovery
1811                            true,                                 // Reference discovery is atomic
1812                            &_is_alive_closure_stw);              // is alive closure
1813 }
1814 
1815 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1816   return _collector_policy;
1817 }
1818 
1819 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1820   return &_soft_ref_policy;
1821 }
1822 
1823 size_t G1CollectedHeap::capacity() const {
1824   return _hrm.length() * HeapRegion::GrainBytes;
1825 }
1826 
1827 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1828   return _hrm.total_free_bytes();
1829 }
1830 
1831 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1832   _hot_card_cache->drain(cl, worker_i);
1833 }
1834 
1835 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1836   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1837   size_t n_completed_buffers = 0;
1838   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1839     n_completed_buffers++;
1840   }
1841   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1842   dcqs.clear_n_completed_buffers();
1843   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1844 }
1845 
1846 // Computes the sum of the storage used by the various regions.
1847 size_t G1CollectedHeap::used() const {
1848   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1849   if (_archive_allocator != NULL) {
1850     result += _archive_allocator->used();
1851   }
1852   return result;
1853 }
1854 
1855 size_t G1CollectedHeap::used_unlocked() const {
1856   return _summary_bytes_used;
1857 }
1858 
1859 class SumUsedClosure: public HeapRegionClosure {
1860   size_t _used;
1861 public:
1862   SumUsedClosure() : _used(0) {}
1863   bool do_heap_region(HeapRegion* r) {
1864     _used += r->used();
1865     return false;
1866   }
1867   size_t result() { return _used; }
1868 };
1869 
1870 size_t G1CollectedHeap::recalculate_used() const {
1871   double recalculate_used_start = os::elapsedTime();
1872 
1873   SumUsedClosure blk;
1874   heap_region_iterate(&blk);
1875 
1876   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1877   return blk.result();
1878 }
1879 
1880 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1881   switch (cause) {
1882     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1883     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1884     case GCCause::_wb_conc_mark:                        return true;
1885     default :                                           return false;
1886   }
1887 }
1888 
1889 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1890   switch (cause) {
1891     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1892     case GCCause::_g1_humongous_allocation: return true;
1893     default:                                return is_user_requested_concurrent_full_gc(cause);
1894   }
1895 }
1896 
1897 #ifndef PRODUCT
1898 void G1CollectedHeap::allocate_dummy_regions() {
1899   // Let's fill up most of the region
1900   size_t word_size = HeapRegion::GrainWords - 1024;
1901   // And as a result the region we'll allocate will be humongous.
1902   guarantee(is_humongous(word_size), "sanity");
1903 
1904   // _filler_array_max_size is set to humongous object threshold
1905   // but temporarily change it to use CollectedHeap::fill_with_object().
1906   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1907 
1908   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1909     // Let's use the existing mechanism for the allocation
1910     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1911     if (dummy_obj != NULL) {
1912       MemRegion mr(dummy_obj, word_size);
1913       CollectedHeap::fill_with_object(mr);
1914     } else {
1915       // If we can't allocate once, we probably cannot allocate
1916       // again. Let's get out of the loop.
1917       break;
1918     }
1919   }
1920 }
1921 #endif // !PRODUCT
1922 
1923 void G1CollectedHeap::increment_old_marking_cycles_started() {
1924   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1925          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1926          "Wrong marking cycle count (started: %d, completed: %d)",
1927          _old_marking_cycles_started, _old_marking_cycles_completed);
1928 
1929   _old_marking_cycles_started++;
1930 }
1931 
1932 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1933   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1934 
1935   // We assume that if concurrent == true, then the caller is a
1936   // concurrent thread that was joined the Suspendible Thread
1937   // Set. If there's ever a cheap way to check this, we should add an
1938   // assert here.
1939 
1940   // Given that this method is called at the end of a Full GC or of a
1941   // concurrent cycle, and those can be nested (i.e., a Full GC can
1942   // interrupt a concurrent cycle), the number of full collections
1943   // completed should be either one (in the case where there was no
1944   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1945   // behind the number of full collections started.
1946 
1947   // This is the case for the inner caller, i.e. a Full GC.
1948   assert(concurrent ||
1949          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1950          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1951          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1952          "is inconsistent with _old_marking_cycles_completed = %u",
1953          _old_marking_cycles_started, _old_marking_cycles_completed);
1954 
1955   // This is the case for the outer caller, i.e. the concurrent cycle.
1956   assert(!concurrent ||
1957          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1958          "for outer caller (concurrent cycle): "
1959          "_old_marking_cycles_started = %u "
1960          "is inconsistent with _old_marking_cycles_completed = %u",
1961          _old_marking_cycles_started, _old_marking_cycles_completed);
1962 
1963   _old_marking_cycles_completed += 1;
1964 
1965   // We need to clear the "in_progress" flag in the CM thread before
1966   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1967   // is set) so that if a waiter requests another System.gc() it doesn't
1968   // incorrectly see that a marking cycle is still in progress.
1969   if (concurrent) {
1970     _cm_thread->set_idle();
1971   }
1972 
1973   // This notify_all() will ensure that a thread that called
1974   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
1975   // and it's waiting for a full GC to finish will be woken up. It is
1976   // waiting in VM_G1CollectForAllocation::doit_epilogue().
1977   FullGCCount_lock->notify_all();
1978 }
1979 
1980 void G1CollectedHeap::collect(GCCause::Cause cause) {
1981   assert_heap_not_locked();
1982 
1983   uint gc_count_before;
1984   uint old_marking_count_before;
1985   uint full_gc_count_before;
1986   bool retry_gc;
1987 
1988   do {
1989     retry_gc = false;
1990 
1991     {
1992       MutexLocker ml(Heap_lock);
1993 
1994       // Read the GC count while holding the Heap_lock
1995       gc_count_before = total_collections();
1996       full_gc_count_before = total_full_collections();
1997       old_marking_count_before = _old_marking_cycles_started;
1998     }
1999 
2000     if (should_do_concurrent_full_gc(cause)) {
2001       // Schedule an initial-mark evacuation pause that will start a
2002       // concurrent cycle. We're setting word_size to 0 which means that
2003       // we are not requesting a post-GC allocation.
2004       VM_G1CollectForAllocation op(0,     /* word_size */
2005                                    gc_count_before,
2006                                    cause,
2007                                    true,  /* should_initiate_conc_mark */
2008                                    g1_policy()->max_pause_time_ms());
2009       VMThread::execute(&op);
2010       if (!op.pause_succeeded()) {
2011         if (old_marking_count_before == _old_marking_cycles_started) {
2012           retry_gc = op.should_retry_gc();
2013         } else {
2014           // A Full GC happened while we were trying to schedule the
2015           // initial-mark GC. No point in starting a new cycle given
2016           // that the whole heap was collected anyway.
2017         }
2018 
2019         if (retry_gc) {
2020           if (GCLocker::is_active_and_needs_gc()) {
2021             GCLocker::stall_until_clear();
2022           }
2023         }
2024       }
2025     } else {
2026       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2027           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2028 
2029         // Schedule a standard evacuation pause. We're setting word_size
2030         // to 0 which means that we are not requesting a post-GC allocation.
2031         VM_G1CollectForAllocation op(0,     /* word_size */
2032                                      gc_count_before,
2033                                      cause,
2034                                      false, /* should_initiate_conc_mark */
2035                                      g1_policy()->max_pause_time_ms());
2036         VMThread::execute(&op);
2037       } else {
2038         // Schedule a Full GC.
2039         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2040         VMThread::execute(&op);
2041       }
2042     }
2043   } while (retry_gc);
2044 }
2045 
2046 bool G1CollectedHeap::is_in(const void* p) const {
2047   if (_hrm.reserved().contains(p)) {
2048     // Given that we know that p is in the reserved space,
2049     // heap_region_containing() should successfully
2050     // return the containing region.
2051     HeapRegion* hr = heap_region_containing(p);
2052     return hr->is_in(p);
2053   } else {
2054     return false;
2055   }
2056 }
2057 
2058 #ifdef ASSERT
2059 bool G1CollectedHeap::is_in_exact(const void* p) const {
2060   bool contains = reserved_region().contains(p);
2061   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2062   if (contains && available) {
2063     return true;
2064   } else {
2065     return false;
2066   }
2067 }
2068 #endif
2069 
2070 // Iteration functions.
2071 
2072 // Iterates an ObjectClosure over all objects within a HeapRegion.
2073 
2074 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2075   ObjectClosure* _cl;
2076 public:
2077   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2078   bool do_heap_region(HeapRegion* r) {
2079     if (!r->is_continues_humongous()) {
2080       r->object_iterate(_cl);
2081     }
2082     return false;
2083   }
2084 };
2085 
2086 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2087   IterateObjectClosureRegionClosure blk(cl);
2088   heap_region_iterate(&blk);
2089 }
2090 
2091 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2092   _hrm.iterate(cl);
2093 }
2094 
2095 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2096                                                                  HeapRegionClaimer *hrclaimer,
2097                                                                  uint worker_id) const {
2098   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2099 }
2100 
2101 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2102                                                          HeapRegionClaimer *hrclaimer) const {
2103   _hrm.par_iterate(cl, hrclaimer, 0);
2104 }
2105 
2106 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2107   _collection_set.iterate(cl);
2108 }
2109 
2110 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2111   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2112 }
2113 
2114 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2115   HeapRegion* hr = heap_region_containing(addr);
2116   return hr->block_start(addr);
2117 }
2118 
2119 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2120   HeapRegion* hr = heap_region_containing(addr);
2121   return hr->block_size(addr);
2122 }
2123 
2124 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2125   HeapRegion* hr = heap_region_containing(addr);
2126   return hr->block_is_obj(addr);
2127 }
2128 
2129 bool G1CollectedHeap::supports_tlab_allocation() const {
2130   return true;
2131 }
2132 
2133 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2134   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2135 }
2136 
2137 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2138   return _eden.length() * HeapRegion::GrainBytes;
2139 }
2140 
2141 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2142 // must be equal to the humongous object limit.
2143 size_t G1CollectedHeap::max_tlab_size() const {
2144   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2145 }
2146 
2147 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2148   return _allocator->unsafe_max_tlab_alloc();
2149 }
2150 
2151 size_t G1CollectedHeap::max_capacity() const {
2152   return _hrm.reserved().byte_size();
2153 }
2154 
2155 jlong G1CollectedHeap::millis_since_last_gc() {
2156   // See the notes in GenCollectedHeap::millis_since_last_gc()
2157   // for more information about the implementation.
2158   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2159     _g1_policy->collection_pause_end_millis();
2160   if (ret_val < 0) {
2161     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2162       ". returning zero instead.", ret_val);
2163     return 0;
2164   }
2165   return ret_val;
2166 }
2167 
2168 void G1CollectedHeap::deduplicate_string(oop str) {
2169   assert(java_lang_String::is_instance(str), "invariant");
2170 
2171   if (G1StringDedup::is_enabled()) {
2172     G1StringDedup::deduplicate(str);
2173   }
2174 }
2175 
2176 void G1CollectedHeap::prepare_for_verify() {
2177   _verifier->prepare_for_verify();
2178 }
2179 
2180 void G1CollectedHeap::verify(VerifyOption vo) {
2181   _verifier->verify(vo);
2182 }
2183 
2184 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2185   return true;
2186 }
2187 
2188 const char* const* G1CollectedHeap::concurrent_phases() const {
2189   return _cm_thread->concurrent_phases();
2190 }
2191 
2192 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2193   return _cm_thread->request_concurrent_phase(phase);
2194 }
2195 
2196 class PrintRegionClosure: public HeapRegionClosure {
2197   outputStream* _st;
2198 public:
2199   PrintRegionClosure(outputStream* st) : _st(st) {}
2200   bool do_heap_region(HeapRegion* r) {
2201     r->print_on(_st);
2202     return false;
2203   }
2204 };
2205 
2206 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2207                                        const HeapRegion* hr,
2208                                        const VerifyOption vo) const {
2209   switch (vo) {
2210   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2211   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2212   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2213   default:                            ShouldNotReachHere();
2214   }
2215   return false; // keep some compilers happy
2216 }
2217 
2218 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2219                                        const VerifyOption vo) const {
2220   switch (vo) {
2221   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2222   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2223   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2224   default:                            ShouldNotReachHere();
2225   }
2226   return false; // keep some compilers happy
2227 }
2228 
2229 void G1CollectedHeap::print_heap_regions() const {
2230   LogTarget(Trace, gc, heap, region) lt;
2231   if (lt.is_enabled()) {
2232     LogStream ls(lt);
2233     print_regions_on(&ls);
2234   }
2235 }
2236 
2237 void G1CollectedHeap::print_on(outputStream* st) const {
2238   st->print(" %-20s", "garbage-first heap");
2239   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2240             capacity()/K, used_unlocked()/K);
2241   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2242             p2i(_hrm.reserved().start()),
2243             p2i(_hrm.reserved().end()));
2244   st->cr();
2245   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2246   uint young_regions = young_regions_count();
2247   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2248             (size_t) young_regions * HeapRegion::GrainBytes / K);
2249   uint survivor_regions = survivor_regions_count();
2250   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2251             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2252   st->cr();
2253   MetaspaceUtils::print_on(st);
2254 }
2255 
2256 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2257   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2258                "HS=humongous(starts), HC=humongous(continues), "
2259                "CS=collection set, F=free, A=archive, "
2260                "TAMS=top-at-mark-start (previous, next)");
2261   PrintRegionClosure blk(st);
2262   heap_region_iterate(&blk);
2263 }
2264 
2265 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2266   print_on(st);
2267 
2268   // Print the per-region information.
2269   print_regions_on(st);
2270 }
2271 
2272 void G1CollectedHeap::print_on_error(outputStream* st) const {
2273   this->CollectedHeap::print_on_error(st);
2274 
2275   if (_cm != NULL) {
2276     st->cr();
2277     _cm->print_on_error(st);
2278   }
2279 }
2280 
2281 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2282   workers()->print_worker_threads_on(st);
2283   _cm_thread->print_on(st);
2284   st->cr();
2285   _cm->print_worker_threads_on(st);
2286   _cr->print_threads_on(st);
2287   _young_gen_sampling_thread->print_on(st);
2288   if (G1StringDedup::is_enabled()) {
2289     G1StringDedup::print_worker_threads_on(st);
2290   }
2291 }
2292 
2293 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2294   workers()->threads_do(tc);
2295   tc->do_thread(_cm_thread);
2296   _cm->threads_do(tc);
2297   _cr->threads_do(tc);
2298   tc->do_thread(_young_gen_sampling_thread);
2299   if (G1StringDedup::is_enabled()) {
2300     G1StringDedup::threads_do(tc);
2301   }
2302 }
2303 
2304 void G1CollectedHeap::print_tracing_info() const {
2305   g1_rem_set()->print_summary_info();
2306   concurrent_mark()->print_summary_info();
2307 }
2308 
2309 #ifndef PRODUCT
2310 // Helpful for debugging RSet issues.
2311 
2312 class PrintRSetsClosure : public HeapRegionClosure {
2313 private:
2314   const char* _msg;
2315   size_t _occupied_sum;
2316 
2317 public:
2318   bool do_heap_region(HeapRegion* r) {
2319     HeapRegionRemSet* hrrs = r->rem_set();
2320     size_t occupied = hrrs->occupied();
2321     _occupied_sum += occupied;
2322 
2323     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2324     if (occupied == 0) {
2325       tty->print_cr("  RSet is empty");
2326     } else {
2327       hrrs->print();
2328     }
2329     tty->print_cr("----------");
2330     return false;
2331   }
2332 
2333   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2334     tty->cr();
2335     tty->print_cr("========================================");
2336     tty->print_cr("%s", msg);
2337     tty->cr();
2338   }
2339 
2340   ~PrintRSetsClosure() {
2341     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2342     tty->print_cr("========================================");
2343     tty->cr();
2344   }
2345 };
2346 
2347 void G1CollectedHeap::print_cset_rsets() {
2348   PrintRSetsClosure cl("Printing CSet RSets");
2349   collection_set_iterate(&cl);
2350 }
2351 
2352 void G1CollectedHeap::print_all_rsets() {
2353   PrintRSetsClosure cl("Printing All RSets");;
2354   heap_region_iterate(&cl);
2355 }
2356 #endif // PRODUCT
2357 
2358 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2359 
2360   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2361   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2362   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2363 
2364   size_t eden_capacity_bytes =
2365     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2366 
2367   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2368   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2369                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2370 }
2371 
2372 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2373   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2374                        stats->unused(), stats->used(), stats->region_end_waste(),
2375                        stats->regions_filled(), stats->direct_allocated(),
2376                        stats->failure_used(), stats->failure_waste());
2377 }
2378 
2379 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2380   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2381   gc_tracer->report_gc_heap_summary(when, heap_summary);
2382 
2383   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2384   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2385 }
2386 
2387 G1CollectedHeap* G1CollectedHeap::heap() {
2388   CollectedHeap* heap = Universe::heap();
2389   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2390   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2391   return (G1CollectedHeap*)heap;
2392 }
2393 
2394 void G1CollectedHeap::gc_prologue(bool full) {
2395   // always_do_update_barrier = false;
2396   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2397 
2398   // This summary needs to be printed before incrementing total collections.
2399   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2400 
2401   // Update common counters.
2402   increment_total_collections(full /* full gc */);
2403   if (full) {
2404     increment_old_marking_cycles_started();
2405   }
2406 
2407   // Fill TLAB's and such
2408   double start = os::elapsedTime();
2409   accumulate_statistics_all_tlabs();
2410   ensure_parsability(true);
2411   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2412 }
2413 
2414 void G1CollectedHeap::gc_epilogue(bool full) {
2415   // Update common counters.
2416   if (full) {
2417     // Update the number of full collections that have been completed.
2418     increment_old_marking_cycles_completed(false /* concurrent */);
2419   }
2420 
2421   // We are at the end of the GC. Total collections has already been increased.
2422   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2423 
2424   // FIXME: what is this about?
2425   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2426   // is set.
2427 #if COMPILER2_OR_JVMCI
2428   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2429 #endif
2430   // always_do_update_barrier = true;
2431 
2432   double start = os::elapsedTime();
2433   resize_all_tlabs();
2434   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2435 
2436   MemoryService::track_memory_usage();
2437   // We have just completed a GC. Update the soft reference
2438   // policy with the new heap occupancy
2439   Universe::update_heap_info_at_gc();
2440 }
2441 
2442 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2443                                                uint gc_count_before,
2444                                                bool* succeeded,
2445                                                GCCause::Cause gc_cause) {
2446   assert_heap_not_locked_and_not_at_safepoint();
2447   VM_G1CollectForAllocation op(word_size,
2448                                gc_count_before,
2449                                gc_cause,
2450                                false, /* should_initiate_conc_mark */
2451                                g1_policy()->max_pause_time_ms());
2452   VMThread::execute(&op);
2453 
2454   HeapWord* result = op.result();
2455   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2456   assert(result == NULL || ret_succeeded,
2457          "the result should be NULL if the VM did not succeed");
2458   *succeeded = ret_succeeded;
2459 
2460   assert_heap_not_locked();
2461   return result;
2462 }
2463 
2464 void G1CollectedHeap::do_concurrent_mark() {
2465   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2466   if (!_cm_thread->in_progress()) {
2467     _cm_thread->set_started();
2468     CGC_lock->notify();
2469   }
2470 }
2471 
2472 size_t G1CollectedHeap::pending_card_num() {
2473   size_t extra_cards = 0;
2474   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2475     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2476     extra_cards += dcq.size();
2477   }
2478   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2479   size_t buffer_size = dcqs.buffer_size();
2480   size_t buffer_num = dcqs.completed_buffers_num();
2481 
2482   return buffer_size * buffer_num + extra_cards;
2483 }
2484 
2485 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2486   // We don't nominate objects with many remembered set entries, on
2487   // the assumption that such objects are likely still live.
2488   HeapRegionRemSet* rem_set = r->rem_set();
2489 
2490   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2491          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2492          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2493 }
2494 
2495 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2496  private:
2497   size_t _total_humongous;
2498   size_t _candidate_humongous;
2499 
2500   DirtyCardQueue _dcq;
2501 
2502   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2503     assert(region->is_starts_humongous(), "Must start a humongous object");
2504 
2505     oop obj = oop(region->bottom());
2506 
2507     // Dead objects cannot be eager reclaim candidates. Due to class
2508     // unloading it is unsafe to query their classes so we return early.
2509     if (g1h->is_obj_dead(obj, region)) {
2510       return false;
2511     }
2512 
2513     // If we do not have a complete remembered set for the region, then we can
2514     // not be sure that we have all references to it.
2515     if (!region->rem_set()->is_complete()) {
2516       return false;
2517     }
2518     // Candidate selection must satisfy the following constraints
2519     // while concurrent marking is in progress:
2520     //
2521     // * In order to maintain SATB invariants, an object must not be
2522     // reclaimed if it was allocated before the start of marking and
2523     // has not had its references scanned.  Such an object must have
2524     // its references (including type metadata) scanned to ensure no
2525     // live objects are missed by the marking process.  Objects
2526     // allocated after the start of concurrent marking don't need to
2527     // be scanned.
2528     //
2529     // * An object must not be reclaimed if it is on the concurrent
2530     // mark stack.  Objects allocated after the start of concurrent
2531     // marking are never pushed on the mark stack.
2532     //
2533     // Nominating only objects allocated after the start of concurrent
2534     // marking is sufficient to meet both constraints.  This may miss
2535     // some objects that satisfy the constraints, but the marking data
2536     // structures don't support efficiently performing the needed
2537     // additional tests or scrubbing of the mark stack.
2538     //
2539     // However, we presently only nominate is_typeArray() objects.
2540     // A humongous object containing references induces remembered
2541     // set entries on other regions.  In order to reclaim such an
2542     // object, those remembered sets would need to be cleaned up.
2543     //
2544     // We also treat is_typeArray() objects specially, allowing them
2545     // to be reclaimed even if allocated before the start of
2546     // concurrent mark.  For this we rely on mark stack insertion to
2547     // exclude is_typeArray() objects, preventing reclaiming an object
2548     // that is in the mark stack.  We also rely on the metadata for
2549     // such objects to be built-in and so ensured to be kept live.
2550     // Frequent allocation and drop of large binary blobs is an
2551     // important use case for eager reclaim, and this special handling
2552     // may reduce needed headroom.
2553 
2554     return obj->is_typeArray() &&
2555            g1h->is_potential_eager_reclaim_candidate(region);
2556   }
2557 
2558  public:
2559   RegisterHumongousWithInCSetFastTestClosure()
2560   : _total_humongous(0),
2561     _candidate_humongous(0),
2562     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2563   }
2564 
2565   virtual bool do_heap_region(HeapRegion* r) {
2566     if (!r->is_starts_humongous()) {
2567       return false;
2568     }
2569     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2570 
2571     bool is_candidate = humongous_region_is_candidate(g1h, r);
2572     uint rindex = r->hrm_index();
2573     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2574     if (is_candidate) {
2575       _candidate_humongous++;
2576       g1h->register_humongous_region_with_cset(rindex);
2577       // Is_candidate already filters out humongous object with large remembered sets.
2578       // If we have a humongous object with a few remembered sets, we simply flush these
2579       // remembered set entries into the DCQS. That will result in automatic
2580       // re-evaluation of their remembered set entries during the following evacuation
2581       // phase.
2582       if (!r->rem_set()->is_empty()) {
2583         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2584                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2585         G1CardTable* ct = g1h->card_table();
2586         HeapRegionRemSetIterator hrrs(r->rem_set());
2587         size_t card_index;
2588         while (hrrs.has_next(card_index)) {
2589           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2590           // The remembered set might contain references to already freed
2591           // regions. Filter out such entries to avoid failing card table
2592           // verification.
2593           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2594             if (*card_ptr != G1CardTable::dirty_card_val()) {
2595               *card_ptr = G1CardTable::dirty_card_val();
2596               _dcq.enqueue(card_ptr);
2597             }
2598           }
2599         }
2600         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2601                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2602                hrrs.n_yielded(), r->rem_set()->occupied());
2603         // We should only clear the card based remembered set here as we will not
2604         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2605         // (and probably never) we do not enter this path if there are other kind of
2606         // remembered sets for this region.
2607         r->rem_set()->clear_locked(true /* only_cardset */);
2608         // Clear_locked() above sets the state to Empty. However we want to continue
2609         // collecting remembered set entries for humongous regions that were not
2610         // reclaimed.
2611         r->rem_set()->set_state_complete();
2612       }
2613       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2614     }
2615     _total_humongous++;
2616 
2617     return false;
2618   }
2619 
2620   size_t total_humongous() const { return _total_humongous; }
2621   size_t candidate_humongous() const { return _candidate_humongous; }
2622 
2623   void flush_rem_set_entries() { _dcq.flush(); }
2624 };
2625 
2626 void G1CollectedHeap::register_humongous_regions_with_cset() {
2627   if (!G1EagerReclaimHumongousObjects) {
2628     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2629     return;
2630   }
2631   double time = os::elapsed_counter();
2632 
2633   // Collect reclaim candidate information and register candidates with cset.
2634   RegisterHumongousWithInCSetFastTestClosure cl;
2635   heap_region_iterate(&cl);
2636 
2637   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2638   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2639                                                                   cl.total_humongous(),
2640                                                                   cl.candidate_humongous());
2641   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2642 
2643   // Finally flush all remembered set entries to re-check into the global DCQS.
2644   cl.flush_rem_set_entries();
2645 }
2646 
2647 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2648   public:
2649     bool do_heap_region(HeapRegion* hr) {
2650       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2651         hr->verify_rem_set();
2652       }
2653       return false;
2654     }
2655 };
2656 
2657 uint G1CollectedHeap::num_task_queues() const {
2658   return _task_queues->size();
2659 }
2660 
2661 #if TASKQUEUE_STATS
2662 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2663   st->print_raw_cr("GC Task Stats");
2664   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2665   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2666 }
2667 
2668 void G1CollectedHeap::print_taskqueue_stats() const {
2669   if (!log_is_enabled(Trace, gc, task, stats)) {
2670     return;
2671   }
2672   Log(gc, task, stats) log;
2673   ResourceMark rm;
2674   LogStream ls(log.trace());
2675   outputStream* st = &ls;
2676 
2677   print_taskqueue_stats_hdr(st);
2678 
2679   TaskQueueStats totals;
2680   const uint n = num_task_queues();
2681   for (uint i = 0; i < n; ++i) {
2682     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2683     totals += task_queue(i)->stats;
2684   }
2685   st->print_raw("tot "); totals.print(st); st->cr();
2686 
2687   DEBUG_ONLY(totals.verify());
2688 }
2689 
2690 void G1CollectedHeap::reset_taskqueue_stats() {
2691   const uint n = num_task_queues();
2692   for (uint i = 0; i < n; ++i) {
2693     task_queue(i)->stats.reset();
2694   }
2695 }
2696 #endif // TASKQUEUE_STATS
2697 
2698 void G1CollectedHeap::wait_for_root_region_scanning() {
2699   double scan_wait_start = os::elapsedTime();
2700   // We have to wait until the CM threads finish scanning the
2701   // root regions as it's the only way to ensure that all the
2702   // objects on them have been correctly scanned before we start
2703   // moving them during the GC.
2704   bool waited = _cm->root_regions()->wait_until_scan_finished();
2705   double wait_time_ms = 0.0;
2706   if (waited) {
2707     double scan_wait_end = os::elapsedTime();
2708     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2709   }
2710   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2711 }
2712 
2713 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2714 private:
2715   G1HRPrinter* _hr_printer;
2716 public:
2717   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2718 
2719   virtual bool do_heap_region(HeapRegion* r) {
2720     _hr_printer->cset(r);
2721     return false;
2722   }
2723 };
2724 
2725 void G1CollectedHeap::start_new_collection_set() {
2726   collection_set()->start_incremental_building();
2727 
2728   clear_cset_fast_test();
2729 
2730   guarantee(_eden.length() == 0, "eden should have been cleared");
2731   g1_policy()->transfer_survivors_to_cset(survivor());
2732 }
2733 
2734 bool
2735 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2736   assert_at_safepoint_on_vm_thread();
2737   guarantee(!is_gc_active(), "collection is not reentrant");
2738 
2739   if (GCLocker::check_active_before_gc()) {
2740     return false;
2741   }
2742 
2743   _gc_timer_stw->register_gc_start();
2744 
2745   GCIdMark gc_id_mark;
2746   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2747 
2748   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2749   ResourceMark rm;
2750 
2751   g1_policy()->note_gc_start();
2752 
2753   wait_for_root_region_scanning();
2754 
2755   print_heap_before_gc();
2756   print_heap_regions();
2757   trace_heap_before_gc(_gc_tracer_stw);
2758 
2759   _verifier->verify_region_sets_optional();
2760   _verifier->verify_dirty_young_regions();
2761 
2762   // We should not be doing initial mark unless the conc mark thread is running
2763   if (!_cm_thread->should_terminate()) {
2764     // This call will decide whether this pause is an initial-mark
2765     // pause. If it is, in_initial_mark_gc() will return true
2766     // for the duration of this pause.
2767     g1_policy()->decide_on_conc_mark_initiation();
2768   }
2769 
2770   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2771   assert(!collector_state()->in_initial_mark_gc() ||
2772           collector_state()->in_young_only_phase(), "sanity");
2773 
2774   // We also do not allow mixed GCs during marking.
2775   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2776 
2777   // Record whether this pause is an initial mark. When the current
2778   // thread has completed its logging output and it's safe to signal
2779   // the CM thread, the flag's value in the policy has been reset.
2780   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2781 
2782   // Inner scope for scope based logging, timers, and stats collection
2783   {
2784     EvacuationInfo evacuation_info;
2785 
2786     if (collector_state()->in_initial_mark_gc()) {
2787       // We are about to start a marking cycle, so we increment the
2788       // full collection counter.
2789       increment_old_marking_cycles_started();
2790       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2791     }
2792 
2793     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2794 
2795     GCTraceCPUTime tcpu;
2796 
2797     G1HeapVerifier::G1VerifyType verify_type;
2798     FormatBuffer<> gc_string("Pause ");
2799     if (collector_state()->in_initial_mark_gc()) {
2800       gc_string.append("Initial Mark");
2801       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2802     } else if (collector_state()->in_young_only_phase()) {
2803       gc_string.append("Young");
2804       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2805     } else {
2806       gc_string.append("Mixed");
2807       verify_type = G1HeapVerifier::G1VerifyMixed;
2808     }
2809     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2810 
2811     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2812                                                                   workers()->active_workers(),
2813                                                                   Threads::number_of_non_daemon_threads());
2814     active_workers = workers()->update_active_workers(active_workers);
2815     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2816 
2817     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2818     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2819 
2820     G1HeapTransition heap_transition(this);
2821     size_t heap_used_bytes_before_gc = used();
2822 
2823     // Don't dynamically change the number of GC threads this early.  A value of
2824     // 0 is used to indicate serial work.  When parallel work is done,
2825     // it will be set.
2826 
2827     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2828       IsGCActiveMark x;
2829 
2830       gc_prologue(false);
2831 
2832       if (VerifyRememberedSets) {
2833         log_info(gc, verify)("[Verifying RemSets before GC]");
2834         VerifyRegionRemSetClosure v_cl;
2835         heap_region_iterate(&v_cl);
2836       }
2837 
2838       _verifier->verify_before_gc(verify_type);
2839 
2840       _verifier->check_bitmaps("GC Start");
2841 
2842 #if COMPILER2_OR_JVMCI
2843       DerivedPointerTable::clear();
2844 #endif
2845 
2846       // Please see comment in g1CollectedHeap.hpp and
2847       // G1CollectedHeap::ref_processing_init() to see how
2848       // reference processing currently works in G1.
2849 
2850       // Enable discovery in the STW reference processor
2851       _ref_processor_stw->enable_discovery();
2852 
2853       {
2854         // We want to temporarily turn off discovery by the
2855         // CM ref processor, if necessary, and turn it back on
2856         // on again later if we do. Using a scoped
2857         // NoRefDiscovery object will do this.
2858         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2859 
2860         // Forget the current alloc region (we might even choose it to be part
2861         // of the collection set!).
2862         _allocator->release_mutator_alloc_region();
2863 
2864         // This timing is only used by the ergonomics to handle our pause target.
2865         // It is unclear why this should not include the full pause. We will
2866         // investigate this in CR 7178365.
2867         //
2868         // Preserving the old comment here if that helps the investigation:
2869         //
2870         // The elapsed time induced by the start time below deliberately elides
2871         // the possible verification above.
2872         double sample_start_time_sec = os::elapsedTime();
2873 
2874         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2875 
2876         if (collector_state()->in_initial_mark_gc()) {
2877           concurrent_mark()->pre_initial_mark();
2878         }
2879 
2880         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2881 
2882         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2883 
2884         // Make sure the remembered sets are up to date. This needs to be
2885         // done before register_humongous_regions_with_cset(), because the
2886         // remembered sets are used there to choose eager reclaim candidates.
2887         // If the remembered sets are not up to date we might miss some
2888         // entries that need to be handled.
2889         g1_rem_set()->cleanupHRRS();
2890 
2891         register_humongous_regions_with_cset();
2892 
2893         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2894 
2895         // We call this after finalize_cset() to
2896         // ensure that the CSet has been finalized.
2897         _cm->verify_no_cset_oops();
2898 
2899         if (_hr_printer.is_active()) {
2900           G1PrintCollectionSetClosure cl(&_hr_printer);
2901           _collection_set.iterate(&cl);
2902         }
2903 
2904         // Initialize the GC alloc regions.
2905         _allocator->init_gc_alloc_regions(evacuation_info);
2906 
2907         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2908         pre_evacuate_collection_set();
2909 
2910         // Actually do the work...
2911         evacuate_collection_set(&per_thread_states);
2912 
2913         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2914 
2915         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2916         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2917 
2918         eagerly_reclaim_humongous_regions();
2919 
2920         record_obj_copy_mem_stats();
2921         _survivor_evac_stats.adjust_desired_plab_sz();
2922         _old_evac_stats.adjust_desired_plab_sz();
2923 
2924         double start = os::elapsedTime();
2925         start_new_collection_set();
2926         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2927 
2928         if (evacuation_failed()) {
2929           set_used(recalculate_used());
2930           if (_archive_allocator != NULL) {
2931             _archive_allocator->clear_used();
2932           }
2933           for (uint i = 0; i < ParallelGCThreads; i++) {
2934             if (_evacuation_failed_info_array[i].has_failed()) {
2935               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2936             }
2937           }
2938         } else {
2939           // The "used" of the the collection set have already been subtracted
2940           // when they were freed.  Add in the bytes evacuated.
2941           increase_used(g1_policy()->bytes_copied_during_gc());
2942         }
2943 
2944         if (collector_state()->in_initial_mark_gc()) {
2945           // We have to do this before we notify the CM threads that
2946           // they can start working to make sure that all the
2947           // appropriate initialization is done on the CM object.
2948           concurrent_mark()->post_initial_mark();
2949           // Note that we don't actually trigger the CM thread at
2950           // this point. We do that later when we're sure that
2951           // the current thread has completed its logging output.
2952         }
2953 
2954         allocate_dummy_regions();
2955 
2956         _allocator->init_mutator_alloc_region();
2957 
2958         {
2959           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2960           if (expand_bytes > 0) {
2961             size_t bytes_before = capacity();
2962             // No need for an ergo logging here,
2963             // expansion_amount() does this when it returns a value > 0.
2964             double expand_ms;
2965             if (!expand(expand_bytes, _workers, &expand_ms)) {
2966               // We failed to expand the heap. Cannot do anything about it.
2967             }
2968             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
2969           }
2970         }
2971 
2972         // We redo the verification but now wrt to the new CSet which
2973         // has just got initialized after the previous CSet was freed.
2974         _cm->verify_no_cset_oops();
2975 
2976         // This timing is only used by the ergonomics to handle our pause target.
2977         // It is unclear why this should not include the full pause. We will
2978         // investigate this in CR 7178365.
2979         double sample_end_time_sec = os::elapsedTime();
2980         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
2981         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
2982         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
2983 
2984         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
2985         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
2986 
2987         if (VerifyRememberedSets) {
2988           log_info(gc, verify)("[Verifying RemSets after GC]");
2989           VerifyRegionRemSetClosure v_cl;
2990           heap_region_iterate(&v_cl);
2991         }
2992 
2993         _verifier->verify_after_gc(verify_type);
2994         _verifier->check_bitmaps("GC End");
2995 
2996         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
2997         _ref_processor_stw->verify_no_references_recorded();
2998 
2999         // CM reference discovery will be re-enabled if necessary.
3000       }
3001 
3002 #ifdef TRACESPINNING
3003       ParallelTaskTerminator::print_termination_counts();
3004 #endif
3005 
3006       gc_epilogue(false);
3007     }
3008 
3009     // Print the remainder of the GC log output.
3010     if (evacuation_failed()) {
3011       log_info(gc)("To-space exhausted");
3012     }
3013 
3014     g1_policy()->print_phases();
3015     heap_transition.print();
3016 
3017     // It is not yet to safe to tell the concurrent mark to
3018     // start as we have some optional output below. We don't want the
3019     // output from the concurrent mark thread interfering with this
3020     // logging output either.
3021 
3022     _hrm.verify_optional();
3023     _verifier->verify_region_sets_optional();
3024 
3025     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3026     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3027 
3028     print_heap_after_gc();
3029     print_heap_regions();
3030     trace_heap_after_gc(_gc_tracer_stw);
3031 
3032     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3033     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3034     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3035     // before any GC notifications are raised.
3036     g1mm()->update_sizes();
3037 
3038     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3039     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3040     _gc_timer_stw->register_gc_end();
3041     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3042   }
3043   // It should now be safe to tell the concurrent mark thread to start
3044   // without its logging output interfering with the logging output
3045   // that came from the pause.
3046 
3047   if (should_start_conc_mark) {
3048     // CAUTION: after the doConcurrentMark() call below,
3049     // the concurrent marking thread(s) could be running
3050     // concurrently with us. Make sure that anything after
3051     // this point does not assume that we are the only GC thread
3052     // running. Note: of course, the actual marking work will
3053     // not start until the safepoint itself is released in
3054     // SuspendibleThreadSet::desynchronize().
3055     do_concurrent_mark();
3056   }
3057 
3058   return true;
3059 }
3060 
3061 void G1CollectedHeap::remove_self_forwarding_pointers() {
3062   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3063   workers()->run_task(&rsfp_task);
3064 }
3065 
3066 void G1CollectedHeap::restore_after_evac_failure() {
3067   double remove_self_forwards_start = os::elapsedTime();
3068 
3069   remove_self_forwarding_pointers();
3070   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3071   _preserved_marks_set.restore(&task_executor);
3072 
3073   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3074 }
3075 
3076 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3077   if (!_evacuation_failed) {
3078     _evacuation_failed = true;
3079   }
3080 
3081   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3082   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3083 }
3084 
3085 bool G1ParEvacuateFollowersClosure::offer_termination() {
3086   G1ParScanThreadState* const pss = par_scan_state();
3087   start_term_time();
3088   const bool res = terminator()->offer_termination();
3089   end_term_time();
3090   return res;
3091 }
3092 
3093 void G1ParEvacuateFollowersClosure::do_void() {
3094   G1ParScanThreadState* const pss = par_scan_state();
3095   pss->trim_queue();
3096   do {
3097     pss->steal_and_trim_queue(queues());
3098   } while (!offer_termination());
3099 }
3100 
3101 class G1ParTask : public AbstractGangTask {
3102 protected:
3103   G1CollectedHeap*         _g1h;
3104   G1ParScanThreadStateSet* _pss;
3105   RefToScanQueueSet*       _queues;
3106   G1RootProcessor*         _root_processor;
3107   ParallelTaskTerminator   _terminator;
3108   uint                     _n_workers;
3109 
3110 public:
3111   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3112     : AbstractGangTask("G1 collection"),
3113       _g1h(g1h),
3114       _pss(per_thread_states),
3115       _queues(task_queues),
3116       _root_processor(root_processor),
3117       _terminator(n_workers, _queues),
3118       _n_workers(n_workers)
3119   {}
3120 
3121   void work(uint worker_id) {
3122     if (worker_id >= _n_workers) return;  // no work needed this round
3123 
3124     double start_sec = os::elapsedTime();
3125     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3126 
3127     {
3128       ResourceMark rm;
3129       HandleMark   hm;
3130 
3131       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3132 
3133       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3134       pss->set_ref_discoverer(rp);
3135 
3136       double start_strong_roots_sec = os::elapsedTime();
3137 
3138       _root_processor->evacuate_roots(pss, worker_id);
3139 
3140       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3141       // treating the nmethods visited to act as roots for concurrent marking.
3142       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3143       // objects copied by the current evacuation.
3144       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3145 
3146       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3147 
3148       double term_sec = 0.0;
3149       size_t evac_term_attempts = 0;
3150       {
3151         double start = os::elapsedTime();
3152         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3153         evac.do_void();
3154 
3155         evac_term_attempts = evac.term_attempts();
3156         term_sec = evac.term_time();
3157         double elapsed_sec = os::elapsedTime() - start;
3158 
3159         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3160         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3161         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3162         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3163       }
3164 
3165       assert(pss->queue_is_empty(), "should be empty");
3166 
3167       if (log_is_enabled(Debug, gc, task, stats)) {
3168         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3169         size_t lab_waste;
3170         size_t lab_undo_waste;
3171         pss->waste(lab_waste, lab_undo_waste);
3172         _g1h->print_termination_stats(worker_id,
3173                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3174                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3175                                       term_sec * 1000.0,                          /* evac term time */
3176                                       evac_term_attempts,                         /* evac term attempts */
3177                                       lab_waste,                                  /* alloc buffer waste */
3178                                       lab_undo_waste                              /* undo waste */
3179                                       );
3180       }
3181 
3182       // Close the inner scope so that the ResourceMark and HandleMark
3183       // destructors are executed here and are included as part of the
3184       // "GC Worker Time".
3185     }
3186     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3187   }
3188 };
3189 
3190 void G1CollectedHeap::print_termination_stats_hdr() {
3191   log_debug(gc, task, stats)("GC Termination Stats");
3192   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3193   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3194   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3195 }
3196 
3197 void G1CollectedHeap::print_termination_stats(uint worker_id,
3198                                               double elapsed_ms,
3199                                               double strong_roots_ms,
3200                                               double term_ms,
3201                                               size_t term_attempts,
3202                                               size_t alloc_buffer_waste,
3203                                               size_t undo_waste) const {
3204   log_debug(gc, task, stats)
3205               ("%3d %9.2f %9.2f %6.2f "
3206                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3207                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3208                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3209                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3210                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3211                alloc_buffer_waste * HeapWordSize / K,
3212                undo_waste * HeapWordSize / K);
3213 }
3214 
3215 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3216 private:
3217   BoolObjectClosure* _is_alive;
3218   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3219   OopStorage::ParState<false /* concurrent */, false /* const */> _par_state_string;
3220 
3221   int _initial_string_table_size;
3222   int _initial_symbol_table_size;
3223 
3224   bool  _process_strings;
3225   int _strings_processed;
3226   int _strings_removed;
3227 
3228   bool  _process_symbols;
3229   int _symbols_processed;
3230   int _symbols_removed;
3231 
3232   bool _process_string_dedup;
3233 
3234 public:
3235   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3236     AbstractGangTask("String/Symbol Unlinking"),
3237     _is_alive(is_alive),
3238     _dedup_closure(is_alive, NULL, false),
3239     _par_state_string(StringTable::weak_storage()),
3240     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3241     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3242     _process_string_dedup(process_string_dedup) {
3243 
3244     _initial_string_table_size = (int) StringTable::the_table()->table_size();
3245     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3246     if (process_symbols) {
3247       SymbolTable::clear_parallel_claimed_index();
3248     }
3249   }
3250 
3251   ~G1StringAndSymbolCleaningTask() {
3252     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3253               "claim value %d after unlink less than initial symbol table size %d",
3254               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3255 
3256     log_info(gc, stringtable)(
3257         "Cleaned string and symbol table, "
3258         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3259         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3260         strings_processed(), strings_removed(),
3261         symbols_processed(), symbols_removed());
3262   }
3263 
3264   void work(uint worker_id) {
3265     int strings_processed = 0;
3266     int strings_removed = 0;
3267     int symbols_processed = 0;
3268     int symbols_removed = 0;
3269     if (_process_strings) {
3270       StringTable::possibly_parallel_unlink(&_par_state_string, _is_alive, &strings_processed, &strings_removed);
3271       Atomic::add(strings_processed, &_strings_processed);
3272       Atomic::add(strings_removed, &_strings_removed);
3273     }
3274     if (_process_symbols) {
3275       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3276       Atomic::add(symbols_processed, &_symbols_processed);
3277       Atomic::add(symbols_removed, &_symbols_removed);
3278     }
3279     if (_process_string_dedup) {
3280       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3281     }
3282   }
3283 
3284   size_t strings_processed() const { return (size_t)_strings_processed; }
3285   size_t strings_removed()   const { return (size_t)_strings_removed; }
3286 
3287   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3288   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3289 };
3290 
3291 class G1CodeCacheUnloadingTask {
3292 private:
3293   static Monitor* _lock;
3294 
3295   BoolObjectClosure* const _is_alive;
3296   const bool               _unloading_occurred;
3297   const uint               _num_workers;
3298 
3299   // Variables used to claim nmethods.
3300   CompiledMethod* _first_nmethod;
3301   CompiledMethod* volatile _claimed_nmethod;
3302 
3303   // The list of nmethods that need to be processed by the second pass.
3304   CompiledMethod* volatile _postponed_list;
3305   volatile uint            _num_entered_barrier;
3306 
3307  public:
3308   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3309       _is_alive(is_alive),
3310       _unloading_occurred(unloading_occurred),
3311       _num_workers(num_workers),
3312       _first_nmethod(NULL),
3313       _claimed_nmethod(NULL),
3314       _postponed_list(NULL),
3315       _num_entered_barrier(0)
3316   {
3317     CompiledMethod::increase_unloading_clock();
3318     // Get first alive nmethod
3319     CompiledMethodIterator iter = CompiledMethodIterator();
3320     if(iter.next_alive()) {
3321       _first_nmethod = iter.method();
3322     }
3323     _claimed_nmethod = _first_nmethod;
3324   }
3325 
3326   ~G1CodeCacheUnloadingTask() {
3327     CodeCache::verify_clean_inline_caches();
3328 
3329     CodeCache::set_needs_cache_clean(false);
3330     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3331 
3332     CodeCache::verify_icholder_relocations();
3333   }
3334 
3335  private:
3336   void add_to_postponed_list(CompiledMethod* nm) {
3337       CompiledMethod* old;
3338       do {
3339         old = _postponed_list;
3340         nm->set_unloading_next(old);
3341       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3342   }
3343 
3344   void clean_nmethod(CompiledMethod* nm) {
3345     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3346 
3347     if (postponed) {
3348       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3349       add_to_postponed_list(nm);
3350     }
3351 
3352     // Mark that this thread has been cleaned/unloaded.
3353     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3354     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3355   }
3356 
3357   void clean_nmethod_postponed(CompiledMethod* nm) {
3358     nm->do_unloading_parallel_postponed();
3359   }
3360 
3361   static const int MaxClaimNmethods = 16;
3362 
3363   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3364     CompiledMethod* first;
3365     CompiledMethodIterator last;
3366 
3367     do {
3368       *num_claimed_nmethods = 0;
3369 
3370       first = _claimed_nmethod;
3371       last = CompiledMethodIterator(first);
3372 
3373       if (first != NULL) {
3374 
3375         for (int i = 0; i < MaxClaimNmethods; i++) {
3376           if (!last.next_alive()) {
3377             break;
3378           }
3379           claimed_nmethods[i] = last.method();
3380           (*num_claimed_nmethods)++;
3381         }
3382       }
3383 
3384     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3385   }
3386 
3387   CompiledMethod* claim_postponed_nmethod() {
3388     CompiledMethod* claim;
3389     CompiledMethod* next;
3390 
3391     do {
3392       claim = _postponed_list;
3393       if (claim == NULL) {
3394         return NULL;
3395       }
3396 
3397       next = claim->unloading_next();
3398 
3399     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3400 
3401     return claim;
3402   }
3403 
3404  public:
3405   // Mark that we're done with the first pass of nmethod cleaning.
3406   void barrier_mark(uint worker_id) {
3407     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3408     _num_entered_barrier++;
3409     if (_num_entered_barrier == _num_workers) {
3410       ml.notify_all();
3411     }
3412   }
3413 
3414   // See if we have to wait for the other workers to
3415   // finish their first-pass nmethod cleaning work.
3416   void barrier_wait(uint worker_id) {
3417     if (_num_entered_barrier < _num_workers) {
3418       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3419       while (_num_entered_barrier < _num_workers) {
3420           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3421       }
3422     }
3423   }
3424 
3425   // Cleaning and unloading of nmethods. Some work has to be postponed
3426   // to the second pass, when we know which nmethods survive.
3427   void work_first_pass(uint worker_id) {
3428     // The first nmethods is claimed by the first worker.
3429     if (worker_id == 0 && _first_nmethod != NULL) {
3430       clean_nmethod(_first_nmethod);
3431       _first_nmethod = NULL;
3432     }
3433 
3434     int num_claimed_nmethods;
3435     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3436 
3437     while (true) {
3438       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3439 
3440       if (num_claimed_nmethods == 0) {
3441         break;
3442       }
3443 
3444       for (int i = 0; i < num_claimed_nmethods; i++) {
3445         clean_nmethod(claimed_nmethods[i]);
3446       }
3447     }
3448   }
3449 
3450   void work_second_pass(uint worker_id) {
3451     CompiledMethod* nm;
3452     // Take care of postponed nmethods.
3453     while ((nm = claim_postponed_nmethod()) != NULL) {
3454       clean_nmethod_postponed(nm);
3455     }
3456   }
3457 };
3458 
3459 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3460 
3461 class G1KlassCleaningTask : public StackObj {
3462   volatile int                            _clean_klass_tree_claimed;
3463   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3464 
3465  public:
3466   G1KlassCleaningTask() :
3467       _clean_klass_tree_claimed(0),
3468       _klass_iterator() {
3469   }
3470 
3471  private:
3472   bool claim_clean_klass_tree_task() {
3473     if (_clean_klass_tree_claimed) {
3474       return false;
3475     }
3476 
3477     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3478   }
3479 
3480   InstanceKlass* claim_next_klass() {
3481     Klass* klass;
3482     do {
3483       klass =_klass_iterator.next_klass();
3484     } while (klass != NULL && !klass->is_instance_klass());
3485 
3486     // this can be null so don't call InstanceKlass::cast
3487     return static_cast<InstanceKlass*>(klass);
3488   }
3489 
3490 public:
3491 
3492   void clean_klass(InstanceKlass* ik) {
3493     ik->clean_weak_instanceklass_links();
3494   }
3495 
3496   void work() {
3497     ResourceMark rm;
3498 
3499     // One worker will clean the subklass/sibling klass tree.
3500     if (claim_clean_klass_tree_task()) {
3501       Klass::clean_subklass_tree();
3502     }
3503 
3504     // All workers will help cleaning the classes,
3505     InstanceKlass* klass;
3506     while ((klass = claim_next_klass()) != NULL) {
3507       clean_klass(klass);
3508     }
3509   }
3510 };
3511 
3512 class G1ResolvedMethodCleaningTask : public StackObj {
3513   volatile int       _resolved_method_task_claimed;
3514 public:
3515   G1ResolvedMethodCleaningTask() :
3516       _resolved_method_task_claimed(0) {}
3517 
3518   bool claim_resolved_method_task() {
3519     if (_resolved_method_task_claimed) {
3520       return false;
3521     }
3522     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3523   }
3524 
3525   // These aren't big, one thread can do it all.
3526   void work() {
3527     if (claim_resolved_method_task()) {
3528       ResolvedMethodTable::unlink();
3529     }
3530   }
3531 };
3532 
3533 
3534 // To minimize the remark pause times, the tasks below are done in parallel.
3535 class G1ParallelCleaningTask : public AbstractGangTask {
3536 private:
3537   bool                          _unloading_occurred;
3538   G1StringAndSymbolCleaningTask _string_symbol_task;
3539   G1CodeCacheUnloadingTask      _code_cache_task;
3540   G1KlassCleaningTask           _klass_cleaning_task;
3541   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3542 
3543 public:
3544   // The constructor is run in the VMThread.
3545   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3546       AbstractGangTask("Parallel Cleaning"),
3547       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3548       _code_cache_task(num_workers, is_alive, unloading_occurred),
3549       _klass_cleaning_task(),
3550       _unloading_occurred(unloading_occurred),
3551       _resolved_method_cleaning_task() {
3552   }
3553 
3554   // The parallel work done by all worker threads.
3555   void work(uint worker_id) {
3556     // Do first pass of code cache cleaning.
3557     _code_cache_task.work_first_pass(worker_id);
3558 
3559     // Let the threads mark that the first pass is done.
3560     _code_cache_task.barrier_mark(worker_id);
3561 
3562     // Clean the Strings and Symbols.
3563     _string_symbol_task.work(worker_id);
3564 
3565     // Clean unreferenced things in the ResolvedMethodTable
3566     _resolved_method_cleaning_task.work();
3567 
3568     // Wait for all workers to finish the first code cache cleaning pass.
3569     _code_cache_task.barrier_wait(worker_id);
3570 
3571     // Do the second code cache cleaning work, which realize on
3572     // the liveness information gathered during the first pass.
3573     _code_cache_task.work_second_pass(worker_id);
3574 
3575     // Clean all klasses that were not unloaded.
3576     // The weak metadata in klass doesn't need to be
3577     // processed if there was no unloading.
3578     if (_unloading_occurred) {
3579       _klass_cleaning_task.work();
3580     }
3581   }
3582 };
3583 
3584 
3585 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3586                                         bool class_unloading_occurred) {
3587   uint n_workers = workers()->active_workers();
3588 
3589   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3590   workers()->run_task(&g1_unlink_task);
3591 }
3592 
3593 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3594                                        bool process_strings,
3595                                        bool process_symbols,
3596                                        bool process_string_dedup) {
3597   if (!process_strings && !process_symbols && !process_string_dedup) {
3598     // Nothing to clean.
3599     return;
3600   }
3601 
3602   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3603   workers()->run_task(&g1_unlink_task);
3604 
3605 }
3606 
3607 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3608  private:
3609   DirtyCardQueueSet* _queue;
3610   G1CollectedHeap* _g1h;
3611  public:
3612   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3613     _queue(queue), _g1h(g1h) { }
3614 
3615   virtual void work(uint worker_id) {
3616     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3617     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3618 
3619     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3620     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3621 
3622     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3623   }
3624 };
3625 
3626 void G1CollectedHeap::redirty_logged_cards() {
3627   double redirty_logged_cards_start = os::elapsedTime();
3628 
3629   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3630   dirty_card_queue_set().reset_for_par_iteration();
3631   workers()->run_task(&redirty_task);
3632 
3633   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3634   dcq.merge_bufferlists(&dirty_card_queue_set());
3635   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3636 
3637   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3638 }
3639 
3640 // Weak Reference Processing support
3641 
3642 bool G1STWIsAliveClosure::do_object_b(oop p) {
3643   // An object is reachable if it is outside the collection set,
3644   // or is inside and copied.
3645   return !_g1h->is_in_cset(p) || p->is_forwarded();
3646 }
3647 
3648 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3649   assert(obj != NULL, "must not be NULL");
3650   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3651   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3652   // may falsely indicate that this is not the case here: however the collection set only
3653   // contains old regions when concurrent mark is not running.
3654   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3655 }
3656 
3657 // Non Copying Keep Alive closure
3658 class G1KeepAliveClosure: public OopClosure {
3659   G1CollectedHeap*_g1h;
3660 public:
3661   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3662   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3663   void do_oop(oop* p) {
3664     oop obj = *p;
3665     assert(obj != NULL, "the caller should have filtered out NULL values");
3666 
3667     const InCSetState cset_state =_g1h->in_cset_state(obj);
3668     if (!cset_state.is_in_cset_or_humongous()) {
3669       return;
3670     }
3671     if (cset_state.is_in_cset()) {
3672       assert( obj->is_forwarded(), "invariant" );
3673       *p = obj->forwardee();
3674     } else {
3675       assert(!obj->is_forwarded(), "invariant" );
3676       assert(cset_state.is_humongous(),
3677              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3678      _g1h->set_humongous_is_live(obj);
3679     }
3680   }
3681 };
3682 
3683 // Copying Keep Alive closure - can be called from both
3684 // serial and parallel code as long as different worker
3685 // threads utilize different G1ParScanThreadState instances
3686 // and different queues.
3687 
3688 class G1CopyingKeepAliveClosure: public OopClosure {
3689   G1CollectedHeap*         _g1h;
3690   OopClosure*              _copy_non_heap_obj_cl;
3691   G1ParScanThreadState*    _par_scan_state;
3692 
3693 public:
3694   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3695                             OopClosure* non_heap_obj_cl,
3696                             G1ParScanThreadState* pss):
3697     _g1h(g1h),
3698     _copy_non_heap_obj_cl(non_heap_obj_cl),
3699     _par_scan_state(pss)
3700   {}
3701 
3702   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3703   virtual void do_oop(      oop* p) { do_oop_work(p); }
3704 
3705   template <class T> void do_oop_work(T* p) {
3706     oop obj = RawAccess<>::oop_load(p);
3707 
3708     if (_g1h->is_in_cset_or_humongous(obj)) {
3709       // If the referent object has been forwarded (either copied
3710       // to a new location or to itself in the event of an
3711       // evacuation failure) then we need to update the reference
3712       // field and, if both reference and referent are in the G1
3713       // heap, update the RSet for the referent.
3714       //
3715       // If the referent has not been forwarded then we have to keep
3716       // it alive by policy. Therefore we have copy the referent.
3717       //
3718       // If the reference field is in the G1 heap then we can push
3719       // on the PSS queue. When the queue is drained (after each
3720       // phase of reference processing) the object and it's followers
3721       // will be copied, the reference field set to point to the
3722       // new location, and the RSet updated. Otherwise we need to
3723       // use the the non-heap or metadata closures directly to copy
3724       // the referent object and update the pointer, while avoiding
3725       // updating the RSet.
3726 
3727       if (_g1h->is_in_g1_reserved(p)) {
3728         _par_scan_state->push_on_queue(p);
3729       } else {
3730         assert(!Metaspace::contains((const void*)p),
3731                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3732         _copy_non_heap_obj_cl->do_oop(p);
3733       }
3734     }
3735   }
3736 };
3737 
3738 // Serial drain queue closure. Called as the 'complete_gc'
3739 // closure for each discovered list in some of the
3740 // reference processing phases.
3741 
3742 class G1STWDrainQueueClosure: public VoidClosure {
3743 protected:
3744   G1CollectedHeap* _g1h;
3745   G1ParScanThreadState* _par_scan_state;
3746 
3747   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3748 
3749 public:
3750   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3751     _g1h(g1h),
3752     _par_scan_state(pss)
3753   { }
3754 
3755   void do_void() {
3756     G1ParScanThreadState* const pss = par_scan_state();
3757     pss->trim_queue();
3758   }
3759 };
3760 
3761 // Parallel Reference Processing closures
3762 
3763 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3764 // processing during G1 evacuation pauses.
3765 
3766 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3767 private:
3768   G1CollectedHeap*          _g1h;
3769   G1ParScanThreadStateSet*  _pss;
3770   RefToScanQueueSet*        _queues;
3771   WorkGang*                 _workers;
3772   uint                      _active_workers;
3773 
3774 public:
3775   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3776                            G1ParScanThreadStateSet* per_thread_states,
3777                            WorkGang* workers,
3778                            RefToScanQueueSet *task_queues,
3779                            uint n_workers) :
3780     _g1h(g1h),
3781     _pss(per_thread_states),
3782     _queues(task_queues),
3783     _workers(workers),
3784     _active_workers(n_workers)
3785   {
3786     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3787   }
3788 
3789   // Executes the given task using concurrent marking worker threads.
3790   virtual void execute(ProcessTask& task);
3791 };
3792 
3793 // Gang task for possibly parallel reference processing
3794 
3795 class G1STWRefProcTaskProxy: public AbstractGangTask {
3796   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3797   ProcessTask&     _proc_task;
3798   G1CollectedHeap* _g1h;
3799   G1ParScanThreadStateSet* _pss;
3800   RefToScanQueueSet* _task_queues;
3801   ParallelTaskTerminator* _terminator;
3802 
3803 public:
3804   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3805                         G1CollectedHeap* g1h,
3806                         G1ParScanThreadStateSet* per_thread_states,
3807                         RefToScanQueueSet *task_queues,
3808                         ParallelTaskTerminator* terminator) :
3809     AbstractGangTask("Process reference objects in parallel"),
3810     _proc_task(proc_task),
3811     _g1h(g1h),
3812     _pss(per_thread_states),
3813     _task_queues(task_queues),
3814     _terminator(terminator)
3815   {}
3816 
3817   virtual void work(uint worker_id) {
3818     // The reference processing task executed by a single worker.
3819     ResourceMark rm;
3820     HandleMark   hm;
3821 
3822     G1STWIsAliveClosure is_alive(_g1h);
3823 
3824     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3825     pss->set_ref_discoverer(NULL);
3826 
3827     // Keep alive closure.
3828     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3829 
3830     // Complete GC closure
3831     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3832 
3833     // Call the reference processing task's work routine.
3834     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3835 
3836     // Note we cannot assert that the refs array is empty here as not all
3837     // of the processing tasks (specifically phase2 - pp2_work) execute
3838     // the complete_gc closure (which ordinarily would drain the queue) so
3839     // the queue may not be empty.
3840   }
3841 };
3842 
3843 // Driver routine for parallel reference processing.
3844 // Creates an instance of the ref processing gang
3845 // task and has the worker threads execute it.
3846 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3847   assert(_workers != NULL, "Need parallel worker threads.");
3848 
3849   ParallelTaskTerminator terminator(_active_workers, _queues);
3850   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3851 
3852   _workers->run_task(&proc_task_proxy);
3853 }
3854 
3855 // End of weak reference support closures
3856 
3857 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3858   double ref_proc_start = os::elapsedTime();
3859 
3860   ReferenceProcessor* rp = _ref_processor_stw;
3861   assert(rp->discovery_enabled(), "should have been enabled");
3862 
3863   // Closure to test whether a referent is alive.
3864   G1STWIsAliveClosure is_alive(this);
3865 
3866   // Even when parallel reference processing is enabled, the processing
3867   // of JNI refs is serial and performed serially by the current thread
3868   // rather than by a worker. The following PSS will be used for processing
3869   // JNI refs.
3870 
3871   // Use only a single queue for this PSS.
3872   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3873   pss->set_ref_discoverer(NULL);
3874   assert(pss->queue_is_empty(), "pre-condition");
3875 
3876   // Keep alive closure.
3877   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
3878 
3879   // Serial Complete GC closure
3880   G1STWDrainQueueClosure drain_queue(this, pss);
3881 
3882   // Setup the soft refs policy...
3883   rp->setup_policy(false);
3884 
3885   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3886 
3887   ReferenceProcessorStats stats;
3888   if (!rp->processing_is_mt()) {
3889     // Serial reference processing...
3890     stats = rp->process_discovered_references(&is_alive,
3891                                               &keep_alive,
3892                                               &drain_queue,
3893                                               NULL,
3894                                               pt);
3895   } else {
3896     uint no_of_gc_workers = workers()->active_workers();
3897 
3898     // Parallel reference processing
3899     assert(no_of_gc_workers <= rp->max_num_queues(),
3900            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3901            no_of_gc_workers,  rp->max_num_queues());
3902 
3903     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
3904     stats = rp->process_discovered_references(&is_alive,
3905                                               &keep_alive,
3906                                               &drain_queue,
3907                                               &par_task_executor,
3908                                               pt);
3909   }
3910 
3911   _gc_tracer_stw->report_gc_reference_stats(stats);
3912 
3913   // We have completed copying any necessary live referent objects.
3914   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3915 
3916   make_pending_list_reachable();
3917 
3918   rp->verify_no_references_recorded();
3919 
3920   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3921   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3922 }
3923 
3924 void G1CollectedHeap::make_pending_list_reachable() {
3925   if (collector_state()->in_initial_mark_gc()) {
3926     oop pll_head = Universe::reference_pending_list();
3927     if (pll_head != NULL) {
3928       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3929       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3930     }
3931   }
3932 }
3933 
3934 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3935   double merge_pss_time_start = os::elapsedTime();
3936   per_thread_states->flush();
3937   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3938 }
3939 
3940 void G1CollectedHeap::pre_evacuate_collection_set() {
3941   _expand_heap_after_alloc_failure = true;
3942   _evacuation_failed = false;
3943 
3944   // Disable the hot card cache.
3945   _hot_card_cache->reset_hot_cache_claimed_index();
3946   _hot_card_cache->set_use_cache(false);
3947 
3948   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3949   _preserved_marks_set.assert_empty();
3950 
3951   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3952 
3953   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3954   if (collector_state()->in_initial_mark_gc()) {
3955     double start_clear_claimed_marks = os::elapsedTime();
3956 
3957     ClassLoaderDataGraph::clear_claimed_marks();
3958 
3959     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3960     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3961   }
3962 }
3963 
3964 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3965   // Should G1EvacuationFailureALot be in effect for this GC?
3966   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3967 
3968   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3969 
3970   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3971 
3972   double start_par_time_sec = os::elapsedTime();
3973   double end_par_time_sec;
3974 
3975   {
3976     const uint n_workers = workers()->active_workers();
3977     G1RootProcessor root_processor(this, n_workers);
3978     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
3979 
3980     print_termination_stats_hdr();
3981 
3982     workers()->run_task(&g1_par_task);
3983     end_par_time_sec = os::elapsedTime();
3984 
3985     // Closing the inner scope will execute the destructor
3986     // for the G1RootProcessor object. We record the current
3987     // elapsed time before closing the scope so that time
3988     // taken for the destructor is NOT included in the
3989     // reported parallel time.
3990   }
3991 
3992   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
3993   phase_times->record_par_time(par_time_ms);
3994 
3995   double code_root_fixup_time_ms =
3996         (os::elapsedTime() - end_par_time_sec) * 1000.0;
3997   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
3998 }
3999 
4000 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4001   // Also cleans the card table from temporary duplicate detection information used
4002   // during UpdateRS/ScanRS.
4003   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4004 
4005   // Process any discovered reference objects - we have
4006   // to do this _before_ we retire the GC alloc regions
4007   // as we may have to copy some 'reachable' referent
4008   // objects (and their reachable sub-graphs) that were
4009   // not copied during the pause.
4010   process_discovered_references(per_thread_states);
4011 
4012   // FIXME
4013   // CM's reference processing also cleans up the string and symbol tables.
4014   // Should we do that here also? We could, but it is a serial operation
4015   // and could significantly increase the pause time.
4016 
4017   G1STWIsAliveClosure is_alive(this);
4018   G1KeepAliveClosure keep_alive(this);
4019 
4020   {
4021     double start = os::elapsedTime();
4022 
4023     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4024 
4025     double time_ms = (os::elapsedTime() - start) * 1000.0;
4026     g1_policy()->phase_times()->record_weak_ref_proc_time(time_ms);
4027   }
4028 
4029   if (G1StringDedup::is_enabled()) {
4030     double fixup_start = os::elapsedTime();
4031 
4032     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4033 
4034     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4035     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4036   }
4037 
4038   if (evacuation_failed()) {
4039     restore_after_evac_failure();
4040 
4041     // Reset the G1EvacuationFailureALot counters and flags
4042     // Note: the values are reset only when an actual
4043     // evacuation failure occurs.
4044     NOT_PRODUCT(reset_evacuation_should_fail();)
4045   }
4046 
4047   _preserved_marks_set.assert_empty();
4048 
4049   _allocator->release_gc_alloc_regions(evacuation_info);
4050 
4051   merge_per_thread_state_info(per_thread_states);
4052 
4053   // Reset and re-enable the hot card cache.
4054   // Note the counts for the cards in the regions in the
4055   // collection set are reset when the collection set is freed.
4056   _hot_card_cache->reset_hot_cache();
4057   _hot_card_cache->set_use_cache(true);
4058 
4059   purge_code_root_memory();
4060 
4061   redirty_logged_cards();
4062 #if COMPILER2_OR_JVMCI
4063   double start = os::elapsedTime();
4064   DerivedPointerTable::update_pointers();
4065   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4066 #endif
4067   g1_policy()->print_age_table();
4068 }
4069 
4070 void G1CollectedHeap::record_obj_copy_mem_stats() {
4071   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4072 
4073   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4074                                                create_g1_evac_summary(&_old_evac_stats));
4075 }
4076 
4077 void G1CollectedHeap::free_region(HeapRegion* hr,
4078                                   FreeRegionList* free_list,
4079                                   bool skip_remset,
4080                                   bool skip_hot_card_cache,
4081                                   bool locked) {
4082   assert(!hr->is_free(), "the region should not be free");
4083   assert(!hr->is_empty(), "the region should not be empty");
4084   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4085   assert(free_list != NULL, "pre-condition");
4086 
4087   if (G1VerifyBitmaps) {
4088     MemRegion mr(hr->bottom(), hr->end());
4089     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4090   }
4091 
4092   // Clear the card counts for this region.
4093   // Note: we only need to do this if the region is not young
4094   // (since we don't refine cards in young regions).
4095   if (!skip_hot_card_cache && !hr->is_young()) {
4096     _hot_card_cache->reset_card_counts(hr);
4097   }
4098   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4099   _g1_policy->remset_tracker()->update_at_free(hr);
4100   free_list->add_ordered(hr);
4101 }
4102 
4103 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4104                                             FreeRegionList* free_list) {
4105   assert(hr->is_humongous(), "this is only for humongous regions");
4106   assert(free_list != NULL, "pre-condition");
4107   hr->clear_humongous();
4108   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4109 }
4110 
4111 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4112                                            const uint humongous_regions_removed) {
4113   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4114     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4115     _old_set.bulk_remove(old_regions_removed);
4116     _humongous_set.bulk_remove(humongous_regions_removed);
4117   }
4118 
4119 }
4120 
4121 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4122   assert(list != NULL, "list can't be null");
4123   if (!list->is_empty()) {
4124     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4125     _hrm.insert_list_into_free_list(list);
4126   }
4127 }
4128 
4129 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4130   decrease_used(bytes);
4131 }
4132 
4133 class G1FreeCollectionSetTask : public AbstractGangTask {
4134 private:
4135 
4136   // Closure applied to all regions in the collection set to do work that needs to
4137   // be done serially in a single thread.
4138   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4139   private:
4140     EvacuationInfo* _evacuation_info;
4141     const size_t* _surviving_young_words;
4142 
4143     // Bytes used in successfully evacuated regions before the evacuation.
4144     size_t _before_used_bytes;
4145     // Bytes used in unsucessfully evacuated regions before the evacuation
4146     size_t _after_used_bytes;
4147 
4148     size_t _bytes_allocated_in_old_since_last_gc;
4149 
4150     size_t _failure_used_words;
4151     size_t _failure_waste_words;
4152 
4153     FreeRegionList _local_free_list;
4154   public:
4155     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4156       HeapRegionClosure(),
4157       _evacuation_info(evacuation_info),
4158       _surviving_young_words(surviving_young_words),
4159       _before_used_bytes(0),
4160       _after_used_bytes(0),
4161       _bytes_allocated_in_old_since_last_gc(0),
4162       _failure_used_words(0),
4163       _failure_waste_words(0),
4164       _local_free_list("Local Region List for CSet Freeing") {
4165     }
4166 
4167     virtual bool do_heap_region(HeapRegion* r) {
4168       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4169 
4170       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4171       g1h->clear_in_cset(r);
4172 
4173       if (r->is_young()) {
4174         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4175                "Young index %d is wrong for region %u of type %s with %u young regions",
4176                r->young_index_in_cset(),
4177                r->hrm_index(),
4178                r->get_type_str(),
4179                g1h->collection_set()->young_region_length());
4180         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4181         r->record_surv_words_in_group(words_survived);
4182       }
4183 
4184       if (!r->evacuation_failed()) {
4185         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4186         _before_used_bytes += r->used();
4187         g1h->free_region(r,
4188                          &_local_free_list,
4189                          true, /* skip_remset */
4190                          true, /* skip_hot_card_cache */
4191                          true  /* locked */);
4192       } else {
4193         r->uninstall_surv_rate_group();
4194         r->set_young_index_in_cset(-1);
4195         r->set_evacuation_failed(false);
4196         // When moving a young gen region to old gen, we "allocate" that whole region
4197         // there. This is in addition to any already evacuated objects. Notify the
4198         // policy about that.
4199         // Old gen regions do not cause an additional allocation: both the objects
4200         // still in the region and the ones already moved are accounted for elsewhere.
4201         if (r->is_young()) {
4202           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4203         }
4204         // The region is now considered to be old.
4205         r->set_old();
4206         // Do some allocation statistics accounting. Regions that failed evacuation
4207         // are always made old, so there is no need to update anything in the young
4208         // gen statistics, but we need to update old gen statistics.
4209         size_t used_words = r->marked_bytes() / HeapWordSize;
4210 
4211         _failure_used_words += used_words;
4212         _failure_waste_words += HeapRegion::GrainWords - used_words;
4213 
4214         g1h->old_set_add(r);
4215         _after_used_bytes += r->used();
4216       }
4217       return false;
4218     }
4219 
4220     void complete_work() {
4221       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4222 
4223       _evacuation_info->set_regions_freed(_local_free_list.length());
4224       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4225 
4226       g1h->prepend_to_freelist(&_local_free_list);
4227       g1h->decrement_summary_bytes(_before_used_bytes);
4228 
4229       G1Policy* policy = g1h->g1_policy();
4230       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4231 
4232       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4233     }
4234   };
4235 
4236   G1CollectionSet* _collection_set;
4237   G1SerialFreeCollectionSetClosure _cl;
4238   const size_t* _surviving_young_words;
4239 
4240   size_t _rs_lengths;
4241 
4242   volatile jint _serial_work_claim;
4243 
4244   struct WorkItem {
4245     uint region_idx;
4246     bool is_young;
4247     bool evacuation_failed;
4248 
4249     WorkItem(HeapRegion* r) {
4250       region_idx = r->hrm_index();
4251       is_young = r->is_young();
4252       evacuation_failed = r->evacuation_failed();
4253     }
4254   };
4255 
4256   volatile size_t _parallel_work_claim;
4257   size_t _num_work_items;
4258   WorkItem* _work_items;
4259 
4260   void do_serial_work() {
4261     // Need to grab the lock to be allowed to modify the old region list.
4262     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4263     _collection_set->iterate(&_cl);
4264   }
4265 
4266   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4267     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4268 
4269     HeapRegion* r = g1h->region_at(region_idx);
4270     assert(!g1h->is_on_master_free_list(r), "sanity");
4271 
4272     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4273 
4274     if (!is_young) {
4275       g1h->_hot_card_cache->reset_card_counts(r);
4276     }
4277 
4278     if (!evacuation_failed) {
4279       r->rem_set()->clear_locked();
4280     }
4281   }
4282 
4283   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4284   private:
4285     size_t _cur_idx;
4286     WorkItem* _work_items;
4287   public:
4288     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4289 
4290     virtual bool do_heap_region(HeapRegion* r) {
4291       _work_items[_cur_idx++] = WorkItem(r);
4292       return false;
4293     }
4294   };
4295 
4296   void prepare_work() {
4297     G1PrepareFreeCollectionSetClosure cl(_work_items);
4298     _collection_set->iterate(&cl);
4299   }
4300 
4301   void complete_work() {
4302     _cl.complete_work();
4303 
4304     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4305     policy->record_max_rs_lengths(_rs_lengths);
4306     policy->cset_regions_freed();
4307   }
4308 public:
4309   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4310     AbstractGangTask("G1 Free Collection Set"),
4311     _cl(evacuation_info, surviving_young_words),
4312     _collection_set(collection_set),
4313     _surviving_young_words(surviving_young_words),
4314     _serial_work_claim(0),
4315     _rs_lengths(0),
4316     _parallel_work_claim(0),
4317     _num_work_items(collection_set->region_length()),
4318     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4319     prepare_work();
4320   }
4321 
4322   ~G1FreeCollectionSetTask() {
4323     complete_work();
4324     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4325   }
4326 
4327   // Chunk size for work distribution. The chosen value has been determined experimentally
4328   // to be a good tradeoff between overhead and achievable parallelism.
4329   static uint chunk_size() { return 32; }
4330 
4331   virtual void work(uint worker_id) {
4332     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4333 
4334     // Claim serial work.
4335     if (_serial_work_claim == 0) {
4336       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4337       if (value == 0) {
4338         double serial_time = os::elapsedTime();
4339         do_serial_work();
4340         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4341       }
4342     }
4343 
4344     // Start parallel work.
4345     double young_time = 0.0;
4346     bool has_young_time = false;
4347     double non_young_time = 0.0;
4348     bool has_non_young_time = false;
4349 
4350     while (true) {
4351       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4352       size_t cur = end - chunk_size();
4353 
4354       if (cur >= _num_work_items) {
4355         break;
4356       }
4357 
4358       double start_time = os::elapsedTime();
4359 
4360       end = MIN2(end, _num_work_items);
4361 
4362       for (; cur < end; cur++) {
4363         bool is_young = _work_items[cur].is_young;
4364 
4365         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4366 
4367         double end_time = os::elapsedTime();
4368         double time_taken = end_time - start_time;
4369         if (is_young) {
4370           young_time += time_taken;
4371           has_young_time = true;
4372         } else {
4373           non_young_time += time_taken;
4374           has_non_young_time = true;
4375         }
4376         start_time = end_time;
4377       }
4378     }
4379 
4380     if (has_young_time) {
4381       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4382     }
4383     if (has_non_young_time) {
4384       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4385     }
4386   }
4387 };
4388 
4389 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4390   _eden.clear();
4391 
4392   double free_cset_start_time = os::elapsedTime();
4393 
4394   {
4395     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4396     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4397 
4398     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4399 
4400     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4401                         cl.name(),
4402                         num_workers,
4403                         _collection_set.region_length());
4404     workers()->run_task(&cl, num_workers);
4405   }
4406   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4407 
4408   collection_set->clear();
4409 }
4410 
4411 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4412  private:
4413   FreeRegionList* _free_region_list;
4414   HeapRegionSet* _proxy_set;
4415   uint _humongous_objects_reclaimed;
4416   uint _humongous_regions_reclaimed;
4417   size_t _freed_bytes;
4418  public:
4419 
4420   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4421     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4422   }
4423 
4424   virtual bool do_heap_region(HeapRegion* r) {
4425     if (!r->is_starts_humongous()) {
4426       return false;
4427     }
4428 
4429     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4430 
4431     oop obj = (oop)r->bottom();
4432     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4433 
4434     // The following checks whether the humongous object is live are sufficient.
4435     // The main additional check (in addition to having a reference from the roots
4436     // or the young gen) is whether the humongous object has a remembered set entry.
4437     //
4438     // A humongous object cannot be live if there is no remembered set for it
4439     // because:
4440     // - there can be no references from within humongous starts regions referencing
4441     // the object because we never allocate other objects into them.
4442     // (I.e. there are no intra-region references that may be missed by the
4443     // remembered set)
4444     // - as soon there is a remembered set entry to the humongous starts region
4445     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4446     // until the end of a concurrent mark.
4447     //
4448     // It is not required to check whether the object has been found dead by marking
4449     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4450     // all objects allocated during that time are considered live.
4451     // SATB marking is even more conservative than the remembered set.
4452     // So if at this point in the collection there is no remembered set entry,
4453     // nobody has a reference to it.
4454     // At the start of collection we flush all refinement logs, and remembered sets
4455     // are completely up-to-date wrt to references to the humongous object.
4456     //
4457     // Other implementation considerations:
4458     // - never consider object arrays at this time because they would pose
4459     // considerable effort for cleaning up the the remembered sets. This is
4460     // required because stale remembered sets might reference locations that
4461     // are currently allocated into.
4462     uint region_idx = r->hrm_index();
4463     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4464         !r->rem_set()->is_empty()) {
4465       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4466                                region_idx,
4467                                (size_t)obj->size() * HeapWordSize,
4468                                p2i(r->bottom()),
4469                                r->rem_set()->occupied(),
4470                                r->rem_set()->strong_code_roots_list_length(),
4471                                next_bitmap->is_marked(r->bottom()),
4472                                g1h->is_humongous_reclaim_candidate(region_idx),
4473                                obj->is_typeArray()
4474                               );
4475       return false;
4476     }
4477 
4478     guarantee(obj->is_typeArray(),
4479               "Only eagerly reclaiming type arrays is supported, but the object "
4480               PTR_FORMAT " is not.", p2i(r->bottom()));
4481 
4482     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4483                              region_idx,
4484                              (size_t)obj->size() * HeapWordSize,
4485                              p2i(r->bottom()),
4486                              r->rem_set()->occupied(),
4487                              r->rem_set()->strong_code_roots_list_length(),
4488                              next_bitmap->is_marked(r->bottom()),
4489                              g1h->is_humongous_reclaim_candidate(region_idx),
4490                              obj->is_typeArray()
4491                             );
4492 
4493     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4494     cm->humongous_object_eagerly_reclaimed(r);
4495     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4496            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4497            region_idx,
4498            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4499            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4500     _humongous_objects_reclaimed++;
4501     do {
4502       HeapRegion* next = g1h->next_region_in_humongous(r);
4503       _freed_bytes += r->used();
4504       r->set_containing_set(NULL);
4505       _humongous_regions_reclaimed++;
4506       g1h->free_humongous_region(r, _free_region_list);
4507       r = next;
4508     } while (r != NULL);
4509 
4510     return false;
4511   }
4512 
4513   uint humongous_objects_reclaimed() {
4514     return _humongous_objects_reclaimed;
4515   }
4516 
4517   uint humongous_regions_reclaimed() {
4518     return _humongous_regions_reclaimed;
4519   }
4520 
4521   size_t bytes_freed() const {
4522     return _freed_bytes;
4523   }
4524 };
4525 
4526 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4527   assert_at_safepoint_on_vm_thread();
4528 
4529   if (!G1EagerReclaimHumongousObjects ||
4530       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4531     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4532     return;
4533   }
4534 
4535   double start_time = os::elapsedTime();
4536 
4537   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4538 
4539   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4540   heap_region_iterate(&cl);
4541 
4542   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4543 
4544   G1HRPrinter* hrp = hr_printer();
4545   if (hrp->is_active()) {
4546     FreeRegionListIterator iter(&local_cleanup_list);
4547     while (iter.more_available()) {
4548       HeapRegion* hr = iter.get_next();
4549       hrp->cleanup(hr);
4550     }
4551   }
4552 
4553   prepend_to_freelist(&local_cleanup_list);
4554   decrement_summary_bytes(cl.bytes_freed());
4555 
4556   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4557                                                                     cl.humongous_objects_reclaimed());
4558 }
4559 
4560 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4561 public:
4562   virtual bool do_heap_region(HeapRegion* r) {
4563     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4564     G1CollectedHeap::heap()->clear_in_cset(r);
4565     r->set_young_index_in_cset(-1);
4566     return false;
4567   }
4568 };
4569 
4570 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4571   G1AbandonCollectionSetClosure cl;
4572   collection_set->iterate(&cl);
4573 
4574   collection_set->clear();
4575   collection_set->stop_incremental_building();
4576 }
4577 
4578 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4579   return _allocator->is_retained_old_region(hr);
4580 }
4581 
4582 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4583   _eden.add(hr);
4584   _g1_policy->set_region_eden(hr);
4585 }
4586 
4587 #ifdef ASSERT
4588 
4589 class NoYoungRegionsClosure: public HeapRegionClosure {
4590 private:
4591   bool _success;
4592 public:
4593   NoYoungRegionsClosure() : _success(true) { }
4594   bool do_heap_region(HeapRegion* r) {
4595     if (r->is_young()) {
4596       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4597                             p2i(r->bottom()), p2i(r->end()));
4598       _success = false;
4599     }
4600     return false;
4601   }
4602   bool success() { return _success; }
4603 };
4604 
4605 bool G1CollectedHeap::check_young_list_empty() {
4606   bool ret = (young_regions_count() == 0);
4607 
4608   NoYoungRegionsClosure closure;
4609   heap_region_iterate(&closure);
4610   ret = ret && closure.success();
4611 
4612   return ret;
4613 }
4614 
4615 #endif // ASSERT
4616 
4617 class TearDownRegionSetsClosure : public HeapRegionClosure {
4618 private:
4619   HeapRegionSet *_old_set;
4620 
4621 public:
4622   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4623 
4624   bool do_heap_region(HeapRegion* r) {
4625     if (r->is_old()) {
4626       _old_set->remove(r);
4627     } else if(r->is_young()) {
4628       r->uninstall_surv_rate_group();
4629     } else {
4630       // We ignore free regions, we'll empty the free list afterwards.
4631       // We ignore humongous regions, we're not tearing down the
4632       // humongous regions set.
4633       assert(r->is_free() || r->is_humongous(),
4634              "it cannot be another type");
4635     }
4636     return false;
4637   }
4638 
4639   ~TearDownRegionSetsClosure() {
4640     assert(_old_set->is_empty(), "post-condition");
4641   }
4642 };
4643 
4644 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4645   assert_at_safepoint_on_vm_thread();
4646 
4647   if (!free_list_only) {
4648     TearDownRegionSetsClosure cl(&_old_set);
4649     heap_region_iterate(&cl);
4650 
4651     // Note that emptying the _young_list is postponed and instead done as
4652     // the first step when rebuilding the regions sets again. The reason for
4653     // this is that during a full GC string deduplication needs to know if
4654     // a collected region was young or old when the full GC was initiated.
4655   }
4656   _hrm.remove_all_free_regions();
4657 }
4658 
4659 void G1CollectedHeap::increase_used(size_t bytes) {
4660   _summary_bytes_used += bytes;
4661 }
4662 
4663 void G1CollectedHeap::decrease_used(size_t bytes) {
4664   assert(_summary_bytes_used >= bytes,
4665          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4666          _summary_bytes_used, bytes);
4667   _summary_bytes_used -= bytes;
4668 }
4669 
4670 void G1CollectedHeap::set_used(size_t bytes) {
4671   _summary_bytes_used = bytes;
4672 }
4673 
4674 class RebuildRegionSetsClosure : public HeapRegionClosure {
4675 private:
4676   bool            _free_list_only;
4677   HeapRegionSet*   _old_set;
4678   HeapRegionManager*   _hrm;
4679   size_t          _total_used;
4680 
4681 public:
4682   RebuildRegionSetsClosure(bool free_list_only,
4683                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4684     _free_list_only(free_list_only),
4685     _old_set(old_set), _hrm(hrm), _total_used(0) {
4686     assert(_hrm->num_free_regions() == 0, "pre-condition");
4687     if (!free_list_only) {
4688       assert(_old_set->is_empty(), "pre-condition");
4689     }
4690   }
4691 
4692   bool do_heap_region(HeapRegion* r) {
4693     // After full GC, no region should have a remembered set.
4694     r->rem_set()->clear(true);
4695     if (r->is_empty()) {
4696       // Add free regions to the free list
4697       r->set_free();
4698       _hrm->insert_into_free_list(r);
4699     } else if (!_free_list_only) {
4700 
4701       if (r->is_humongous()) {
4702         // We ignore humongous regions. We left the humongous set unchanged.
4703       } else {
4704         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4705         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4706         r->move_to_old();
4707         _old_set->add(r);
4708       }
4709       _total_used += r->used();
4710     }
4711 
4712     return false;
4713   }
4714 
4715   size_t total_used() {
4716     return _total_used;
4717   }
4718 };
4719 
4720 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4721   assert_at_safepoint_on_vm_thread();
4722 
4723   if (!free_list_only) {
4724     _eden.clear();
4725     _survivor.clear();
4726   }
4727 
4728   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4729   heap_region_iterate(&cl);
4730 
4731   if (!free_list_only) {
4732     set_used(cl.total_used());
4733     if (_archive_allocator != NULL) {
4734       _archive_allocator->clear_used();
4735     }
4736   }
4737   assert(used_unlocked() == recalculate_used(),
4738          "inconsistent used_unlocked(), "
4739          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4740          used_unlocked(), recalculate_used());
4741 }
4742 
4743 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4744   HeapRegion* hr = heap_region_containing(p);
4745   return hr->is_in(p);
4746 }
4747 
4748 // Methods for the mutator alloc region
4749 
4750 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4751                                                       bool force) {
4752   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4753   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4754   if (force || should_allocate) {
4755     HeapRegion* new_alloc_region = new_region(word_size,
4756                                               false /* is_old */,
4757                                               false /* do_expand */);
4758     if (new_alloc_region != NULL) {
4759       set_region_short_lived_locked(new_alloc_region);
4760       _hr_printer.alloc(new_alloc_region, !should_allocate);
4761       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4762       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4763       return new_alloc_region;
4764     }
4765   }
4766   return NULL;
4767 }
4768 
4769 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4770                                                   size_t allocated_bytes) {
4771   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4772   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4773 
4774   collection_set()->add_eden_region(alloc_region);
4775   increase_used(allocated_bytes);
4776   _hr_printer.retire(alloc_region);
4777   // We update the eden sizes here, when the region is retired,
4778   // instead of when it's allocated, since this is the point that its
4779   // used space has been recored in _summary_bytes_used.
4780   g1mm()->update_eden_size();
4781 }
4782 
4783 // Methods for the GC alloc regions
4784 
4785 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4786   if (dest.is_old()) {
4787     return true;
4788   } else {
4789     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4790   }
4791 }
4792 
4793 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4794   assert(FreeList_lock->owned_by_self(), "pre-condition");
4795 
4796   if (!has_more_regions(dest)) {
4797     return NULL;
4798   }
4799 
4800   const bool is_survivor = dest.is_young();
4801 
4802   HeapRegion* new_alloc_region = new_region(word_size,
4803                                             !is_survivor,
4804                                             true /* do_expand */);
4805   if (new_alloc_region != NULL) {
4806     if (is_survivor) {
4807       new_alloc_region->set_survivor();
4808       _survivor.add(new_alloc_region);
4809       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4810     } else {
4811       new_alloc_region->set_old();
4812       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4813     }
4814     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4815     _hr_printer.alloc(new_alloc_region);
4816     bool during_im = collector_state()->in_initial_mark_gc();
4817     new_alloc_region->note_start_of_copying(during_im);
4818     return new_alloc_region;
4819   }
4820   return NULL;
4821 }
4822 
4823 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4824                                              size_t allocated_bytes,
4825                                              InCSetState dest) {
4826   bool during_im = collector_state()->in_initial_mark_gc();
4827   alloc_region->note_end_of_copying(during_im);
4828   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4829   if (dest.is_old()) {
4830     _old_set.add(alloc_region);
4831   }
4832   _hr_printer.retire(alloc_region);
4833 }
4834 
4835 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4836   bool expanded = false;
4837   uint index = _hrm.find_highest_free(&expanded);
4838 
4839   if (index != G1_NO_HRM_INDEX) {
4840     if (expanded) {
4841       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4842                                 HeapRegion::GrainWords * HeapWordSize);
4843     }
4844     _hrm.allocate_free_regions_starting_at(index, 1);
4845     return region_at(index);
4846   }
4847   return NULL;
4848 }
4849 
4850 // Optimized nmethod scanning
4851 
4852 class RegisterNMethodOopClosure: public OopClosure {
4853   G1CollectedHeap* _g1h;
4854   nmethod* _nm;
4855 
4856   template <class T> void do_oop_work(T* p) {
4857     T heap_oop = RawAccess<>::oop_load(p);
4858     if (!CompressedOops::is_null(heap_oop)) {
4859       oop obj = CompressedOops::decode_not_null(heap_oop);
4860       HeapRegion* hr = _g1h->heap_region_containing(obj);
4861       assert(!hr->is_continues_humongous(),
4862              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4863              " starting at " HR_FORMAT,
4864              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4865 
4866       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4867       hr->add_strong_code_root_locked(_nm);
4868     }
4869   }
4870 
4871 public:
4872   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4873     _g1h(g1h), _nm(nm) {}
4874 
4875   void do_oop(oop* p)       { do_oop_work(p); }
4876   void do_oop(narrowOop* p) { do_oop_work(p); }
4877 };
4878 
4879 class UnregisterNMethodOopClosure: public OopClosure {
4880   G1CollectedHeap* _g1h;
4881   nmethod* _nm;
4882 
4883   template <class T> void do_oop_work(T* p) {
4884     T heap_oop = RawAccess<>::oop_load(p);
4885     if (!CompressedOops::is_null(heap_oop)) {
4886       oop obj = CompressedOops::decode_not_null(heap_oop);
4887       HeapRegion* hr = _g1h->heap_region_containing(obj);
4888       assert(!hr->is_continues_humongous(),
4889              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4890              " starting at " HR_FORMAT,
4891              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4892 
4893       hr->remove_strong_code_root(_nm);
4894     }
4895   }
4896 
4897 public:
4898   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4899     _g1h(g1h), _nm(nm) {}
4900 
4901   void do_oop(oop* p)       { do_oop_work(p); }
4902   void do_oop(narrowOop* p) { do_oop_work(p); }
4903 };
4904 
4905 // Returns true if the reference points to an object that
4906 // can move in an incremental collection.
4907 bool G1CollectedHeap::is_scavengable(oop obj) {
4908   HeapRegion* hr = heap_region_containing(obj);
4909   return !hr->is_pinned();
4910 }
4911 
4912 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4913   guarantee(nm != NULL, "sanity");
4914   RegisterNMethodOopClosure reg_cl(this, nm);
4915   nm->oops_do(&reg_cl);
4916 }
4917 
4918 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4919   guarantee(nm != NULL, "sanity");
4920   UnregisterNMethodOopClosure reg_cl(this, nm);
4921   nm->oops_do(&reg_cl, true);
4922 }
4923 
4924 void G1CollectedHeap::purge_code_root_memory() {
4925   double purge_start = os::elapsedTime();
4926   G1CodeRootSet::purge();
4927   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4928   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4929 }
4930 
4931 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4932   G1CollectedHeap* _g1h;
4933 
4934 public:
4935   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4936     _g1h(g1h) {}
4937 
4938   void do_code_blob(CodeBlob* cb) {
4939     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4940     if (nm == NULL) {
4941       return;
4942     }
4943 
4944     if (ScavengeRootsInCode) {
4945       _g1h->register_nmethod(nm);
4946     }
4947   }
4948 };
4949 
4950 void G1CollectedHeap::rebuild_strong_code_roots() {
4951   RebuildStrongCodeRootClosure blob_cl(this);
4952   CodeCache::blobs_do(&blob_cl);
4953 }
4954 
4955 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4956   GrowableArray<GCMemoryManager*> memory_managers(2);
4957   memory_managers.append(&_memory_manager);
4958   memory_managers.append(&_full_gc_memory_manager);
4959   return memory_managers;
4960 }
4961 
4962 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4963   GrowableArray<MemoryPool*> memory_pools(3);
4964   memory_pools.append(_eden_pool);
4965   memory_pools.append(_survivor_pool);
4966   memory_pools.append(_old_pool);
4967   return memory_pools;
4968 }