1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "interpreter/bytecode.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/oopMapCache.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/oopFactory.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/constantPool.hpp"
  40 #include "oops/method.hpp"
  41 #include "oops/objArrayOop.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/fieldStreams.hpp"
  44 #include "oops/typeArrayOop.inline.hpp"
  45 #include "oops/verifyOopClosure.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "runtime/biasedLocking.hpp"
  48 #include "runtime/compilationPolicy.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/frame.inline.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/interfaceSupport.inline.hpp"
  53 #include "runtime/safepointVerifiers.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/signature.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.hpp"
  58 #include "runtime/threadSMR.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vframeArray.hpp"
  61 #include "runtime/vframe_hp.hpp"
  62 #include "utilities/events.hpp"
  63 #include "utilities/preserveException.hpp"
  64 #include "utilities/xmlstream.hpp"
  65 
  66 
  67 bool DeoptimizationMarker::_is_active = false;
  68 
  69 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  70                                          int  caller_adjustment,
  71                                          int  caller_actual_parameters,
  72                                          int  number_of_frames,
  73                                          intptr_t* frame_sizes,
  74                                          address* frame_pcs,
  75                                          BasicType return_type,
  76                                          int exec_mode) {
  77   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  78   _caller_adjustment         = caller_adjustment;
  79   _caller_actual_parameters  = caller_actual_parameters;
  80   _number_of_frames          = number_of_frames;
  81   _frame_sizes               = frame_sizes;
  82   _frame_pcs                 = frame_pcs;
  83   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  84   _return_type               = return_type;
  85   _initial_info              = 0;
  86   // PD (x86 only)
  87   _counter_temp              = 0;
  88   _unpack_kind               = exec_mode;
  89   _sender_sp_temp            = 0;
  90 
  91   _total_frame_sizes         = size_of_frames();
  92   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  93 }
  94 
  95 
  96 Deoptimization::UnrollBlock::~UnrollBlock() {
  97   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  98   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  99   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 100 }
 101 
 102 
 103 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 104   assert(register_number < RegisterMap::reg_count, "checking register number");
 105   return &_register_block[register_number * 2];
 106 }
 107 
 108 
 109 
 110 int Deoptimization::UnrollBlock::size_of_frames() const {
 111   // Acount first for the adjustment of the initial frame
 112   int result = _caller_adjustment;
 113   for (int index = 0; index < number_of_frames(); index++) {
 114     result += frame_sizes()[index];
 115   }
 116   return result;
 117 }
 118 
 119 
 120 void Deoptimization::UnrollBlock::print() {
 121   ttyLocker ttyl;
 122   tty->print_cr("UnrollBlock");
 123   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 124   tty->print(   "  frame_sizes: ");
 125   for (int index = 0; index < number_of_frames(); index++) {
 126     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 127   }
 128   tty->cr();
 129 }
 130 
 131 
 132 // In order to make fetch_unroll_info work properly with escape
 133 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 134 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 135 // of previously eliminated objects occurs in realloc_objects, which is
 136 // called from the method fetch_unroll_info_helper below.
 137 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 138   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 139   // but makes the entry a little slower. There is however a little dance we have to
 140   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 141 
 142   // fetch_unroll_info() is called at the beginning of the deoptimization
 143   // handler. Note this fact before we start generating temporary frames
 144   // that can confuse an asynchronous stack walker. This counter is
 145   // decremented at the end of unpack_frames().
 146   if (TraceDeoptimization) {
 147     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 148   }
 149   thread->inc_in_deopt_handler();
 150 
 151   return fetch_unroll_info_helper(thread, exec_mode);
 152 JRT_END
 153 
 154 
 155 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 156 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 157 
 158   // Note: there is a safepoint safety issue here. No matter whether we enter
 159   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 160   // the vframeArray is created.
 161   //
 162 
 163   // Allocate our special deoptimization ResourceMark
 164   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 165   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 166   thread->set_deopt_mark(dmark);
 167 
 168   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 169   RegisterMap map(thread, true);
 170   RegisterMap dummy_map(thread, false);
 171   // Now get the deoptee with a valid map
 172   frame deoptee = stub_frame.sender(&map);
 173   // Set the deoptee nmethod
 174   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 175   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 176   thread->set_deopt_compiled_method(cm);
 177 
 178   if (VerifyStack) {
 179     thread->validate_frame_layout();
 180   }
 181 
 182   // Create a growable array of VFrames where each VFrame represents an inlined
 183   // Java frame.  This storage is allocated with the usual system arena.
 184   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 185   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 186   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 187   while (!vf->is_top()) {
 188     assert(vf->is_compiled_frame(), "Wrong frame type");
 189     chunk->push(compiledVFrame::cast(vf));
 190     vf = vf->sender();
 191   }
 192   assert(vf->is_compiled_frame(), "Wrong frame type");
 193   chunk->push(compiledVFrame::cast(vf));
 194 
 195   bool realloc_failures = false;
 196 
 197 #if COMPILER2_OR_JVMCI
 198   // Reallocate the non-escaping objects and restore their fields. Then
 199   // relock objects if synchronization on them was eliminated.
 200 #if !INCLUDE_JVMCI
 201   if (DoEscapeAnalysis || EliminateNestedLocks) {
 202     if (EliminateAllocations) {
 203 #endif // INCLUDE_JVMCI
 204       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 205       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 206 
 207       // The flag return_oop() indicates call sites which return oop
 208       // in compiled code. Such sites include java method calls,
 209       // runtime calls (for example, used to allocate new objects/arrays
 210       // on slow code path) and any other calls generated in compiled code.
 211       // It is not guaranteed that we can get such information here only
 212       // by analyzing bytecode in deoptimized frames. This is why this flag
 213       // is set during method compilation (see Compile::Process_OopMap_Node()).
 214       // If the previous frame was popped or if we are dispatching an exception,
 215       // we don't have an oop result.
 216       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 217       Handle return_value;
 218       if (save_oop_result) {
 219         // Reallocation may trigger GC. If deoptimization happened on return from
 220         // call which returns oop we need to save it since it is not in oopmap.
 221         oop result = deoptee.saved_oop_result(&map);
 222         assert(oopDesc::is_oop_or_null(result), "must be oop");
 223         return_value = Handle(thread, result);
 224         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 225         if (TraceDeoptimization) {
 226           ttyLocker ttyl;
 227           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 228         }
 229       }
 230       if (objects != NULL) {
 231         JRT_BLOCK
 232           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 233         JRT_END
 234         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 235         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 236 #ifndef PRODUCT
 237         if (TraceDeoptimization) {
 238           ttyLocker ttyl;
 239           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 240           print_objects(objects, realloc_failures);
 241         }
 242 #endif
 243       }
 244       if (save_oop_result) {
 245         // Restore result.
 246         deoptee.set_saved_oop_result(&map, return_value());
 247       }
 248 #if !INCLUDE_JVMCI
 249     }
 250     if (EliminateLocks) {
 251 #endif // INCLUDE_JVMCI
 252 #ifndef PRODUCT
 253       bool first = true;
 254 #endif
 255       for (int i = 0; i < chunk->length(); i++) {
 256         compiledVFrame* cvf = chunk->at(i);
 257         assert (cvf->scope() != NULL,"expect only compiled java frames");
 258         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 259         if (monitors->is_nonempty()) {
 260           relock_objects(monitors, thread, realloc_failures);
 261 #ifndef PRODUCT
 262           if (PrintDeoptimizationDetails) {
 263             ttyLocker ttyl;
 264             for (int j = 0; j < monitors->length(); j++) {
 265               MonitorInfo* mi = monitors->at(j);
 266               if (mi->eliminated()) {
 267                 if (first) {
 268                   first = false;
 269                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 270                 }
 271                 if (mi->owner_is_scalar_replaced()) {
 272                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 273                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 274                 } else {
 275                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 276                 }
 277               }
 278             }
 279           }
 280 #endif // !PRODUCT
 281         }
 282       }
 283 #if !INCLUDE_JVMCI
 284     }
 285   }
 286 #endif // INCLUDE_JVMCI
 287 #endif // COMPILER2_OR_JVMCI
 288 
 289   ScopeDesc* trap_scope = chunk->at(0)->scope();
 290   Handle exceptionObject;
 291   if (trap_scope->rethrow_exception()) {
 292     if (PrintDeoptimizationDetails) {
 293       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 294     }
 295     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 296     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 297     ScopeValue* topOfStack = expressions->top();
 298     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 299     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 300   }
 301 
 302   // Ensure that no safepoint is taken after pointers have been stored
 303   // in fields of rematerialized objects.  If a safepoint occurs from here on
 304   // out the java state residing in the vframeArray will be missed.
 305   NoSafepointVerifier no_safepoint;
 306 
 307   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 308 #if COMPILER2_OR_JVMCI
 309   if (realloc_failures) {
 310     pop_frames_failed_reallocs(thread, array);
 311   }
 312 #endif
 313 
 314   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 315   thread->set_vframe_array_head(array);
 316 
 317   // Now that the vframeArray has been created if we have any deferred local writes
 318   // added by jvmti then we can free up that structure as the data is now in the
 319   // vframeArray
 320 
 321   if (thread->deferred_locals() != NULL) {
 322     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 323     int i = 0;
 324     do {
 325       // Because of inlining we could have multiple vframes for a single frame
 326       // and several of the vframes could have deferred writes. Find them all.
 327       if (list->at(i)->id() == array->original().id()) {
 328         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 329         list->remove_at(i);
 330         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 331         delete dlv;
 332       } else {
 333         i++;
 334       }
 335     } while ( i < list->length() );
 336     if (list->length() == 0) {
 337       thread->set_deferred_locals(NULL);
 338       // free the list and elements back to C heap.
 339       delete list;
 340     }
 341 
 342   }
 343 
 344   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 345   CodeBlob* cb = stub_frame.cb();
 346   // Verify we have the right vframeArray
 347   assert(cb->frame_size() >= 0, "Unexpected frame size");
 348   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 349 
 350   // If the deopt call site is a MethodHandle invoke call site we have
 351   // to adjust the unpack_sp.
 352   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 353   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 354     unpack_sp = deoptee.unextended_sp();
 355 
 356 #ifdef ASSERT
 357   assert(cb->is_deoptimization_stub() ||
 358          cb->is_uncommon_trap_stub() ||
 359          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 360          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 361          "unexpected code blob: %s", cb->name());
 362 #endif
 363 
 364   // This is a guarantee instead of an assert because if vframe doesn't match
 365   // we will unpack the wrong deoptimized frame and wind up in strange places
 366   // where it will be very difficult to figure out what went wrong. Better
 367   // to die an early death here than some very obscure death later when the
 368   // trail is cold.
 369   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 370   // in that it will fail to detect a problem when there is one. This needs
 371   // more work in tiger timeframe.
 372   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 373 
 374   int number_of_frames = array->frames();
 375 
 376   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 377   // virtual activation, which is the reverse of the elements in the vframes array.
 378   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 379   // +1 because we always have an interpreter return address for the final slot.
 380   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 381   int popframe_extra_args = 0;
 382   // Create an interpreter return address for the stub to use as its return
 383   // address so the skeletal frames are perfectly walkable
 384   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 385 
 386   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 387   // activation be put back on the expression stack of the caller for reexecution
 388   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 389     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 390   }
 391 
 392   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 393   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 394   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 395   //
 396   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 397   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 398 
 399   // It's possible that the number of parameters at the call site is
 400   // different than number of arguments in the callee when method
 401   // handles are used.  If the caller is interpreted get the real
 402   // value so that the proper amount of space can be added to it's
 403   // frame.
 404   bool caller_was_method_handle = false;
 405   if (deopt_sender.is_interpreted_frame()) {
 406     methodHandle method = deopt_sender.interpreter_frame_method();
 407     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 408     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 409       // Method handle invokes may involve fairly arbitrary chains of
 410       // calls so it's impossible to know how much actual space the
 411       // caller has for locals.
 412       caller_was_method_handle = true;
 413     }
 414   }
 415 
 416   //
 417   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 418   // frame_sizes/frame_pcs[1] next oldest frame (int)
 419   // frame_sizes/frame_pcs[n] youngest frame (int)
 420   //
 421   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 422   // owns the space for the return address to it's caller).  Confusing ain't it.
 423   //
 424   // The vframe array can address vframes with indices running from
 425   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 426   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 427   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 428   // so things look a little strange in this loop.
 429   //
 430   int callee_parameters = 0;
 431   int callee_locals = 0;
 432   for (int index = 0; index < array->frames(); index++ ) {
 433     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 434     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 435     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 436     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 437                                                                                                     callee_locals,
 438                                                                                                     index == 0,
 439                                                                                                     popframe_extra_args);
 440     // This pc doesn't have to be perfect just good enough to identify the frame
 441     // as interpreted so the skeleton frame will be walkable
 442     // The correct pc will be set when the skeleton frame is completely filled out
 443     // The final pc we store in the loop is wrong and will be overwritten below
 444     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 445 
 446     callee_parameters = array->element(index)->method()->size_of_parameters();
 447     callee_locals = array->element(index)->method()->max_locals();
 448     popframe_extra_args = 0;
 449   }
 450 
 451   // Compute whether the root vframe returns a float or double value.
 452   BasicType return_type;
 453   {
 454     methodHandle method(thread, array->element(0)->method());
 455     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 456     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 457   }
 458 
 459   // Compute information for handling adapters and adjusting the frame size of the caller.
 460   int caller_adjustment = 0;
 461 
 462   // Compute the amount the oldest interpreter frame will have to adjust
 463   // its caller's stack by. If the caller is a compiled frame then
 464   // we pretend that the callee has no parameters so that the
 465   // extension counts for the full amount of locals and not just
 466   // locals-parms. This is because without a c2i adapter the parm
 467   // area as created by the compiled frame will not be usable by
 468   // the interpreter. (Depending on the calling convention there
 469   // may not even be enough space).
 470 
 471   // QQQ I'd rather see this pushed down into last_frame_adjust
 472   // and have it take the sender (aka caller).
 473 
 474   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 475     caller_adjustment = last_frame_adjust(0, callee_locals);
 476   } else if (callee_locals > callee_parameters) {
 477     // The caller frame may need extending to accommodate
 478     // non-parameter locals of the first unpacked interpreted frame.
 479     // Compute that adjustment.
 480     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 481   }
 482 
 483   // If the sender is deoptimized the we must retrieve the address of the handler
 484   // since the frame will "magically" show the original pc before the deopt
 485   // and we'd undo the deopt.
 486 
 487   frame_pcs[0] = deopt_sender.raw_pc();
 488 
 489   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 490 
 491 #if INCLUDE_JVMCI
 492   if (exceptionObject() != NULL) {
 493     thread->set_exception_oop(exceptionObject());
 494     exec_mode = Unpack_exception;
 495   }
 496 #endif
 497 
 498   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 499     assert(thread->has_pending_exception(), "should have thrown OOME");
 500     thread->set_exception_oop(thread->pending_exception());
 501     thread->clear_pending_exception();
 502     exec_mode = Unpack_exception;
 503   }
 504 
 505 #if INCLUDE_JVMCI
 506   if (thread->frames_to_pop_failed_realloc() > 0) {
 507     thread->set_pending_monitorenter(false);
 508   }
 509 #endif
 510 
 511   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 512                                       caller_adjustment * BytesPerWord,
 513                                       caller_was_method_handle ? 0 : callee_parameters,
 514                                       number_of_frames,
 515                                       frame_sizes,
 516                                       frame_pcs,
 517                                       return_type,
 518                                       exec_mode);
 519   // On some platforms, we need a way to pass some platform dependent
 520   // information to the unpacking code so the skeletal frames come out
 521   // correct (initial fp value, unextended sp, ...)
 522   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 523 
 524   if (array->frames() > 1) {
 525     if (VerifyStack && TraceDeoptimization) {
 526       ttyLocker ttyl;
 527       tty->print_cr("Deoptimizing method containing inlining");
 528     }
 529   }
 530 
 531   array->set_unroll_block(info);
 532   return info;
 533 }
 534 
 535 // Called to cleanup deoptimization data structures in normal case
 536 // after unpacking to stack and when stack overflow error occurs
 537 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 538                                         vframeArray *array) {
 539 
 540   // Get array if coming from exception
 541   if (array == NULL) {
 542     array = thread->vframe_array_head();
 543   }
 544   thread->set_vframe_array_head(NULL);
 545 
 546   // Free the previous UnrollBlock
 547   vframeArray* old_array = thread->vframe_array_last();
 548   thread->set_vframe_array_last(array);
 549 
 550   if (old_array != NULL) {
 551     UnrollBlock* old_info = old_array->unroll_block();
 552     old_array->set_unroll_block(NULL);
 553     delete old_info;
 554     delete old_array;
 555   }
 556 
 557   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 558   // inside the vframeArray (StackValueCollections)
 559 
 560   delete thread->deopt_mark();
 561   thread->set_deopt_mark(NULL);
 562   thread->set_deopt_compiled_method(NULL);
 563 
 564 
 565   if (JvmtiExport::can_pop_frame()) {
 566 #ifndef CC_INTERP
 567     // Regardless of whether we entered this routine with the pending
 568     // popframe condition bit set, we should always clear it now
 569     thread->clear_popframe_condition();
 570 #else
 571     // C++ interpreter will clear has_pending_popframe when it enters
 572     // with method_resume. For deopt_resume2 we clear it now.
 573     if (thread->popframe_forcing_deopt_reexecution())
 574         thread->clear_popframe_condition();
 575 #endif /* CC_INTERP */
 576   }
 577 
 578   // unpack_frames() is called at the end of the deoptimization handler
 579   // and (in C2) at the end of the uncommon trap handler. Note this fact
 580   // so that an asynchronous stack walker can work again. This counter is
 581   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 582   // the beginning of uncommon_trap().
 583   thread->dec_in_deopt_handler();
 584 }
 585 
 586 // Moved from cpu directories because none of the cpus has callee save values.
 587 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 588 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 589 
 590   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 591   // the days we had adapter frames. When we deoptimize a situation where a
 592   // compiled caller calls a compiled caller will have registers it expects
 593   // to survive the call to the callee. If we deoptimize the callee the only
 594   // way we can restore these registers is to have the oldest interpreter
 595   // frame that we create restore these values. That is what this routine
 596   // will accomplish.
 597 
 598   // At the moment we have modified c2 to not have any callee save registers
 599   // so this problem does not exist and this routine is just a place holder.
 600 
 601   assert(f->is_interpreted_frame(), "must be interpreted");
 602 }
 603 
 604 // Return BasicType of value being returned
 605 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 606 
 607   // We are already active in the special DeoptResourceMark any ResourceObj's we
 608   // allocate will be freed at the end of the routine.
 609 
 610   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 611   // but makes the entry a little slower. There is however a little dance we have to
 612   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 613   ResetNoHandleMark rnhm; // No-op in release/product versions
 614   HandleMark hm;
 615 
 616   frame stub_frame = thread->last_frame();
 617 
 618   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 619   // must point to the vframeArray for the unpack frame.
 620   vframeArray* array = thread->vframe_array_head();
 621 
 622 #ifndef PRODUCT
 623   if (TraceDeoptimization) {
 624     ttyLocker ttyl;
 625     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 626                   p2i(thread), p2i(array), exec_mode);
 627   }
 628 #endif
 629   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 630               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 631 
 632   UnrollBlock* info = array->unroll_block();
 633 
 634   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 635   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 636 
 637   BasicType bt = info->return_type();
 638 
 639   // If we have an exception pending, claim that the return type is an oop
 640   // so the deopt_blob does not overwrite the exception_oop.
 641 
 642   if (exec_mode == Unpack_exception)
 643     bt = T_OBJECT;
 644 
 645   // Cleanup thread deopt data
 646   cleanup_deopt_info(thread, array);
 647 
 648 #ifndef PRODUCT
 649   if (VerifyStack) {
 650     ResourceMark res_mark;
 651     // Clear pending exception to not break verification code (restored afterwards)
 652     PRESERVE_EXCEPTION_MARK;
 653 
 654     thread->validate_frame_layout();
 655 
 656     // Verify that the just-unpacked frames match the interpreter's
 657     // notions of expression stack and locals
 658     vframeArray* cur_array = thread->vframe_array_last();
 659     RegisterMap rm(thread, false);
 660     rm.set_include_argument_oops(false);
 661     bool is_top_frame = true;
 662     int callee_size_of_parameters = 0;
 663     int callee_max_locals = 0;
 664     for (int i = 0; i < cur_array->frames(); i++) {
 665       vframeArrayElement* el = cur_array->element(i);
 666       frame* iframe = el->iframe();
 667       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 668 
 669       // Get the oop map for this bci
 670       InterpreterOopMap mask;
 671       int cur_invoke_parameter_size = 0;
 672       bool try_next_mask = false;
 673       int next_mask_expression_stack_size = -1;
 674       int top_frame_expression_stack_adjustment = 0;
 675       methodHandle mh(thread, iframe->interpreter_frame_method());
 676       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 677       BytecodeStream str(mh);
 678       str.set_start(iframe->interpreter_frame_bci());
 679       int max_bci = mh->code_size();
 680       // Get to the next bytecode if possible
 681       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 682       // Check to see if we can grab the number of outgoing arguments
 683       // at an uncommon trap for an invoke (where the compiler
 684       // generates debug info before the invoke has executed)
 685       Bytecodes::Code cur_code = str.next();
 686       if (Bytecodes::is_invoke(cur_code)) {
 687         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 688         cur_invoke_parameter_size = invoke.size_of_parameters();
 689         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 690           callee_size_of_parameters++;
 691         }
 692       }
 693       if (str.bci() < max_bci) {
 694         Bytecodes::Code next_code = str.next();
 695         if (next_code >= 0) {
 696           // The interpreter oop map generator reports results before
 697           // the current bytecode has executed except in the case of
 698           // calls. It seems to be hard to tell whether the compiler
 699           // has emitted debug information matching the "state before"
 700           // a given bytecode or the state after, so we try both
 701           if (!Bytecodes::is_invoke(cur_code) && cur_code != Bytecodes::_athrow) {
 702             // Get expression stack size for the next bytecode
 703             InterpreterOopMap next_mask;
 704             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 705             next_mask_expression_stack_size = next_mask.expression_stack_size();
 706             if (Bytecodes::is_invoke(next_code)) {
 707               Bytecode_invoke invoke(mh, str.bci());
 708               next_mask_expression_stack_size += invoke.size_of_parameters();
 709             }
 710             // Need to subtract off the size of the result type of
 711             // the bytecode because this is not described in the
 712             // debug info but returned to the interpreter in the TOS
 713             // caching register
 714             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 715             if (bytecode_result_type != T_ILLEGAL) {
 716               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 717             }
 718             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 719             try_next_mask = true;
 720           }
 721         }
 722       }
 723 
 724       // Verify stack depth and oops in frame
 725       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 726       if (!(
 727             /* SPARC */
 728             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 729             /* x86 */
 730             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 731             (try_next_mask &&
 732              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 733                                                                     top_frame_expression_stack_adjustment))) ||
 734             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 735             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 736              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 737             )) {
 738         {
 739           ttyLocker ttyl;
 740 
 741           // Print out some information that will help us debug the problem
 742           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 743           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 744           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 745                         iframe->interpreter_frame_expression_stack_size());
 746           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 747           tty->print_cr("  try_next_mask = %d", try_next_mask);
 748           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 749           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 750           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 751           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 752           tty->print_cr("  exec_mode = %d", exec_mode);
 753           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 754           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 755           tty->print_cr("  Interpreted frames:");
 756           for (int k = 0; k < cur_array->frames(); k++) {
 757             vframeArrayElement* el = cur_array->element(k);
 758             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 759           }
 760           cur_array->print_on_2(tty);
 761         } // release tty lock before calling guarantee
 762         guarantee(false, "wrong number of expression stack elements during deopt");
 763       }
 764       VerifyOopClosure verify;
 765       iframe->oops_interpreted_do(&verify, &rm, false);
 766       callee_size_of_parameters = mh->size_of_parameters();
 767       callee_max_locals = mh->max_locals();
 768       is_top_frame = false;
 769     }
 770   }
 771 #endif /* !PRODUCT */
 772 
 773 
 774   return bt;
 775 JRT_END
 776 
 777 
 778 int Deoptimization::deoptimize_dependents() {
 779   Threads::deoptimized_wrt_marked_nmethods();
 780   return 0;
 781 }
 782 
 783 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 784   = Deoptimization::Action_reinterpret;
 785 
 786 #if COMPILER2_OR_JVMCI
 787 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 788   Handle pending_exception(THREAD, thread->pending_exception());
 789   const char* exception_file = thread->exception_file();
 790   int exception_line = thread->exception_line();
 791   thread->clear_pending_exception();
 792 
 793   bool failures = false;
 794 
 795   for (int i = 0; i < objects->length(); i++) {
 796     assert(objects->at(i)->is_object(), "invalid debug information");
 797     ObjectValue* sv = (ObjectValue*) objects->at(i);
 798 
 799     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 800     oop obj = NULL;
 801 
 802     if (k->is_instance_klass()) {
 803       InstanceKlass* ik = InstanceKlass::cast(k);
 804       obj = ik->allocate_instance(THREAD);
 805     } else if (k->is_typeArray_klass()) {
 806       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 807       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 808       int len = sv->field_size() / type2size[ak->element_type()];
 809       obj = ak->allocate(len, THREAD);
 810     } else if (k->is_objArray_klass()) {
 811       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 812       obj = ak->allocate(sv->field_size(), THREAD);
 813     }
 814 
 815     if (obj == NULL) {
 816       failures = true;
 817     }
 818 
 819     assert(sv->value().is_null(), "redundant reallocation");
 820     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 821     CLEAR_PENDING_EXCEPTION;
 822     sv->set_value(obj);
 823   }
 824 
 825   if (failures) {
 826     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 827   } else if (pending_exception.not_null()) {
 828     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 829   }
 830 
 831   return failures;
 832 }
 833 
 834 // restore elements of an eliminated type array
 835 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 836   int index = 0;
 837   intptr_t val;
 838 
 839   for (int i = 0; i < sv->field_size(); i++) {
 840     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 841     switch(type) {
 842     case T_LONG: case T_DOUBLE: {
 843       assert(value->type() == T_INT, "Agreement.");
 844       StackValue* low =
 845         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 846 #ifdef _LP64
 847       jlong res = (jlong)low->get_int();
 848 #else
 849 #ifdef SPARC
 850       // For SPARC we have to swap high and low words.
 851       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 852 #else
 853       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 854 #endif //SPARC
 855 #endif
 856       obj->long_at_put(index, res);
 857       break;
 858     }
 859 
 860     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 861     case T_INT: case T_FLOAT: { // 4 bytes.
 862       assert(value->type() == T_INT, "Agreement.");
 863       bool big_value = false;
 864       if (i + 1 < sv->field_size() && type == T_INT) {
 865         if (sv->field_at(i)->is_location()) {
 866           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 867           if (type == Location::dbl || type == Location::lng) {
 868             big_value = true;
 869           }
 870         } else if (sv->field_at(i)->is_constant_int()) {
 871           ScopeValue* next_scope_field = sv->field_at(i + 1);
 872           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 873             big_value = true;
 874           }
 875         }
 876       }
 877 
 878       if (big_value) {
 879         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 880   #ifdef _LP64
 881         jlong res = (jlong)low->get_int();
 882   #else
 883   #ifdef SPARC
 884         // For SPARC we have to swap high and low words.
 885         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 886   #else
 887         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 888   #endif //SPARC
 889   #endif
 890         obj->int_at_put(index, (jint)*((jint*)&res));
 891         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 892       } else {
 893         val = value->get_int();
 894         obj->int_at_put(index, (jint)*((jint*)&val));
 895       }
 896       break;
 897     }
 898 
 899     case T_SHORT:
 900       assert(value->type() == T_INT, "Agreement.");
 901       val = value->get_int();
 902       obj->short_at_put(index, (jshort)*((jint*)&val));
 903       break;
 904 
 905     case T_CHAR:
 906       assert(value->type() == T_INT, "Agreement.");
 907       val = value->get_int();
 908       obj->char_at_put(index, (jchar)*((jint*)&val));
 909       break;
 910 
 911     case T_BYTE:
 912       assert(value->type() == T_INT, "Agreement.");
 913       val = value->get_int();
 914       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 915       break;
 916 
 917     case T_BOOLEAN:
 918       assert(value->type() == T_INT, "Agreement.");
 919       val = value->get_int();
 920       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 921       break;
 922 
 923       default:
 924         ShouldNotReachHere();
 925     }
 926     index++;
 927   }
 928 }
 929 
 930 
 931 // restore fields of an eliminated object array
 932 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 933   for (int i = 0; i < sv->field_size(); i++) {
 934     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 935     assert(value->type() == T_OBJECT, "object element expected");
 936     obj->obj_at_put(i, value->get_obj()());
 937   }
 938 }
 939 
 940 class ReassignedField {
 941 public:
 942   int _offset;
 943   BasicType _type;
 944 public:
 945   ReassignedField() {
 946     _offset = 0;
 947     _type = T_ILLEGAL;
 948   }
 949 };
 950 
 951 int compare(ReassignedField* left, ReassignedField* right) {
 952   return left->_offset - right->_offset;
 953 }
 954 
 955 // Restore fields of an eliminated instance object using the same field order
 956 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 957 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 958   if (klass->superklass() != NULL) {
 959     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 960   }
 961 
 962   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 963   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 964     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 965       ReassignedField field;
 966       field._offset = fs.offset();
 967       field._type = FieldType::basic_type(fs.signature());
 968       fields->append(field);
 969     }
 970   }
 971   fields->sort(compare);
 972   for (int i = 0; i < fields->length(); i++) {
 973     intptr_t val;
 974     ScopeValue* scope_field = sv->field_at(svIndex);
 975     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 976     int offset = fields->at(i)._offset;
 977     BasicType type = fields->at(i)._type;
 978     switch (type) {
 979       case T_OBJECT: case T_ARRAY:
 980         assert(value->type() == T_OBJECT, "Agreement.");
 981         obj->obj_field_put(offset, value->get_obj()());
 982         break;
 983 
 984       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 985       case T_INT: case T_FLOAT: { // 4 bytes.
 986         assert(value->type() == T_INT, "Agreement.");
 987         bool big_value = false;
 988         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
 989           if (scope_field->is_location()) {
 990             Location::Type type = ((LocationValue*) scope_field)->location().type();
 991             if (type == Location::dbl || type == Location::lng) {
 992               big_value = true;
 993             }
 994           }
 995           if (scope_field->is_constant_int()) {
 996             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
 997             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 998               big_value = true;
 999             }
1000           }
1001         }
1002 
1003         if (big_value) {
1004           i++;
1005           assert(i < fields->length(), "second T_INT field needed");
1006           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1007         } else {
1008           val = value->get_int();
1009           obj->int_field_put(offset, (jint)*((jint*)&val));
1010           break;
1011         }
1012       }
1013         /* no break */
1014 
1015       case T_LONG: case T_DOUBLE: {
1016         assert(value->type() == T_INT, "Agreement.");
1017         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1018 #ifdef _LP64
1019         jlong res = (jlong)low->get_int();
1020 #else
1021 #ifdef SPARC
1022         // For SPARC we have to swap high and low words.
1023         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1024 #else
1025         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1026 #endif //SPARC
1027 #endif
1028         obj->long_field_put(offset, res);
1029         break;
1030       }
1031 
1032       case T_SHORT:
1033         assert(value->type() == T_INT, "Agreement.");
1034         val = value->get_int();
1035         obj->short_field_put(offset, (jshort)*((jint*)&val));
1036         break;
1037 
1038       case T_CHAR:
1039         assert(value->type() == T_INT, "Agreement.");
1040         val = value->get_int();
1041         obj->char_field_put(offset, (jchar)*((jint*)&val));
1042         break;
1043 
1044       case T_BYTE:
1045         assert(value->type() == T_INT, "Agreement.");
1046         val = value->get_int();
1047         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1048         break;
1049 
1050       case T_BOOLEAN:
1051         assert(value->type() == T_INT, "Agreement.");
1052         val = value->get_int();
1053         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1054         break;
1055 
1056       default:
1057         ShouldNotReachHere();
1058     }
1059     svIndex++;
1060   }
1061   return svIndex;
1062 }
1063 
1064 // restore fields of all eliminated objects and arrays
1065 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1066   for (int i = 0; i < objects->length(); i++) {
1067     ObjectValue* sv = (ObjectValue*) objects->at(i);
1068     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1069     Handle obj = sv->value();
1070     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1071     if (PrintDeoptimizationDetails) {
1072       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1073     }
1074     if (obj.is_null()) {
1075       continue;
1076     }
1077 
1078     if (k->is_instance_klass()) {
1079       InstanceKlass* ik = InstanceKlass::cast(k);
1080       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1081     } else if (k->is_typeArray_klass()) {
1082       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1083       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1084     } else if (k->is_objArray_klass()) {
1085       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1086     }
1087   }
1088 }
1089 
1090 
1091 // relock objects for which synchronization was eliminated
1092 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1093   for (int i = 0; i < monitors->length(); i++) {
1094     MonitorInfo* mon_info = monitors->at(i);
1095     if (mon_info->eliminated()) {
1096       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1097       if (!mon_info->owner_is_scalar_replaced()) {
1098         Handle obj(thread, mon_info->owner());
1099         markOop mark = obj->mark();
1100         if (UseBiasedLocking && mark->has_bias_pattern()) {
1101           // New allocated objects may have the mark set to anonymously biased.
1102           // Also the deoptimized method may called methods with synchronization
1103           // where the thread-local object is bias locked to the current thread.
1104           assert(mark->is_biased_anonymously() ||
1105                  mark->biased_locker() == thread, "should be locked to current thread");
1106           // Reset mark word to unbiased prototype.
1107           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1108           obj->set_mark(unbiased_prototype);
1109         }
1110         BasicLock* lock = mon_info->lock();
1111         ObjectSynchronizer::slow_enter(obj, lock, thread);
1112         assert(mon_info->owner()->is_locked(), "object must be locked now");
1113       }
1114     }
1115   }
1116 }
1117 
1118 
1119 #ifndef PRODUCT
1120 // print information about reallocated objects
1121 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1122   fieldDescriptor fd;
1123 
1124   for (int i = 0; i < objects->length(); i++) {
1125     ObjectValue* sv = (ObjectValue*) objects->at(i);
1126     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1127     Handle obj = sv->value();
1128 
1129     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1130     k->print_value();
1131     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1132     if (obj.is_null()) {
1133       tty->print(" allocation failed");
1134     } else {
1135       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1136     }
1137     tty->cr();
1138 
1139     if (Verbose && !obj.is_null()) {
1140       k->oop_print_on(obj(), tty);
1141     }
1142   }
1143 }
1144 #endif
1145 #endif // COMPILER2_OR_JVMCI
1146 
1147 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1148   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1149 
1150 #ifndef PRODUCT
1151   if (PrintDeoptimizationDetails) {
1152     ttyLocker ttyl;
1153     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1154     fr.print_on(tty);
1155     tty->print_cr("     Virtual frames (innermost first):");
1156     for (int index = 0; index < chunk->length(); index++) {
1157       compiledVFrame* vf = chunk->at(index);
1158       tty->print("       %2d - ", index);
1159       vf->print_value();
1160       int bci = chunk->at(index)->raw_bci();
1161       const char* code_name;
1162       if (bci == SynchronizationEntryBCI) {
1163         code_name = "sync entry";
1164       } else {
1165         Bytecodes::Code code = vf->method()->code_at(bci);
1166         code_name = Bytecodes::name(code);
1167       }
1168       tty->print(" - %s", code_name);
1169       tty->print_cr(" @ bci %d ", bci);
1170       if (Verbose) {
1171         vf->print();
1172         tty->cr();
1173       }
1174     }
1175   }
1176 #endif
1177 
1178   // Register map for next frame (used for stack crawl).  We capture
1179   // the state of the deopt'ing frame's caller.  Thus if we need to
1180   // stuff a C2I adapter we can properly fill in the callee-save
1181   // register locations.
1182   frame caller = fr.sender(reg_map);
1183   int frame_size = caller.sp() - fr.sp();
1184 
1185   frame sender = caller;
1186 
1187   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1188   // the vframeArray containing the unpacking information is allocated in the C heap.
1189   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1190   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1191 
1192   // Compare the vframeArray to the collected vframes
1193   assert(array->structural_compare(thread, chunk), "just checking");
1194 
1195 #ifndef PRODUCT
1196   if (PrintDeoptimizationDetails) {
1197     ttyLocker ttyl;
1198     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1199   }
1200 #endif // PRODUCT
1201 
1202   return array;
1203 }
1204 
1205 #if COMPILER2_OR_JVMCI
1206 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1207   // Reallocation of some scalar replaced objects failed. Record
1208   // that we need to pop all the interpreter frames for the
1209   // deoptimized compiled frame.
1210   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1211   thread->set_frames_to_pop_failed_realloc(array->frames());
1212   // Unlock all monitors here otherwise the interpreter will see a
1213   // mix of locked and unlocked monitors (because of failed
1214   // reallocations of synchronized objects) and be confused.
1215   for (int i = 0; i < array->frames(); i++) {
1216     MonitorChunk* monitors = array->element(i)->monitors();
1217     if (monitors != NULL) {
1218       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1219         BasicObjectLock* src = monitors->at(j);
1220         if (src->obj() != NULL) {
1221           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1222         }
1223       }
1224       array->element(i)->free_monitors(thread);
1225 #ifdef ASSERT
1226       array->element(i)->set_removed_monitors();
1227 #endif
1228     }
1229   }
1230 }
1231 #endif
1232 
1233 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1234   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1235   Thread* thread = Thread::current();
1236   for (int i = 0; i < monitors->length(); i++) {
1237     MonitorInfo* mon_info = monitors->at(i);
1238     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1239       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1240     }
1241   }
1242 }
1243 
1244 
1245 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1246   if (!UseBiasedLocking) {
1247     return;
1248   }
1249 
1250   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1251 
1252   // Unfortunately we don't have a RegisterMap available in most of
1253   // the places we want to call this routine so we need to walk the
1254   // stack again to update the register map.
1255   if (map == NULL || !map->update_map()) {
1256     StackFrameStream sfs(thread, true);
1257     bool found = false;
1258     while (!found && !sfs.is_done()) {
1259       frame* cur = sfs.current();
1260       sfs.next();
1261       found = cur->id() == fr.id();
1262     }
1263     assert(found, "frame to be deoptimized not found on target thread's stack");
1264     map = sfs.register_map();
1265   }
1266 
1267   vframe* vf = vframe::new_vframe(&fr, map, thread);
1268   compiledVFrame* cvf = compiledVFrame::cast(vf);
1269   // Revoke monitors' biases in all scopes
1270   while (!cvf->is_top()) {
1271     collect_monitors(cvf, objects_to_revoke);
1272     cvf = compiledVFrame::cast(cvf->sender());
1273   }
1274   collect_monitors(cvf, objects_to_revoke);
1275 
1276   if (SafepointSynchronize::is_at_safepoint()) {
1277     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1278   } else {
1279     BiasedLocking::revoke(objects_to_revoke);
1280   }
1281 }
1282 
1283 
1284 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1285   assert(fr.can_be_deoptimized(), "checking frame type");
1286 
1287   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1288 
1289   if (LogCompilation && xtty != NULL) {
1290     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1291     assert(cm != NULL, "only compiled methods can deopt");
1292 
1293     ttyLocker ttyl;
1294     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1295     cm->log_identity(xtty);
1296     xtty->end_head();
1297     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1298       xtty->begin_elem("jvms bci='%d'", sd->bci());
1299       xtty->method(sd->method());
1300       xtty->end_elem();
1301       if (sd->is_top())  break;
1302     }
1303     xtty->tail("deoptimized");
1304   }
1305 
1306   // Patch the compiled method so that when execution returns to it we will
1307   // deopt the execution state and return to the interpreter.
1308   fr.deoptimize(thread);
1309 }
1310 
1311 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1312   deoptimize(thread, fr, map, Reason_constraint);
1313 }
1314 
1315 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1316   // Deoptimize only if the frame comes from compile code.
1317   // Do not deoptimize the frame which is already patched
1318   // during the execution of the loops below.
1319   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1320     return;
1321   }
1322   ResourceMark rm;
1323   DeoptimizationMarker dm;
1324   if (UseBiasedLocking) {
1325     revoke_biases_of_monitors(thread, fr, map);
1326   }
1327   deoptimize_single_frame(thread, fr, reason);
1328 
1329 }
1330 
1331 #if INCLUDE_JVMCI
1332 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1333   // there is no exception handler for this pc => deoptimize
1334   cm->make_not_entrant();
1335 
1336   // Use Deoptimization::deoptimize for all of its side-effects:
1337   // revoking biases of monitors, gathering traps statistics, logging...
1338   // it also patches the return pc but we do not care about that
1339   // since we return a continuation to the deopt_blob below.
1340   JavaThread* thread = JavaThread::current();
1341   RegisterMap reg_map(thread, UseBiasedLocking);
1342   frame runtime_frame = thread->last_frame();
1343   frame caller_frame = runtime_frame.sender(&reg_map);
1344   assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method");
1345   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1346 
1347   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1348   if (trap_mdo != NULL) {
1349     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1350   }
1351 
1352   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1353 }
1354 #endif
1355 
1356 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1357   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1358          "can only deoptimize other thread at a safepoint");
1359   // Compute frame and register map based on thread and sp.
1360   RegisterMap reg_map(thread, UseBiasedLocking);
1361   frame fr = thread->last_frame();
1362   while (fr.id() != id) {
1363     fr = fr.sender(&reg_map);
1364   }
1365   deoptimize(thread, fr, &reg_map, reason);
1366 }
1367 
1368 
1369 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1370   if (thread == Thread::current()) {
1371     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1372   } else {
1373     VM_DeoptimizeFrame deopt(thread, id, reason);
1374     VMThread::execute(&deopt);
1375   }
1376 }
1377 
1378 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1379   deoptimize_frame(thread, id, Reason_constraint);
1380 }
1381 
1382 // JVMTI PopFrame support
1383 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1384 {
1385   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1386 }
1387 JRT_END
1388 
1389 MethodData*
1390 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1391                                 bool create_if_missing) {
1392   Thread* THREAD = thread;
1393   MethodData* mdo = m()->method_data();
1394   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1395     // Build an MDO.  Ignore errors like OutOfMemory;
1396     // that simply means we won't have an MDO to update.
1397     Method::build_interpreter_method_data(m, THREAD);
1398     if (HAS_PENDING_EXCEPTION) {
1399       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1400       CLEAR_PENDING_EXCEPTION;
1401     }
1402     mdo = m()->method_data();
1403   }
1404   return mdo;
1405 }
1406 
1407 #if COMPILER2_OR_JVMCI
1408 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1409   // in case of an unresolved klass entry, load the class.
1410   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1411     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1412     return;
1413   }
1414 
1415   if (!constant_pool->tag_at(index).is_symbol()) return;
1416 
1417   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1418   Symbol*  symbol  = constant_pool->symbol_at(index);
1419 
1420   // class name?
1421   if (symbol->char_at(0) != '(') {
1422     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1423     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1424     return;
1425   }
1426 
1427   // then it must be a signature!
1428   ResourceMark rm(THREAD);
1429   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1430     if (ss.is_object()) {
1431       Symbol* class_name = ss.as_symbol(CHECK);
1432       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1433       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1434     }
1435   }
1436 }
1437 
1438 
1439 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1440   EXCEPTION_MARK;
1441   load_class_by_index(constant_pool, index, THREAD);
1442   if (HAS_PENDING_EXCEPTION) {
1443     // Exception happened during classloading. We ignore the exception here, since it
1444     // is going to be rethrown since the current activation is going to be deoptimized and
1445     // the interpreter will re-execute the bytecode.
1446     CLEAR_PENDING_EXCEPTION;
1447     // Class loading called java code which may have caused a stack
1448     // overflow. If the exception was thrown right before the return
1449     // to the runtime the stack is no longer guarded. Reguard the
1450     // stack otherwise if we return to the uncommon trap blob and the
1451     // stack bang causes a stack overflow we crash.
1452     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1453     JavaThread* thread = (JavaThread*)THREAD;
1454     bool guard_pages_enabled = thread->stack_guards_enabled();
1455     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1456     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1457   }
1458 }
1459 
1460 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1461   HandleMark hm;
1462 
1463   // uncommon_trap() is called at the beginning of the uncommon trap
1464   // handler. Note this fact before we start generating temporary frames
1465   // that can confuse an asynchronous stack walker. This counter is
1466   // decremented at the end of unpack_frames().
1467   thread->inc_in_deopt_handler();
1468 
1469   // We need to update the map if we have biased locking.
1470 #if INCLUDE_JVMCI
1471   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1472   RegisterMap reg_map(thread, true);
1473 #else
1474   RegisterMap reg_map(thread, UseBiasedLocking);
1475 #endif
1476   frame stub_frame = thread->last_frame();
1477   frame fr = stub_frame.sender(&reg_map);
1478   // Make sure the calling nmethod is not getting deoptimized and removed
1479   // before we are done with it.
1480   nmethodLocker nl(fr.pc());
1481 
1482   // Log a message
1483   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1484               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1485 
1486   {
1487     ResourceMark rm;
1488 
1489     // Revoke biases of any monitors in the frame to ensure we can migrate them
1490     revoke_biases_of_monitors(thread, fr, &reg_map);
1491 
1492     DeoptReason reason = trap_request_reason(trap_request);
1493     DeoptAction action = trap_request_action(trap_request);
1494 #if INCLUDE_JVMCI
1495     int debug_id = trap_request_debug_id(trap_request);
1496 #endif
1497     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1498 
1499     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1500     compiledVFrame* cvf = compiledVFrame::cast(vf);
1501 
1502     CompiledMethod* nm = cvf->code();
1503 
1504     ScopeDesc*      trap_scope  = cvf->scope();
1505 
1506     if (TraceDeoptimization) {
1507       ttyLocker ttyl;
1508       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1509 #if INCLUDE_JVMCI
1510           , debug_id
1511 #endif
1512           );
1513     }
1514 
1515     methodHandle    trap_method = trap_scope->method();
1516     int             trap_bci    = trap_scope->bci();
1517 #if INCLUDE_JVMCI
1518     jlong           speculation = thread->pending_failed_speculation();
1519     if (nm->is_compiled_by_jvmci() && nm->is_nmethod()) { // Exclude AOTed methods
1520       nm->as_nmethod()->update_speculation(thread);
1521     } else {
1522       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
1523     }
1524 
1525     if (trap_bci == SynchronizationEntryBCI) {
1526       trap_bci = 0;
1527       thread->set_pending_monitorenter(true);
1528     }
1529 
1530     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1531       thread->set_pending_transfer_to_interpreter(true);
1532     }
1533 #endif
1534 
1535     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1536     // Record this event in the histogram.
1537     gather_statistics(reason, action, trap_bc);
1538 
1539     // Ensure that we can record deopt. history:
1540     // Need MDO to record RTM code generation state.
1541     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1542 
1543     methodHandle profiled_method;
1544 #if INCLUDE_JVMCI
1545     if (nm->is_compiled_by_jvmci()) {
1546       profiled_method = nm->method();
1547     } else {
1548       profiled_method = trap_method;
1549     }
1550 #else
1551     profiled_method = trap_method;
1552 #endif
1553 
1554     MethodData* trap_mdo =
1555       get_method_data(thread, profiled_method, create_if_missing);
1556 
1557     // Log a message
1558     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1559                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1560                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1561 
1562     // Print a bunch of diagnostics, if requested.
1563     if (TraceDeoptimization || LogCompilation) {
1564       ResourceMark rm;
1565       ttyLocker ttyl;
1566       char buf[100];
1567       if (xtty != NULL) {
1568         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1569                          os::current_thread_id(),
1570                          format_trap_request(buf, sizeof(buf), trap_request));
1571 #if INCLUDE_JVMCI
1572         if (speculation != 0) {
1573           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
1574         }
1575 #endif
1576         nm->log_identity(xtty);
1577       }
1578       Symbol* class_name = NULL;
1579       bool unresolved = false;
1580       if (unloaded_class_index >= 0) {
1581         constantPoolHandle constants (THREAD, trap_method->constants());
1582         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1583           class_name = constants->klass_name_at(unloaded_class_index);
1584           unresolved = true;
1585           if (xtty != NULL)
1586             xtty->print(" unresolved='1'");
1587         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1588           class_name = constants->symbol_at(unloaded_class_index);
1589         }
1590         if (xtty != NULL)
1591           xtty->name(class_name);
1592       }
1593       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1594         // Dump the relevant MDO state.
1595         // This is the deopt count for the current reason, any previous
1596         // reasons or recompiles seen at this point.
1597         int dcnt = trap_mdo->trap_count(reason);
1598         if (dcnt != 0)
1599           xtty->print(" count='%d'", dcnt);
1600         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1601         int dos = (pdata == NULL)? 0: pdata->trap_state();
1602         if (dos != 0) {
1603           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1604           if (trap_state_is_recompiled(dos)) {
1605             int recnt2 = trap_mdo->overflow_recompile_count();
1606             if (recnt2 != 0)
1607               xtty->print(" recompiles2='%d'", recnt2);
1608           }
1609         }
1610       }
1611       if (xtty != NULL) {
1612         xtty->stamp();
1613         xtty->end_head();
1614       }
1615       if (TraceDeoptimization) {  // make noise on the tty
1616         tty->print("Uncommon trap occurred in");
1617         nm->method()->print_short_name(tty);
1618         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1619 #if INCLUDE_JVMCI
1620         if (nm->is_nmethod()) {
1621           const char* installed_code_name = nm->as_nmethod()->jvmci_name();
1622           if (installed_code_name != NULL) {
1623             tty->print(" (JVMCI: installed code name=%s) ", installed_code_name);
1624           }
1625         }
1626 #endif
1627         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1628                    p2i(fr.pc()),
1629                    os::current_thread_id(),
1630                    trap_reason_name(reason),
1631                    trap_action_name(action),
1632                    unloaded_class_index
1633 #if INCLUDE_JVMCI
1634                    , debug_id
1635 #endif
1636                    );
1637         if (class_name != NULL) {
1638           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1639           class_name->print_symbol_on(tty);
1640         }
1641         tty->cr();
1642       }
1643       if (xtty != NULL) {
1644         // Log the precise location of the trap.
1645         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1646           xtty->begin_elem("jvms bci='%d'", sd->bci());
1647           xtty->method(sd->method());
1648           xtty->end_elem();
1649           if (sd->is_top())  break;
1650         }
1651         xtty->tail("uncommon_trap");
1652       }
1653     }
1654     // (End diagnostic printout.)
1655 
1656     // Load class if necessary
1657     if (unloaded_class_index >= 0) {
1658       constantPoolHandle constants(THREAD, trap_method->constants());
1659       load_class_by_index(constants, unloaded_class_index);
1660     }
1661 
1662     // Flush the nmethod if necessary and desirable.
1663     //
1664     // We need to avoid situations where we are re-flushing the nmethod
1665     // because of a hot deoptimization site.  Repeated flushes at the same
1666     // point need to be detected by the compiler and avoided.  If the compiler
1667     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1668     // module must take measures to avoid an infinite cycle of recompilation
1669     // and deoptimization.  There are several such measures:
1670     //
1671     //   1. If a recompilation is ordered a second time at some site X
1672     //   and for the same reason R, the action is adjusted to 'reinterpret',
1673     //   to give the interpreter time to exercise the method more thoroughly.
1674     //   If this happens, the method's overflow_recompile_count is incremented.
1675     //
1676     //   2. If the compiler fails to reduce the deoptimization rate, then
1677     //   the method's overflow_recompile_count will begin to exceed the set
1678     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1679     //   is adjusted to 'make_not_compilable', and the method is abandoned
1680     //   to the interpreter.  This is a performance hit for hot methods,
1681     //   but is better than a disastrous infinite cycle of recompilations.
1682     //   (Actually, only the method containing the site X is abandoned.)
1683     //
1684     //   3. In parallel with the previous measures, if the total number of
1685     //   recompilations of a method exceeds the much larger set limit
1686     //   PerMethodRecompilationCutoff, the method is abandoned.
1687     //   This should only happen if the method is very large and has
1688     //   many "lukewarm" deoptimizations.  The code which enforces this
1689     //   limit is elsewhere (class nmethod, class Method).
1690     //
1691     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1692     // to recompile at each bytecode independently of the per-BCI cutoff.
1693     //
1694     // The decision to update code is up to the compiler, and is encoded
1695     // in the Action_xxx code.  If the compiler requests Action_none
1696     // no trap state is changed, no compiled code is changed, and the
1697     // computation suffers along in the interpreter.
1698     //
1699     // The other action codes specify various tactics for decompilation
1700     // and recompilation.  Action_maybe_recompile is the loosest, and
1701     // allows the compiled code to stay around until enough traps are seen,
1702     // and until the compiler gets around to recompiling the trapping method.
1703     //
1704     // The other actions cause immediate removal of the present code.
1705 
1706     // Traps caused by injected profile shouldn't pollute trap counts.
1707     bool injected_profile_trap = trap_method->has_injected_profile() &&
1708                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1709 
1710     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1711     bool make_not_entrant = false;
1712     bool make_not_compilable = false;
1713     bool reprofile = false;
1714     switch (action) {
1715     case Action_none:
1716       // Keep the old code.
1717       update_trap_state = false;
1718       break;
1719     case Action_maybe_recompile:
1720       // Do not need to invalidate the present code, but we can
1721       // initiate another
1722       // Start compiler without (necessarily) invalidating the nmethod.
1723       // The system will tolerate the old code, but new code should be
1724       // generated when possible.
1725       break;
1726     case Action_reinterpret:
1727       // Go back into the interpreter for a while, and then consider
1728       // recompiling form scratch.
1729       make_not_entrant = true;
1730       // Reset invocation counter for outer most method.
1731       // This will allow the interpreter to exercise the bytecodes
1732       // for a while before recompiling.
1733       // By contrast, Action_make_not_entrant is immediate.
1734       //
1735       // Note that the compiler will track null_check, null_assert,
1736       // range_check, and class_check events and log them as if they
1737       // had been traps taken from compiled code.  This will update
1738       // the MDO trap history so that the next compilation will
1739       // properly detect hot trap sites.
1740       reprofile = true;
1741       break;
1742     case Action_make_not_entrant:
1743       // Request immediate recompilation, and get rid of the old code.
1744       // Make them not entrant, so next time they are called they get
1745       // recompiled.  Unloaded classes are loaded now so recompile before next
1746       // time they are called.  Same for uninitialized.  The interpreter will
1747       // link the missing class, if any.
1748       make_not_entrant = true;
1749       break;
1750     case Action_make_not_compilable:
1751       // Give up on compiling this method at all.
1752       make_not_entrant = true;
1753       make_not_compilable = true;
1754       break;
1755     default:
1756       ShouldNotReachHere();
1757     }
1758 
1759     // Setting +ProfileTraps fixes the following, on all platforms:
1760     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1761     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1762     // recompile relies on a MethodData* to record heroic opt failures.
1763 
1764     // Whether the interpreter is producing MDO data or not, we also need
1765     // to use the MDO to detect hot deoptimization points and control
1766     // aggressive optimization.
1767     bool inc_recompile_count = false;
1768     ProfileData* pdata = NULL;
1769     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1770       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1771       uint this_trap_count = 0;
1772       bool maybe_prior_trap = false;
1773       bool maybe_prior_recompile = false;
1774       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1775 #if INCLUDE_JVMCI
1776                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1777 #endif
1778                                    nm->method(),
1779                                    //outputs:
1780                                    this_trap_count,
1781                                    maybe_prior_trap,
1782                                    maybe_prior_recompile);
1783       // Because the interpreter also counts null, div0, range, and class
1784       // checks, these traps from compiled code are double-counted.
1785       // This is harmless; it just means that the PerXTrapLimit values
1786       // are in effect a little smaller than they look.
1787 
1788       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1789       if (per_bc_reason != Reason_none) {
1790         // Now take action based on the partially known per-BCI history.
1791         if (maybe_prior_trap
1792             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1793           // If there are too many traps at this BCI, force a recompile.
1794           // This will allow the compiler to see the limit overflow, and
1795           // take corrective action, if possible.  The compiler generally
1796           // does not use the exact PerBytecodeTrapLimit value, but instead
1797           // changes its tactics if it sees any traps at all.  This provides
1798           // a little hysteresis, delaying a recompile until a trap happens
1799           // several times.
1800           //
1801           // Actually, since there is only one bit of counter per BCI,
1802           // the possible per-BCI counts are {0,1,(per-method count)}.
1803           // This produces accurate results if in fact there is only
1804           // one hot trap site, but begins to get fuzzy if there are
1805           // many sites.  For example, if there are ten sites each
1806           // trapping two or more times, they each get the blame for
1807           // all of their traps.
1808           make_not_entrant = true;
1809         }
1810 
1811         // Detect repeated recompilation at the same BCI, and enforce a limit.
1812         if (make_not_entrant && maybe_prior_recompile) {
1813           // More than one recompile at this point.
1814           inc_recompile_count = maybe_prior_trap;
1815         }
1816       } else {
1817         // For reasons which are not recorded per-bytecode, we simply
1818         // force recompiles unconditionally.
1819         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1820         make_not_entrant = true;
1821       }
1822 
1823       // Go back to the compiler if there are too many traps in this method.
1824       if (this_trap_count >= per_method_trap_limit(reason)) {
1825         // If there are too many traps in this method, force a recompile.
1826         // This will allow the compiler to see the limit overflow, and
1827         // take corrective action, if possible.
1828         // (This condition is an unlikely backstop only, because the
1829         // PerBytecodeTrapLimit is more likely to take effect first,
1830         // if it is applicable.)
1831         make_not_entrant = true;
1832       }
1833 
1834       // Here's more hysteresis:  If there has been a recompile at
1835       // this trap point already, run the method in the interpreter
1836       // for a while to exercise it more thoroughly.
1837       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1838         reprofile = true;
1839       }
1840     }
1841 
1842     // Take requested actions on the method:
1843 
1844     // Recompile
1845     if (make_not_entrant) {
1846       if (!nm->make_not_entrant()) {
1847         return; // the call did not change nmethod's state
1848       }
1849 
1850       if (pdata != NULL) {
1851         // Record the recompilation event, if any.
1852         int tstate0 = pdata->trap_state();
1853         int tstate1 = trap_state_set_recompiled(tstate0, true);
1854         if (tstate1 != tstate0)
1855           pdata->set_trap_state(tstate1);
1856       }
1857 
1858 #if INCLUDE_RTM_OPT
1859       // Restart collecting RTM locking abort statistic if the method
1860       // is recompiled for a reason other than RTM state change.
1861       // Assume that in new recompiled code the statistic could be different,
1862       // for example, due to different inlining.
1863       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1864           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1865         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1866       }
1867 #endif
1868       // For code aging we count traps separately here, using make_not_entrant()
1869       // as a guard against simultaneous deopts in multiple threads.
1870       if (reason == Reason_tenured && trap_mdo != NULL) {
1871         trap_mdo->inc_tenure_traps();
1872       }
1873     }
1874 
1875     if (inc_recompile_count) {
1876       trap_mdo->inc_overflow_recompile_count();
1877       if ((uint)trap_mdo->overflow_recompile_count() >
1878           (uint)PerBytecodeRecompilationCutoff) {
1879         // Give up on the method containing the bad BCI.
1880         if (trap_method() == nm->method()) {
1881           make_not_compilable = true;
1882         } else {
1883           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1884           // But give grace to the enclosing nm->method().
1885         }
1886       }
1887     }
1888 
1889     // Reprofile
1890     if (reprofile) {
1891       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1892     }
1893 
1894     // Give up compiling
1895     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1896       assert(make_not_entrant, "consistent");
1897       nm->method()->set_not_compilable(CompLevel_full_optimization);
1898     }
1899 
1900   } // Free marked resources
1901 
1902 }
1903 JRT_END
1904 
1905 ProfileData*
1906 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1907                                          int trap_bci,
1908                                          Deoptimization::DeoptReason reason,
1909                                          bool update_total_trap_count,
1910 #if INCLUDE_JVMCI
1911                                          bool is_osr,
1912 #endif
1913                                          Method* compiled_method,
1914                                          //outputs:
1915                                          uint& ret_this_trap_count,
1916                                          bool& ret_maybe_prior_trap,
1917                                          bool& ret_maybe_prior_recompile) {
1918   bool maybe_prior_trap = false;
1919   bool maybe_prior_recompile = false;
1920   uint this_trap_count = 0;
1921   if (update_total_trap_count) {
1922     uint idx = reason;
1923 #if INCLUDE_JVMCI
1924     if (is_osr) {
1925       idx += Reason_LIMIT;
1926     }
1927 #endif
1928     uint prior_trap_count = trap_mdo->trap_count(idx);
1929     this_trap_count  = trap_mdo->inc_trap_count(idx);
1930 
1931     // If the runtime cannot find a place to store trap history,
1932     // it is estimated based on the general condition of the method.
1933     // If the method has ever been recompiled, or has ever incurred
1934     // a trap with the present reason , then this BCI is assumed
1935     // (pessimistically) to be the culprit.
1936     maybe_prior_trap      = (prior_trap_count != 0);
1937     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1938   }
1939   ProfileData* pdata = NULL;
1940 
1941 
1942   // For reasons which are recorded per bytecode, we check per-BCI data.
1943   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1944   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
1945   if (per_bc_reason != Reason_none) {
1946     // Find the profile data for this BCI.  If there isn't one,
1947     // try to allocate one from the MDO's set of spares.
1948     // This will let us detect a repeated trap at this point.
1949     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1950 
1951     if (pdata != NULL) {
1952       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1953         if (LogCompilation && xtty != NULL) {
1954           ttyLocker ttyl;
1955           // no more room for speculative traps in this MDO
1956           xtty->elem("speculative_traps_oom");
1957         }
1958       }
1959       // Query the trap state of this profile datum.
1960       int tstate0 = pdata->trap_state();
1961       if (!trap_state_has_reason(tstate0, per_bc_reason))
1962         maybe_prior_trap = false;
1963       if (!trap_state_is_recompiled(tstate0))
1964         maybe_prior_recompile = false;
1965 
1966       // Update the trap state of this profile datum.
1967       int tstate1 = tstate0;
1968       // Record the reason.
1969       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1970       // Store the updated state on the MDO, for next time.
1971       if (tstate1 != tstate0)
1972         pdata->set_trap_state(tstate1);
1973     } else {
1974       if (LogCompilation && xtty != NULL) {
1975         ttyLocker ttyl;
1976         // Missing MDP?  Leave a small complaint in the log.
1977         xtty->elem("missing_mdp bci='%d'", trap_bci);
1978       }
1979     }
1980   }
1981 
1982   // Return results:
1983   ret_this_trap_count = this_trap_count;
1984   ret_maybe_prior_trap = maybe_prior_trap;
1985   ret_maybe_prior_recompile = maybe_prior_recompile;
1986   return pdata;
1987 }
1988 
1989 void
1990 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1991   ResourceMark rm;
1992   // Ignored outputs:
1993   uint ignore_this_trap_count;
1994   bool ignore_maybe_prior_trap;
1995   bool ignore_maybe_prior_recompile;
1996   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
1997   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
1998   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
1999   query_update_method_data(trap_mdo, trap_bci,
2000                            (DeoptReason)reason,
2001                            update_total_counts,
2002 #if INCLUDE_JVMCI
2003                            false,
2004 #endif
2005                            NULL,
2006                            ignore_this_trap_count,
2007                            ignore_maybe_prior_trap,
2008                            ignore_maybe_prior_recompile);
2009 }
2010 
2011 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2012   if (TraceDeoptimization) {
2013     tty->print("Uncommon trap ");
2014   }
2015   // Still in Java no safepoints
2016   {
2017     // This enters VM and may safepoint
2018     uncommon_trap_inner(thread, trap_request);
2019   }
2020   return fetch_unroll_info_helper(thread, exec_mode);
2021 }
2022 
2023 // Local derived constants.
2024 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2025 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2026 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2027 
2028 //---------------------------trap_state_reason---------------------------------
2029 Deoptimization::DeoptReason
2030 Deoptimization::trap_state_reason(int trap_state) {
2031   // This assert provides the link between the width of DataLayout::trap_bits
2032   // and the encoding of "recorded" reasons.  It ensures there are enough
2033   // bits to store all needed reasons in the per-BCI MDO profile.
2034   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2035   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2036   trap_state -= recompile_bit;
2037   if (trap_state == DS_REASON_MASK) {
2038     return Reason_many;
2039   } else {
2040     assert((int)Reason_none == 0, "state=0 => Reason_none");
2041     return (DeoptReason)trap_state;
2042   }
2043 }
2044 //-------------------------trap_state_has_reason-------------------------------
2045 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2046   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2047   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2048   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2049   trap_state -= recompile_bit;
2050   if (trap_state == DS_REASON_MASK) {
2051     return -1;  // true, unspecifically (bottom of state lattice)
2052   } else if (trap_state == reason) {
2053     return 1;   // true, definitely
2054   } else if (trap_state == 0) {
2055     return 0;   // false, definitely (top of state lattice)
2056   } else {
2057     return 0;   // false, definitely
2058   }
2059 }
2060 //-------------------------trap_state_add_reason-------------------------------
2061 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2062   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2063   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2064   trap_state -= recompile_bit;
2065   if (trap_state == DS_REASON_MASK) {
2066     return trap_state + recompile_bit;     // already at state lattice bottom
2067   } else if (trap_state == reason) {
2068     return trap_state + recompile_bit;     // the condition is already true
2069   } else if (trap_state == 0) {
2070     return reason + recompile_bit;          // no condition has yet been true
2071   } else {
2072     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2073   }
2074 }
2075 //-----------------------trap_state_is_recompiled------------------------------
2076 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2077   return (trap_state & DS_RECOMPILE_BIT) != 0;
2078 }
2079 //-----------------------trap_state_set_recompiled-----------------------------
2080 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2081   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2082   else    return trap_state & ~DS_RECOMPILE_BIT;
2083 }
2084 //---------------------------format_trap_state---------------------------------
2085 // This is used for debugging and diagnostics, including LogFile output.
2086 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2087                                               int trap_state) {
2088   assert(buflen > 0, "sanity");
2089   DeoptReason reason      = trap_state_reason(trap_state);
2090   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2091   // Re-encode the state from its decoded components.
2092   int decoded_state = 0;
2093   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2094     decoded_state = trap_state_add_reason(decoded_state, reason);
2095   if (recomp_flag)
2096     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2097   // If the state re-encodes properly, format it symbolically.
2098   // Because this routine is used for debugging and diagnostics,
2099   // be robust even if the state is a strange value.
2100   size_t len;
2101   if (decoded_state != trap_state) {
2102     // Random buggy state that doesn't decode??
2103     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2104   } else {
2105     len = jio_snprintf(buf, buflen, "%s%s",
2106                        trap_reason_name(reason),
2107                        recomp_flag ? " recompiled" : "");
2108   }
2109   return buf;
2110 }
2111 
2112 
2113 //--------------------------------statics--------------------------------------
2114 const char* Deoptimization::_trap_reason_name[] = {
2115   // Note:  Keep this in sync. with enum DeoptReason.
2116   "none",
2117   "null_check",
2118   "null_assert" JVMCI_ONLY("_or_unreached0"),
2119   "range_check",
2120   "class_check",
2121   "array_check",
2122   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2123   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2124   "profile_predicate",
2125   "unloaded",
2126   "uninitialized",
2127   "unreached",
2128   "unhandled",
2129   "constraint",
2130   "div0_check",
2131   "age",
2132   "predicate",
2133   "loop_limit_check",
2134   "speculate_class_check",
2135   "speculate_null_check",
2136   "speculate_null_assert",
2137   "rtm_state_change",
2138   "unstable_if",
2139   "unstable_fused_if",
2140 #if INCLUDE_JVMCI
2141   "aliasing",
2142   "transfer_to_interpreter",
2143   "not_compiled_exception_handler",
2144   "unresolved",
2145   "jsr_mismatch",
2146 #endif
2147   "tenured"
2148 };
2149 const char* Deoptimization::_trap_action_name[] = {
2150   // Note:  Keep this in sync. with enum DeoptAction.
2151   "none",
2152   "maybe_recompile",
2153   "reinterpret",
2154   "make_not_entrant",
2155   "make_not_compilable"
2156 };
2157 
2158 const char* Deoptimization::trap_reason_name(int reason) {
2159   // Check that every reason has a name
2160   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2161 
2162   if (reason == Reason_many)  return "many";
2163   if ((uint)reason < Reason_LIMIT)
2164     return _trap_reason_name[reason];
2165   static char buf[20];
2166   sprintf(buf, "reason%d", reason);
2167   return buf;
2168 }
2169 const char* Deoptimization::trap_action_name(int action) {
2170   // Check that every action has a name
2171   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2172 
2173   if ((uint)action < Action_LIMIT)
2174     return _trap_action_name[action];
2175   static char buf[20];
2176   sprintf(buf, "action%d", action);
2177   return buf;
2178 }
2179 
2180 // This is used for debugging and diagnostics, including LogFile output.
2181 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2182                                                 int trap_request) {
2183   jint unloaded_class_index = trap_request_index(trap_request);
2184   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2185   const char* action = trap_action_name(trap_request_action(trap_request));
2186 #if INCLUDE_JVMCI
2187   int debug_id = trap_request_debug_id(trap_request);
2188 #endif
2189   size_t len;
2190   if (unloaded_class_index < 0) {
2191     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2192                        reason, action
2193 #if INCLUDE_JVMCI
2194                        ,debug_id
2195 #endif
2196                        );
2197   } else {
2198     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2199                        reason, action, unloaded_class_index
2200 #if INCLUDE_JVMCI
2201                        ,debug_id
2202 #endif
2203                        );
2204   }
2205   return buf;
2206 }
2207 
2208 juint Deoptimization::_deoptimization_hist
2209         [Deoptimization::Reason_LIMIT]
2210     [1 + Deoptimization::Action_LIMIT]
2211         [Deoptimization::BC_CASE_LIMIT]
2212   = {0};
2213 
2214 enum {
2215   LSB_BITS = 8,
2216   LSB_MASK = right_n_bits(LSB_BITS)
2217 };
2218 
2219 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2220                                        Bytecodes::Code bc) {
2221   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2222   assert(action >= 0 && action < Action_LIMIT, "oob");
2223   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2224   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2225   juint* cases = _deoptimization_hist[reason][1+action];
2226   juint* bc_counter_addr = NULL;
2227   juint  bc_counter      = 0;
2228   // Look for an unused counter, or an exact match to this BC.
2229   if (bc != Bytecodes::_illegal) {
2230     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2231       juint* counter_addr = &cases[bc_case];
2232       juint  counter = *counter_addr;
2233       if ((counter == 0 && bc_counter_addr == NULL)
2234           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2235         // this counter is either free or is already devoted to this BC
2236         bc_counter_addr = counter_addr;
2237         bc_counter = counter | bc;
2238       }
2239     }
2240   }
2241   if (bc_counter_addr == NULL) {
2242     // Overflow, or no given bytecode.
2243     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2244     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2245   }
2246   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2247 }
2248 
2249 jint Deoptimization::total_deoptimization_count() {
2250   return _deoptimization_hist[Reason_none][0][0];
2251 }
2252 
2253 void Deoptimization::print_statistics() {
2254   juint total = total_deoptimization_count();
2255   juint account = total;
2256   if (total != 0) {
2257     ttyLocker ttyl;
2258     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2259     tty->print_cr("Deoptimization traps recorded:");
2260     #define PRINT_STAT_LINE(name, r) \
2261       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2262     PRINT_STAT_LINE("total", total);
2263     // For each non-zero entry in the histogram, print the reason,
2264     // the action, and (if specifically known) the type of bytecode.
2265     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2266       for (int action = 0; action < Action_LIMIT; action++) {
2267         juint* cases = _deoptimization_hist[reason][1+action];
2268         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2269           juint counter = cases[bc_case];
2270           if (counter != 0) {
2271             char name[1*K];
2272             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2273             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2274               bc = Bytecodes::_illegal;
2275             sprintf(name, "%s/%s/%s",
2276                     trap_reason_name(reason),
2277                     trap_action_name(action),
2278                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2279             juint r = counter >> LSB_BITS;
2280             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2281             account -= r;
2282           }
2283         }
2284       }
2285     }
2286     if (account != 0) {
2287       PRINT_STAT_LINE("unaccounted", account);
2288     }
2289     #undef PRINT_STAT_LINE
2290     if (xtty != NULL)  xtty->tail("statistics");
2291   }
2292 }
2293 #else // COMPILER2_OR_JVMCI
2294 
2295 
2296 // Stubs for C1 only system.
2297 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2298   return false;
2299 }
2300 
2301 const char* Deoptimization::trap_reason_name(int reason) {
2302   return "unknown";
2303 }
2304 
2305 void Deoptimization::print_statistics() {
2306   // no output
2307 }
2308 
2309 void
2310 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2311   // no udpate
2312 }
2313 
2314 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2315   return 0;
2316 }
2317 
2318 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2319                                        Bytecodes::Code bc) {
2320   // no update
2321 }
2322 
2323 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2324                                               int trap_state) {
2325   jio_snprintf(buf, buflen, "#%d", trap_state);
2326   return buf;
2327 }
2328 
2329 #endif // COMPILER2_OR_JVMCI