1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "code/codeBlob.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/codeHeapState.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/dependencies.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/nmethod.hpp"
  35 #include "code/pcDesc.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "jfr/jfrEvents.hpp"
  38 #include "logging/log.hpp"
  39 #include "logging/logStream.hpp"
  40 #include "memory/allocation.inline.hpp"
  41 #include "memory/iterator.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "oops/method.inline.hpp"
  44 #include "oops/objArrayOop.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/verifyOopClosure.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/compilationPolicy.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/icache.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/safepointVerifiers.hpp"
  55 #include "runtime/sweeper.hpp"
  56 #include "runtime/vmThread.hpp"
  57 #include "services/memoryService.hpp"
  58 #include "utilities/align.hpp"
  59 #include "utilities/vmError.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef COMPILER1
  62 #include "c1/c1_Compilation.hpp"
  63 #include "c1/c1_Compiler.hpp"
  64 #endif
  65 #ifdef COMPILER2
  66 #include "opto/c2compiler.hpp"
  67 #include "opto/compile.hpp"
  68 #include "opto/node.hpp"
  69 #endif
  70 
  71 // Helper class for printing in CodeCache
  72 class CodeBlob_sizes {
  73  private:
  74   int count;
  75   int total_size;
  76   int header_size;
  77   int code_size;
  78   int stub_size;
  79   int relocation_size;
  80   int scopes_oop_size;
  81   int scopes_metadata_size;
  82   int scopes_data_size;
  83   int scopes_pcs_size;
  84 
  85  public:
  86   CodeBlob_sizes() {
  87     count            = 0;
  88     total_size       = 0;
  89     header_size      = 0;
  90     code_size        = 0;
  91     stub_size        = 0;
  92     relocation_size  = 0;
  93     scopes_oop_size  = 0;
  94     scopes_metadata_size  = 0;
  95     scopes_data_size = 0;
  96     scopes_pcs_size  = 0;
  97   }
  98 
  99   int total()                                    { return total_size; }
 100   bool is_empty()                                { return count == 0; }
 101 
 102   void print(const char* title) {
 103     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
 104                   count,
 105                   title,
 106                   (int)(total() / K),
 107                   header_size             * 100 / total_size,
 108                   relocation_size         * 100 / total_size,
 109                   code_size               * 100 / total_size,
 110                   stub_size               * 100 / total_size,
 111                   scopes_oop_size         * 100 / total_size,
 112                   scopes_metadata_size    * 100 / total_size,
 113                   scopes_data_size        * 100 / total_size,
 114                   scopes_pcs_size         * 100 / total_size);
 115   }
 116 
 117   void add(CodeBlob* cb) {
 118     count++;
 119     total_size       += cb->size();
 120     header_size      += cb->header_size();
 121     relocation_size  += cb->relocation_size();
 122     if (cb->is_nmethod()) {
 123       nmethod* nm = cb->as_nmethod_or_null();
 124       code_size        += nm->insts_size();
 125       stub_size        += nm->stub_size();
 126 
 127       scopes_oop_size  += nm->oops_size();
 128       scopes_metadata_size  += nm->metadata_size();
 129       scopes_data_size += nm->scopes_data_size();
 130       scopes_pcs_size  += nm->scopes_pcs_size();
 131     } else {
 132       code_size        += cb->code_size();
 133     }
 134   }
 135 };
 136 
 137 // Iterate over all CodeHeaps
 138 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 139 #define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
 140 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
 141 
 142 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 143 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 144 
 145 address CodeCache::_low_bound = 0;
 146 address CodeCache::_high_bound = 0;
 147 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 148 ExceptionCache* volatile CodeCache::_exception_cache_purge_list = NULL;
 149 
 150 // Initialize arrays of CodeHeap subsets
 151 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 152 GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 153 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 154 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 155 
 156 void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
 157   size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
 158   // Prepare error message
 159   const char* error = "Invalid code heap sizes";
 160   err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
 161                   " + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
 162           non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
 163 
 164   if (total_size > cache_size) {
 165     // Some code heap sizes were explicitly set: total_size must be <= cache_size
 166     message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 167     vm_exit_during_initialization(error, message);
 168   } else if (all_set && total_size != cache_size) {
 169     // All code heap sizes were explicitly set: total_size must equal cache_size
 170     message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 171     vm_exit_during_initialization(error, message);
 172   }
 173 }
 174 
 175 void CodeCache::initialize_heaps() {
 176   bool non_nmethod_set      = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
 177   bool profiled_set         = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
 178   bool non_profiled_set     = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
 179   size_t min_size           = os::vm_page_size();
 180   size_t cache_size         = ReservedCodeCacheSize;
 181   size_t non_nmethod_size   = NonNMethodCodeHeapSize;
 182   size_t profiled_size      = ProfiledCodeHeapSize;
 183   size_t non_profiled_size  = NonProfiledCodeHeapSize;
 184   // Check if total size set via command line flags exceeds the reserved size
 185   check_heap_sizes((non_nmethod_set  ? non_nmethod_size  : min_size),
 186                    (profiled_set     ? profiled_size     : min_size),
 187                    (non_profiled_set ? non_profiled_size : min_size),
 188                    cache_size,
 189                    non_nmethod_set && profiled_set && non_profiled_set);
 190 
 191   // Determine size of compiler buffers
 192   size_t code_buffers_size = 0;
 193 #ifdef COMPILER1
 194   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 195   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 196   code_buffers_size += c1_count * Compiler::code_buffer_size();
 197 #endif
 198 #ifdef COMPILER2
 199   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 200   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 201   // Initial size of constant table (this may be increased if a compiled method needs more space)
 202   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 203 #endif
 204 
 205   // Increase default non_nmethod_size to account for compiler buffers
 206   if (!non_nmethod_set) {
 207     non_nmethod_size += code_buffers_size;
 208   }
 209   // Calculate default CodeHeap sizes if not set by user
 210   if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
 211     // Check if we have enough space for the non-nmethod code heap
 212     if (cache_size > non_nmethod_size) {
 213       // Use the default value for non_nmethod_size and one half of the
 214       // remaining size for non-profiled and one half for profiled methods
 215       size_t remaining_size = cache_size - non_nmethod_size;
 216       profiled_size = remaining_size / 2;
 217       non_profiled_size = remaining_size - profiled_size;
 218     } else {
 219       // Use all space for the non-nmethod heap and set other heaps to minimal size
 220       non_nmethod_size = cache_size - 2 * min_size;
 221       profiled_size = min_size;
 222       non_profiled_size = min_size;
 223     }
 224   } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
 225     // The user explicitly set some code heap sizes. Increase or decrease the (default)
 226     // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
 227     // code heap sizes and then only change non-nmethod code heap size if still necessary.
 228     intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
 229     if (non_profiled_set) {
 230       if (!profiled_set) {
 231         // Adapt size of profiled code heap
 232         if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
 233           // Not enough space available, set to minimum size
 234           diff_size += profiled_size - min_size;
 235           profiled_size = min_size;
 236         } else {
 237           profiled_size += diff_size;
 238           diff_size = 0;
 239         }
 240       }
 241     } else if (profiled_set) {
 242       // Adapt size of non-profiled code heap
 243       if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
 244         // Not enough space available, set to minimum size
 245         diff_size += non_profiled_size - min_size;
 246         non_profiled_size = min_size;
 247       } else {
 248         non_profiled_size += diff_size;
 249         diff_size = 0;
 250       }
 251     } else if (non_nmethod_set) {
 252       // Distribute remaining size between profiled and non-profiled code heaps
 253       diff_size = cache_size - non_nmethod_size;
 254       profiled_size = diff_size / 2;
 255       non_profiled_size = diff_size - profiled_size;
 256       diff_size = 0;
 257     }
 258     if (diff_size != 0) {
 259       // Use non-nmethod code heap for remaining space requirements
 260       assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
 261       non_nmethod_size += diff_size;
 262     }
 263   }
 264 
 265   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 266   if (!heap_available(CodeBlobType::MethodProfiled)) {
 267     non_profiled_size += profiled_size;
 268     profiled_size = 0;
 269   }
 270   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 271   if (!heap_available(CodeBlobType::MethodNonProfiled)) {
 272     non_nmethod_size += non_profiled_size;
 273     non_profiled_size = 0;
 274   }
 275   // Make sure we have enough space for VM internal code
 276   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 277   if (non_nmethod_size < min_code_cache_size) {
 278     vm_exit_during_initialization(err_msg(
 279         "Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
 280         non_nmethod_size/K, min_code_cache_size/K));
 281   }
 282 
 283   // Verify sizes and update flag values
 284   assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
 285   FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, non_nmethod_size);
 286   FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 287   FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 288 
 289   // If large page support is enabled, align code heaps according to large
 290   // page size to make sure that code cache is covered by large pages.
 291   const size_t alignment = MAX2(page_size(false, 8), (size_t) os::vm_allocation_granularity());
 292   non_nmethod_size = align_up(non_nmethod_size, alignment);
 293   profiled_size    = align_down(profiled_size, alignment);
 294 
 295   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 296   // parts for the individual heaps. The memory layout looks like this:
 297   // ---------- high -----------
 298   //    Non-profiled nmethods
 299   //      Profiled nmethods
 300   //         Non-nmethods
 301   // ---------- low ------------
 302   ReservedCodeSpace rs = reserve_heap_memory(cache_size);
 303   ReservedSpace non_method_space    = rs.first_part(non_nmethod_size);
 304   ReservedSpace rest                = rs.last_part(non_nmethod_size);
 305   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 306   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 307 
 308   // Non-nmethods (stubs, adapters, ...)
 309   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 310   // Tier 2 and tier 3 (profiled) methods
 311   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 312   // Tier 1 and tier 4 (non-profiled) methods and native methods
 313   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 314 }
 315 
 316 size_t CodeCache::page_size(bool aligned, size_t min_pages) {
 317   if (os::can_execute_large_page_memory()) {
 318     if (InitialCodeCacheSize < ReservedCodeCacheSize) {
 319       // Make sure that the page size allows for an incremental commit of the reserved space
 320       min_pages = MAX2(min_pages, (size_t)8);
 321     }
 322     return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, min_pages) :
 323                      os::page_size_for_region_unaligned(ReservedCodeCacheSize, min_pages);
 324   } else {
 325     return os::vm_page_size();
 326   }
 327 }
 328 
 329 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 330   // Align and reserve space for code cache
 331   const size_t rs_ps = page_size();
 332   const size_t rs_align = MAX2(rs_ps, (size_t) os::vm_allocation_granularity());
 333   const size_t rs_size = align_up(size, rs_align);
 334   ReservedCodeSpace rs(rs_size, rs_align, rs_ps > (size_t) os::vm_page_size());
 335   if (!rs.is_reserved()) {
 336     vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (" SIZE_FORMAT "K)",
 337                                           rs_size/K));
 338   }
 339 
 340   // Initialize bounds
 341   _low_bound = (address)rs.base();
 342   _high_bound = _low_bound + rs.size();
 343   return rs;
 344 }
 345 
 346 // Heaps available for allocation
 347 bool CodeCache::heap_available(int code_blob_type) {
 348   if (!SegmentedCodeCache) {
 349     // No segmentation: use a single code heap
 350     return (code_blob_type == CodeBlobType::All);
 351   } else if (Arguments::is_interpreter_only()) {
 352     // Interpreter only: we don't need any method code heaps
 353     return (code_blob_type == CodeBlobType::NonNMethod);
 354   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 355     // Tiered compilation: use all code heaps
 356     return (code_blob_type < CodeBlobType::All);
 357   } else {
 358     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 359     return (code_blob_type == CodeBlobType::NonNMethod) ||
 360            (code_blob_type == CodeBlobType::MethodNonProfiled);
 361   }
 362 }
 363 
 364 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 365   switch(code_blob_type) {
 366   case CodeBlobType::NonNMethod:
 367     return "NonNMethodCodeHeapSize";
 368     break;
 369   case CodeBlobType::MethodNonProfiled:
 370     return "NonProfiledCodeHeapSize";
 371     break;
 372   case CodeBlobType::MethodProfiled:
 373     return "ProfiledCodeHeapSize";
 374     break;
 375   }
 376   ShouldNotReachHere();
 377   return NULL;
 378 }
 379 
 380 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
 381   if (lhs->code_blob_type() == rhs->code_blob_type()) {
 382     return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
 383   } else {
 384     return lhs->code_blob_type() - rhs->code_blob_type();
 385   }
 386 }
 387 
 388 void CodeCache::add_heap(CodeHeap* heap) {
 389   assert(!Universe::is_fully_initialized(), "late heap addition?");
 390 
 391   _heaps->insert_sorted<code_heap_compare>(heap);
 392 
 393   int type = heap->code_blob_type();
 394   if (code_blob_type_accepts_compiled(type)) {
 395     _compiled_heaps->insert_sorted<code_heap_compare>(heap);
 396   }
 397   if (code_blob_type_accepts_nmethod(type)) {
 398     _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
 399   }
 400   if (code_blob_type_accepts_allocable(type)) {
 401     _allocable_heaps->insert_sorted<code_heap_compare>(heap);
 402   }
 403 }
 404 
 405 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
 406   // Check if heap is needed
 407   if (!heap_available(code_blob_type)) {
 408     return;
 409   }
 410 
 411   // Create CodeHeap
 412   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 413   add_heap(heap);
 414 
 415   // Reserve Space
 416   size_t size_initial = MIN2((size_t)InitialCodeCacheSize, rs.size());
 417   size_initial = align_up(size_initial, os::vm_page_size());
 418   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 419     vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (" SIZE_FORMAT "K)",
 420                                           heap->name(), size_initial/K));
 421   }
 422 
 423   // Register the CodeHeap
 424   MemoryService::add_code_heap_memory_pool(heap, name);
 425 }
 426 
 427 CodeHeap* CodeCache::get_code_heap_containing(void* start) {
 428   FOR_ALL_HEAPS(heap) {
 429     if ((*heap)->contains(start)) {
 430       return *heap;
 431     }
 432   }
 433   return NULL;
 434 }
 435 
 436 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 437   assert(cb != NULL, "CodeBlob is null");
 438   FOR_ALL_HEAPS(heap) {
 439     if ((*heap)->contains_blob(cb)) {
 440       return *heap;
 441     }
 442   }
 443   ShouldNotReachHere();
 444   return NULL;
 445 }
 446 
 447 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 448   FOR_ALL_HEAPS(heap) {
 449     if ((*heap)->accepts(code_blob_type)) {
 450       return *heap;
 451     }
 452   }
 453   return NULL;
 454 }
 455 
 456 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 457   assert_locked_or_safepoint(CodeCache_lock);
 458   assert(heap != NULL, "heap is null");
 459   return (CodeBlob*)heap->first();
 460 }
 461 
 462 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 463   if (heap_available(code_blob_type)) {
 464     return first_blob(get_code_heap(code_blob_type));
 465   } else {
 466     return NULL;
 467   }
 468 }
 469 
 470 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 471   assert_locked_or_safepoint(CodeCache_lock);
 472   assert(heap != NULL, "heap is null");
 473   return (CodeBlob*)heap->next(cb);
 474 }
 475 
 476 /**
 477  * Do not seize the CodeCache lock here--if the caller has not
 478  * already done so, we are going to lose bigtime, since the code
 479  * cache will contain a garbage CodeBlob until the caller can
 480  * run the constructor for the CodeBlob subclass he is busy
 481  * instantiating.
 482  */
 483 CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
 484   // Possibly wakes up the sweeper thread.
 485   NMethodSweeper::notify(code_blob_type);
 486   assert_locked_or_safepoint(CodeCache_lock);
 487   assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
 488   if (size <= 0) {
 489     return NULL;
 490   }
 491   CodeBlob* cb = NULL;
 492 
 493   // Get CodeHeap for the given CodeBlobType
 494   CodeHeap* heap = get_code_heap(code_blob_type);
 495   assert(heap != NULL, "heap is null");
 496 
 497   while (true) {
 498     cb = (CodeBlob*)heap->allocate(size);
 499     if (cb != NULL) break;
 500     if (!heap->expand_by(CodeCacheExpansionSize)) {
 501       // Save original type for error reporting
 502       if (orig_code_blob_type == CodeBlobType::All) {
 503         orig_code_blob_type = code_blob_type;
 504       }
 505       // Expansion failed
 506       if (SegmentedCodeCache) {
 507         // Fallback solution: Try to store code in another code heap.
 508         // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
 509         // Note that in the sweeper, we check the reverse_free_ratio of the code heap
 510         // and force stack scanning if less than 10% of the code heap are free.
 511         int type = code_blob_type;
 512         switch (type) {
 513         case CodeBlobType::NonNMethod:
 514           type = CodeBlobType::MethodNonProfiled;
 515           break;
 516         case CodeBlobType::MethodNonProfiled:
 517           type = CodeBlobType::MethodProfiled;
 518           break;
 519         case CodeBlobType::MethodProfiled:
 520           // Avoid loop if we already tried that code heap
 521           if (type == orig_code_blob_type) {
 522             type = CodeBlobType::MethodNonProfiled;
 523           }
 524           break;
 525         }
 526         if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
 527           if (PrintCodeCacheExtension) {
 528             tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
 529                           heap->name(), get_code_heap(type)->name());
 530           }
 531           return allocate(size, type, orig_code_blob_type);
 532         }
 533       }
 534       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 535       CompileBroker::handle_full_code_cache(orig_code_blob_type);
 536       return NULL;
 537     }
 538     if (PrintCodeCacheExtension) {
 539       ResourceMark rm;
 540       if (_nmethod_heaps->length() >= 1) {
 541         tty->print("%s", heap->name());
 542       } else {
 543         tty->print("CodeCache");
 544       }
 545       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 546                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 547                     (address)heap->high() - (address)heap->low_boundary());
 548     }
 549   }
 550   print_trace("allocation", cb, size);
 551   return cb;
 552 }
 553 
 554 void CodeCache::free(CodeBlob* cb) {
 555   assert_locked_or_safepoint(CodeCache_lock);
 556   CodeHeap* heap = get_code_heap(cb);
 557   print_trace("free", cb);
 558   if (cb->is_nmethod()) {
 559     heap->set_nmethod_count(heap->nmethod_count() - 1);
 560     if (((nmethod *)cb)->has_dependencies()) {
 561       _number_of_nmethods_with_dependencies--;
 562     }
 563   }
 564   if (cb->is_adapter_blob()) {
 565     heap->set_adapter_count(heap->adapter_count() - 1);
 566   }
 567 
 568   // Get heap for given CodeBlob and deallocate
 569   get_code_heap(cb)->deallocate(cb);
 570 
 571   assert(heap->blob_count() >= 0, "sanity check");
 572 }
 573 
 574 void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) {
 575   assert_locked_or_safepoint(CodeCache_lock);
 576   guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!");
 577   print_trace("free_unused_tail", cb);
 578 
 579   // We also have to account for the extra space (i.e. header) used by the CodeBlob
 580   // which provides the memory (see BufferBlob::create() in codeBlob.cpp).
 581   used += CodeBlob::align_code_offset(cb->header_size());
 582 
 583   // Get heap for given CodeBlob and deallocate its unused tail
 584   get_code_heap(cb)->deallocate_tail(cb, used);
 585   // Adjust the sizes of the CodeBlob
 586   cb->adjust_size(used);
 587 }
 588 
 589 void CodeCache::commit(CodeBlob* cb) {
 590   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 591   assert_locked_or_safepoint(CodeCache_lock);
 592   CodeHeap* heap = get_code_heap(cb);
 593   if (cb->is_nmethod()) {
 594     heap->set_nmethod_count(heap->nmethod_count() + 1);
 595     if (((nmethod *)cb)->has_dependencies()) {
 596       _number_of_nmethods_with_dependencies++;
 597     }
 598   }
 599   if (cb->is_adapter_blob()) {
 600     heap->set_adapter_count(heap->adapter_count() + 1);
 601   }
 602 
 603   // flush the hardware I-cache
 604   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 605 }
 606 
 607 bool CodeCache::contains(void *p) {
 608   // S390 uses contains() in current_frame(), which is used before
 609   // code cache initialization if NativeMemoryTracking=detail is set.
 610   S390_ONLY(if (_heaps == NULL) return false;)
 611   // It should be ok to call contains without holding a lock.
 612   FOR_ALL_HEAPS(heap) {
 613     if ((*heap)->contains(p)) {
 614       return true;
 615     }
 616   }
 617   return false;
 618 }
 619 
 620 bool CodeCache::contains(nmethod *nm) {
 621   return contains((void *)nm);
 622 }
 623 
 624 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 625 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 626 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 627 CodeBlob* CodeCache::find_blob(void* start) {
 628   CodeBlob* result = find_blob_unsafe(start);
 629   // We could potentially look up non_entrant methods
 630   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
 631   return result;
 632 }
 633 
 634 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 635 // what you are doing)
 636 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 637   // NMT can walk the stack before code cache is created
 638   if (_heaps != NULL) {
 639     CodeHeap* heap = get_code_heap_containing(start);
 640     if (heap != NULL) {
 641       return heap->find_blob_unsafe(start);
 642     }
 643   }
 644   return NULL;
 645 }
 646 
 647 nmethod* CodeCache::find_nmethod(void* start) {
 648   CodeBlob* cb = find_blob(start);
 649   assert(cb->is_nmethod(), "did not find an nmethod");
 650   return (nmethod*)cb;
 651 }
 652 
 653 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 654   assert_locked_or_safepoint(CodeCache_lock);
 655   FOR_ALL_HEAPS(heap) {
 656     FOR_ALL_BLOBS(cb, *heap) {
 657       f(cb);
 658     }
 659   }
 660 }
 661 
 662 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 663   assert_locked_or_safepoint(CodeCache_lock);
 664   NMethodIterator iter(NMethodIterator::all_blobs);
 665   while(iter.next()) {
 666     f(iter.method());
 667   }
 668 }
 669 
 670 void CodeCache::metadata_do(MetadataClosure* f) {
 671   assert_locked_or_safepoint(CodeCache_lock);
 672   NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
 673   while(iter.next()) {
 674     iter.method()->metadata_do(f);
 675   }
 676   AOTLoader::metadata_do(f);
 677 }
 678 
 679 int CodeCache::alignment_unit() {
 680   return (int)_heaps->first()->alignment_unit();
 681 }
 682 
 683 int CodeCache::alignment_offset() {
 684   return (int)_heaps->first()->alignment_offset();
 685 }
 686 
 687 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 688 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 689   assert_locked_or_safepoint(CodeCache_lock);
 690   UnloadingScope scope(is_alive);
 691   CompiledMethodIterator iter(CompiledMethodIterator::only_alive);
 692   while(iter.next()) {
 693     iter.method()->do_unloading(unloading_occurred);
 694   }
 695 }
 696 
 697 void CodeCache::blobs_do(CodeBlobClosure* f) {
 698   assert_locked_or_safepoint(CodeCache_lock);
 699   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 700     FOR_ALL_BLOBS(cb, *heap) {
 701       if (cb->is_alive()) {
 702         f->do_code_blob(cb);
 703 #ifdef ASSERT
 704         if (cb->is_nmethod()) {
 705           Universe::heap()->verify_nmethod((nmethod*)cb);
 706         }
 707 #endif //ASSERT
 708       }
 709     }
 710   }
 711 }
 712 
 713 void CodeCache::verify_clean_inline_caches() {
 714 #ifdef ASSERT
 715   NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
 716   while(iter.next()) {
 717     nmethod* nm = iter.method();
 718     assert(!nm->is_unloaded(), "Tautology");
 719     nm->verify_clean_inline_caches();
 720     nm->verify();
 721   }
 722 #endif
 723 }
 724 
 725 void CodeCache::verify_icholder_relocations() {
 726 #ifdef ASSERT
 727   // make sure that we aren't leaking icholders
 728   int count = 0;
 729   FOR_ALL_HEAPS(heap) {
 730     FOR_ALL_BLOBS(cb, *heap) {
 731       CompiledMethod *nm = cb->as_compiled_method_or_null();
 732       if (nm != NULL) {
 733         count += nm->verify_icholder_relocations();
 734       }
 735     }
 736   }
 737   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 738          CompiledICHolder::live_count(), "must agree");
 739 #endif
 740 }
 741 
 742 // Defer freeing of concurrently cleaned ExceptionCache entries until
 743 // after a global handshake operation.
 744 void CodeCache::release_exception_cache(ExceptionCache* entry) {
 745   if (SafepointSynchronize::is_at_safepoint()) {
 746     delete entry;
 747   } else {
 748     for (;;) {
 749       ExceptionCache* purge_list_head = Atomic::load(&_exception_cache_purge_list);
 750       entry->set_purge_list_next(purge_list_head);
 751       if (Atomic::cmpxchg(entry, &_exception_cache_purge_list, purge_list_head) == purge_list_head) {
 752         break;
 753       }
 754     }
 755   }
 756 }
 757 
 758 // Delete exception caches that have been concurrently unlinked,
 759 // followed by a global handshake operation.
 760 void CodeCache::purge_exception_caches() {
 761   ExceptionCache* curr = _exception_cache_purge_list;
 762   while (curr != NULL) {
 763     ExceptionCache* next = curr->purge_list_next();
 764     delete curr;
 765     curr = next;
 766   }
 767   _exception_cache_purge_list = NULL;
 768 }
 769 
 770 uint8_t CodeCache::_unloading_cycle = 1;
 771 
 772 void CodeCache::increment_unloading_cycle() {
 773   if (_unloading_cycle == 1) {
 774     _unloading_cycle = 2;
 775   } else {
 776     _unloading_cycle = 1;
 777   }
 778 }
 779 
 780 CodeCache::UnloadingScope::UnloadingScope(BoolObjectClosure* is_alive)
 781   : _is_unloading_behaviour(is_alive)
 782 {
 783   _saved_behaviour = IsUnloadingBehaviour::current();
 784   IsUnloadingBehaviour::set_current(&_is_unloading_behaviour);
 785   increment_unloading_cycle();
 786   DependencyContext::cleaning_start();
 787 }
 788 
 789 CodeCache::UnloadingScope::~UnloadingScope() {
 790   IsUnloadingBehaviour::set_current(_saved_behaviour);
 791   DependencyContext::cleaning_end();
 792 }
 793 
 794 void CodeCache::verify_oops() {
 795   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 796   VerifyOopClosure voc;
 797   NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
 798   while(iter.next()) {
 799     nmethod* nm = iter.method();
 800     nm->oops_do(&voc);
 801     nm->verify_oop_relocations();
 802   }
 803 }
 804 
 805 int CodeCache::blob_count(int code_blob_type) {
 806   CodeHeap* heap = get_code_heap(code_blob_type);
 807   return (heap != NULL) ? heap->blob_count() : 0;
 808 }
 809 
 810 int CodeCache::blob_count() {
 811   int count = 0;
 812   FOR_ALL_HEAPS(heap) {
 813     count += (*heap)->blob_count();
 814   }
 815   return count;
 816 }
 817 
 818 int CodeCache::nmethod_count(int code_blob_type) {
 819   CodeHeap* heap = get_code_heap(code_blob_type);
 820   return (heap != NULL) ? heap->nmethod_count() : 0;
 821 }
 822 
 823 int CodeCache::nmethod_count() {
 824   int count = 0;
 825   FOR_ALL_NMETHOD_HEAPS(heap) {
 826     count += (*heap)->nmethod_count();
 827   }
 828   return count;
 829 }
 830 
 831 int CodeCache::adapter_count(int code_blob_type) {
 832   CodeHeap* heap = get_code_heap(code_blob_type);
 833   return (heap != NULL) ? heap->adapter_count() : 0;
 834 }
 835 
 836 int CodeCache::adapter_count() {
 837   int count = 0;
 838   FOR_ALL_HEAPS(heap) {
 839     count += (*heap)->adapter_count();
 840   }
 841   return count;
 842 }
 843 
 844 address CodeCache::low_bound(int code_blob_type) {
 845   CodeHeap* heap = get_code_heap(code_blob_type);
 846   return (heap != NULL) ? (address)heap->low_boundary() : NULL;
 847 }
 848 
 849 address CodeCache::high_bound(int code_blob_type) {
 850   CodeHeap* heap = get_code_heap(code_blob_type);
 851   return (heap != NULL) ? (address)heap->high_boundary() : NULL;
 852 }
 853 
 854 size_t CodeCache::capacity() {
 855   size_t cap = 0;
 856   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 857     cap += (*heap)->capacity();
 858   }
 859   return cap;
 860 }
 861 
 862 size_t CodeCache::unallocated_capacity(int code_blob_type) {
 863   CodeHeap* heap = get_code_heap(code_blob_type);
 864   return (heap != NULL) ? heap->unallocated_capacity() : 0;
 865 }
 866 
 867 size_t CodeCache::unallocated_capacity() {
 868   size_t unallocated_cap = 0;
 869   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 870     unallocated_cap += (*heap)->unallocated_capacity();
 871   }
 872   return unallocated_cap;
 873 }
 874 
 875 size_t CodeCache::max_capacity() {
 876   size_t max_cap = 0;
 877   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 878     max_cap += (*heap)->max_capacity();
 879   }
 880   return max_cap;
 881 }
 882 
 883 /**
 884  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
 885  * is free, reverse_free_ratio() returns 4.
 886  */
 887 double CodeCache::reverse_free_ratio(int code_blob_type) {
 888   CodeHeap* heap = get_code_heap(code_blob_type);
 889   if (heap == NULL) {
 890     return 0;
 891   }
 892 
 893   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
 894   double max_capacity = (double)heap->max_capacity();
 895   double result = max_capacity / unallocated_capacity;
 896   assert (max_capacity >= unallocated_capacity, "Must be");
 897   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
 898   return result;
 899 }
 900 
 901 size_t CodeCache::bytes_allocated_in_freelists() {
 902   size_t allocated_bytes = 0;
 903   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 904     allocated_bytes += (*heap)->allocated_in_freelist();
 905   }
 906   return allocated_bytes;
 907 }
 908 
 909 int CodeCache::allocated_segments() {
 910   int number_of_segments = 0;
 911   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 912     number_of_segments += (*heap)->allocated_segments();
 913   }
 914   return number_of_segments;
 915 }
 916 
 917 size_t CodeCache::freelists_length() {
 918   size_t length = 0;
 919   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 920     length += (*heap)->freelist_length();
 921   }
 922   return length;
 923 }
 924 
 925 void icache_init();
 926 
 927 void CodeCache::initialize() {
 928   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
 929 #ifdef COMPILER2
 930   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
 931 #endif
 932   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
 933   // This was originally just a check of the alignment, causing failure, instead, round
 934   // the code cache to the page size.  In particular, Solaris is moving to a larger
 935   // default page size.
 936   CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
 937 
 938   if (SegmentedCodeCache) {
 939     // Use multiple code heaps
 940     initialize_heaps();
 941   } else {
 942     // Use a single code heap
 943     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 0);
 944     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
 945     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
 946     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
 947     add_heap(rs, "CodeCache", CodeBlobType::All);
 948   }
 949 
 950   // Initialize ICache flush mechanism
 951   // This service is needed for os::register_code_area
 952   icache_init();
 953 
 954   // Give OS a chance to register generated code area.
 955   // This is used on Windows 64 bit platforms to register
 956   // Structured Exception Handlers for our generated code.
 957   os::register_code_area((char*)low_bound(), (char*)high_bound());
 958 }
 959 
 960 void codeCache_init() {
 961   CodeCache::initialize();
 962   // Load AOT libraries and add AOT code heaps.
 963   AOTLoader::initialize();
 964 }
 965 
 966 //------------------------------------------------------------------------------------------------
 967 
 968 int CodeCache::number_of_nmethods_with_dependencies() {
 969   return _number_of_nmethods_with_dependencies;
 970 }
 971 
 972 void CodeCache::clear_inline_caches() {
 973   assert_locked_or_safepoint(CodeCache_lock);
 974   CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
 975   while(iter.next()) {
 976     iter.method()->clear_inline_caches();
 977   }
 978 }
 979 
 980 void CodeCache::cleanup_inline_caches() {
 981   assert_locked_or_safepoint(CodeCache_lock);
 982   NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
 983   while(iter.next()) {
 984     iter.method()->cleanup_inline_caches(/*clean_all=*/true);
 985   }
 986 }
 987 
 988 // Keeps track of time spent for checking dependencies
 989 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
 990 
 991 int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
 992   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 993   int number_of_marked_CodeBlobs = 0;
 994 
 995   // search the hierarchy looking for nmethods which are affected by the loading of this class
 996 
 997   // then search the interfaces this class implements looking for nmethods
 998   // which might be dependent of the fact that an interface only had one
 999   // implementor.
1000   // nmethod::check_all_dependencies works only correctly, if no safepoint
1001   // can happen
1002   NoSafepointVerifier nsv;
1003   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1004     Klass* d = str.klass();
1005     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1006   }
1007 
1008 #ifndef PRODUCT
1009   if (VerifyDependencies) {
1010     // Object pointers are used as unique identifiers for dependency arguments. This
1011     // is only possible if no safepoint, i.e., GC occurs during the verification code.
1012     dependentCheckTime.start();
1013     nmethod::check_all_dependencies(changes);
1014     dependentCheckTime.stop();
1015   }
1016 #endif
1017 
1018   return number_of_marked_CodeBlobs;
1019 }
1020 
1021 CompiledMethod* CodeCache::find_compiled(void* start) {
1022   CodeBlob *cb = find_blob(start);
1023   assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1024   return (CompiledMethod*)cb;
1025 }
1026 
1027 bool CodeCache::is_far_target(address target) {
1028 #if INCLUDE_AOT
1029   return NativeCall::is_far_call(_low_bound,  target) ||
1030          NativeCall::is_far_call(_high_bound, target);
1031 #else
1032   return false;
1033 #endif
1034 }
1035 
1036 #ifdef INCLUDE_JVMTI
1037 // RedefineClasses support for unloading nmethods that are dependent on "old" methods.
1038 // We don't really expect this table to grow very large.  If it does, it can become a hashtable.
1039 static GrowableArray<CompiledMethod*>* old_compiled_method_table = NULL;
1040 
1041 static void add_to_old_table(CompiledMethod* c) {
1042   if (old_compiled_method_table == NULL) {
1043     old_compiled_method_table = new (ResourceObj::C_HEAP, mtCode) GrowableArray<CompiledMethod*>(100, true);
1044   }
1045   old_compiled_method_table->push(c);
1046 }
1047 
1048 static void reset_old_method_table() {
1049   if (old_compiled_method_table != NULL) {
1050     delete old_compiled_method_table;
1051     old_compiled_method_table = NULL;
1052   }
1053 }
1054 
1055 // Remove this method when zombied or unloaded.
1056 void CodeCache::unregister_old_nmethod(CompiledMethod* c) {
1057   assert_locked_or_safepoint(CodeCache_lock);
1058   if (old_compiled_method_table != NULL) {
1059     int index = old_compiled_method_table->find(c);
1060     if (index != -1) {
1061       old_compiled_method_table->delete_at(index);
1062     }
1063   }
1064 }
1065 
1066 void CodeCache::old_nmethods_do(MetadataClosure* f) {
1067   // Walk old method table and mark those on stack.
1068   int length = 0;
1069   if (old_compiled_method_table != NULL) {
1070     length = old_compiled_method_table->length();
1071     for (int i = 0; i < length; i++) {
1072       old_compiled_method_table->at(i)->metadata_do(f);
1073     }
1074   }
1075   log_debug(redefine, class, nmethod)("Walked %d nmethods for mark_on_stack", length);
1076 }
1077 
1078 // Just marks the methods in this class as needing deoptimization
1079 void CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
1080   assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1081 
1082   // Mark dependent AOT nmethods, which are only found via the class redefined.
1083   // TODO: add dependencies to aotCompiledMethod's metadata section so this isn't
1084   // needed.
1085   AOTLoader::mark_evol_dependent_methods(dependee);
1086 }
1087 
1088 
1089 // Walk compiled methods and mark dependent methods for deoptimization.
1090 int CodeCache::mark_dependents_for_evol_deoptimization() {
1091   assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1092   // Each redefinition creates a new set of nmethods that have references to "old" Methods
1093   // So delete old method table and create a new one.
1094   reset_old_method_table();
1095 
1096   int number_of_marked_CodeBlobs = 0;
1097   CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1098   while(iter.next()) {
1099     CompiledMethod* nm = iter.method();
1100     // Walk all alive nmethods to check for old Methods.
1101     // This includes methods whose inline caches point to old methods, so
1102     // inline cache clearing is unnecessary.
1103     if (nm->has_evol_metadata()) {
1104       nm->mark_for_deoptimization();
1105       add_to_old_table(nm);
1106       number_of_marked_CodeBlobs++;
1107     }
1108   }
1109 
1110   // return total count of nmethods marked for deoptimization, if zero the caller
1111   // can skip deoptimization
1112   return number_of_marked_CodeBlobs;
1113 }
1114 
1115 void CodeCache::mark_all_nmethods_for_evol_deoptimization() {
1116   assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1117   CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1118   while(iter.next()) {
1119     CompiledMethod* nm = iter.method();
1120     if (!nm->method()->is_method_handle_intrinsic()) {
1121       nm->mark_for_deoptimization();
1122       if (nm->has_evol_metadata()) {
1123         add_to_old_table(nm);
1124       }
1125     }
1126   }
1127 }
1128 
1129 // Flushes compiled methods dependent on redefined classes, that have already been
1130 // marked for deoptimization.
1131 void CodeCache::flush_evol_dependents() {
1132   assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1133 
1134   // CodeCache can only be updated by a thread_in_VM and they will all be
1135   // stopped during the safepoint so CodeCache will be safe to update without
1136   // holding the CodeCache_lock.
1137 
1138   // At least one nmethod has been marked for deoptimization
1139 
1140   // All this already happens inside a VM_Operation, so we'll do all the work here.
1141   // Stuff copied from VM_Deoptimize and modified slightly.
1142 
1143   // We do not want any GCs to happen while we are in the middle of this VM operation
1144   ResourceMark rm;
1145   DeoptimizationMarker dm;
1146 
1147   // Deoptimize all activations depending on marked nmethods
1148   Deoptimization::deoptimize_dependents();
1149 
1150   // Make the dependent methods not entrant
1151   make_marked_nmethods_not_entrant();
1152 }
1153 #endif // INCLUDE_JVMTI
1154 
1155 // Deoptimize all methods
1156 void CodeCache::mark_all_nmethods_for_deoptimization() {
1157   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1158   CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1159   while(iter.next()) {
1160     CompiledMethod* nm = iter.method();
1161     if (!nm->method()->is_method_handle_intrinsic()) {
1162       nm->mark_for_deoptimization();
1163     }
1164   }
1165 }
1166 
1167 int CodeCache::mark_for_deoptimization(Method* dependee) {
1168   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1169   int number_of_marked_CodeBlobs = 0;
1170 
1171   CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1172   while(iter.next()) {
1173     CompiledMethod* nm = iter.method();
1174     if (nm->is_dependent_on_method(dependee)) {
1175       ResourceMark rm;
1176       nm->mark_for_deoptimization();
1177       number_of_marked_CodeBlobs++;
1178     }
1179   }
1180 
1181   return number_of_marked_CodeBlobs;
1182 }
1183 
1184 void CodeCache::make_marked_nmethods_not_entrant() {
1185   assert_locked_or_safepoint(CodeCache_lock);
1186   CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1187   while(iter.next()) {
1188     CompiledMethod* nm = iter.method();
1189     if (nm->is_marked_for_deoptimization() && !nm->is_not_entrant()) {
1190       nm->make_not_entrant();
1191     }
1192   }
1193 }
1194 
1195 // Flushes compiled methods dependent on dependee.
1196 void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
1197   assert_lock_strong(Compile_lock);
1198 
1199   if (number_of_nmethods_with_dependencies() == 0) return;
1200 
1201   // CodeCache can only be updated by a thread_in_VM and they will all be
1202   // stopped during the safepoint so CodeCache will be safe to update without
1203   // holding the CodeCache_lock.
1204 
1205   KlassDepChange changes(dependee);
1206 
1207   // Compute the dependent nmethods
1208   if (mark_for_deoptimization(changes) > 0) {
1209     // At least one nmethod has been marked for deoptimization
1210     VM_Deoptimize op;
1211     VMThread::execute(&op);
1212   }
1213 }
1214 
1215 // Flushes compiled methods dependent on dependee
1216 void CodeCache::flush_dependents_on_method(const methodHandle& m_h) {
1217   // --- Compile_lock is not held. However we are at a safepoint.
1218   assert_locked_or_safepoint(Compile_lock);
1219 
1220   // CodeCache can only be updated by a thread_in_VM and they will all be
1221   // stopped dring the safepoint so CodeCache will be safe to update without
1222   // holding the CodeCache_lock.
1223 
1224   // Compute the dependent nmethods
1225   if (mark_for_deoptimization(m_h()) > 0) {
1226     // At least one nmethod has been marked for deoptimization
1227 
1228     // All this already happens inside a VM_Operation, so we'll do all the work here.
1229     // Stuff copied from VM_Deoptimize and modified slightly.
1230 
1231     // We do not want any GCs to happen while we are in the middle of this VM operation
1232     ResourceMark rm;
1233     DeoptimizationMarker dm;
1234 
1235     // Deoptimize all activations depending on marked nmethods
1236     Deoptimization::deoptimize_dependents();
1237 
1238     // Make the dependent methods not entrant
1239     make_marked_nmethods_not_entrant();
1240   }
1241 }
1242 
1243 void CodeCache::verify() {
1244   assert_locked_or_safepoint(CodeCache_lock);
1245   FOR_ALL_HEAPS(heap) {
1246     (*heap)->verify();
1247     FOR_ALL_BLOBS(cb, *heap) {
1248       if (cb->is_alive()) {
1249         cb->verify();
1250       }
1251     }
1252   }
1253 }
1254 
1255 // A CodeHeap is full. Print out warning and report event.
1256 PRAGMA_DIAG_PUSH
1257 PRAGMA_FORMAT_NONLITERAL_IGNORED
1258 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1259   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1260   CodeHeap* heap = get_code_heap(code_blob_type);
1261   assert(heap != NULL, "heap is null");
1262 
1263   if ((heap->full_count() == 0) || print) {
1264     // Not yet reported for this heap, report
1265     if (SegmentedCodeCache) {
1266       ResourceMark rm;
1267       stringStream msg1_stream, msg2_stream;
1268       msg1_stream.print("%s is full. Compiler has been disabled.",
1269                         get_code_heap_name(code_blob_type));
1270       msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1271                  get_code_heap_flag_name(code_blob_type));
1272       const char *msg1 = msg1_stream.as_string();
1273       const char *msg2 = msg2_stream.as_string();
1274 
1275       log_warning(codecache)("%s", msg1);
1276       log_warning(codecache)("%s", msg2);
1277       warning("%s", msg1);
1278       warning("%s", msg2);
1279     } else {
1280       const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1281       const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1282 
1283       log_warning(codecache)("%s", msg1);
1284       log_warning(codecache)("%s", msg2);
1285       warning("%s", msg1);
1286       warning("%s", msg2);
1287     }
1288     ResourceMark rm;
1289     stringStream s;
1290     // Dump code cache into a buffer before locking the tty.
1291     {
1292       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1293       print_summary(&s);
1294     }
1295     {
1296       ttyLocker ttyl;
1297       tty->print("%s", s.as_string());
1298     }
1299 
1300     if (heap->full_count() == 0) {
1301       if (PrintCodeHeapAnalytics) {
1302         CompileBroker::print_heapinfo(tty, "all", "4096"); // details, may be a lot!
1303       }
1304     }
1305   }
1306 
1307   heap->report_full();
1308 
1309   EventCodeCacheFull event;
1310   if (event.should_commit()) {
1311     event.set_codeBlobType((u1)code_blob_type);
1312     event.set_startAddress((u8)heap->low_boundary());
1313     event.set_commitedTopAddress((u8)heap->high());
1314     event.set_reservedTopAddress((u8)heap->high_boundary());
1315     event.set_entryCount(heap->blob_count());
1316     event.set_methodCount(heap->nmethod_count());
1317     event.set_adaptorCount(heap->adapter_count());
1318     event.set_unallocatedCapacity(heap->unallocated_capacity());
1319     event.set_fullCount(heap->full_count());
1320     event.commit();
1321   }
1322 }
1323 PRAGMA_DIAG_POP
1324 
1325 void CodeCache::print_memory_overhead() {
1326   size_t wasted_bytes = 0;
1327   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1328       CodeHeap* curr_heap = *heap;
1329       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1330         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1331         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1332       }
1333   }
1334   // Print bytes that are allocated in the freelist
1335   ttyLocker ttl;
1336   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1337   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1338   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1339   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1340 }
1341 
1342 //------------------------------------------------------------------------------------------------
1343 // Non-product version
1344 
1345 #ifndef PRODUCT
1346 
1347 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1348   if (PrintCodeCache2) {  // Need to add a new flag
1349     ResourceMark rm;
1350     if (size == 0)  size = cb->size();
1351     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1352   }
1353 }
1354 
1355 void CodeCache::print_internals() {
1356   int nmethodCount = 0;
1357   int runtimeStubCount = 0;
1358   int adapterCount = 0;
1359   int deoptimizationStubCount = 0;
1360   int uncommonTrapStubCount = 0;
1361   int bufferBlobCount = 0;
1362   int total = 0;
1363   int nmethodAlive = 0;
1364   int nmethodNotEntrant = 0;
1365   int nmethodZombie = 0;
1366   int nmethodUnloaded = 0;
1367   int nmethodJava = 0;
1368   int nmethodNative = 0;
1369   int max_nm_size = 0;
1370   ResourceMark rm;
1371 
1372   int i = 0;
1373   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1374     if ((_nmethod_heaps->length() >= 1) && Verbose) {
1375       tty->print_cr("-- %s --", (*heap)->name());
1376     }
1377     FOR_ALL_BLOBS(cb, *heap) {
1378       total++;
1379       if (cb->is_nmethod()) {
1380         nmethod* nm = (nmethod*)cb;
1381 
1382         if (Verbose && nm->method() != NULL) {
1383           ResourceMark rm;
1384           char *method_name = nm->method()->name_and_sig_as_C_string();
1385           tty->print("%s", method_name);
1386           if(nm->is_alive()) { tty->print_cr(" alive"); }
1387           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1388           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1389         }
1390 
1391         nmethodCount++;
1392 
1393         if(nm->is_alive()) { nmethodAlive++; }
1394         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1395         if(nm->is_zombie()) { nmethodZombie++; }
1396         if(nm->is_unloaded()) { nmethodUnloaded++; }
1397         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1398 
1399         if(nm->method() != NULL && nm->is_java_method()) {
1400           nmethodJava++;
1401           max_nm_size = MAX2(max_nm_size, nm->size());
1402         }
1403       } else if (cb->is_runtime_stub()) {
1404         runtimeStubCount++;
1405       } else if (cb->is_deoptimization_stub()) {
1406         deoptimizationStubCount++;
1407       } else if (cb->is_uncommon_trap_stub()) {
1408         uncommonTrapStubCount++;
1409       } else if (cb->is_adapter_blob()) {
1410         adapterCount++;
1411       } else if (cb->is_buffer_blob()) {
1412         bufferBlobCount++;
1413       }
1414     }
1415   }
1416 
1417   int bucketSize = 512;
1418   int bucketLimit = max_nm_size / bucketSize + 1;
1419   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1420   memset(buckets, 0, sizeof(int) * bucketLimit);
1421 
1422   NMethodIterator iter(NMethodIterator::all_blobs);
1423   while(iter.next()) {
1424     nmethod* nm = iter.method();
1425     if(nm->method() != NULL && nm->is_java_method()) {
1426       buckets[nm->size() / bucketSize]++;
1427     }
1428   }
1429 
1430   tty->print_cr("Code Cache Entries (total of %d)",total);
1431   tty->print_cr("-------------------------------------------------");
1432   tty->print_cr("nmethods: %d",nmethodCount);
1433   tty->print_cr("\talive: %d",nmethodAlive);
1434   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1435   tty->print_cr("\tzombie: %d",nmethodZombie);
1436   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1437   tty->print_cr("\tjava: %d",nmethodJava);
1438   tty->print_cr("\tnative: %d",nmethodNative);
1439   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1440   tty->print_cr("adapters: %d",adapterCount);
1441   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1442   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1443   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1444   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1445   tty->print_cr("-------------------------------------------------");
1446 
1447   for(int i=0; i<bucketLimit; i++) {
1448     if(buckets[i] != 0) {
1449       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1450       tty->fill_to(40);
1451       tty->print_cr("%d",buckets[i]);
1452     }
1453   }
1454 
1455   FREE_C_HEAP_ARRAY(int, buckets);
1456   print_memory_overhead();
1457 }
1458 
1459 #endif // !PRODUCT
1460 
1461 void CodeCache::print() {
1462   print_summary(tty);
1463 
1464 #ifndef PRODUCT
1465   if (!Verbose) return;
1466 
1467   CodeBlob_sizes live;
1468   CodeBlob_sizes dead;
1469 
1470   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1471     FOR_ALL_BLOBS(cb, *heap) {
1472       if (!cb->is_alive()) {
1473         dead.add(cb);
1474       } else {
1475         live.add(cb);
1476       }
1477     }
1478   }
1479 
1480   tty->print_cr("CodeCache:");
1481   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1482 
1483   if (!live.is_empty()) {
1484     live.print("live");
1485   }
1486   if (!dead.is_empty()) {
1487     dead.print("dead");
1488   }
1489 
1490   if (WizardMode) {
1491      // print the oop_map usage
1492     int code_size = 0;
1493     int number_of_blobs = 0;
1494     int number_of_oop_maps = 0;
1495     int map_size = 0;
1496     FOR_ALL_ALLOCABLE_HEAPS(heap) {
1497       FOR_ALL_BLOBS(cb, *heap) {
1498         if (cb->is_alive()) {
1499           number_of_blobs++;
1500           code_size += cb->code_size();
1501           ImmutableOopMapSet* set = cb->oop_maps();
1502           if (set != NULL) {
1503             number_of_oop_maps += set->count();
1504             map_size           += set->nr_of_bytes();
1505           }
1506         }
1507       }
1508     }
1509     tty->print_cr("OopMaps");
1510     tty->print_cr("  #blobs    = %d", number_of_blobs);
1511     tty->print_cr("  code size = %d", code_size);
1512     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1513     tty->print_cr("  map size  = %d", map_size);
1514   }
1515 
1516 #endif // !PRODUCT
1517 }
1518 
1519 void CodeCache::print_summary(outputStream* st, bool detailed) {
1520   int full_count = 0;
1521   FOR_ALL_HEAPS(heap_iterator) {
1522     CodeHeap* heap = (*heap_iterator);
1523     size_t total = (heap->high_boundary() - heap->low_boundary());
1524     if (_heaps->length() >= 1) {
1525       st->print("%s:", heap->name());
1526     } else {
1527       st->print("CodeCache:");
1528     }
1529     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1530                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1531                  total/K, (total - heap->unallocated_capacity())/K,
1532                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1533 
1534     if (detailed) {
1535       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1536                    p2i(heap->low_boundary()),
1537                    p2i(heap->high()),
1538                    p2i(heap->high_boundary()));
1539 
1540       full_count += get_codemem_full_count(heap->code_blob_type());
1541     }
1542   }
1543 
1544   if (detailed) {
1545     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1546                        " adapters=" UINT32_FORMAT,
1547                        blob_count(), nmethod_count(), adapter_count());
1548     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1549                  "enabled" : Arguments::mode() == Arguments::_int ?
1550                  "disabled (interpreter mode)" :
1551                  "disabled (not enough contiguous free space left)");
1552     st->print_cr("              stopped_count=%d, restarted_count=%d",
1553                  CompileBroker::get_total_compiler_stopped_count(),
1554                  CompileBroker::get_total_compiler_restarted_count());
1555     st->print_cr(" full_count=%d", full_count);
1556   }
1557 }
1558 
1559 void CodeCache::print_codelist(outputStream* st) {
1560   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1561 
1562   CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1563   while (iter.next()) {
1564     CompiledMethod* cm = iter.method();
1565     ResourceMark rm;
1566     char* method_name = cm->method()->name_and_sig_as_C_string();
1567     st->print_cr("%d %d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1568                  cm->compile_id(), cm->comp_level(), cm->get_state(),
1569                  method_name,
1570                  (intptr_t)cm->header_begin(), (intptr_t)cm->code_begin(), (intptr_t)cm->code_end());
1571   }
1572 }
1573 
1574 void CodeCache::print_layout(outputStream* st) {
1575   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1576   ResourceMark rm;
1577   print_summary(st, true);
1578 }
1579 
1580 void CodeCache::log_state(outputStream* st) {
1581   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1582             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1583             blob_count(), nmethod_count(), adapter_count(),
1584             unallocated_capacity());
1585 }
1586 
1587 //---<  BEGIN  >--- CodeHeap State Analytics.
1588 
1589 void CodeCache::aggregate(outputStream *out, const char* granularity) {
1590   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1591     CodeHeapState::aggregate(out, (*heap), granularity);
1592   }
1593 }
1594 
1595 void CodeCache::discard(outputStream *out) {
1596   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1597     CodeHeapState::discard(out, (*heap));
1598   }
1599 }
1600 
1601 void CodeCache::print_usedSpace(outputStream *out) {
1602   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1603     CodeHeapState::print_usedSpace(out, (*heap));
1604   }
1605 }
1606 
1607 void CodeCache::print_freeSpace(outputStream *out) {
1608   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1609     CodeHeapState::print_freeSpace(out, (*heap));
1610   }
1611 }
1612 
1613 void CodeCache::print_count(outputStream *out) {
1614   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1615     CodeHeapState::print_count(out, (*heap));
1616   }
1617 }
1618 
1619 void CodeCache::print_space(outputStream *out) {
1620   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1621     CodeHeapState::print_space(out, (*heap));
1622   }
1623 }
1624 
1625 void CodeCache::print_age(outputStream *out) {
1626   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1627     CodeHeapState::print_age(out, (*heap));
1628   }
1629 }
1630 
1631 void CodeCache::print_names(outputStream *out) {
1632   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1633     CodeHeapState::print_names(out, (*heap));
1634   }
1635 }
1636 //---<  END  >--- CodeHeap State Analytics.