1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jfr/jfrEvents.hpp"
  44 #include "jvmtifiles/jvmtiEnv.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logConfiguration.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/metaspaceShared.hpp"
  50 #include "memory/oopFactory.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "memory/universe.hpp"
  53 #include "oops/access.inline.hpp"
  54 #include "oops/instanceKlass.hpp"
  55 #include "oops/objArrayOop.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/symbol.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvm_misc.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/fieldDescriptor.inline.hpp"
  67 #include "runtime/flags/jvmFlagConstraintList.hpp"
  68 #include "runtime/flags/jvmFlagRangeList.hpp"
  69 #include "runtime/flags/jvmFlagWriteableList.hpp"
  70 #include "runtime/deoptimization.hpp"
  71 #include "runtime/frame.inline.hpp"
  72 #include "runtime/handles.inline.hpp"
  73 #include "runtime/handshake.hpp"
  74 #include "runtime/init.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/javaCalls.hpp"
  78 #include "runtime/jniHandles.inline.hpp"
  79 #include "runtime/jniPeriodicChecker.hpp"
  80 #include "runtime/memprofiler.hpp"
  81 #include "runtime/mutexLocker.hpp"
  82 #include "runtime/objectMonitor.hpp"
  83 #include "runtime/orderAccess.hpp"
  84 #include "runtime/osThread.hpp"
  85 #include "runtime/prefetch.inline.hpp"
  86 #include "runtime/safepoint.hpp"
  87 #include "runtime/safepointMechanism.inline.hpp"
  88 #include "runtime/safepointVerifiers.hpp"
  89 #include "runtime/sharedRuntime.hpp"
  90 #include "runtime/statSampler.hpp"
  91 #include "runtime/stubRoutines.hpp"
  92 #include "runtime/sweeper.hpp"
  93 #include "runtime/task.hpp"
  94 #include "runtime/thread.inline.hpp"
  95 #include "runtime/threadCritical.hpp"
  96 #include "runtime/threadSMR.inline.hpp"
  97 #include "runtime/threadStatisticalInfo.hpp"
  98 #include "runtime/timer.hpp"
  99 #include "runtime/timerTrace.hpp"
 100 #include "runtime/vframe.inline.hpp"
 101 #include "runtime/vframeArray.hpp"
 102 #include "runtime/vframe_hp.hpp"
 103 #include "runtime/vmThread.hpp"
 104 #include "runtime/vmOperations.hpp"
 105 #include "runtime/vm_version.hpp"
 106 #include "services/attachListener.hpp"
 107 #include "services/management.hpp"
 108 #include "services/memTracker.hpp"
 109 #include "services/threadService.hpp"
 110 #include "utilities/align.hpp"
 111 #include "utilities/copy.hpp"
 112 #include "utilities/defaultStream.hpp"
 113 #include "utilities/dtrace.hpp"
 114 #include "utilities/events.hpp"
 115 #include "utilities/macros.hpp"
 116 #include "utilities/preserveException.hpp"
 117 #include "utilities/singleWriterSynchronizer.hpp"
 118 #include "utilities/vmError.hpp"
 119 #if INCLUDE_JVMCI
 120 #include "jvmci/jvmci.hpp"
 121 #include "jvmci/jvmciEnv.hpp"
 122 #endif
 123 #ifdef COMPILER1
 124 #include "c1/c1_Compiler.hpp"
 125 #endif
 126 #ifdef COMPILER2
 127 #include "opto/c2compiler.hpp"
 128 #include "opto/idealGraphPrinter.hpp"
 129 #endif
 130 #if INCLUDE_RTM_OPT
 131 #include "runtime/rtmLocking.hpp"
 132 #endif
 133 #if INCLUDE_JFR
 134 #include "jfr/jfr.hpp"
 135 #endif
 136 
 137 // Initialization after module runtime initialization
 138 void universe_post_module_init();  // must happen after call_initPhase2
 139 
 140 #ifdef DTRACE_ENABLED
 141 
 142 // Only bother with this argument setup if dtrace is available
 143 
 144   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 145   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 146 
 147   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 148     {                                                                      \
 149       ResourceMark rm(this);                                               \
 150       int len = 0;                                                         \
 151       const char* name = (javathread)->get_thread_name();                  \
 152       len = strlen(name);                                                  \
 153       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 154         (char *) name, len,                                                \
 155         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 156         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 157         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 158     }
 159 
 160 #else //  ndef DTRACE_ENABLED
 161 
 162   #define DTRACE_THREAD_PROBE(probe, javathread)
 163 
 164 #endif // ndef DTRACE_ENABLED
 165 
 166 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 167 // Current thread is maintained as a thread-local variable
 168 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 169 #endif
 170 
 171 // ======= Thread ========
 172 // Support for forcing alignment of thread objects for biased locking
 173 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 174   if (UseBiasedLocking) {
 175     const int alignment = markOopDesc::biased_lock_alignment;
 176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 177     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 178                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 179                                                          AllocFailStrategy::RETURN_NULL);
 180     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 181     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 182            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 183            "JavaThread alignment code overflowed allocated storage");
 184     if (aligned_addr != real_malloc_addr) {
 185       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 186                               p2i(real_malloc_addr),
 187                               p2i(aligned_addr));
 188     }
 189     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 190     return aligned_addr;
 191   } else {
 192     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 193                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 194   }
 195 }
 196 
 197 void Thread::operator delete(void* p) {
 198   if (UseBiasedLocking) {
 199     FreeHeap(((Thread*) p)->_real_malloc_address);
 200   } else {
 201     FreeHeap(p);
 202   }
 203 }
 204 
 205 void JavaThread::smr_delete() {
 206   if (_on_thread_list) {
 207     ThreadsSMRSupport::smr_delete(this);
 208   } else {
 209     delete this;
 210   }
 211 }
 212 
 213 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 214 // JavaThread
 215 
 216 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 217 
 218 Thread::Thread() {
 219 
 220   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 221 
 222   // stack and get_thread
 223   set_stack_base(NULL);
 224   set_stack_size(0);
 225   set_self_raw_id(0);
 226   set_lgrp_id(-1);
 227   DEBUG_ONLY(clear_suspendible_thread();)
 228 
 229   // allocated data structures
 230   set_osthread(NULL);
 231   set_resource_area(new (mtThread)ResourceArea());
 232   DEBUG_ONLY(_current_resource_mark = NULL;)
 233   set_handle_area(new (mtThread) HandleArea(NULL));
 234   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 235   set_active_handles(NULL);
 236   set_free_handle_block(NULL);
 237   set_last_handle_mark(NULL);
 238   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 239 
 240   // Initial value of zero ==> never claimed.
 241   _threads_do_token = 0;
 242   _threads_hazard_ptr = NULL;
 243   _threads_list_ptr = NULL;
 244   _nested_threads_hazard_ptr_cnt = 0;
 245   _rcu_counter = 0;
 246 
 247   // the handle mark links itself to last_handle_mark
 248   new HandleMark(this);
 249 
 250   // plain initialization
 251   debug_only(_owned_locks = NULL;)
 252   debug_only(_allow_allocation_count = 0;)
 253   NOT_PRODUCT(_allow_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _num_nested_signal = 0;
 263   omFreeList = NULL;
 264   omFreeCount = 0;
 265   omFreeProvision = 32;
 266   omInUseList = NULL;
 267   omInUseCount = 0;
 268 
 269 #ifdef ASSERT
 270   _visited_for_critical_count = false;
 271 #endif
 272 
 273   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 274                          Monitor::_safepoint_check_sometimes);
 275   _suspend_flags = 0;
 276 
 277   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 278   _hashStateX = os::random();
 279   _hashStateY = 842502087;
 280   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 281   _hashStateW = 273326509;
 282 
 283   _OnTrap   = 0;
 284   _Stalled  = 0;
 285   _TypeTag  = 0x2BAD;
 286 
 287   // Many of the following fields are effectively final - immutable
 288   // Note that nascent threads can't use the Native Monitor-Mutex
 289   // construct until the _MutexEvent is initialized ...
 290   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 291   // we might instead use a stack of ParkEvents that we could provision on-demand.
 292   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 293   // and ::Release()
 294   _ParkEvent   = ParkEvent::Allocate(this);
 295   _SleepEvent  = ParkEvent::Allocate(this);
 296   _MuxEvent    = ParkEvent::Allocate(this);
 297 
 298 #ifdef CHECK_UNHANDLED_OOPS
 299   if (CheckUnhandledOops) {
 300     _unhandled_oops = new UnhandledOops(this);
 301   }
 302 #endif // CHECK_UNHANDLED_OOPS
 303 #ifdef ASSERT
 304   if (UseBiasedLocking) {
 305     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 306     assert(this == _real_malloc_address ||
 307            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 308            "bug in forced alignment of thread objects");
 309   }
 310 #endif // ASSERT
 311 
 312   // Notify the barrier set that a thread is being created. The initial
 313   // thread is created before the barrier set is available.  The call to
 314   // BarrierSet::on_thread_create() for this thread is therefore deferred
 315   // to BarrierSet::set_barrier_set().
 316   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 317   if (barrier_set != NULL) {
 318     barrier_set->on_thread_create(this);
 319   } else {
 320     // Only the main thread should be created before the barrier set
 321     // and that happens just before Thread::current is set. No other thread
 322     // can attach as the VM is not created yet, so they can't execute this code.
 323     // If the main thread creates other threads before the barrier set that is an error.
 324     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 325   }
 326 }
 327 
 328 void Thread::initialize_thread_current() {
 329 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 330   assert(_thr_current == NULL, "Thread::current already initialized");
 331   _thr_current = this;
 332 #endif
 333   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 334   ThreadLocalStorage::set_thread(this);
 335   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 336 }
 337 
 338 void Thread::clear_thread_current() {
 339   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 340 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 341   _thr_current = NULL;
 342 #endif
 343   ThreadLocalStorage::set_thread(NULL);
 344 }
 345 
 346 void Thread::record_stack_base_and_size() {
 347   // Note: at this point, Thread object is not yet initialized. Do not rely on
 348   // any members being initialized. Do not rely on Thread::current() being set.
 349   // If possible, refrain from doing anything which may crash or assert since
 350   // quite probably those crash dumps will be useless.
 351   set_stack_base(os::current_stack_base());
 352   set_stack_size(os::current_stack_size());
 353 
 354 #ifdef SOLARIS
 355   if (os::is_primordial_thread()) {
 356     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 357   }
 358 #endif
 359 
 360   // Set stack limits after thread is initialized.
 361   if (is_Java_thread()) {
 362     ((JavaThread*) this)->set_stack_overflow_limit();
 363     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 364   }
 365 }
 366 
 367 #if INCLUDE_NMT
 368 void Thread::register_thread_stack_with_NMT() {
 369   MemTracker::record_thread_stack(stack_end(), stack_size());
 370 }
 371 #endif // INCLUDE_NMT
 372 
 373 void Thread::call_run() {
 374   DEBUG_ONLY(_run_state = CALL_RUN;)
 375 
 376   // At this point, Thread object should be fully initialized and
 377   // Thread::current() should be set.
 378 
 379   assert(Thread::current_or_null() != NULL, "current thread is unset");
 380   assert(Thread::current_or_null() == this, "current thread is wrong");
 381 
 382   // Perform common initialization actions
 383 
 384   register_thread_stack_with_NMT();
 385 
 386   JFR_ONLY(Jfr::on_thread_start(this);)
 387 
 388   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 389     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 390     os::current_thread_id(), p2i(stack_base() - stack_size()),
 391     p2i(stack_base()), stack_size()/1024);
 392 
 393   // Perform <ChildClass> initialization actions
 394   DEBUG_ONLY(_run_state = PRE_RUN;)
 395   this->pre_run();
 396 
 397   // Invoke <ChildClass>::run()
 398   DEBUG_ONLY(_run_state = RUN;)
 399   this->run();
 400   // Returned from <ChildClass>::run(). Thread finished.
 401 
 402   // Perform common tear-down actions
 403 
 404   assert(Thread::current_or_null() != NULL, "current thread is unset");
 405   assert(Thread::current_or_null() == this, "current thread is wrong");
 406 
 407   // Perform <ChildClass> tear-down actions
 408   DEBUG_ONLY(_run_state = POST_RUN;)
 409   this->post_run();
 410 
 411   // Note: at this point the thread object may already have deleted itself,
 412   // so from here on do not dereference *this*. Not all thread types currently
 413   // delete themselves when they terminate. But no thread should ever be deleted
 414   // asynchronously with respect to its termination - that is what _run_state can
 415   // be used to check.
 416 
 417   assert(Thread::current_or_null() == NULL, "current thread still present");
 418 }
 419 
 420 Thread::~Thread() {
 421 
 422   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 423   // get started due to errors etc. Any active thread should at least reach post_run
 424   // before it is deleted (usually in post_run()).
 425   assert(_run_state == PRE_CALL_RUN ||
 426          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 427          "_run_state=%d", (int)_run_state);
 428 
 429   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 430   // set might not be available if we encountered errors during bootstrapping.
 431   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 432   if (barrier_set != NULL) {
 433     barrier_set->on_thread_destroy(this);
 434   }
 435 
 436   // stack_base can be NULL if the thread is never started or exited before
 437   // record_stack_base_and_size called. Although, we would like to ensure
 438   // that all started threads do call record_stack_base_and_size(), there is
 439   // not proper way to enforce that.
 440 #if INCLUDE_NMT
 441   if (_stack_base != NULL) {
 442     MemTracker::release_thread_stack(stack_end(), stack_size());
 443 #ifdef ASSERT
 444     set_stack_base(NULL);
 445 #endif
 446   }
 447 #endif // INCLUDE_NMT
 448 
 449   // deallocate data structures
 450   delete resource_area();
 451   // since the handle marks are using the handle area, we have to deallocated the root
 452   // handle mark before deallocating the thread's handle area,
 453   assert(last_handle_mark() != NULL, "check we have an element");
 454   delete last_handle_mark();
 455   assert(last_handle_mark() == NULL, "check we have reached the end");
 456 
 457   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 458   // We NULL out the fields for good hygiene.
 459   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 460   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 461   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 462 
 463   delete handle_area();
 464   delete metadata_handles();
 465 
 466   // SR_handler uses this as a termination indicator -
 467   // needs to happen before os::free_thread()
 468   delete _SR_lock;
 469   _SR_lock = NULL;
 470 
 471   // osthread() can be NULL, if creation of thread failed.
 472   if (osthread() != NULL) os::free_thread(osthread());
 473 
 474   // Clear Thread::current if thread is deleting itself and it has not
 475   // already been done. This must be done before the memory is deallocated.
 476   // Needed to ensure JNI correctly detects non-attached threads.
 477   if (this == Thread::current_or_null()) {
 478     Thread::clear_thread_current();
 479   }
 480 
 481   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 482 }
 483 
 484 #ifdef ASSERT
 485 // A JavaThread is considered "dangling" if it is not the current
 486 // thread, has been added the Threads list, the system is not at a
 487 // safepoint and the Thread is not "protected".
 488 //
 489 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 490   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 491          !((JavaThread *) thread)->on_thread_list() ||
 492          SafepointSynchronize::is_at_safepoint() ||
 493          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 494          "possibility of dangling Thread pointer");
 495 }
 496 #endif
 497 
 498 ThreadPriority Thread::get_priority(const Thread* const thread) {
 499   ThreadPriority priority;
 500   // Can return an error!
 501   (void)os::get_priority(thread, priority);
 502   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 503   return priority;
 504 }
 505 
 506 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 507   debug_only(check_for_dangling_thread_pointer(thread);)
 508   // Can return an error!
 509   (void)os::set_priority(thread, priority);
 510 }
 511 
 512 
 513 void Thread::start(Thread* thread) {
 514   // Start is different from resume in that its safety is guaranteed by context or
 515   // being called from a Java method synchronized on the Thread object.
 516   if (!DisableStartThread) {
 517     if (thread->is_Java_thread()) {
 518       // Initialize the thread state to RUNNABLE before starting this thread.
 519       // Can not set it after the thread started because we do not know the
 520       // exact thread state at that time. It could be in MONITOR_WAIT or
 521       // in SLEEPING or some other state.
 522       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 523                                           java_lang_Thread::RUNNABLE);
 524     }
 525     os::start_thread(thread);
 526   }
 527 }
 528 
 529 // Enqueue a VM_Operation to do the job for us - sometime later
 530 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 531   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 532   VMThread::execute(vm_stop);
 533 }
 534 
 535 
 536 // Check if an external suspend request has completed (or has been
 537 // cancelled). Returns true if the thread is externally suspended and
 538 // false otherwise.
 539 //
 540 // The bits parameter returns information about the code path through
 541 // the routine. Useful for debugging:
 542 //
 543 // set in is_ext_suspend_completed():
 544 // 0x00000001 - routine was entered
 545 // 0x00000010 - routine return false at end
 546 // 0x00000100 - thread exited (return false)
 547 // 0x00000200 - suspend request cancelled (return false)
 548 // 0x00000400 - thread suspended (return true)
 549 // 0x00001000 - thread is in a suspend equivalent state (return true)
 550 // 0x00002000 - thread is native and walkable (return true)
 551 // 0x00004000 - thread is native_trans and walkable (needed retry)
 552 //
 553 // set in wait_for_ext_suspend_completion():
 554 // 0x00010000 - routine was entered
 555 // 0x00020000 - suspend request cancelled before loop (return false)
 556 // 0x00040000 - thread suspended before loop (return true)
 557 // 0x00080000 - suspend request cancelled in loop (return false)
 558 // 0x00100000 - thread suspended in loop (return true)
 559 // 0x00200000 - suspend not completed during retry loop (return false)
 560 
 561 // Helper class for tracing suspend wait debug bits.
 562 //
 563 // 0x00000100 indicates that the target thread exited before it could
 564 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 565 // 0x00080000 each indicate a cancelled suspend request so they don't
 566 // count as wait failures either.
 567 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 568 
 569 class TraceSuspendDebugBits : public StackObj {
 570  private:
 571   JavaThread * jt;
 572   bool         is_wait;
 573   bool         called_by_wait;  // meaningful when !is_wait
 574   uint32_t *   bits;
 575 
 576  public:
 577   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 578                         uint32_t *_bits) {
 579     jt             = _jt;
 580     is_wait        = _is_wait;
 581     called_by_wait = _called_by_wait;
 582     bits           = _bits;
 583   }
 584 
 585   ~TraceSuspendDebugBits() {
 586     if (!is_wait) {
 587 #if 1
 588       // By default, don't trace bits for is_ext_suspend_completed() calls.
 589       // That trace is very chatty.
 590       return;
 591 #else
 592       if (!called_by_wait) {
 593         // If tracing for is_ext_suspend_completed() is enabled, then only
 594         // trace calls to it from wait_for_ext_suspend_completion()
 595         return;
 596       }
 597 #endif
 598     }
 599 
 600     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 601       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 602         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 603         ResourceMark rm;
 604 
 605         tty->print_cr(
 606                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 607                       jt->get_thread_name(), *bits);
 608 
 609         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 610       }
 611     }
 612   }
 613 };
 614 #undef DEBUG_FALSE_BITS
 615 
 616 
 617 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 618                                           uint32_t *bits) {
 619   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 620 
 621   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 622   bool do_trans_retry;           // flag to force the retry
 623 
 624   *bits |= 0x00000001;
 625 
 626   do {
 627     do_trans_retry = false;
 628 
 629     if (is_exiting()) {
 630       // Thread is in the process of exiting. This is always checked
 631       // first to reduce the risk of dereferencing a freed JavaThread.
 632       *bits |= 0x00000100;
 633       return false;
 634     }
 635 
 636     if (!is_external_suspend()) {
 637       // Suspend request is cancelled. This is always checked before
 638       // is_ext_suspended() to reduce the risk of a rogue resume
 639       // confusing the thread that made the suspend request.
 640       *bits |= 0x00000200;
 641       return false;
 642     }
 643 
 644     if (is_ext_suspended()) {
 645       // thread is suspended
 646       *bits |= 0x00000400;
 647       return true;
 648     }
 649 
 650     // Now that we no longer do hard suspends of threads running
 651     // native code, the target thread can be changing thread state
 652     // while we are in this routine:
 653     //
 654     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 655     //
 656     // We save a copy of the thread state as observed at this moment
 657     // and make our decision about suspend completeness based on the
 658     // copy. This closes the race where the thread state is seen as
 659     // _thread_in_native_trans in the if-thread_blocked check, but is
 660     // seen as _thread_blocked in if-thread_in_native_trans check.
 661     JavaThreadState save_state = thread_state();
 662 
 663     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 664       // If the thread's state is _thread_blocked and this blocking
 665       // condition is known to be equivalent to a suspend, then we can
 666       // consider the thread to be externally suspended. This means that
 667       // the code that sets _thread_blocked has been modified to do
 668       // self-suspension if the blocking condition releases. We also
 669       // used to check for CONDVAR_WAIT here, but that is now covered by
 670       // the _thread_blocked with self-suspension check.
 671       //
 672       // Return true since we wouldn't be here unless there was still an
 673       // external suspend request.
 674       *bits |= 0x00001000;
 675       return true;
 676     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 677       // Threads running native code will self-suspend on native==>VM/Java
 678       // transitions. If its stack is walkable (should always be the case
 679       // unless this function is called before the actual java_suspend()
 680       // call), then the wait is done.
 681       *bits |= 0x00002000;
 682       return true;
 683     } else if (!called_by_wait && !did_trans_retry &&
 684                save_state == _thread_in_native_trans &&
 685                frame_anchor()->walkable()) {
 686       // The thread is transitioning from thread_in_native to another
 687       // thread state. check_safepoint_and_suspend_for_native_trans()
 688       // will force the thread to self-suspend. If it hasn't gotten
 689       // there yet we may have caught the thread in-between the native
 690       // code check above and the self-suspend. Lucky us. If we were
 691       // called by wait_for_ext_suspend_completion(), then it
 692       // will be doing the retries so we don't have to.
 693       //
 694       // Since we use the saved thread state in the if-statement above,
 695       // there is a chance that the thread has already transitioned to
 696       // _thread_blocked by the time we get here. In that case, we will
 697       // make a single unnecessary pass through the logic below. This
 698       // doesn't hurt anything since we still do the trans retry.
 699 
 700       *bits |= 0x00004000;
 701 
 702       // Once the thread leaves thread_in_native_trans for another
 703       // thread state, we break out of this retry loop. We shouldn't
 704       // need this flag to prevent us from getting back here, but
 705       // sometimes paranoia is good.
 706       did_trans_retry = true;
 707 
 708       // We wait for the thread to transition to a more usable state.
 709       for (int i = 1; i <= SuspendRetryCount; i++) {
 710         // We used to do an "os::yield_all(i)" call here with the intention
 711         // that yielding would increase on each retry. However, the parameter
 712         // is ignored on Linux which means the yield didn't scale up. Waiting
 713         // on the SR_lock below provides a much more predictable scale up for
 714         // the delay. It also provides a simple/direct point to check for any
 715         // safepoint requests from the VMThread
 716 
 717         // temporarily drops SR_lock while doing wait with safepoint check
 718         // (if we're a JavaThread - the WatcherThread can also call this)
 719         // and increase delay with each retry
 720         if (Thread::current()->is_Java_thread()) {
 721           SR_lock()->wait(i * delay);
 722         } else {
 723           SR_lock()->wait_without_safepoint_check(i * delay);
 724         }
 725 
 726         // check the actual thread state instead of what we saved above
 727         if (thread_state() != _thread_in_native_trans) {
 728           // the thread has transitioned to another thread state so
 729           // try all the checks (except this one) one more time.
 730           do_trans_retry = true;
 731           break;
 732         }
 733       } // end retry loop
 734 
 735 
 736     }
 737   } while (do_trans_retry);
 738 
 739   *bits |= 0x00000010;
 740   return false;
 741 }
 742 
 743 // Wait for an external suspend request to complete (or be cancelled).
 744 // Returns true if the thread is externally suspended and false otherwise.
 745 //
 746 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 747                                                  uint32_t *bits) {
 748   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 749                              false /* !called_by_wait */, bits);
 750 
 751   // local flag copies to minimize SR_lock hold time
 752   bool is_suspended;
 753   bool pending;
 754   uint32_t reset_bits;
 755 
 756   // set a marker so is_ext_suspend_completed() knows we are the caller
 757   *bits |= 0x00010000;
 758 
 759   // We use reset_bits to reinitialize the bits value at the top of
 760   // each retry loop. This allows the caller to make use of any
 761   // unused bits for their own marking purposes.
 762   reset_bits = *bits;
 763 
 764   {
 765     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 766     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 767                                             delay, bits);
 768     pending = is_external_suspend();
 769   }
 770   // must release SR_lock to allow suspension to complete
 771 
 772   if (!pending) {
 773     // A cancelled suspend request is the only false return from
 774     // is_ext_suspend_completed() that keeps us from entering the
 775     // retry loop.
 776     *bits |= 0x00020000;
 777     return false;
 778   }
 779 
 780   if (is_suspended) {
 781     *bits |= 0x00040000;
 782     return true;
 783   }
 784 
 785   for (int i = 1; i <= retries; i++) {
 786     *bits = reset_bits;  // reinit to only track last retry
 787 
 788     // We used to do an "os::yield_all(i)" call here with the intention
 789     // that yielding would increase on each retry. However, the parameter
 790     // is ignored on Linux which means the yield didn't scale up. Waiting
 791     // on the SR_lock below provides a much more predictable scale up for
 792     // the delay. It also provides a simple/direct point to check for any
 793     // safepoint requests from the VMThread
 794 
 795     {
 796       Thread* t = Thread::current();
 797       MonitorLocker ml(SR_lock(),
 798                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 799       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 800       // can also call this)  and increase delay with each retry
 801       ml.wait(i * delay);
 802 
 803       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 804                                               delay, bits);
 805 
 806       // It is possible for the external suspend request to be cancelled
 807       // (by a resume) before the actual suspend operation is completed.
 808       // Refresh our local copy to see if we still need to wait.
 809       pending = is_external_suspend();
 810     }
 811 
 812     if (!pending) {
 813       // A cancelled suspend request is the only false return from
 814       // is_ext_suspend_completed() that keeps us from staying in the
 815       // retry loop.
 816       *bits |= 0x00080000;
 817       return false;
 818     }
 819 
 820     if (is_suspended) {
 821       *bits |= 0x00100000;
 822       return true;
 823     }
 824   } // end retry loop
 825 
 826   // thread did not suspend after all our retries
 827   *bits |= 0x00200000;
 828   return false;
 829 }
 830 
 831 // Called from API entry points which perform stack walking. If the
 832 // associated JavaThread is the current thread, then wait_for_suspend
 833 // is not used. Otherwise, it determines if we should wait for the
 834 // "other" thread to complete external suspension. (NOTE: in future
 835 // releases the suspension mechanism should be reimplemented so this
 836 // is not necessary.)
 837 //
 838 bool
 839 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 840   if (this != JavaThread::current()) {
 841     // "other" threads require special handling.
 842     if (wait_for_suspend) {
 843       // We are allowed to wait for the external suspend to complete
 844       // so give the other thread a chance to get suspended.
 845       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 846                                            SuspendRetryDelay, bits)) {
 847         // Didn't make it so let the caller know.
 848         return false;
 849       }
 850     }
 851     // We aren't allowed to wait for the external suspend to complete
 852     // so if the other thread isn't externally suspended we need to
 853     // let the caller know.
 854     else if (!is_ext_suspend_completed_with_lock(bits)) {
 855       return false;
 856     }
 857   }
 858 
 859   return true;
 860 }
 861 
 862 #ifndef PRODUCT
 863 void JavaThread::record_jump(address target, address instr, const char* file,
 864                              int line) {
 865 
 866   // This should not need to be atomic as the only way for simultaneous
 867   // updates is via interrupts. Even then this should be rare or non-existent
 868   // and we don't care that much anyway.
 869 
 870   int index = _jmp_ring_index;
 871   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 872   _jmp_ring[index]._target = (intptr_t) target;
 873   _jmp_ring[index]._instruction = (intptr_t) instr;
 874   _jmp_ring[index]._file = file;
 875   _jmp_ring[index]._line = line;
 876 }
 877 #endif // PRODUCT
 878 
 879 void Thread::interrupt(Thread* thread) {
 880   debug_only(check_for_dangling_thread_pointer(thread);)
 881   os::interrupt(thread);
 882 }
 883 
 884 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 885   debug_only(check_for_dangling_thread_pointer(thread);)
 886   // Note:  If clear_interrupted==false, this simply fetches and
 887   // returns the value of the field osthread()->interrupted().
 888   return os::is_interrupted(thread, clear_interrupted);
 889 }
 890 
 891 
 892 // GC Support
 893 bool Thread::claim_par_threads_do(uintx claim_token) {
 894   uintx token = _threads_do_token;
 895   if (token != claim_token) {
 896     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 897     if (res == token) {
 898       return true;
 899     }
 900     guarantee(res == claim_token, "invariant");
 901   }
 902   return false;
 903 }
 904 
 905 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 906   active_handles()->oops_do(f);
 907   // Do oop for ThreadShadow
 908   f->do_oop((oop*)&_pending_exception);
 909   handle_area()->oops_do(f);
 910 
 911   // We scan thread local monitor lists here, and the remaining global
 912   // monitors in ObjectSynchronizer::oops_do().
 913   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 914 }
 915 
 916 void Thread::metadata_handles_do(void f(Metadata*)) {
 917   // Only walk the Handles in Thread.
 918   if (metadata_handles() != NULL) {
 919     for (int i = 0; i< metadata_handles()->length(); i++) {
 920       f(metadata_handles()->at(i));
 921     }
 922   }
 923 }
 924 
 925 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 926   // get_priority assumes osthread initialized
 927   if (osthread() != NULL) {
 928     int os_prio;
 929     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 930       st->print("os_prio=%d ", os_prio);
 931     }
 932 
 933     st->print("cpu=%.2fms ",
 934               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 935               );
 936     st->print("elapsed=%.2fs ",
 937               _statistical_info.getElapsedTime() / 1000.0
 938               );
 939     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 940       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 941       st->print("allocated=" SIZE_FORMAT "%s ",
 942                 byte_size_in_proper_unit(allocated_bytes),
 943                 proper_unit_for_byte_size(allocated_bytes)
 944                 );
 945       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 946     }
 947 
 948     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 949     osthread()->print_on(st);
 950   }
 951   ThreadsSMRSupport::print_info_on(this, st);
 952   st->print(" ");
 953   debug_only(if (WizardMode) print_owned_locks_on(st);)
 954 }
 955 
 956 // Thread::print_on_error() is called by fatal error handler. Don't use
 957 // any lock or allocate memory.
 958 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 959   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 960 
 961   if (is_VM_thread())                 { st->print("VMThread"); }
 962   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 963   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 964   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 965   else                                { st->print("Thread"); }
 966 
 967   if (is_Named_thread()) {
 968     st->print(" \"%s\"", name());
 969   }
 970 
 971   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 972             p2i(stack_end()), p2i(stack_base()));
 973 
 974   if (osthread()) {
 975     st->print(" [id=%d]", osthread()->thread_id());
 976   }
 977 
 978   ThreadsSMRSupport::print_info_on(this, st);
 979 }
 980 
 981 void Thread::print_value_on(outputStream* st) const {
 982   if (is_Named_thread()) {
 983     st->print(" \"%s\" ", name());
 984   }
 985   st->print(INTPTR_FORMAT, p2i(this));   // print address
 986 }
 987 
 988 #ifdef ASSERT
 989 void Thread::print_owned_locks_on(outputStream* st) const {
 990   Monitor *cur = _owned_locks;
 991   if (cur == NULL) {
 992     st->print(" (no locks) ");
 993   } else {
 994     st->print_cr(" Locks owned:");
 995     while (cur) {
 996       cur->print_on(st);
 997       cur = cur->next();
 998     }
 999   }
1000 }
1001 
1002 static int ref_use_count  = 0;
1003 
1004 bool Thread::owns_locks_but_compiled_lock() const {
1005   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1006     if (cur != Compile_lock) return true;
1007   }
1008   return false;
1009 }
1010 
1011 
1012 #endif
1013 
1014 #ifndef PRODUCT
1015 
1016 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1017 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1018 // no locks which allow_vm_block's are held
1019 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1020   // Check if current thread is allowed to block at a safepoint
1021   if (!(_allow_safepoint_count == 0)) {
1022     fatal("Possible safepoint reached by thread that does not allow it");
1023   }
1024   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1025     fatal("LEAF method calling lock?");
1026   }
1027 
1028 #ifdef ASSERT
1029   if (potential_vm_operation && is_Java_thread()
1030       && !Universe::is_bootstrapping()) {
1031     // Make sure we do not hold any locks that the VM thread also uses.
1032     // This could potentially lead to deadlocks
1033     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1034       // Threads_lock is special, since the safepoint synchronization will not start before this is
1035       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1036       // since it is used to transfer control between JavaThreads and the VMThread
1037       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1038       if ((cur->allow_vm_block() &&
1039            cur != Threads_lock &&
1040            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1041            cur != VMOperationRequest_lock &&
1042            cur != VMOperationQueue_lock) ||
1043            cur->rank() == Mutex::special) {
1044         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1045       }
1046     }
1047   }
1048 
1049   if (GCALotAtAllSafepoints) {
1050     // We could enter a safepoint here and thus have a gc
1051     InterfaceSupport::check_gc_alot();
1052   }
1053 #endif
1054 }
1055 #endif
1056 
1057 bool Thread::is_in_stack(address adr) const {
1058   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1059   address end = os::current_stack_pointer();
1060   // Allow non Java threads to call this without stack_base
1061   if (_stack_base == NULL) return true;
1062   if (stack_base() >= adr && adr >= end) return true;
1063 
1064   return false;
1065 }
1066 
1067 bool Thread::is_in_usable_stack(address adr) const {
1068   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1069   size_t usable_stack_size = _stack_size - stack_guard_size;
1070 
1071   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1072 }
1073 
1074 
1075 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1076 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1077 // used for compilation in the future. If that change is made, the need for these methods
1078 // should be revisited, and they should be removed if possible.
1079 
1080 bool Thread::is_lock_owned(address adr) const {
1081   return on_local_stack(adr);
1082 }
1083 
1084 bool Thread::set_as_starting_thread() {
1085   assert(_starting_thread == NULL, "already initialized: "
1086          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1087   // NOTE: this must be called inside the main thread.
1088   DEBUG_ONLY(_starting_thread = this;)
1089   return os::create_main_thread((JavaThread*)this);
1090 }
1091 
1092 static void initialize_class(Symbol* class_name, TRAPS) {
1093   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1094   InstanceKlass::cast(klass)->initialize(CHECK);
1095 }
1096 
1097 
1098 // Creates the initial ThreadGroup
1099 static Handle create_initial_thread_group(TRAPS) {
1100   Handle system_instance = JavaCalls::construct_new_instance(
1101                             SystemDictionary::ThreadGroup_klass(),
1102                             vmSymbols::void_method_signature(),
1103                             CHECK_NH);
1104   Universe::set_system_thread_group(system_instance());
1105 
1106   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1107   Handle main_instance = JavaCalls::construct_new_instance(
1108                             SystemDictionary::ThreadGroup_klass(),
1109                             vmSymbols::threadgroup_string_void_signature(),
1110                             system_instance,
1111                             string,
1112                             CHECK_NH);
1113   return main_instance;
1114 }
1115 
1116 // Creates the initial Thread
1117 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1118                                  TRAPS) {
1119   InstanceKlass* ik = SystemDictionary::Thread_klass();
1120   assert(ik->is_initialized(), "must be");
1121   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1122 
1123   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1124   // constructor calls Thread.current(), which must be set here for the
1125   // initial thread.
1126   java_lang_Thread::set_thread(thread_oop(), thread);
1127   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1128   thread->set_threadObj(thread_oop());
1129 
1130   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1131 
1132   JavaValue result(T_VOID);
1133   JavaCalls::call_special(&result, thread_oop,
1134                           ik,
1135                           vmSymbols::object_initializer_name(),
1136                           vmSymbols::threadgroup_string_void_signature(),
1137                           thread_group,
1138                           string,
1139                           CHECK_NULL);
1140   return thread_oop();
1141 }
1142 
1143 char java_runtime_name[128] = "";
1144 char java_runtime_version[128] = "";
1145 
1146 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1147 static const char* get_java_runtime_name(TRAPS) {
1148   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1149                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1150   fieldDescriptor fd;
1151   bool found = k != NULL &&
1152                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1153                                                         vmSymbols::string_signature(), &fd);
1154   if (found) {
1155     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1156     if (name_oop == NULL) {
1157       return NULL;
1158     }
1159     const char* name = java_lang_String::as_utf8_string(name_oop,
1160                                                         java_runtime_name,
1161                                                         sizeof(java_runtime_name));
1162     return name;
1163   } else {
1164     return NULL;
1165   }
1166 }
1167 
1168 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1169 static const char* get_java_runtime_version(TRAPS) {
1170   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1171                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1172   fieldDescriptor fd;
1173   bool found = k != NULL &&
1174                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1175                                                         vmSymbols::string_signature(), &fd);
1176   if (found) {
1177     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1178     if (name_oop == NULL) {
1179       return NULL;
1180     }
1181     const char* name = java_lang_String::as_utf8_string(name_oop,
1182                                                         java_runtime_version,
1183                                                         sizeof(java_runtime_version));
1184     return name;
1185   } else {
1186     return NULL;
1187   }
1188 }
1189 
1190 // General purpose hook into Java code, run once when the VM is initialized.
1191 // The Java library method itself may be changed independently from the VM.
1192 static void call_postVMInitHook(TRAPS) {
1193   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1194   if (klass != NULL) {
1195     JavaValue result(T_VOID);
1196     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1197                            vmSymbols::void_method_signature(),
1198                            CHECK);
1199   }
1200 }
1201 
1202 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1203                                     bool daemon, TRAPS) {
1204   assert(thread_group.not_null(), "thread group should be specified");
1205   assert(threadObj() == NULL, "should only create Java thread object once");
1206 
1207   InstanceKlass* ik = SystemDictionary::Thread_klass();
1208   assert(ik->is_initialized(), "must be");
1209   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1210 
1211   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1212   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1213   // constructor calls Thread.current(), which must be set here.
1214   java_lang_Thread::set_thread(thread_oop(), this);
1215   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1216   set_threadObj(thread_oop());
1217 
1218   JavaValue result(T_VOID);
1219   if (thread_name != NULL) {
1220     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1221     // Thread gets assigned specified name and null target
1222     JavaCalls::call_special(&result,
1223                             thread_oop,
1224                             ik,
1225                             vmSymbols::object_initializer_name(),
1226                             vmSymbols::threadgroup_string_void_signature(),
1227                             thread_group,
1228                             name,
1229                             THREAD);
1230   } else {
1231     // Thread gets assigned name "Thread-nnn" and null target
1232     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1233     JavaCalls::call_special(&result,
1234                             thread_oop,
1235                             ik,
1236                             vmSymbols::object_initializer_name(),
1237                             vmSymbols::threadgroup_runnable_void_signature(),
1238                             thread_group,
1239                             Handle(),
1240                             THREAD);
1241   }
1242 
1243 
1244   if (daemon) {
1245     java_lang_Thread::set_daemon(thread_oop());
1246   }
1247 
1248   if (HAS_PENDING_EXCEPTION) {
1249     return;
1250   }
1251 
1252   Klass* group =  SystemDictionary::ThreadGroup_klass();
1253   Handle threadObj(THREAD, this->threadObj());
1254 
1255   JavaCalls::call_special(&result,
1256                           thread_group,
1257                           group,
1258                           vmSymbols::add_method_name(),
1259                           vmSymbols::thread_void_signature(),
1260                           threadObj,          // Arg 1
1261                           THREAD);
1262 }
1263 
1264 // List of all NonJavaThreads and safe iteration over that list.
1265 
1266 class NonJavaThread::List {
1267 public:
1268   NonJavaThread* volatile _head;
1269   SingleWriterSynchronizer _protect;
1270 
1271   List() : _head(NULL), _protect() {}
1272 };
1273 
1274 NonJavaThread::List NonJavaThread::_the_list;
1275 
1276 NonJavaThread::Iterator::Iterator() :
1277   _protect_enter(_the_list._protect.enter()),
1278   _current(OrderAccess::load_acquire(&_the_list._head))
1279 {}
1280 
1281 NonJavaThread::Iterator::~Iterator() {
1282   _the_list._protect.exit(_protect_enter);
1283 }
1284 
1285 void NonJavaThread::Iterator::step() {
1286   assert(!end(), "precondition");
1287   _current = OrderAccess::load_acquire(&_current->_next);
1288 }
1289 
1290 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1291   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1292 }
1293 
1294 NonJavaThread::~NonJavaThread() { }
1295 
1296 void NonJavaThread::add_to_the_list() {
1297   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1298   // Initialize BarrierSet-related data before adding to list.
1299   BarrierSet::barrier_set()->on_thread_attach(this);
1300   OrderAccess::release_store(&_next, _the_list._head);
1301   OrderAccess::release_store(&_the_list._head, this);
1302 }
1303 
1304 void NonJavaThread::remove_from_the_list() {
1305   {
1306     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1307     // Cleanup BarrierSet-related data before removing from list.
1308     BarrierSet::barrier_set()->on_thread_detach(this);
1309     NonJavaThread* volatile* p = &_the_list._head;
1310     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1311       if (t == this) {
1312         *p = _next;
1313         break;
1314       }
1315     }
1316   }
1317   // Wait for any in-progress iterators.  Concurrent synchronize is not
1318   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1319   // from NJTList_lock in case an iteration attempts to lock it.
1320   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1321   _the_list._protect.synchronize();
1322   _next = NULL;                 // Safe to drop the link now.
1323 }
1324 
1325 void NonJavaThread::pre_run() {
1326   add_to_the_list();
1327 
1328   // This is slightly odd in that NamedThread is a subclass, but
1329   // in fact name() is defined in Thread
1330   assert(this->name() != NULL, "thread name was not set before it was started");
1331   this->set_native_thread_name(this->name());
1332 }
1333 
1334 void NonJavaThread::post_run() {
1335   JFR_ONLY(Jfr::on_thread_exit(this);)
1336   remove_from_the_list();
1337   // Ensure thread-local-storage is cleared before termination.
1338   Thread::clear_thread_current();
1339 }
1340 
1341 // NamedThread --  non-JavaThread subclasses with multiple
1342 // uniquely named instances should derive from this.
1343 NamedThread::NamedThread() :
1344   NonJavaThread(),
1345   _name(NULL),
1346   _processed_thread(NULL),
1347   _gc_id(GCId::undefined())
1348 {}
1349 
1350 NamedThread::~NamedThread() {
1351   if (_name != NULL) {
1352     FREE_C_HEAP_ARRAY(char, _name);
1353     _name = NULL;
1354   }
1355 }
1356 
1357 void NamedThread::set_name(const char* format, ...) {
1358   guarantee(_name == NULL, "Only get to set name once.");
1359   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1360   guarantee(_name != NULL, "alloc failure");
1361   va_list ap;
1362   va_start(ap, format);
1363   jio_vsnprintf(_name, max_name_len, format, ap);
1364   va_end(ap);
1365 }
1366 
1367 void NamedThread::print_on(outputStream* st) const {
1368   st->print("\"%s\" ", name());
1369   Thread::print_on(st);
1370   st->cr();
1371 }
1372 
1373 
1374 // ======= WatcherThread ========
1375 
1376 // The watcher thread exists to simulate timer interrupts.  It should
1377 // be replaced by an abstraction over whatever native support for
1378 // timer interrupts exists on the platform.
1379 
1380 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1381 bool WatcherThread::_startable = false;
1382 volatile bool  WatcherThread::_should_terminate = false;
1383 
1384 WatcherThread::WatcherThread() : NonJavaThread() {
1385   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1386   if (os::create_thread(this, os::watcher_thread)) {
1387     _watcher_thread = this;
1388 
1389     // Set the watcher thread to the highest OS priority which should not be
1390     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1391     // is created. The only normal thread using this priority is the reference
1392     // handler thread, which runs for very short intervals only.
1393     // If the VMThread's priority is not lower than the WatcherThread profiling
1394     // will be inaccurate.
1395     os::set_priority(this, MaxPriority);
1396     if (!DisableStartThread) {
1397       os::start_thread(this);
1398     }
1399   }
1400 }
1401 
1402 int WatcherThread::sleep() const {
1403   // The WatcherThread does not participate in the safepoint protocol
1404   // for the PeriodicTask_lock because it is not a JavaThread.
1405   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1406 
1407   if (_should_terminate) {
1408     // check for termination before we do any housekeeping or wait
1409     return 0;  // we did not sleep.
1410   }
1411 
1412   // remaining will be zero if there are no tasks,
1413   // causing the WatcherThread to sleep until a task is
1414   // enrolled
1415   int remaining = PeriodicTask::time_to_wait();
1416   int time_slept = 0;
1417 
1418   // we expect this to timeout - we only ever get unparked when
1419   // we should terminate or when a new task has been enrolled
1420   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1421 
1422   jlong time_before_loop = os::javaTimeNanos();
1423 
1424   while (true) {
1425     bool timedout = ml.wait(remaining);
1426     jlong now = os::javaTimeNanos();
1427 
1428     if (remaining == 0) {
1429       // if we didn't have any tasks we could have waited for a long time
1430       // consider the time_slept zero and reset time_before_loop
1431       time_slept = 0;
1432       time_before_loop = now;
1433     } else {
1434       // need to recalculate since we might have new tasks in _tasks
1435       time_slept = (int) ((now - time_before_loop) / 1000000);
1436     }
1437 
1438     // Change to task list or spurious wakeup of some kind
1439     if (timedout || _should_terminate) {
1440       break;
1441     }
1442 
1443     remaining = PeriodicTask::time_to_wait();
1444     if (remaining == 0) {
1445       // Last task was just disenrolled so loop around and wait until
1446       // another task gets enrolled
1447       continue;
1448     }
1449 
1450     remaining -= time_slept;
1451     if (remaining <= 0) {
1452       break;
1453     }
1454   }
1455 
1456   return time_slept;
1457 }
1458 
1459 void WatcherThread::run() {
1460   assert(this == watcher_thread(), "just checking");
1461 
1462   this->set_active_handles(JNIHandleBlock::allocate_block());
1463   while (true) {
1464     assert(watcher_thread() == Thread::current(), "thread consistency check");
1465     assert(watcher_thread() == this, "thread consistency check");
1466 
1467     // Calculate how long it'll be until the next PeriodicTask work
1468     // should be done, and sleep that amount of time.
1469     int time_waited = sleep();
1470 
1471     if (VMError::is_error_reported()) {
1472       // A fatal error has happened, the error handler(VMError::report_and_die)
1473       // should abort JVM after creating an error log file. However in some
1474       // rare cases, the error handler itself might deadlock. Here periodically
1475       // check for error reporting timeouts, and if it happens, just proceed to
1476       // abort the VM.
1477 
1478       // This code is in WatcherThread because WatcherThread wakes up
1479       // periodically so the fatal error handler doesn't need to do anything;
1480       // also because the WatcherThread is less likely to crash than other
1481       // threads.
1482 
1483       for (;;) {
1484         // Note: we use naked sleep in this loop because we want to avoid using
1485         // any kind of VM infrastructure which may be broken at this point.
1486         if (VMError::check_timeout()) {
1487           // We hit error reporting timeout. Error reporting was interrupted and
1488           // will be wrapping things up now (closing files etc). Give it some more
1489           // time, then quit the VM.
1490           os::naked_short_sleep(200);
1491           // Print a message to stderr.
1492           fdStream err(defaultStream::output_fd());
1493           err.print_raw_cr("# [ timer expired, abort... ]");
1494           // skip atexit/vm_exit/vm_abort hooks
1495           os::die();
1496         }
1497 
1498         // Wait a second, then recheck for timeout.
1499         os::naked_short_sleep(999);
1500       }
1501     }
1502 
1503     if (_should_terminate) {
1504       // check for termination before posting the next tick
1505       break;
1506     }
1507 
1508     PeriodicTask::real_time_tick(time_waited);
1509   }
1510 
1511   // Signal that it is terminated
1512   {
1513     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1514     _watcher_thread = NULL;
1515     Terminator_lock->notify_all();
1516   }
1517 }
1518 
1519 void WatcherThread::start() {
1520   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1521 
1522   if (watcher_thread() == NULL && _startable) {
1523     _should_terminate = false;
1524     // Create the single instance of WatcherThread
1525     new WatcherThread();
1526   }
1527 }
1528 
1529 void WatcherThread::make_startable() {
1530   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1531   _startable = true;
1532 }
1533 
1534 void WatcherThread::stop() {
1535   {
1536     // Follow normal safepoint aware lock enter protocol since the
1537     // WatcherThread is stopped by another JavaThread.
1538     MutexLocker ml(PeriodicTask_lock);
1539     _should_terminate = true;
1540 
1541     WatcherThread* watcher = watcher_thread();
1542     if (watcher != NULL) {
1543       // unpark the WatcherThread so it can see that it should terminate
1544       watcher->unpark();
1545     }
1546   }
1547 
1548   MonitorLocker mu(Terminator_lock);
1549 
1550   while (watcher_thread() != NULL) {
1551     // This wait should make safepoint checks, wait without a timeout,
1552     // and wait as a suspend-equivalent condition.
1553     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1554   }
1555 }
1556 
1557 void WatcherThread::unpark() {
1558   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1559   PeriodicTask_lock->notify();
1560 }
1561 
1562 void WatcherThread::print_on(outputStream* st) const {
1563   st->print("\"%s\" ", name());
1564   Thread::print_on(st);
1565   st->cr();
1566 }
1567 
1568 // ======= JavaThread ========
1569 
1570 #if INCLUDE_JVMCI
1571 
1572 jlong* JavaThread::_jvmci_old_thread_counters;
1573 
1574 bool jvmci_counters_include(JavaThread* thread) {
1575   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1576 }
1577 
1578 void JavaThread::collect_counters(JVMCIEnv* jvmci_env, JVMCIPrimitiveArray array) {
1579   if (JVMCICounterSize > 0) {
1580     JavaThreadIteratorWithHandle jtiwh;
1581     int len = jvmci_env->get_length(array);
1582     for (int i = 0; i < len; i++) {
1583       jvmci_env->put_long_at(array, i, _jvmci_old_thread_counters[i]);
1584     }
1585     for (; JavaThread *tp = jtiwh.next(); ) {
1586       if (jvmci_counters_include(tp)) {
1587         for (int i = 0; i < len; i++) {
1588           jvmci_env->put_long_at(array, i, jvmci_env->get_long_at(array, i) + tp->_jvmci_counters[i]);
1589         }
1590       }
1591     }
1592   }
1593 }
1594 
1595 #endif // INCLUDE_JVMCI
1596 
1597 // A JavaThread is a normal Java thread
1598 
1599 void JavaThread::initialize() {
1600   // Initialize fields
1601 
1602   set_saved_exception_pc(NULL);
1603   set_threadObj(NULL);
1604   _anchor.clear();
1605   set_entry_point(NULL);
1606   set_jni_functions(jni_functions());
1607   set_callee_target(NULL);
1608   set_vm_result(NULL);
1609   set_vm_result_2(NULL);
1610   set_vframe_array_head(NULL);
1611   set_vframe_array_last(NULL);
1612   set_deferred_locals(NULL);
1613   set_deopt_mark(NULL);
1614   set_deopt_compiled_method(NULL);
1615   clear_must_deopt_id();
1616   set_monitor_chunks(NULL);
1617   set_next(NULL);
1618   _on_thread_list = false;
1619   set_thread_state(_thread_new);
1620   _terminated = _not_terminated;
1621   _array_for_gc = NULL;
1622   _suspend_equivalent = false;
1623   _in_deopt_handler = 0;
1624   _doing_unsafe_access = false;
1625   _stack_guard_state = stack_guard_unused;
1626 #if INCLUDE_JVMCI
1627   _pending_monitorenter = false;
1628   _pending_deoptimization = -1;
1629   _pending_failed_speculation = 0;
1630   _pending_transfer_to_interpreter = false;
1631   _in_retryable_allocation = false;
1632   _jvmci._alternate_call_target = NULL;
1633   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1634   if (JVMCICounterSize > 0) {
1635     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1636     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1637   } else {
1638     _jvmci_counters = NULL;
1639   }
1640 #endif // INCLUDE_JVMCI
1641   _reserved_stack_activation = NULL;  // stack base not known yet
1642   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1643   _exception_pc  = 0;
1644   _exception_handler_pc = 0;
1645   _is_method_handle_return = 0;
1646   _jvmti_thread_state= NULL;
1647   _should_post_on_exceptions_flag = JNI_FALSE;
1648   _interp_only_mode    = 0;
1649   _special_runtime_exit_condition = _no_async_condition;
1650   _pending_async_exception = NULL;
1651   _thread_stat = NULL;
1652   _thread_stat = new ThreadStatistics();
1653   _blocked_on_compilation = false;
1654   _jni_active_critical = 0;
1655   _pending_jni_exception_check_fn = NULL;
1656   _do_not_unlock_if_synchronized = false;
1657   _cached_monitor_info = NULL;
1658   _parker = Parker::Allocate(this);
1659 
1660 #ifndef PRODUCT
1661   _jmp_ring_index = 0;
1662   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1663     record_jump(NULL, NULL, NULL, 0);
1664   }
1665 #endif // PRODUCT
1666 
1667   // Setup safepoint state info for this thread
1668   ThreadSafepointState::create(this);
1669 
1670   debug_only(_java_call_counter = 0);
1671 
1672   // JVMTI PopFrame support
1673   _popframe_condition = popframe_inactive;
1674   _popframe_preserved_args = NULL;
1675   _popframe_preserved_args_size = 0;
1676   _frames_to_pop_failed_realloc = 0;
1677 
1678   if (SafepointMechanism::uses_thread_local_poll()) {
1679     SafepointMechanism::initialize_header(this);
1680   }
1681 
1682   _class_to_be_initialized = NULL;
1683 
1684   pd_initialize();
1685 }
1686 
1687 JavaThread::JavaThread(bool is_attaching_via_jni) :
1688                        Thread() {
1689   initialize();
1690   if (is_attaching_via_jni) {
1691     _jni_attach_state = _attaching_via_jni;
1692   } else {
1693     _jni_attach_state = _not_attaching_via_jni;
1694   }
1695   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1696 }
1697 
1698 bool JavaThread::reguard_stack(address cur_sp) {
1699   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1700       && _stack_guard_state != stack_guard_reserved_disabled) {
1701     return true; // Stack already guarded or guard pages not needed.
1702   }
1703 
1704   if (register_stack_overflow()) {
1705     // For those architectures which have separate register and
1706     // memory stacks, we must check the register stack to see if
1707     // it has overflowed.
1708     return false;
1709   }
1710 
1711   // Java code never executes within the yellow zone: the latter is only
1712   // there to provoke an exception during stack banging.  If java code
1713   // is executing there, either StackShadowPages should be larger, or
1714   // some exception code in c1, c2 or the interpreter isn't unwinding
1715   // when it should.
1716   guarantee(cur_sp > stack_reserved_zone_base(),
1717             "not enough space to reguard - increase StackShadowPages");
1718   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1719     enable_stack_yellow_reserved_zone();
1720     if (reserved_stack_activation() != stack_base()) {
1721       set_reserved_stack_activation(stack_base());
1722     }
1723   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1724     set_reserved_stack_activation(stack_base());
1725     enable_stack_reserved_zone();
1726   }
1727   return true;
1728 }
1729 
1730 bool JavaThread::reguard_stack(void) {
1731   return reguard_stack(os::current_stack_pointer());
1732 }
1733 
1734 
1735 void JavaThread::block_if_vm_exited() {
1736   if (_terminated == _vm_exited) {
1737     // _vm_exited is set at safepoint, and Threads_lock is never released
1738     // we will block here forever
1739     Threads_lock->lock_without_safepoint_check();
1740     ShouldNotReachHere();
1741   }
1742 }
1743 
1744 
1745 // Remove this ifdef when C1 is ported to the compiler interface.
1746 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1747 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1748 
1749 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1750                        Thread() {
1751   initialize();
1752   _jni_attach_state = _not_attaching_via_jni;
1753   set_entry_point(entry_point);
1754   // Create the native thread itself.
1755   // %note runtime_23
1756   os::ThreadType thr_type = os::java_thread;
1757   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1758                                                      os::java_thread;
1759   os::create_thread(this, thr_type, stack_sz);
1760   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1761   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1762   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1763   // the exception consists of creating the exception object & initializing it, initialization
1764   // will leave the VM via a JavaCall and then all locks must be unlocked).
1765   //
1766   // The thread is still suspended when we reach here. Thread must be explicit started
1767   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1768   // by calling Threads:add. The reason why this is not done here, is because the thread
1769   // object must be fully initialized (take a look at JVM_Start)
1770 }
1771 
1772 JavaThread::~JavaThread() {
1773 
1774   // JSR166 -- return the parker to the free list
1775   Parker::Release(_parker);
1776   _parker = NULL;
1777 
1778   // Free any remaining  previous UnrollBlock
1779   vframeArray* old_array = vframe_array_last();
1780 
1781   if (old_array != NULL) {
1782     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1783     old_array->set_unroll_block(NULL);
1784     delete old_info;
1785     delete old_array;
1786   }
1787 
1788   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1789   if (deferred != NULL) {
1790     // This can only happen if thread is destroyed before deoptimization occurs.
1791     assert(deferred->length() != 0, "empty array!");
1792     do {
1793       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1794       deferred->remove_at(0);
1795       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1796       delete dlv;
1797     } while (deferred->length() != 0);
1798     delete deferred;
1799   }
1800 
1801   // All Java related clean up happens in exit
1802   ThreadSafepointState::destroy(this);
1803   if (_thread_stat != NULL) delete _thread_stat;
1804 
1805 #if INCLUDE_JVMCI
1806   if (JVMCICounterSize > 0) {
1807     if (jvmci_counters_include(this)) {
1808       for (int i = 0; i < JVMCICounterSize; i++) {
1809         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1810       }
1811     }
1812     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1813   }
1814 #endif // INCLUDE_JVMCI
1815 }
1816 
1817 
1818 // First JavaThread specific code executed by a new Java thread.
1819 void JavaThread::pre_run() {
1820   // empty - see comments in run()
1821 }
1822 
1823 // The main routine called by a new Java thread. This isn't overridden
1824 // by subclasses, instead different subclasses define a different "entry_point"
1825 // which defines the actual logic for that kind of thread.
1826 void JavaThread::run() {
1827   // initialize thread-local alloc buffer related fields
1828   this->initialize_tlab();
1829 
1830   // Used to test validity of stack trace backs.
1831   // This can't be moved into pre_run() else we invalidate
1832   // the requirement that thread_main_inner is lower on
1833   // the stack. Consequently all the initialization logic
1834   // stays here in run() rather than pre_run().
1835   this->record_base_of_stack_pointer();
1836 
1837   this->create_stack_guard_pages();
1838 
1839   this->cache_global_variables();
1840 
1841   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1842   // in the VM. Change thread state from _thread_new to _thread_in_vm
1843   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1844   // Before a thread is on the threads list it is always safe, so after leaving the
1845   // _thread_new we should emit a instruction barrier. The distance to modified code
1846   // from here is probably far enough, but this is consistent and safe.
1847   OrderAccess::cross_modify_fence();
1848 
1849   assert(JavaThread::current() == this, "sanity check");
1850   assert(!Thread::current()->owns_locks(), "sanity check");
1851 
1852   DTRACE_THREAD_PROBE(start, this);
1853 
1854   // This operation might block. We call that after all safepoint checks for a new thread has
1855   // been completed.
1856   this->set_active_handles(JNIHandleBlock::allocate_block());
1857 
1858   if (JvmtiExport::should_post_thread_life()) {
1859     JvmtiExport::post_thread_start(this);
1860 
1861   }
1862 
1863   // We call another function to do the rest so we are sure that the stack addresses used
1864   // from there will be lower than the stack base just computed.
1865   thread_main_inner();
1866 }
1867 
1868 void JavaThread::thread_main_inner() {
1869   assert(JavaThread::current() == this, "sanity check");
1870   assert(this->threadObj() != NULL, "just checking");
1871 
1872   // Execute thread entry point unless this thread has a pending exception
1873   // or has been stopped before starting.
1874   // Note: Due to JVM_StopThread we can have pending exceptions already!
1875   if (!this->has_pending_exception() &&
1876       !java_lang_Thread::is_stillborn(this->threadObj())) {
1877     {
1878       ResourceMark rm(this);
1879       this->set_native_thread_name(this->get_thread_name());
1880     }
1881     HandleMark hm(this);
1882     this->entry_point()(this, this);
1883   }
1884 
1885   DTRACE_THREAD_PROBE(stop, this);
1886 
1887   // Cleanup is handled in post_run()
1888 }
1889 
1890 // Shared teardown for all JavaThreads
1891 void JavaThread::post_run() {
1892   this->exit(false);
1893   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1894   // for any shared tear-down.
1895   this->smr_delete();
1896 }
1897 
1898 static void ensure_join(JavaThread* thread) {
1899   // We do not need to grab the Threads_lock, since we are operating on ourself.
1900   Handle threadObj(thread, thread->threadObj());
1901   assert(threadObj.not_null(), "java thread object must exist");
1902   ObjectLocker lock(threadObj, thread);
1903   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1904   thread->clear_pending_exception();
1905   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1906   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1907   // Clear the native thread instance - this makes isAlive return false and allows the join()
1908   // to complete once we've done the notify_all below
1909   java_lang_Thread::set_thread(threadObj(), NULL);
1910   lock.notify_all(thread);
1911   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1912   thread->clear_pending_exception();
1913 }
1914 
1915 static bool is_daemon(oop threadObj) {
1916   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1917 }
1918 
1919 // For any new cleanup additions, please check to see if they need to be applied to
1920 // cleanup_failed_attach_current_thread as well.
1921 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1922   assert(this == JavaThread::current(), "thread consistency check");
1923 
1924   elapsedTimer _timer_exit_phase1;
1925   elapsedTimer _timer_exit_phase2;
1926   elapsedTimer _timer_exit_phase3;
1927   elapsedTimer _timer_exit_phase4;
1928 
1929   if (log_is_enabled(Debug, os, thread, timer)) {
1930     _timer_exit_phase1.start();
1931   }
1932 
1933   HandleMark hm(this);
1934   Handle uncaught_exception(this, this->pending_exception());
1935   this->clear_pending_exception();
1936   Handle threadObj(this, this->threadObj());
1937   assert(threadObj.not_null(), "Java thread object should be created");
1938 
1939   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1940   {
1941     EXCEPTION_MARK;
1942 
1943     CLEAR_PENDING_EXCEPTION;
1944   }
1945   if (!destroy_vm) {
1946     if (uncaught_exception.not_null()) {
1947       EXCEPTION_MARK;
1948       // Call method Thread.dispatchUncaughtException().
1949       Klass* thread_klass = SystemDictionary::Thread_klass();
1950       JavaValue result(T_VOID);
1951       JavaCalls::call_virtual(&result,
1952                               threadObj, thread_klass,
1953                               vmSymbols::dispatchUncaughtException_name(),
1954                               vmSymbols::throwable_void_signature(),
1955                               uncaught_exception,
1956                               THREAD);
1957       if (HAS_PENDING_EXCEPTION) {
1958         ResourceMark rm(this);
1959         jio_fprintf(defaultStream::error_stream(),
1960                     "\nException: %s thrown from the UncaughtExceptionHandler"
1961                     " in thread \"%s\"\n",
1962                     pending_exception()->klass()->external_name(),
1963                     get_thread_name());
1964         CLEAR_PENDING_EXCEPTION;
1965       }
1966     }
1967     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
1968 
1969     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1970     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1971     // is deprecated anyhow.
1972     if (!is_Compiler_thread()) {
1973       int count = 3;
1974       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1975         EXCEPTION_MARK;
1976         JavaValue result(T_VOID);
1977         Klass* thread_klass = SystemDictionary::Thread_klass();
1978         JavaCalls::call_virtual(&result,
1979                                 threadObj, thread_klass,
1980                                 vmSymbols::exit_method_name(),
1981                                 vmSymbols::void_method_signature(),
1982                                 THREAD);
1983         CLEAR_PENDING_EXCEPTION;
1984       }
1985     }
1986     // notify JVMTI
1987     if (JvmtiExport::should_post_thread_life()) {
1988       JvmtiExport::post_thread_end(this);
1989     }
1990 
1991     // We have notified the agents that we are exiting, before we go on,
1992     // we must check for a pending external suspend request and honor it
1993     // in order to not surprise the thread that made the suspend request.
1994     while (true) {
1995       {
1996         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1997         if (!is_external_suspend()) {
1998           set_terminated(_thread_exiting);
1999           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2000           break;
2001         }
2002         // Implied else:
2003         // Things get a little tricky here. We have a pending external
2004         // suspend request, but we are holding the SR_lock so we
2005         // can't just self-suspend. So we temporarily drop the lock
2006         // and then self-suspend.
2007       }
2008 
2009       ThreadBlockInVM tbivm(this);
2010       java_suspend_self();
2011 
2012       // We're done with this suspend request, but we have to loop around
2013       // and check again. Eventually we will get SR_lock without a pending
2014       // external suspend request and will be able to mark ourselves as
2015       // exiting.
2016     }
2017     // no more external suspends are allowed at this point
2018   } else {
2019     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2020     // before_exit() has already posted JVMTI THREAD_END events
2021   }
2022 
2023   if (log_is_enabled(Debug, os, thread, timer)) {
2024     _timer_exit_phase1.stop();
2025     _timer_exit_phase2.start();
2026   }
2027 
2028   // Capture daemon status before the thread is marked as terminated.
2029   bool daemon = is_daemon(threadObj());
2030 
2031   // Notify waiters on thread object. This has to be done after exit() is called
2032   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2033   // group should have the destroyed bit set before waiters are notified).
2034   ensure_join(this);
2035   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2036 
2037   if (log_is_enabled(Debug, os, thread, timer)) {
2038     _timer_exit_phase2.stop();
2039     _timer_exit_phase3.start();
2040   }
2041   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2042   // held by this thread must be released. The spec does not distinguish
2043   // between JNI-acquired and regular Java monitors. We can only see
2044   // regular Java monitors here if monitor enter-exit matching is broken.
2045   //
2046   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2047   // ObjectSynchronizer::release_monitors_owned_by_thread().
2048   if (exit_type == jni_detach) {
2049     // Sanity check even though JNI DetachCurrentThread() would have
2050     // returned JNI_ERR if there was a Java frame. JavaThread exit
2051     // should be done executing Java code by the time we get here.
2052     assert(!this->has_last_Java_frame(),
2053            "should not have a Java frame when detaching or exiting");
2054     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2055     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2056   }
2057 
2058   // These things needs to be done while we are still a Java Thread. Make sure that thread
2059   // is in a consistent state, in case GC happens
2060   JFR_ONLY(Jfr::on_thread_exit(this);)
2061 
2062   if (active_handles() != NULL) {
2063     JNIHandleBlock* block = active_handles();
2064     set_active_handles(NULL);
2065     JNIHandleBlock::release_block(block);
2066   }
2067 
2068   if (free_handle_block() != NULL) {
2069     JNIHandleBlock* block = free_handle_block();
2070     set_free_handle_block(NULL);
2071     JNIHandleBlock::release_block(block);
2072   }
2073 
2074   // These have to be removed while this is still a valid thread.
2075   remove_stack_guard_pages();
2076 
2077   if (UseTLAB) {
2078     tlab().retire();
2079   }
2080 
2081   if (JvmtiEnv::environments_might_exist()) {
2082     JvmtiExport::cleanup_thread(this);
2083   }
2084 
2085   // We must flush any deferred card marks and other various GC barrier
2086   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2087   // before removing a thread from the list of active threads.
2088   BarrierSet::barrier_set()->on_thread_detach(this);
2089 
2090   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2091     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2092     os::current_thread_id());
2093 
2094   if (log_is_enabled(Debug, os, thread, timer)) {
2095     _timer_exit_phase3.stop();
2096     _timer_exit_phase4.start();
2097   }
2098   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2099   Threads::remove(this, daemon);
2100 
2101   if (log_is_enabled(Debug, os, thread, timer)) {
2102     _timer_exit_phase4.stop();
2103     ResourceMark rm(this);
2104     log_debug(os, thread, timer)("name='%s'"
2105                                  ", exit-phase1=" JLONG_FORMAT
2106                                  ", exit-phase2=" JLONG_FORMAT
2107                                  ", exit-phase3=" JLONG_FORMAT
2108                                  ", exit-phase4=" JLONG_FORMAT,
2109                                  get_thread_name(),
2110                                  _timer_exit_phase1.milliseconds(),
2111                                  _timer_exit_phase2.milliseconds(),
2112                                  _timer_exit_phase3.milliseconds(),
2113                                  _timer_exit_phase4.milliseconds());
2114   }
2115 }
2116 
2117 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2118   if (active_handles() != NULL) {
2119     JNIHandleBlock* block = active_handles();
2120     set_active_handles(NULL);
2121     JNIHandleBlock::release_block(block);
2122   }
2123 
2124   if (free_handle_block() != NULL) {
2125     JNIHandleBlock* block = free_handle_block();
2126     set_free_handle_block(NULL);
2127     JNIHandleBlock::release_block(block);
2128   }
2129 
2130   // These have to be removed while this is still a valid thread.
2131   remove_stack_guard_pages();
2132 
2133   if (UseTLAB) {
2134     tlab().retire();
2135   }
2136 
2137   BarrierSet::barrier_set()->on_thread_detach(this);
2138 
2139   Threads::remove(this, is_daemon);
2140   this->smr_delete();
2141 }
2142 
2143 JavaThread* JavaThread::active() {
2144   Thread* thread = Thread::current();
2145   if (thread->is_Java_thread()) {
2146     return (JavaThread*) thread;
2147   } else {
2148     assert(thread->is_VM_thread(), "this must be a vm thread");
2149     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2150     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2151     assert(ret->is_Java_thread(), "must be a Java thread");
2152     return ret;
2153   }
2154 }
2155 
2156 bool JavaThread::is_lock_owned(address adr) const {
2157   if (Thread::is_lock_owned(adr)) return true;
2158 
2159   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2160     if (chunk->contains(adr)) return true;
2161   }
2162 
2163   return false;
2164 }
2165 
2166 
2167 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2168   chunk->set_next(monitor_chunks());
2169   set_monitor_chunks(chunk);
2170 }
2171 
2172 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2173   guarantee(monitor_chunks() != NULL, "must be non empty");
2174   if (monitor_chunks() == chunk) {
2175     set_monitor_chunks(chunk->next());
2176   } else {
2177     MonitorChunk* prev = monitor_chunks();
2178     while (prev->next() != chunk) prev = prev->next();
2179     prev->set_next(chunk->next());
2180   }
2181 }
2182 
2183 // JVM support.
2184 
2185 // Note: this function shouldn't block if it's called in
2186 // _thread_in_native_trans state (such as from
2187 // check_special_condition_for_native_trans()).
2188 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2189 
2190   if (has_last_Java_frame() && has_async_condition()) {
2191     // If we are at a polling page safepoint (not a poll return)
2192     // then we must defer async exception because live registers
2193     // will be clobbered by the exception path. Poll return is
2194     // ok because the call we a returning from already collides
2195     // with exception handling registers and so there is no issue.
2196     // (The exception handling path kills call result registers but
2197     //  this is ok since the exception kills the result anyway).
2198 
2199     if (is_at_poll_safepoint()) {
2200       // if the code we are returning to has deoptimized we must defer
2201       // the exception otherwise live registers get clobbered on the
2202       // exception path before deoptimization is able to retrieve them.
2203       //
2204       RegisterMap map(this, false);
2205       frame caller_fr = last_frame().sender(&map);
2206       assert(caller_fr.is_compiled_frame(), "what?");
2207       if (caller_fr.is_deoptimized_frame()) {
2208         log_info(exceptions)("deferred async exception at compiled safepoint");
2209         return;
2210       }
2211     }
2212   }
2213 
2214   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2215   if (condition == _no_async_condition) {
2216     // Conditions have changed since has_special_runtime_exit_condition()
2217     // was called:
2218     // - if we were here only because of an external suspend request,
2219     //   then that was taken care of above (or cancelled) so we are done
2220     // - if we were here because of another async request, then it has
2221     //   been cleared between the has_special_runtime_exit_condition()
2222     //   and now so again we are done
2223     return;
2224   }
2225 
2226   // Check for pending async. exception
2227   if (_pending_async_exception != NULL) {
2228     // Only overwrite an already pending exception, if it is not a threadDeath.
2229     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2230 
2231       // We cannot call Exceptions::_throw(...) here because we cannot block
2232       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2233 
2234       LogTarget(Info, exceptions) lt;
2235       if (lt.is_enabled()) {
2236         ResourceMark rm;
2237         LogStream ls(lt);
2238         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2239           if (has_last_Java_frame()) {
2240             frame f = last_frame();
2241            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2242           }
2243         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2244       }
2245       _pending_async_exception = NULL;
2246       clear_has_async_exception();
2247     }
2248   }
2249 
2250   if (check_unsafe_error &&
2251       condition == _async_unsafe_access_error && !has_pending_exception()) {
2252     condition = _no_async_condition;  // done
2253     switch (thread_state()) {
2254     case _thread_in_vm: {
2255       JavaThread* THREAD = this;
2256       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2257     }
2258     case _thread_in_native: {
2259       ThreadInVMfromNative tiv(this);
2260       JavaThread* THREAD = this;
2261       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2262     }
2263     case _thread_in_Java: {
2264       ThreadInVMfromJava tiv(this);
2265       JavaThread* THREAD = this;
2266       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2267     }
2268     default:
2269       ShouldNotReachHere();
2270     }
2271   }
2272 
2273   assert(condition == _no_async_condition || has_pending_exception() ||
2274          (!check_unsafe_error && condition == _async_unsafe_access_error),
2275          "must have handled the async condition, if no exception");
2276 }
2277 
2278 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2279   //
2280   // Check for pending external suspend.
2281   // If JNIEnv proxies are allowed, don't self-suspend if the target
2282   // thread is not the current thread. In older versions of jdbx, jdbx
2283   // threads could call into the VM with another thread's JNIEnv so we
2284   // can be here operating on behalf of a suspended thread (4432884).
2285   bool do_self_suspend = is_external_suspend_with_lock();
2286   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2287     frame_anchor()->make_walkable(this);
2288     java_suspend_self_with_safepoint_check();
2289   }
2290 
2291   // We might be here for reasons in addition to the self-suspend request
2292   // so check for other async requests.
2293   if (check_asyncs) {
2294     check_and_handle_async_exceptions();
2295   }
2296 
2297   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2298 }
2299 
2300 void JavaThread::send_thread_stop(oop java_throwable)  {
2301   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2302   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2303   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2304 
2305   // Do not throw asynchronous exceptions against the compiler thread
2306   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2307   if (!can_call_java()) return;
2308 
2309   {
2310     // Actually throw the Throwable against the target Thread - however
2311     // only if there is no thread death exception installed already.
2312     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2313       // If the topmost frame is a runtime stub, then we are calling into
2314       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2315       // must deoptimize the caller before continuing, as the compiled  exception handler table
2316       // may not be valid
2317       if (has_last_Java_frame()) {
2318         frame f = last_frame();
2319         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2320           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2321           RegisterMap reg_map(this, UseBiasedLocking);
2322           frame compiled_frame = f.sender(&reg_map);
2323           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2324             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2325           }
2326         }
2327       }
2328 
2329       // Set async. pending exception in thread.
2330       set_pending_async_exception(java_throwable);
2331 
2332       if (log_is_enabled(Info, exceptions)) {
2333          ResourceMark rm;
2334         log_info(exceptions)("Pending Async. exception installed of type: %s",
2335                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2336       }
2337       // for AbortVMOnException flag
2338       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2339     }
2340   }
2341 
2342 
2343   // Interrupt thread so it will wake up from a potential wait()
2344   Thread::interrupt(this);
2345 }
2346 
2347 // External suspension mechanism.
2348 //
2349 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2350 // to any VM_locks and it is at a transition
2351 // Self-suspension will happen on the transition out of the vm.
2352 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2353 //
2354 // Guarantees on return:
2355 //   + Target thread will not execute any new bytecode (that's why we need to
2356 //     force a safepoint)
2357 //   + Target thread will not enter any new monitors
2358 //
2359 void JavaThread::java_suspend() {
2360   ThreadsListHandle tlh;
2361   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2362     return;
2363   }
2364 
2365   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2366     if (!is_external_suspend()) {
2367       // a racing resume has cancelled us; bail out now
2368       return;
2369     }
2370 
2371     // suspend is done
2372     uint32_t debug_bits = 0;
2373     // Warning: is_ext_suspend_completed() may temporarily drop the
2374     // SR_lock to allow the thread to reach a stable thread state if
2375     // it is currently in a transient thread state.
2376     if (is_ext_suspend_completed(false /* !called_by_wait */,
2377                                  SuspendRetryDelay, &debug_bits)) {
2378       return;
2379     }
2380   }
2381 
2382   if (Thread::current() == this) {
2383     // Safely self-suspend.
2384     // If we don't do this explicitly it will implicitly happen
2385     // before we transition back to Java, and on some other thread-state
2386     // transition paths, but not as we exit a JVM TI SuspendThread call.
2387     // As SuspendThread(current) must not return (until resumed) we must
2388     // self-suspend here.
2389     ThreadBlockInVM tbivm(this);
2390     java_suspend_self();
2391   } else {
2392     VM_ThreadSuspend vm_suspend;
2393     VMThread::execute(&vm_suspend);
2394   }
2395 }
2396 
2397 // Part II of external suspension.
2398 // A JavaThread self suspends when it detects a pending external suspend
2399 // request. This is usually on transitions. It is also done in places
2400 // where continuing to the next transition would surprise the caller,
2401 // e.g., monitor entry.
2402 //
2403 // Returns the number of times that the thread self-suspended.
2404 //
2405 // Note: DO NOT call java_suspend_self() when you just want to block current
2406 //       thread. java_suspend_self() is the second stage of cooperative
2407 //       suspension for external suspend requests and should only be used
2408 //       to complete an external suspend request.
2409 //
2410 int JavaThread::java_suspend_self() {
2411   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2412   int ret = 0;
2413 
2414   // we are in the process of exiting so don't suspend
2415   if (is_exiting()) {
2416     clear_external_suspend();
2417     return ret;
2418   }
2419 
2420   assert(_anchor.walkable() ||
2421          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2422          "must have walkable stack");
2423 
2424   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2425 
2426   assert(!this->is_ext_suspended(),
2427          "a thread trying to self-suspend should not already be suspended");
2428 
2429   if (this->is_suspend_equivalent()) {
2430     // If we are self-suspending as a result of the lifting of a
2431     // suspend equivalent condition, then the suspend_equivalent
2432     // flag is not cleared until we set the ext_suspended flag so
2433     // that wait_for_ext_suspend_completion() returns consistent
2434     // results.
2435     this->clear_suspend_equivalent();
2436   }
2437 
2438   // A racing resume may have cancelled us before we grabbed SR_lock
2439   // above. Or another external suspend request could be waiting for us
2440   // by the time we return from SR_lock()->wait(). The thread
2441   // that requested the suspension may already be trying to walk our
2442   // stack and if we return now, we can change the stack out from under
2443   // it. This would be a "bad thing (TM)" and cause the stack walker
2444   // to crash. We stay self-suspended until there are no more pending
2445   // external suspend requests.
2446   while (is_external_suspend()) {
2447     ret++;
2448     this->set_ext_suspended();
2449 
2450     // _ext_suspended flag is cleared by java_resume()
2451     while (is_ext_suspended()) {
2452       ml.wait();
2453     }
2454   }
2455   return ret;
2456 }
2457 
2458 // Helper routine to set up the correct thread state before calling java_suspend_self.
2459 // This is called when regular thread-state transition helpers can't be used because
2460 // we can be in various states, in particular _thread_in_native_trans.
2461 // Because this thread is external suspended the safepoint code will count it as at
2462 // a safepoint, regardless of what its actual current thread-state is. But
2463 // is_ext_suspend_completed() may be waiting to see a thread transition from
2464 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2465 // to _thread_blocked. The problem with setting thread state directly is that a
2466 // safepoint could happen just after java_suspend_self() returns after being resumed,
2467 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2468 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2469 // However, not all initial-states are allowed when performing a safepoint check, as we
2470 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2471 // only _thread_in_native is possible when executing this code (based on our two callers).
2472 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2473 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2474 // and so we don't need the explicit safepoint check.
2475 
2476 void JavaThread::java_suspend_self_with_safepoint_check() {
2477   assert(this == Thread::current(), "invariant");
2478   JavaThreadState state = thread_state();
2479   set_thread_state(_thread_blocked);
2480   java_suspend_self();
2481   set_thread_state_fence(state);
2482   // Since we are not using a regular thread-state transition helper here,
2483   // we must manually emit the instruction barrier after leaving a safe state.
2484   OrderAccess::cross_modify_fence();
2485   if (state != _thread_in_native) {
2486     SafepointMechanism::block_if_requested(this);
2487   }
2488 }
2489 
2490 #ifdef ASSERT
2491 // Verify the JavaThread has not yet been published in the Threads::list, and
2492 // hence doesn't need protection from concurrent access at this stage.
2493 void JavaThread::verify_not_published() {
2494   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2495   // since an unpublished JavaThread doesn't participate in the
2496   // Thread-SMR protocol for keeping a ThreadsList alive.
2497   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2498 }
2499 #endif
2500 
2501 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2502 // progress or when _suspend_flags is non-zero.
2503 // Current thread needs to self-suspend if there is a suspend request and/or
2504 // block if a safepoint is in progress.
2505 // Async exception ISN'T checked.
2506 // Note only the ThreadInVMfromNative transition can call this function
2507 // directly and when thread state is _thread_in_native_trans
2508 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2509   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2510 
2511   JavaThread *curJT = JavaThread::current();
2512   bool do_self_suspend = thread->is_external_suspend();
2513 
2514   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2515 
2516   // If JNIEnv proxies are allowed, don't self-suspend if the target
2517   // thread is not the current thread. In older versions of jdbx, jdbx
2518   // threads could call into the VM with another thread's JNIEnv so we
2519   // can be here operating on behalf of a suspended thread (4432884).
2520   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2521     thread->java_suspend_self_with_safepoint_check();
2522   } else {
2523     SafepointMechanism::block_if_requested(curJT);
2524   }
2525 
2526   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2527 }
2528 
2529 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2530 // progress or when _suspend_flags is non-zero.
2531 // Current thread needs to self-suspend if there is a suspend request and/or
2532 // block if a safepoint is in progress.
2533 // Also check for pending async exception (not including unsafe access error).
2534 // Note only the native==>VM/Java barriers can call this function and when
2535 // thread state is _thread_in_native_trans.
2536 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2537   check_safepoint_and_suspend_for_native_trans(thread);
2538 
2539   if (thread->has_async_exception()) {
2540     // We are in _thread_in_native_trans state, don't handle unsafe
2541     // access error since that may block.
2542     thread->check_and_handle_async_exceptions(false);
2543   }
2544 }
2545 
2546 // This is a variant of the normal
2547 // check_special_condition_for_native_trans with slightly different
2548 // semantics for use by critical native wrappers.  It does all the
2549 // normal checks but also performs the transition back into
2550 // thread_in_Java state.  This is required so that critical natives
2551 // can potentially block and perform a GC if they are the last thread
2552 // exiting the GCLocker.
2553 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2554   check_special_condition_for_native_trans(thread);
2555 
2556   // Finish the transition
2557   thread->set_thread_state(_thread_in_Java);
2558 
2559   if (thread->do_critical_native_unlock()) {
2560     ThreadInVMfromJavaNoAsyncException tiv(thread);
2561     GCLocker::unlock_critical(thread);
2562     thread->clear_critical_native_unlock();
2563   }
2564 }
2565 
2566 // We need to guarantee the Threads_lock here, since resumes are not
2567 // allowed during safepoint synchronization
2568 // Can only resume from an external suspension
2569 void JavaThread::java_resume() {
2570   assert_locked_or_safepoint(Threads_lock);
2571 
2572   // Sanity check: thread is gone, has started exiting or the thread
2573   // was not externally suspended.
2574   ThreadsListHandle tlh;
2575   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2576     return;
2577   }
2578 
2579   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2580 
2581   clear_external_suspend();
2582 
2583   if (is_ext_suspended()) {
2584     clear_ext_suspended();
2585     SR_lock()->notify_all();
2586   }
2587 }
2588 
2589 size_t JavaThread::_stack_red_zone_size = 0;
2590 size_t JavaThread::_stack_yellow_zone_size = 0;
2591 size_t JavaThread::_stack_reserved_zone_size = 0;
2592 size_t JavaThread::_stack_shadow_zone_size = 0;
2593 
2594 void JavaThread::create_stack_guard_pages() {
2595   if (!os::uses_stack_guard_pages() ||
2596       _stack_guard_state != stack_guard_unused ||
2597       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2598       log_info(os, thread)("Stack guard page creation for thread "
2599                            UINTX_FORMAT " disabled", os::current_thread_id());
2600     return;
2601   }
2602   address low_addr = stack_end();
2603   size_t len = stack_guard_zone_size();
2604 
2605   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2606   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2607 
2608   int must_commit = os::must_commit_stack_guard_pages();
2609   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2610 
2611   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2612     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2613     return;
2614   }
2615 
2616   if (os::guard_memory((char *) low_addr, len)) {
2617     _stack_guard_state = stack_guard_enabled;
2618   } else {
2619     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2620       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2621     if (os::uncommit_memory((char *) low_addr, len)) {
2622       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2623     }
2624     return;
2625   }
2626 
2627   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2628     PTR_FORMAT "-" PTR_FORMAT ".",
2629     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2630 }
2631 
2632 void JavaThread::remove_stack_guard_pages() {
2633   assert(Thread::current() == this, "from different thread");
2634   if (_stack_guard_state == stack_guard_unused) return;
2635   address low_addr = stack_end();
2636   size_t len = stack_guard_zone_size();
2637 
2638   if (os::must_commit_stack_guard_pages()) {
2639     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2640       _stack_guard_state = stack_guard_unused;
2641     } else {
2642       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2643         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2644       return;
2645     }
2646   } else {
2647     if (_stack_guard_state == stack_guard_unused) return;
2648     if (os::unguard_memory((char *) low_addr, len)) {
2649       _stack_guard_state = stack_guard_unused;
2650     } else {
2651       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2652         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2653       return;
2654     }
2655   }
2656 
2657   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2658     PTR_FORMAT "-" PTR_FORMAT ".",
2659     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2660 }
2661 
2662 void JavaThread::enable_stack_reserved_zone() {
2663   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2664 
2665   // The base notation is from the stack's point of view, growing downward.
2666   // We need to adjust it to work correctly with guard_memory()
2667   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2668 
2669   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2670   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2671 
2672   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2673     _stack_guard_state = stack_guard_enabled;
2674   } else {
2675     warning("Attempt to guard stack reserved zone failed.");
2676   }
2677   enable_register_stack_guard();
2678 }
2679 
2680 void JavaThread::disable_stack_reserved_zone() {
2681   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2682 
2683   // Simply return if called for a thread that does not use guard pages.
2684   if (_stack_guard_state != stack_guard_enabled) return;
2685 
2686   // The base notation is from the stack's point of view, growing downward.
2687   // We need to adjust it to work correctly with guard_memory()
2688   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2689 
2690   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2691     _stack_guard_state = stack_guard_reserved_disabled;
2692   } else {
2693     warning("Attempt to unguard stack reserved zone failed.");
2694   }
2695   disable_register_stack_guard();
2696 }
2697 
2698 void JavaThread::enable_stack_yellow_reserved_zone() {
2699   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2700   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2701 
2702   // The base notation is from the stacks point of view, growing downward.
2703   // We need to adjust it to work correctly with guard_memory()
2704   address base = stack_red_zone_base();
2705 
2706   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2707   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2708 
2709   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2710     _stack_guard_state = stack_guard_enabled;
2711   } else {
2712     warning("Attempt to guard stack yellow zone failed.");
2713   }
2714   enable_register_stack_guard();
2715 }
2716 
2717 void JavaThread::disable_stack_yellow_reserved_zone() {
2718   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2719   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2720 
2721   // Simply return if called for a thread that does not use guard pages.
2722   if (_stack_guard_state == stack_guard_unused) return;
2723 
2724   // The base notation is from the stacks point of view, growing downward.
2725   // We need to adjust it to work correctly with guard_memory()
2726   address base = stack_red_zone_base();
2727 
2728   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2729     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2730   } else {
2731     warning("Attempt to unguard stack yellow zone failed.");
2732   }
2733   disable_register_stack_guard();
2734 }
2735 
2736 void JavaThread::enable_stack_red_zone() {
2737   // The base notation is from the stacks point of view, growing downward.
2738   // We need to adjust it to work correctly with guard_memory()
2739   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2740   address base = stack_red_zone_base() - stack_red_zone_size();
2741 
2742   guarantee(base < stack_base(), "Error calculating stack red zone");
2743   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2744 
2745   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2746     warning("Attempt to guard stack red zone failed.");
2747   }
2748 }
2749 
2750 void JavaThread::disable_stack_red_zone() {
2751   // The base notation is from the stacks point of view, growing downward.
2752   // We need to adjust it to work correctly with guard_memory()
2753   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2754   address base = stack_red_zone_base() - stack_red_zone_size();
2755   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2756     warning("Attempt to unguard stack red zone failed.");
2757   }
2758 }
2759 
2760 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2761   // ignore is there is no stack
2762   if (!has_last_Java_frame()) return;
2763   // traverse the stack frames. Starts from top frame.
2764   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2765     frame* fr = fst.current();
2766     f(fr, fst.register_map());
2767   }
2768 }
2769 
2770 
2771 #ifndef PRODUCT
2772 // Deoptimization
2773 // Function for testing deoptimization
2774 void JavaThread::deoptimize() {
2775   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2776   StackFrameStream fst(this, UseBiasedLocking);
2777   bool deopt = false;           // Dump stack only if a deopt actually happens.
2778   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2779   // Iterate over all frames in the thread and deoptimize
2780   for (; !fst.is_done(); fst.next()) {
2781     if (fst.current()->can_be_deoptimized()) {
2782 
2783       if (only_at) {
2784         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2785         // consists of comma or carriage return separated numbers so
2786         // search for the current bci in that string.
2787         address pc = fst.current()->pc();
2788         nmethod* nm =  (nmethod*) fst.current()->cb();
2789         ScopeDesc* sd = nm->scope_desc_at(pc);
2790         char buffer[8];
2791         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2792         size_t len = strlen(buffer);
2793         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2794         while (found != NULL) {
2795           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2796               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2797             // Check that the bci found is bracketed by terminators.
2798             break;
2799           }
2800           found = strstr(found + 1, buffer);
2801         }
2802         if (!found) {
2803           continue;
2804         }
2805       }
2806 
2807       if (DebugDeoptimization && !deopt) {
2808         deopt = true; // One-time only print before deopt
2809         tty->print_cr("[BEFORE Deoptimization]");
2810         trace_frames();
2811         trace_stack();
2812       }
2813       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2814     }
2815   }
2816 
2817   if (DebugDeoptimization && deopt) {
2818     tty->print_cr("[AFTER Deoptimization]");
2819     trace_frames();
2820   }
2821 }
2822 
2823 
2824 // Make zombies
2825 void JavaThread::make_zombies() {
2826   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2827     if (fst.current()->can_be_deoptimized()) {
2828       // it is a Java nmethod
2829       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2830       nm->make_not_entrant();
2831     }
2832   }
2833 }
2834 #endif // PRODUCT
2835 
2836 
2837 void JavaThread::deoptimize_marked_methods(bool in_handshake) {
2838   if (!has_last_Java_frame()) return;
2839   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2840   StackFrameStream fst(this, UseBiasedLocking);
2841   for (; !fst.is_done(); fst.next()) {
2842     if (fst.current()->should_be_deoptimized()) {
2843       Deoptimization::deoptimize(this, *fst.current(), fst.register_map(), in_handshake);
2844     }
2845   }
2846 }
2847 
2848 // If the caller is a NamedThread, then remember, in the current scope,
2849 // the given JavaThread in its _processed_thread field.
2850 class RememberProcessedThread: public StackObj {
2851   NamedThread* _cur_thr;
2852  public:
2853   RememberProcessedThread(JavaThread* jthr) {
2854     Thread* thread = Thread::current();
2855     if (thread->is_Named_thread()) {
2856       _cur_thr = (NamedThread *)thread;
2857       _cur_thr->set_processed_thread(jthr);
2858     } else {
2859       _cur_thr = NULL;
2860     }
2861   }
2862 
2863   ~RememberProcessedThread() {
2864     if (_cur_thr) {
2865       _cur_thr->set_processed_thread(NULL);
2866     }
2867   }
2868 };
2869 
2870 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2871   // Verify that the deferred card marks have been flushed.
2872   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2873 
2874   // Traverse the GCHandles
2875   Thread::oops_do(f, cf);
2876 
2877   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2878          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2879 
2880   if (has_last_Java_frame()) {
2881     // Record JavaThread to GC thread
2882     RememberProcessedThread rpt(this);
2883 
2884     // traverse the registered growable array
2885     if (_array_for_gc != NULL) {
2886       for (int index = 0; index < _array_for_gc->length(); index++) {
2887         f->do_oop(_array_for_gc->adr_at(index));
2888       }
2889     }
2890 
2891     // Traverse the monitor chunks
2892     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2893       chunk->oops_do(f);
2894     }
2895 
2896     // Traverse the execution stack
2897     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2898       fst.current()->oops_do(f, cf, fst.register_map());
2899     }
2900   }
2901 
2902   // callee_target is never live across a gc point so NULL it here should
2903   // it still contain a methdOop.
2904 
2905   set_callee_target(NULL);
2906 
2907   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2908   // If we have deferred set_locals there might be oops waiting to be
2909   // written
2910   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2911   if (list != NULL) {
2912     for (int i = 0; i < list->length(); i++) {
2913       list->at(i)->oops_do(f);
2914     }
2915   }
2916 
2917   // Traverse instance variables at the end since the GC may be moving things
2918   // around using this function
2919   f->do_oop((oop*) &_threadObj);
2920   f->do_oop((oop*) &_vm_result);
2921   f->do_oop((oop*) &_exception_oop);
2922   f->do_oop((oop*) &_pending_async_exception);
2923 
2924   if (jvmti_thread_state() != NULL) {
2925     jvmti_thread_state()->oops_do(f);
2926   }
2927 }
2928 
2929 #ifdef ASSERT
2930 void JavaThread::verify_states_for_handshake() {
2931   // This checks that the thread has a correct frame state during a handshake.
2932   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2933          (has_last_Java_frame() && java_call_counter() > 0),
2934          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2935          has_last_Java_frame(), java_call_counter());
2936 }
2937 #endif
2938 
2939 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2940   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2941          (has_last_Java_frame() && java_call_counter() > 0),
2942          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2943          has_last_Java_frame(), java_call_counter());
2944 
2945   if (has_last_Java_frame()) {
2946     // Traverse the execution stack
2947     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2948       fst.current()->nmethods_do(cf);
2949     }
2950   }
2951 }
2952 
2953 void JavaThread::metadata_do(MetadataClosure* f) {
2954   if (has_last_Java_frame()) {
2955     // Traverse the execution stack to call f() on the methods in the stack
2956     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2957       fst.current()->metadata_do(f);
2958     }
2959   } else if (is_Compiler_thread()) {
2960     // need to walk ciMetadata in current compile tasks to keep alive.
2961     CompilerThread* ct = (CompilerThread*)this;
2962     if (ct->env() != NULL) {
2963       ct->env()->metadata_do(f);
2964     }
2965     CompileTask* task = ct->task();
2966     if (task != NULL) {
2967       task->metadata_do(f);
2968     }
2969   }
2970 }
2971 
2972 // Printing
2973 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2974   switch (_thread_state) {
2975   case _thread_uninitialized:     return "_thread_uninitialized";
2976   case _thread_new:               return "_thread_new";
2977   case _thread_new_trans:         return "_thread_new_trans";
2978   case _thread_in_native:         return "_thread_in_native";
2979   case _thread_in_native_trans:   return "_thread_in_native_trans";
2980   case _thread_in_vm:             return "_thread_in_vm";
2981   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2982   case _thread_in_Java:           return "_thread_in_Java";
2983   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2984   case _thread_blocked:           return "_thread_blocked";
2985   case _thread_blocked_trans:     return "_thread_blocked_trans";
2986   default:                        return "unknown thread state";
2987   }
2988 }
2989 
2990 #ifndef PRODUCT
2991 void JavaThread::print_thread_state_on(outputStream *st) const {
2992   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2993 };
2994 void JavaThread::print_thread_state() const {
2995   print_thread_state_on(tty);
2996 }
2997 #endif // PRODUCT
2998 
2999 // Called by Threads::print() for VM_PrintThreads operation
3000 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3001   st->print_raw("\"");
3002   st->print_raw(get_thread_name());
3003   st->print_raw("\" ");
3004   oop thread_oop = threadObj();
3005   if (thread_oop != NULL) {
3006     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3007     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3008     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3009   }
3010   Thread::print_on(st, print_extended_info);
3011   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3012   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3013   if (thread_oop != NULL) {
3014     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3015   }
3016 #ifndef PRODUCT
3017   _safepoint_state->print_on(st);
3018 #endif // PRODUCT
3019   if (is_Compiler_thread()) {
3020     CompileTask *task = ((CompilerThread*)this)->task();
3021     if (task != NULL) {
3022       st->print("   Compiling: ");
3023       task->print(st, NULL, true, false);
3024     } else {
3025       st->print("   No compile task");
3026     }
3027     st->cr();
3028   }
3029 }
3030 
3031 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3032   st->print("%s", get_thread_name_string(buf, buflen));
3033 }
3034 
3035 // Called by fatal error handler. The difference between this and
3036 // JavaThread::print() is that we can't grab lock or allocate memory.
3037 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3038   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3039   oop thread_obj = threadObj();
3040   if (thread_obj != NULL) {
3041     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3042   }
3043   st->print(" [");
3044   st->print("%s", _get_thread_state_name(_thread_state));
3045   if (osthread()) {
3046     st->print(", id=%d", osthread()->thread_id());
3047   }
3048   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3049             p2i(stack_end()), p2i(stack_base()));
3050   st->print("]");
3051 
3052   ThreadsSMRSupport::print_info_on(this, st);
3053   return;
3054 }
3055 
3056 // Verification
3057 
3058 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3059 
3060 void JavaThread::verify() {
3061   // Verify oops in the thread.
3062   oops_do(&VerifyOopClosure::verify_oop, NULL);
3063 
3064   // Verify the stack frames.
3065   frames_do(frame_verify);
3066 }
3067 
3068 // CR 6300358 (sub-CR 2137150)
3069 // Most callers of this method assume that it can't return NULL but a
3070 // thread may not have a name whilst it is in the process of attaching to
3071 // the VM - see CR 6412693, and there are places where a JavaThread can be
3072 // seen prior to having it's threadObj set (eg JNI attaching threads and
3073 // if vm exit occurs during initialization). These cases can all be accounted
3074 // for such that this method never returns NULL.
3075 const char* JavaThread::get_thread_name() const {
3076 #ifdef ASSERT
3077   // early safepoints can hit while current thread does not yet have TLS
3078   if (!SafepointSynchronize::is_at_safepoint()) {
3079     Thread *cur = Thread::current();
3080     if (!(cur->is_Java_thread() && cur == this)) {
3081       // Current JavaThreads are allowed to get their own name without
3082       // the Threads_lock.
3083       assert_locked_or_safepoint(Threads_lock);
3084     }
3085   }
3086 #endif // ASSERT
3087   return get_thread_name_string();
3088 }
3089 
3090 // Returns a non-NULL representation of this thread's name, or a suitable
3091 // descriptive string if there is no set name
3092 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3093   const char* name_str;
3094   oop thread_obj = threadObj();
3095   if (thread_obj != NULL) {
3096     oop name = java_lang_Thread::name(thread_obj);
3097     if (name != NULL) {
3098       if (buf == NULL) {
3099         name_str = java_lang_String::as_utf8_string(name);
3100       } else {
3101         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3102       }
3103     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3104       name_str = "<no-name - thread is attaching>";
3105     } else {
3106       name_str = Thread::name();
3107     }
3108   } else {
3109     name_str = Thread::name();
3110   }
3111   assert(name_str != NULL, "unexpected NULL thread name");
3112   return name_str;
3113 }
3114 
3115 
3116 const char* JavaThread::get_threadgroup_name() const {
3117   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3118   oop thread_obj = threadObj();
3119   if (thread_obj != NULL) {
3120     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3121     if (thread_group != NULL) {
3122       // ThreadGroup.name can be null
3123       return java_lang_ThreadGroup::name(thread_group);
3124     }
3125   }
3126   return NULL;
3127 }
3128 
3129 const char* JavaThread::get_parent_name() const {
3130   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3131   oop thread_obj = threadObj();
3132   if (thread_obj != NULL) {
3133     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3134     if (thread_group != NULL) {
3135       oop parent = java_lang_ThreadGroup::parent(thread_group);
3136       if (parent != NULL) {
3137         // ThreadGroup.name can be null
3138         return java_lang_ThreadGroup::name(parent);
3139       }
3140     }
3141   }
3142   return NULL;
3143 }
3144 
3145 ThreadPriority JavaThread::java_priority() const {
3146   oop thr_oop = threadObj();
3147   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3148   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3149   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3150   return priority;
3151 }
3152 
3153 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3154 
3155   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3156   // Link Java Thread object <-> C++ Thread
3157 
3158   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3159   // and put it into a new Handle.  The Handle "thread_oop" can then
3160   // be used to pass the C++ thread object to other methods.
3161 
3162   // Set the Java level thread object (jthread) field of the
3163   // new thread (a JavaThread *) to C++ thread object using the
3164   // "thread_oop" handle.
3165 
3166   // Set the thread field (a JavaThread *) of the
3167   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3168 
3169   Handle thread_oop(Thread::current(),
3170                     JNIHandles::resolve_non_null(jni_thread));
3171   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3172          "must be initialized");
3173   set_threadObj(thread_oop());
3174   java_lang_Thread::set_thread(thread_oop(), this);
3175 
3176   if (prio == NoPriority) {
3177     prio = java_lang_Thread::priority(thread_oop());
3178     assert(prio != NoPriority, "A valid priority should be present");
3179   }
3180 
3181   // Push the Java priority down to the native thread; needs Threads_lock
3182   Thread::set_priority(this, prio);
3183 
3184   // Add the new thread to the Threads list and set it in motion.
3185   // We must have threads lock in order to call Threads::add.
3186   // It is crucial that we do not block before the thread is
3187   // added to the Threads list for if a GC happens, then the java_thread oop
3188   // will not be visited by GC.
3189   Threads::add(this);
3190 }
3191 
3192 oop JavaThread::current_park_blocker() {
3193   // Support for JSR-166 locks
3194   oop thread_oop = threadObj();
3195   if (thread_oop != NULL &&
3196       JDK_Version::current().supports_thread_park_blocker()) {
3197     return java_lang_Thread::park_blocker(thread_oop);
3198   }
3199   return NULL;
3200 }
3201 
3202 
3203 void JavaThread::print_stack_on(outputStream* st) {
3204   if (!has_last_Java_frame()) return;
3205   ResourceMark rm;
3206   HandleMark   hm;
3207 
3208   RegisterMap reg_map(this);
3209   vframe* start_vf = last_java_vframe(&reg_map);
3210   int count = 0;
3211   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3212     if (f->is_java_frame()) {
3213       javaVFrame* jvf = javaVFrame::cast(f);
3214       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3215 
3216       // Print out lock information
3217       if (JavaMonitorsInStackTrace) {
3218         jvf->print_lock_info_on(st, count);
3219       }
3220     } else {
3221       // Ignore non-Java frames
3222     }
3223 
3224     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3225     count++;
3226     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3227   }
3228 }
3229 
3230 
3231 // JVMTI PopFrame support
3232 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3233   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3234   if (in_bytes(size_in_bytes) != 0) {
3235     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3236     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3237     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3238   }
3239 }
3240 
3241 void* JavaThread::popframe_preserved_args() {
3242   return _popframe_preserved_args;
3243 }
3244 
3245 ByteSize JavaThread::popframe_preserved_args_size() {
3246   return in_ByteSize(_popframe_preserved_args_size);
3247 }
3248 
3249 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3250   int sz = in_bytes(popframe_preserved_args_size());
3251   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3252   return in_WordSize(sz / wordSize);
3253 }
3254 
3255 void JavaThread::popframe_free_preserved_args() {
3256   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3257   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3258   _popframe_preserved_args = NULL;
3259   _popframe_preserved_args_size = 0;
3260 }
3261 
3262 #ifndef PRODUCT
3263 
3264 void JavaThread::trace_frames() {
3265   tty->print_cr("[Describe stack]");
3266   int frame_no = 1;
3267   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3268     tty->print("  %d. ", frame_no++);
3269     fst.current()->print_value_on(tty, this);
3270     tty->cr();
3271   }
3272 }
3273 
3274 class PrintAndVerifyOopClosure: public OopClosure {
3275  protected:
3276   template <class T> inline void do_oop_work(T* p) {
3277     oop obj = RawAccess<>::oop_load(p);
3278     if (obj == NULL) return;
3279     tty->print(INTPTR_FORMAT ": ", p2i(p));
3280     if (oopDesc::is_oop_or_null(obj)) {
3281       if (obj->is_objArray()) {
3282         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3283       } else {
3284         obj->print();
3285       }
3286     } else {
3287       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3288     }
3289     tty->cr();
3290   }
3291  public:
3292   virtual void do_oop(oop* p) { do_oop_work(p); }
3293   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3294 };
3295 
3296 
3297 static void oops_print(frame* f, const RegisterMap *map) {
3298   PrintAndVerifyOopClosure print;
3299   f->print_value();
3300   f->oops_do(&print, NULL, (RegisterMap*)map);
3301 }
3302 
3303 // Print our all the locations that contain oops and whether they are
3304 // valid or not.  This useful when trying to find the oldest frame
3305 // where an oop has gone bad since the frame walk is from youngest to
3306 // oldest.
3307 void JavaThread::trace_oops() {
3308   tty->print_cr("[Trace oops]");
3309   frames_do(oops_print);
3310 }
3311 
3312 
3313 #ifdef ASSERT
3314 // Print or validate the layout of stack frames
3315 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3316   ResourceMark rm;
3317   PRESERVE_EXCEPTION_MARK;
3318   FrameValues values;
3319   int frame_no = 0;
3320   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3321     fst.current()->describe(values, ++frame_no);
3322     if (depth == frame_no) break;
3323   }
3324   if (validate_only) {
3325     values.validate();
3326   } else {
3327     tty->print_cr("[Describe stack layout]");
3328     values.print(this);
3329   }
3330 }
3331 #endif
3332 
3333 void JavaThread::trace_stack_from(vframe* start_vf) {
3334   ResourceMark rm;
3335   int vframe_no = 1;
3336   for (vframe* f = start_vf; f; f = f->sender()) {
3337     if (f->is_java_frame()) {
3338       javaVFrame::cast(f)->print_activation(vframe_no++);
3339     } else {
3340       f->print();
3341     }
3342     if (vframe_no > StackPrintLimit) {
3343       tty->print_cr("...<more frames>...");
3344       return;
3345     }
3346   }
3347 }
3348 
3349 
3350 void JavaThread::trace_stack() {
3351   if (!has_last_Java_frame()) return;
3352   ResourceMark rm;
3353   HandleMark   hm;
3354   RegisterMap reg_map(this);
3355   trace_stack_from(last_java_vframe(&reg_map));
3356 }
3357 
3358 
3359 #endif // PRODUCT
3360 
3361 
3362 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3363   assert(reg_map != NULL, "a map must be given");
3364   frame f = last_frame();
3365   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3366     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3367   }
3368   return NULL;
3369 }
3370 
3371 
3372 Klass* JavaThread::security_get_caller_class(int depth) {
3373   vframeStream vfst(this);
3374   vfst.security_get_caller_frame(depth);
3375   if (!vfst.at_end()) {
3376     return vfst.method()->method_holder();
3377   }
3378   return NULL;
3379 }
3380 
3381 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3382   assert(thread->is_Compiler_thread(), "must be compiler thread");
3383   CompileBroker::compiler_thread_loop();
3384 }
3385 
3386 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3387   NMethodSweeper::sweeper_loop();
3388 }
3389 
3390 // Create a CompilerThread
3391 CompilerThread::CompilerThread(CompileQueue* queue,
3392                                CompilerCounters* counters)
3393                                : JavaThread(&compiler_thread_entry) {
3394   _env   = NULL;
3395   _log   = NULL;
3396   _task  = NULL;
3397   _queue = queue;
3398   _counters = counters;
3399   _buffer_blob = NULL;
3400   _compiler = NULL;
3401 
3402   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3403   resource_area()->bias_to(mtCompiler);
3404 
3405 #ifndef PRODUCT
3406   _ideal_graph_printer = NULL;
3407 #endif
3408 }
3409 
3410 CompilerThread::~CompilerThread() {
3411   // Delete objects which were allocated on heap.
3412   delete _counters;
3413 }
3414 
3415 bool CompilerThread::can_call_java() const {
3416   return _compiler != NULL && _compiler->is_jvmci();
3417 }
3418 
3419 // Create sweeper thread
3420 CodeCacheSweeperThread::CodeCacheSweeperThread()
3421 : JavaThread(&sweeper_thread_entry) {
3422   _scanned_compiled_method = NULL;
3423 }
3424 
3425 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3426   JavaThread::oops_do(f, cf);
3427   if (_scanned_compiled_method != NULL && cf != NULL) {
3428     // Safepoints can occur when the sweeper is scanning an nmethod so
3429     // process it here to make sure it isn't unloaded in the middle of
3430     // a scan.
3431     cf->do_code_blob(_scanned_compiled_method);
3432   }
3433 }
3434 
3435 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3436   JavaThread::nmethods_do(cf);
3437   if (_scanned_compiled_method != NULL && cf != NULL) {
3438     // Safepoints can occur when the sweeper is scanning an nmethod so
3439     // process it here to make sure it isn't unloaded in the middle of
3440     // a scan.
3441     cf->do_code_blob(_scanned_compiled_method);
3442   }
3443 }
3444 
3445 
3446 // ======= Threads ========
3447 
3448 // The Threads class links together all active threads, and provides
3449 // operations over all threads. It is protected by the Threads_lock,
3450 // which is also used in other global contexts like safepointing.
3451 // ThreadsListHandles are used to safely perform operations on one
3452 // or more threads without the risk of the thread exiting during the
3453 // operation.
3454 //
3455 // Note: The Threads_lock is currently more widely used than we
3456 // would like. We are actively migrating Threads_lock uses to other
3457 // mechanisms in order to reduce Threads_lock contention.
3458 
3459 JavaThread* Threads::_thread_list = NULL;
3460 int         Threads::_number_of_threads = 0;
3461 int         Threads::_number_of_non_daemon_threads = 0;
3462 int         Threads::_return_code = 0;
3463 uintx       Threads::_thread_claim_token = 1; // Never zero.
3464 size_t      JavaThread::_stack_size_at_create = 0;
3465 
3466 #ifdef ASSERT
3467 bool        Threads::_vm_complete = false;
3468 #endif
3469 
3470 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3471   Prefetch::read((void*)addr, prefetch_interval);
3472   return *addr;
3473 }
3474 
3475 // Possibly the ugliest for loop the world has seen. C++ does not allow
3476 // multiple types in the declaration section of the for loop. In this case
3477 // we are only dealing with pointers and hence can cast them. It looks ugly
3478 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3479 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3480     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3481              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3482              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3483              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3484              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3485          MACRO_current_p != MACRO_end;                                                                                    \
3486          MACRO_current_p++,                                                                                               \
3487              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3488 
3489 // All JavaThreads
3490 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3491 
3492 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3493 void Threads::non_java_threads_do(ThreadClosure* tc) {
3494   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3495   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3496     tc->do_thread(njti.current());
3497   }
3498 }
3499 
3500 // All JavaThreads
3501 void Threads::java_threads_do(ThreadClosure* tc) {
3502   assert_locked_or_safepoint(Threads_lock);
3503   // ALL_JAVA_THREADS iterates through all JavaThreads.
3504   ALL_JAVA_THREADS(p) {
3505     tc->do_thread(p);
3506   }
3507 }
3508 
3509 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3510   assert_locked_or_safepoint(Threads_lock);
3511   java_threads_do(tc);
3512   tc->do_thread(VMThread::vm_thread());
3513 }
3514 
3515 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3516 void Threads::threads_do(ThreadClosure* tc) {
3517   assert_locked_or_safepoint(Threads_lock);
3518   java_threads_do(tc);
3519   non_java_threads_do(tc);
3520 }
3521 
3522 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3523   uintx claim_token = Threads::thread_claim_token();
3524   ALL_JAVA_THREADS(p) {
3525     if (p->claim_threads_do(is_par, claim_token)) {
3526       tc->do_thread(p);
3527     }
3528   }
3529   VMThread* vmt = VMThread::vm_thread();
3530   if (vmt->claim_threads_do(is_par, claim_token)) {
3531     tc->do_thread(vmt);
3532   }
3533 }
3534 
3535 // The system initialization in the library has three phases.
3536 //
3537 // Phase 1: java.lang.System class initialization
3538 //     java.lang.System is a primordial class loaded and initialized
3539 //     by the VM early during startup.  java.lang.System.<clinit>
3540 //     only does registerNatives and keeps the rest of the class
3541 //     initialization work later until thread initialization completes.
3542 //
3543 //     System.initPhase1 initializes the system properties, the static
3544 //     fields in, out, and err. Set up java signal handlers, OS-specific
3545 //     system settings, and thread group of the main thread.
3546 static void call_initPhase1(TRAPS) {
3547   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3548   JavaValue result(T_VOID);
3549   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3550                                          vmSymbols::void_method_signature(), CHECK);
3551 }
3552 
3553 // Phase 2. Module system initialization
3554 //     This will initialize the module system.  Only java.base classes
3555 //     can be loaded until phase 2 completes.
3556 //
3557 //     Call System.initPhase2 after the compiler initialization and jsr292
3558 //     classes get initialized because module initialization runs a lot of java
3559 //     code, that for performance reasons, should be compiled.  Also, this will
3560 //     enable the startup code to use lambda and other language features in this
3561 //     phase and onward.
3562 //
3563 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3564 static void call_initPhase2(TRAPS) {
3565   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3566 
3567   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3568 
3569   JavaValue result(T_INT);
3570   JavaCallArguments args;
3571   args.push_int(DisplayVMOutputToStderr);
3572   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3573   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3574                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3575   if (result.get_jint() != JNI_OK) {
3576     vm_exit_during_initialization(); // no message or exception
3577   }
3578 
3579   universe_post_module_init();
3580 }
3581 
3582 // Phase 3. final setup - set security manager, system class loader and TCCL
3583 //
3584 //     This will instantiate and set the security manager, set the system class
3585 //     loader as well as the thread context class loader.  The security manager
3586 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3587 //     other modules or the application's classpath.
3588 static void call_initPhase3(TRAPS) {
3589   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3590   JavaValue result(T_VOID);
3591   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3592                                          vmSymbols::void_method_signature(), CHECK);
3593 }
3594 
3595 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3596   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3597 
3598   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3599     create_vm_init_libraries();
3600   }
3601 
3602   initialize_class(vmSymbols::java_lang_String(), CHECK);
3603 
3604   // Inject CompactStrings value after the static initializers for String ran.
3605   java_lang_String::set_compact_strings(CompactStrings);
3606 
3607   // Initialize java_lang.System (needed before creating the thread)
3608   initialize_class(vmSymbols::java_lang_System(), CHECK);
3609   // The VM creates & returns objects of this class. Make sure it's initialized.
3610   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3611   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3612   Handle thread_group = create_initial_thread_group(CHECK);
3613   Universe::set_main_thread_group(thread_group());
3614   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3615   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3616   main_thread->set_threadObj(thread_object);
3617 
3618   // Set thread status to running since main thread has
3619   // been started and running.
3620   java_lang_Thread::set_thread_status(thread_object,
3621                                       java_lang_Thread::RUNNABLE);
3622 
3623   // The VM creates objects of this class.
3624   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3625 
3626 #ifdef ASSERT
3627   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3628   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3629 #endif
3630 
3631   // initialize the hardware-specific constants needed by Unsafe
3632   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3633   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3634 
3635   // The VM preresolves methods to these classes. Make sure that they get initialized
3636   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3637   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3638 
3639   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3640   call_initPhase1(CHECK);
3641 
3642   // get the Java runtime name after java.lang.System is initialized
3643   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3644   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3645 
3646   // an instance of OutOfMemory exception has been allocated earlier
3647   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3648   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3649   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3650   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3651   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3652   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3653   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3654   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3655 }
3656 
3657 void Threads::initialize_jsr292_core_classes(TRAPS) {
3658   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3659 
3660   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3661   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3662   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3663   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3664 }
3665 
3666 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3667   extern void JDK_Version_init();
3668 
3669   // Preinitialize version info.
3670   VM_Version::early_initialize();
3671 
3672   // Check version
3673   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3674 
3675   // Initialize library-based TLS
3676   ThreadLocalStorage::init();
3677 
3678   // Initialize the output stream module
3679   ostream_init();
3680 
3681   // Process java launcher properties.
3682   Arguments::process_sun_java_launcher_properties(args);
3683 
3684   // Initialize the os module
3685   os::init();
3686 
3687   // Record VM creation timing statistics
3688   TraceVmCreationTime create_vm_timer;
3689   create_vm_timer.start();
3690 
3691   // Initialize system properties.
3692   Arguments::init_system_properties();
3693 
3694   // So that JDK version can be used as a discriminator when parsing arguments
3695   JDK_Version_init();
3696 
3697   // Update/Initialize System properties after JDK version number is known
3698   Arguments::init_version_specific_system_properties();
3699 
3700   // Make sure to initialize log configuration *before* parsing arguments
3701   LogConfiguration::initialize(create_vm_timer.begin_time());
3702 
3703   // Parse arguments
3704   // Note: this internally calls os::init_container_support()
3705   jint parse_result = Arguments::parse(args);
3706   if (parse_result != JNI_OK) return parse_result;
3707 
3708   os::init_before_ergo();
3709 
3710   jint ergo_result = Arguments::apply_ergo();
3711   if (ergo_result != JNI_OK) return ergo_result;
3712 
3713   // Final check of all ranges after ergonomics which may change values.
3714   if (!JVMFlagRangeList::check_ranges()) {
3715     return JNI_EINVAL;
3716   }
3717 
3718   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3719   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3720   if (!constraint_result) {
3721     return JNI_EINVAL;
3722   }
3723 
3724   JVMFlagWriteableList::mark_startup();
3725 
3726   if (PauseAtStartup) {
3727     os::pause();
3728   }
3729 
3730   HOTSPOT_VM_INIT_BEGIN();
3731 
3732   // Timing (must come after argument parsing)
3733   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3734 
3735   // Initialize the os module after parsing the args
3736   jint os_init_2_result = os::init_2();
3737   if (os_init_2_result != JNI_OK) return os_init_2_result;
3738 
3739 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3740   // Initialize assert poison page mechanism.
3741   if (ShowRegistersOnAssert) {
3742     initialize_assert_poison();
3743   }
3744 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3745 
3746   SafepointMechanism::initialize();
3747 
3748   jint adjust_after_os_result = Arguments::adjust_after_os();
3749   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3750 
3751   // Initialize output stream logging
3752   ostream_init_log();
3753 
3754   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3755   // Must be before create_vm_init_agents()
3756   if (Arguments::init_libraries_at_startup()) {
3757     convert_vm_init_libraries_to_agents();
3758   }
3759 
3760   // Launch -agentlib/-agentpath and converted -Xrun agents
3761   if (Arguments::init_agents_at_startup()) {
3762     create_vm_init_agents();
3763   }
3764 
3765   // Initialize Threads state
3766   _thread_list = NULL;
3767   _number_of_threads = 0;
3768   _number_of_non_daemon_threads = 0;
3769 
3770   // Initialize global data structures and create system classes in heap
3771   vm_init_globals();
3772 
3773 #if INCLUDE_JVMCI
3774   if (JVMCICounterSize > 0) {
3775     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3776     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3777   } else {
3778     JavaThread::_jvmci_old_thread_counters = NULL;
3779   }
3780 #endif // INCLUDE_JVMCI
3781 
3782   // Attach the main thread to this os thread
3783   JavaThread* main_thread = new JavaThread();
3784   main_thread->set_thread_state(_thread_in_vm);
3785   main_thread->initialize_thread_current();
3786   // must do this before set_active_handles
3787   main_thread->record_stack_base_and_size();
3788   main_thread->register_thread_stack_with_NMT();
3789   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3790 
3791   if (!main_thread->set_as_starting_thread()) {
3792     vm_shutdown_during_initialization(
3793                                       "Failed necessary internal allocation. Out of swap space");
3794     main_thread->smr_delete();
3795     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3796     return JNI_ENOMEM;
3797   }
3798 
3799   // Enable guard page *after* os::create_main_thread(), otherwise it would
3800   // crash Linux VM, see notes in os_linux.cpp.
3801   main_thread->create_stack_guard_pages();
3802 
3803   // Initialize Java-Level synchronization subsystem
3804   ObjectMonitor::Initialize();
3805 
3806   // Initialize global modules
3807   jint status = init_globals();
3808   if (status != JNI_OK) {
3809     main_thread->smr_delete();
3810     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3811     return status;
3812   }
3813 
3814   JFR_ONLY(Jfr::on_vm_init();)
3815 
3816   // Should be done after the heap is fully created
3817   main_thread->cache_global_variables();
3818 
3819   HandleMark hm;
3820 
3821   { MutexLocker mu(Threads_lock);
3822     Threads::add(main_thread);
3823   }
3824 
3825   // Any JVMTI raw monitors entered in onload will transition into
3826   // real raw monitor. VM is setup enough here for raw monitor enter.
3827   JvmtiExport::transition_pending_onload_raw_monitors();
3828 
3829   // Create the VMThread
3830   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3831 
3832   VMThread::create();
3833     Thread* vmthread = VMThread::vm_thread();
3834 
3835     if (!os::create_thread(vmthread, os::vm_thread)) {
3836       vm_exit_during_initialization("Cannot create VM thread. "
3837                                     "Out of system resources.");
3838     }
3839 
3840     // Wait for the VM thread to become ready, and VMThread::run to initialize
3841     // Monitors can have spurious returns, must always check another state flag
3842     {
3843       MonitorLocker ml(Notify_lock);
3844       os::start_thread(vmthread);
3845       while (vmthread->active_handles() == NULL) {
3846         ml.wait();
3847       }
3848     }
3849   }
3850 
3851   assert(Universe::is_fully_initialized(), "not initialized");
3852   if (VerifyDuringStartup) {
3853     // Make sure we're starting with a clean slate.
3854     VM_Verify verify_op;
3855     VMThread::execute(&verify_op);
3856   }
3857 
3858   // We need this to update the java.vm.info property in case any flags used
3859   // to initially define it have been changed. This is needed for both CDS and
3860   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3861   // is initially computed. See Abstract_VM_Version::vm_info_string().
3862   // This update must happen before we initialize the java classes, but
3863   // after any initialization logic that might modify the flags.
3864   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3865 
3866   Thread* THREAD = Thread::current();
3867 
3868   // Always call even when there are not JVMTI environments yet, since environments
3869   // may be attached late and JVMTI must track phases of VM execution
3870   JvmtiExport::enter_early_start_phase();
3871 
3872   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3873   JvmtiExport::post_early_vm_start();
3874 
3875   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3876 
3877   quicken_jni_functions();
3878 
3879   // No more stub generation allowed after that point.
3880   StubCodeDesc::freeze();
3881 
3882   // Set flag that basic initialization has completed. Used by exceptions and various
3883   // debug stuff, that does not work until all basic classes have been initialized.
3884   set_init_completed();
3885 
3886   LogConfiguration::post_initialize();
3887   Metaspace::post_initialize();
3888 
3889   HOTSPOT_VM_INIT_END();
3890 
3891   // record VM initialization completion time
3892 #if INCLUDE_MANAGEMENT
3893   Management::record_vm_init_completed();
3894 #endif // INCLUDE_MANAGEMENT
3895 
3896   // Signal Dispatcher needs to be started before VMInit event is posted
3897   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3898 
3899   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3900   if (!DisableAttachMechanism) {
3901     AttachListener::vm_start();
3902     if (StartAttachListener || AttachListener::init_at_startup()) {
3903       AttachListener::init();
3904     }
3905   }
3906 
3907   // Launch -Xrun agents
3908   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3909   // back-end can launch with -Xdebug -Xrunjdwp.
3910   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3911     create_vm_init_libraries();
3912   }
3913 
3914   if (CleanChunkPoolAsync) {
3915     Chunk::start_chunk_pool_cleaner_task();
3916   }
3917 
3918   // initialize compiler(s)
3919 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3920 #if INCLUDE_JVMCI
3921   bool force_JVMCI_intialization = false;
3922   if (EnableJVMCI) {
3923     // Initialize JVMCI eagerly when it is explicitly requested.
3924     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3925     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3926 
3927     if (!force_JVMCI_intialization) {
3928       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3929       // compilations via JVMCI will not actually block until JVMCI is initialized.
3930       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3931     }
3932   }
3933 #endif
3934   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3935   // Postpone completion of compiler initialization to after JVMCI
3936   // is initialized to avoid timeouts of blocking compilations.
3937   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3938     CompileBroker::compilation_init_phase2();
3939   }
3940 #endif
3941 
3942   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3943   // It is done after compilers are initialized, because otherwise compilations of
3944   // signature polymorphic MH intrinsics can be missed
3945   // (see SystemDictionary::find_method_handle_intrinsic).
3946   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3947 
3948   // This will initialize the module system.  Only java.base classes can be
3949   // loaded until phase 2 completes
3950   call_initPhase2(CHECK_JNI_ERR);
3951 
3952   // Always call even when there are not JVMTI environments yet, since environments
3953   // may be attached late and JVMTI must track phases of VM execution
3954   JvmtiExport::enter_start_phase();
3955 
3956   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3957   JvmtiExport::post_vm_start();
3958 
3959   // Final system initialization including security manager and system class loader
3960   call_initPhase3(CHECK_JNI_ERR);
3961 
3962   // cache the system and platform class loaders
3963   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3964 
3965 #if INCLUDE_CDS
3966   if (DumpSharedSpaces) {
3967     // capture the module path info from the ModuleEntryTable
3968     ClassLoader::initialize_module_path(THREAD);
3969   }
3970 #endif
3971 
3972 #if INCLUDE_JVMCI
3973   if (force_JVMCI_intialization) {
3974     JVMCI::initialize_compiler(CHECK_JNI_ERR);
3975     CompileBroker::compilation_init_phase2();
3976   }
3977 #endif
3978 
3979   // Always call even when there are not JVMTI environments yet, since environments
3980   // may be attached late and JVMTI must track phases of VM execution
3981   JvmtiExport::enter_live_phase();
3982 
3983   // Make perfmemory accessible
3984   PerfMemory::set_accessible(true);
3985 
3986   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3987   JvmtiExport::post_vm_initialized();
3988 
3989   JFR_ONLY(Jfr::on_vm_start();)
3990 
3991 #if INCLUDE_MANAGEMENT
3992   Management::initialize(THREAD);
3993 
3994   if (HAS_PENDING_EXCEPTION) {
3995     // management agent fails to start possibly due to
3996     // configuration problem and is responsible for printing
3997     // stack trace if appropriate. Simply exit VM.
3998     vm_exit(1);
3999   }
4000 #endif // INCLUDE_MANAGEMENT
4001 
4002   if (MemProfiling)                   MemProfiler::engage();
4003   StatSampler::engage();
4004   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4005 
4006   BiasedLocking::init();
4007 
4008 #if INCLUDE_RTM_OPT
4009   RTMLockingCounters::init();
4010 #endif
4011 
4012   if (JDK_Version::current().post_vm_init_hook_enabled()) {
4013     call_postVMInitHook(THREAD);
4014     // The Java side of PostVMInitHook.run must deal with all
4015     // exceptions and provide means of diagnosis.
4016     if (HAS_PENDING_EXCEPTION) {
4017       CLEAR_PENDING_EXCEPTION;
4018     }
4019   }
4020 
4021   {
4022     MutexLocker ml(PeriodicTask_lock);
4023     // Make sure the WatcherThread can be started by WatcherThread::start()
4024     // or by dynamic enrollment.
4025     WatcherThread::make_startable();
4026     // Start up the WatcherThread if there are any periodic tasks
4027     // NOTE:  All PeriodicTasks should be registered by now. If they
4028     //   aren't, late joiners might appear to start slowly (we might
4029     //   take a while to process their first tick).
4030     if (PeriodicTask::num_tasks() > 0) {
4031       WatcherThread::start();
4032     }
4033   }
4034 
4035   create_vm_timer.end();
4036 #ifdef ASSERT
4037   _vm_complete = true;
4038 #endif
4039 
4040   if (DumpSharedSpaces) {
4041     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4042     ShouldNotReachHere();
4043   }
4044 
4045   return JNI_OK;
4046 }
4047 
4048 // type for the Agent_OnLoad and JVM_OnLoad entry points
4049 extern "C" {
4050   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4051 }
4052 // Find a command line agent library and return its entry point for
4053 //         -agentlib:  -agentpath:   -Xrun
4054 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4055 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4056                                     const char *on_load_symbols[],
4057                                     size_t num_symbol_entries) {
4058   OnLoadEntry_t on_load_entry = NULL;
4059   void *library = NULL;
4060 
4061   if (!agent->valid()) {
4062     char buffer[JVM_MAXPATHLEN];
4063     char ebuf[1024] = "";
4064     const char *name = agent->name();
4065     const char *msg = "Could not find agent library ";
4066 
4067     // First check to see if agent is statically linked into executable
4068     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4069       library = agent->os_lib();
4070     } else if (agent->is_absolute_path()) {
4071       library = os::dll_load(name, ebuf, sizeof ebuf);
4072       if (library == NULL) {
4073         const char *sub_msg = " in absolute path, with error: ";
4074         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4075         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4076         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4077         // If we can't find the agent, exit.
4078         vm_exit_during_initialization(buf, NULL);
4079         FREE_C_HEAP_ARRAY(char, buf);
4080       }
4081     } else {
4082       // Try to load the agent from the standard dll directory
4083       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4084                              name)) {
4085         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4086       }
4087       if (library == NULL) { // Try the library path directory.
4088         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4089           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4090         }
4091         if (library == NULL) {
4092           const char *sub_msg = " on the library path, with error: ";
4093           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4094 
4095           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4096                        strlen(ebuf) + strlen(sub_msg2) + 1;
4097           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4098           if (!agent->is_instrument_lib()) {
4099             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4100           } else {
4101             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4102           }
4103           // If we can't find the agent, exit.
4104           vm_exit_during_initialization(buf, NULL);
4105           FREE_C_HEAP_ARRAY(char, buf);
4106         }
4107       }
4108     }
4109     agent->set_os_lib(library);
4110     agent->set_valid();
4111   }
4112 
4113   // Find the OnLoad function.
4114   on_load_entry =
4115     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4116                                                           false,
4117                                                           on_load_symbols,
4118                                                           num_symbol_entries));
4119   return on_load_entry;
4120 }
4121 
4122 // Find the JVM_OnLoad entry point
4123 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4124   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4125   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4126 }
4127 
4128 // Find the Agent_OnLoad entry point
4129 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4130   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4131   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4132 }
4133 
4134 // For backwards compatibility with -Xrun
4135 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4136 // treated like -agentpath:
4137 // Must be called before agent libraries are created
4138 void Threads::convert_vm_init_libraries_to_agents() {
4139   AgentLibrary* agent;
4140   AgentLibrary* next;
4141 
4142   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4143     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4144     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4145 
4146     // If there is an JVM_OnLoad function it will get called later,
4147     // otherwise see if there is an Agent_OnLoad
4148     if (on_load_entry == NULL) {
4149       on_load_entry = lookup_agent_on_load(agent);
4150       if (on_load_entry != NULL) {
4151         // switch it to the agent list -- so that Agent_OnLoad will be called,
4152         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4153         Arguments::convert_library_to_agent(agent);
4154       } else {
4155         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4156       }
4157     }
4158   }
4159 }
4160 
4161 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4162 // Invokes Agent_OnLoad
4163 // Called very early -- before JavaThreads exist
4164 void Threads::create_vm_init_agents() {
4165   extern struct JavaVM_ main_vm;
4166   AgentLibrary* agent;
4167 
4168   JvmtiExport::enter_onload_phase();
4169 
4170   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4171     // CDS dumping does not support native JVMTI agent.
4172     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4173     if (DumpSharedSpaces) {
4174       if(!agent->is_instrument_lib()) {
4175         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4176       } else if (!AllowArchivingWithJavaAgent) {
4177         vm_exit_during_cds_dumping(
4178           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4179       }
4180     }
4181 
4182     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4183 
4184     if (on_load_entry != NULL) {
4185       // Invoke the Agent_OnLoad function
4186       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4187       if (err != JNI_OK) {
4188         vm_exit_during_initialization("agent library failed to init", agent->name());
4189       }
4190     } else {
4191       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4192     }
4193   }
4194 
4195   JvmtiExport::enter_primordial_phase();
4196 }
4197 
4198 extern "C" {
4199   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4200 }
4201 
4202 void Threads::shutdown_vm_agents() {
4203   // Send any Agent_OnUnload notifications
4204   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4205   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4206   extern struct JavaVM_ main_vm;
4207   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4208 
4209     // Find the Agent_OnUnload function.
4210     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4211                                                    os::find_agent_function(agent,
4212                                                    false,
4213                                                    on_unload_symbols,
4214                                                    num_symbol_entries));
4215 
4216     // Invoke the Agent_OnUnload function
4217     if (unload_entry != NULL) {
4218       JavaThread* thread = JavaThread::current();
4219       ThreadToNativeFromVM ttn(thread);
4220       HandleMark hm(thread);
4221       (*unload_entry)(&main_vm);
4222     }
4223   }
4224 }
4225 
4226 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4227 // Invokes JVM_OnLoad
4228 void Threads::create_vm_init_libraries() {
4229   extern struct JavaVM_ main_vm;
4230   AgentLibrary* agent;
4231 
4232   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4233     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4234 
4235     if (on_load_entry != NULL) {
4236       // Invoke the JVM_OnLoad function
4237       JavaThread* thread = JavaThread::current();
4238       ThreadToNativeFromVM ttn(thread);
4239       HandleMark hm(thread);
4240       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4241       if (err != JNI_OK) {
4242         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4243       }
4244     } else {
4245       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4246     }
4247   }
4248 }
4249 
4250 
4251 // Last thread running calls java.lang.Shutdown.shutdown()
4252 void JavaThread::invoke_shutdown_hooks() {
4253   HandleMark hm(this);
4254 
4255   // We could get here with a pending exception, if so clear it now.
4256   if (this->has_pending_exception()) {
4257     this->clear_pending_exception();
4258   }
4259 
4260   EXCEPTION_MARK;
4261   Klass* shutdown_klass =
4262     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4263                                       THREAD);
4264   if (shutdown_klass != NULL) {
4265     // SystemDictionary::resolve_or_null will return null if there was
4266     // an exception.  If we cannot load the Shutdown class, just don't
4267     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4268     // won't be run.  Note that if a shutdown hook was registered,
4269     // the Shutdown class would have already been loaded
4270     // (Runtime.addShutdownHook will load it).
4271     JavaValue result(T_VOID);
4272     JavaCalls::call_static(&result,
4273                            shutdown_klass,
4274                            vmSymbols::shutdown_name(),
4275                            vmSymbols::void_method_signature(),
4276                            THREAD);
4277   }
4278   CLEAR_PENDING_EXCEPTION;
4279 }
4280 
4281 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4282 // the program falls off the end of main(). Another VM exit path is through
4283 // vm_exit() when the program calls System.exit() to return a value or when
4284 // there is a serious error in VM. The two shutdown paths are not exactly
4285 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4286 // and VM_Exit op at VM level.
4287 //
4288 // Shutdown sequence:
4289 //   + Shutdown native memory tracking if it is on
4290 //   + Wait until we are the last non-daemon thread to execute
4291 //     <-- every thing is still working at this moment -->
4292 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4293 //        shutdown hooks
4294 //   + Call before_exit(), prepare for VM exit
4295 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4296 //        currently the only user of this mechanism is File.deleteOnExit())
4297 //      > stop StatSampler, watcher thread, CMS threads,
4298 //        post thread end and vm death events to JVMTI,
4299 //        stop signal thread
4300 //   + Call JavaThread::exit(), it will:
4301 //      > release JNI handle blocks, remove stack guard pages
4302 //      > remove this thread from Threads list
4303 //     <-- no more Java code from this thread after this point -->
4304 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4305 //     the compiler threads at safepoint
4306 //     <-- do not use anything that could get blocked by Safepoint -->
4307 //   + Disable tracing at JNI/JVM barriers
4308 //   + Set _vm_exited flag for threads that are still running native code
4309 //   + Call exit_globals()
4310 //      > deletes tty
4311 //      > deletes PerfMemory resources
4312 //   + Delete this thread
4313 //   + Return to caller
4314 
4315 bool Threads::destroy_vm() {
4316   JavaThread* thread = JavaThread::current();
4317 
4318 #ifdef ASSERT
4319   _vm_complete = false;
4320 #endif
4321   // Wait until we are the last non-daemon thread to execute
4322   { MonitorLocker nu(Threads_lock);
4323     while (Threads::number_of_non_daemon_threads() > 1)
4324       // This wait should make safepoint checks, wait without a timeout,
4325       // and wait as a suspend-equivalent condition.
4326       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4327   }
4328 
4329   EventShutdown e;
4330   if (e.should_commit()) {
4331     e.set_reason("No remaining non-daemon Java threads");
4332     e.commit();
4333   }
4334 
4335   // Hang forever on exit if we are reporting an error.
4336   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4337     os::infinite_sleep();
4338   }
4339   os::wait_for_keypress_at_exit();
4340 
4341   // run Java level shutdown hooks
4342   thread->invoke_shutdown_hooks();
4343 
4344   before_exit(thread);
4345 
4346   thread->exit(true);
4347 
4348   // Stop VM thread.
4349   {
4350     // 4945125 The vm thread comes to a safepoint during exit.
4351     // GC vm_operations can get caught at the safepoint, and the
4352     // heap is unparseable if they are caught. Grab the Heap_lock
4353     // to prevent this. The GC vm_operations will not be able to
4354     // queue until after the vm thread is dead. After this point,
4355     // we'll never emerge out of the safepoint before the VM exits.
4356 
4357     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4358 
4359     VMThread::wait_for_vm_thread_exit();
4360     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4361     VMThread::destroy();
4362   }
4363 
4364   // Now, all Java threads are gone except daemon threads. Daemon threads
4365   // running Java code or in VM are stopped by the Safepoint. However,
4366   // daemon threads executing native code are still running.  But they
4367   // will be stopped at native=>Java/VM barriers. Note that we can't
4368   // simply kill or suspend them, as it is inherently deadlock-prone.
4369 
4370   VM_Exit::set_vm_exited();
4371 
4372   // Clean up ideal graph printers after the VMThread has started
4373   // the final safepoint which will block all the Compiler threads.
4374   // Note that this Thread has already logically exited so the
4375   // clean_up() function's use of a JavaThreadIteratorWithHandle
4376   // would be a problem except set_vm_exited() has remembered the
4377   // shutdown thread which is granted a policy exception.
4378 #if defined(COMPILER2) && !defined(PRODUCT)
4379   IdealGraphPrinter::clean_up();
4380 #endif
4381 
4382   notify_vm_shutdown();
4383 
4384   // exit_globals() will delete tty
4385   exit_globals();
4386 
4387   // We are after VM_Exit::set_vm_exited() so we can't call
4388   // thread->smr_delete() or we will block on the Threads_lock.
4389   // Deleting the shutdown thread here is safe because another
4390   // JavaThread cannot have an active ThreadsListHandle for
4391   // this JavaThread.
4392   delete thread;
4393 
4394 #if INCLUDE_JVMCI
4395   if (JVMCICounterSize > 0) {
4396     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4397   }
4398 #endif
4399 
4400   LogConfiguration::finalize();
4401 
4402   return true;
4403 }
4404 
4405 
4406 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4407   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4408   return is_supported_jni_version(version);
4409 }
4410 
4411 
4412 jboolean Threads::is_supported_jni_version(jint version) {
4413   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4414   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4415   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4416   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4417   if (version == JNI_VERSION_9) return JNI_TRUE;
4418   if (version == JNI_VERSION_10) return JNI_TRUE;
4419   return JNI_FALSE;
4420 }
4421 
4422 
4423 void Threads::add(JavaThread* p, bool force_daemon) {
4424   // The threads lock must be owned at this point
4425   assert(Threads_lock->owned_by_self(), "must have threads lock");
4426 
4427   BarrierSet::barrier_set()->on_thread_attach(p);
4428 
4429   p->set_next(_thread_list);
4430   _thread_list = p;
4431 
4432   // Once a JavaThread is added to the Threads list, smr_delete() has
4433   // to be used to delete it. Otherwise we can just delete it directly.
4434   p->set_on_thread_list();
4435 
4436   _number_of_threads++;
4437   oop threadObj = p->threadObj();
4438   bool daemon = true;
4439   // Bootstrapping problem: threadObj can be null for initial
4440   // JavaThread (or for threads attached via JNI)
4441   if ((!force_daemon) && !is_daemon((threadObj))) {
4442     _number_of_non_daemon_threads++;
4443     daemon = false;
4444   }
4445 
4446   ThreadService::add_thread(p, daemon);
4447 
4448   // Maintain fast thread list
4449   ThreadsSMRSupport::add_thread(p);
4450 
4451   // Possible GC point.
4452   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4453 }
4454 
4455 void Threads::remove(JavaThread* p, bool is_daemon) {
4456 
4457   // Reclaim the ObjectMonitors from the omInUseList and omFreeList of the moribund thread.
4458   ObjectSynchronizer::omFlush(p);
4459 
4460   // Extra scope needed for Thread_lock, so we can check
4461   // that we do not remove thread without safepoint code notice
4462   { MonitorLocker ml(Threads_lock);
4463 
4464     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4465 
4466     // Maintain fast thread list
4467     ThreadsSMRSupport::remove_thread(p);
4468 
4469     JavaThread* current = _thread_list;
4470     JavaThread* prev    = NULL;
4471 
4472     while (current != p) {
4473       prev    = current;
4474       current = current->next();
4475     }
4476 
4477     if (prev) {
4478       prev->set_next(current->next());
4479     } else {
4480       _thread_list = p->next();
4481     }
4482 
4483     _number_of_threads--;
4484     if (!is_daemon) {
4485       _number_of_non_daemon_threads--;
4486 
4487       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4488       // on destroy_vm will wake up.
4489       if (number_of_non_daemon_threads() == 1) {
4490         ml.notify_all();
4491       }
4492     }
4493     ThreadService::remove_thread(p, is_daemon);
4494 
4495     // Make sure that safepoint code disregard this thread. This is needed since
4496     // the thread might mess around with locks after this point. This can cause it
4497     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4498     // of this thread since it is removed from the queue.
4499     p->set_terminated_value();
4500   } // unlock Threads_lock
4501 
4502   // Since Events::log uses a lock, we grab it outside the Threads_lock
4503   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4504 }
4505 
4506 // Operations on the Threads list for GC.  These are not explicitly locked,
4507 // but the garbage collector must provide a safe context for them to run.
4508 // In particular, these things should never be called when the Threads_lock
4509 // is held by some other thread. (Note: the Safepoint abstraction also
4510 // uses the Threads_lock to guarantee this property. It also makes sure that
4511 // all threads gets blocked when exiting or starting).
4512 
4513 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4514   ALL_JAVA_THREADS(p) {
4515     p->oops_do(f, cf);
4516   }
4517   VMThread::vm_thread()->oops_do(f, cf);
4518 }
4519 
4520 void Threads::change_thread_claim_token() {
4521   if (++_thread_claim_token == 0) {
4522     // On overflow of the token counter, there is a risk of future
4523     // collisions between a new global token value and a stale token
4524     // for a thread, because not all iterations visit all threads.
4525     // (Though it's pretty much a theoretical concern for non-trivial
4526     // token counter sizes.)  To deal with the possibility, reset all
4527     // the thread tokens to zero on global token overflow.
4528     struct ResetClaims : public ThreadClosure {
4529       virtual void do_thread(Thread* t) {
4530         t->claim_threads_do(false, 0);
4531       }
4532     } reset_claims;
4533     Threads::threads_do(&reset_claims);
4534     // On overflow, update the global token to non-zero, to
4535     // avoid the special "never claimed" initial thread value.
4536     _thread_claim_token = 1;
4537   }
4538 }
4539 
4540 #ifdef ASSERT
4541 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4542   const uintx token = t->threads_do_token();
4543   assert(token == expected,
4544          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4545          UINTX_FORMAT, kind, p2i(t), token, expected);
4546 }
4547 
4548 void Threads::assert_all_threads_claimed() {
4549   ALL_JAVA_THREADS(p) {
4550     assert_thread_claimed("Thread", p, _thread_claim_token);
4551   }
4552   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4553 }
4554 #endif // ASSERT
4555 
4556 class ParallelOopsDoThreadClosure : public ThreadClosure {
4557 private:
4558   OopClosure* _f;
4559   CodeBlobClosure* _cf;
4560 public:
4561   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4562   void do_thread(Thread* t) {
4563     t->oops_do(_f, _cf);
4564   }
4565 };
4566 
4567 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4568   ParallelOopsDoThreadClosure tc(f, cf);
4569   possibly_parallel_threads_do(is_par, &tc);
4570 }
4571 
4572 void Threads::nmethods_do(CodeBlobClosure* cf) {
4573   ALL_JAVA_THREADS(p) {
4574     // This is used by the code cache sweeper to mark nmethods that are active
4575     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4576     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4577     if(!p->is_Code_cache_sweeper_thread()) {
4578       p->nmethods_do(cf);
4579     }
4580   }
4581 }
4582 
4583 void Threads::metadata_do(MetadataClosure* f) {
4584   ALL_JAVA_THREADS(p) {
4585     p->metadata_do(f);
4586   }
4587 }
4588 
4589 class ThreadHandlesClosure : public ThreadClosure {
4590   void (*_f)(Metadata*);
4591  public:
4592   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4593   virtual void do_thread(Thread* thread) {
4594     thread->metadata_handles_do(_f);
4595   }
4596 };
4597 
4598 void Threads::metadata_handles_do(void f(Metadata*)) {
4599   // Only walk the Handles in Thread.
4600   ThreadHandlesClosure handles_closure(f);
4601   threads_do(&handles_closure);
4602 }
4603 
4604 // Get count Java threads that are waiting to enter the specified monitor.
4605 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4606                                                          int count,
4607                                                          address monitor) {
4608   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4609 
4610   int i = 0;
4611   DO_JAVA_THREADS(t_list, p) {
4612     if (!p->can_call_java()) continue;
4613 
4614     address pending = (address)p->current_pending_monitor();
4615     if (pending == monitor) {             // found a match
4616       if (i < count) result->append(p);   // save the first count matches
4617       i++;
4618     }
4619   }
4620 
4621   return result;
4622 }
4623 
4624 
4625 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4626                                                       address owner) {
4627   // NULL owner means not locked so we can skip the search
4628   if (owner == NULL) return NULL;
4629 
4630   DO_JAVA_THREADS(t_list, p) {
4631     // first, see if owner is the address of a Java thread
4632     if (owner == (address)p) return p;
4633   }
4634 
4635   // Cannot assert on lack of success here since this function may be
4636   // used by code that is trying to report useful problem information
4637   // like deadlock detection.
4638   if (UseHeavyMonitors) return NULL;
4639 
4640   // If we didn't find a matching Java thread and we didn't force use of
4641   // heavyweight monitors, then the owner is the stack address of the
4642   // Lock Word in the owning Java thread's stack.
4643   //
4644   JavaThread* the_owner = NULL;
4645   DO_JAVA_THREADS(t_list, q) {
4646     if (q->is_lock_owned(owner)) {
4647       the_owner = q;
4648       break;
4649     }
4650   }
4651 
4652   // cannot assert on lack of success here; see above comment
4653   return the_owner;
4654 }
4655 
4656 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4657 void Threads::print_on(outputStream* st, bool print_stacks,
4658                        bool internal_format, bool print_concurrent_locks,
4659                        bool print_extended_info) {
4660   char buf[32];
4661   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4662 
4663   st->print_cr("Full thread dump %s (%s %s):",
4664                VM_Version::vm_name(),
4665                VM_Version::vm_release(),
4666                VM_Version::vm_info_string());
4667   st->cr();
4668 
4669 #if INCLUDE_SERVICES
4670   // Dump concurrent locks
4671   ConcurrentLocksDump concurrent_locks;
4672   if (print_concurrent_locks) {
4673     concurrent_locks.dump_at_safepoint();
4674   }
4675 #endif // INCLUDE_SERVICES
4676 
4677   ThreadsSMRSupport::print_info_on(st);
4678   st->cr();
4679 
4680   ALL_JAVA_THREADS(p) {
4681     ResourceMark rm;
4682     p->print_on(st, print_extended_info);
4683     if (print_stacks) {
4684       if (internal_format) {
4685         p->trace_stack();
4686       } else {
4687         p->print_stack_on(st);
4688       }
4689     }
4690     st->cr();
4691 #if INCLUDE_SERVICES
4692     if (print_concurrent_locks) {
4693       concurrent_locks.print_locks_on(p, st);
4694     }
4695 #endif // INCLUDE_SERVICES
4696   }
4697 
4698   VMThread::vm_thread()->print_on(st);
4699   st->cr();
4700   Universe::heap()->print_gc_threads_on(st);
4701   WatcherThread* wt = WatcherThread::watcher_thread();
4702   if (wt != NULL) {
4703     wt->print_on(st);
4704     st->cr();
4705   }
4706 
4707   st->flush();
4708 }
4709 
4710 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4711                              int buflen, bool* found_current) {
4712   if (this_thread != NULL) {
4713     bool is_current = (current == this_thread);
4714     *found_current = *found_current || is_current;
4715     st->print("%s", is_current ? "=>" : "  ");
4716 
4717     st->print(PTR_FORMAT, p2i(this_thread));
4718     st->print(" ");
4719     this_thread->print_on_error(st, buf, buflen);
4720     st->cr();
4721   }
4722 }
4723 
4724 class PrintOnErrorClosure : public ThreadClosure {
4725   outputStream* _st;
4726   Thread* _current;
4727   char* _buf;
4728   int _buflen;
4729   bool* _found_current;
4730  public:
4731   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4732                       int buflen, bool* found_current) :
4733    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4734 
4735   virtual void do_thread(Thread* thread) {
4736     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4737   }
4738 };
4739 
4740 // Threads::print_on_error() is called by fatal error handler. It's possible
4741 // that VM is not at safepoint and/or current thread is inside signal handler.
4742 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4743 // memory (even in resource area), it might deadlock the error handler.
4744 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4745                              int buflen) {
4746   ThreadsSMRSupport::print_info_on(st);
4747   st->cr();
4748 
4749   bool found_current = false;
4750   st->print_cr("Java Threads: ( => current thread )");
4751   ALL_JAVA_THREADS(thread) {
4752     print_on_error(thread, st, current, buf, buflen, &found_current);
4753   }
4754   st->cr();
4755 
4756   st->print_cr("Other Threads:");
4757   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4758   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4759 
4760   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4761   Universe::heap()->gc_threads_do(&print_closure);
4762 
4763   if (!found_current) {
4764     st->cr();
4765     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4766     current->print_on_error(st, buf, buflen);
4767     st->cr();
4768   }
4769   st->cr();
4770 
4771   st->print_cr("Threads with active compile tasks:");
4772   print_threads_compiling(st, buf, buflen);
4773 }
4774 
4775 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4776   ALL_JAVA_THREADS(thread) {
4777     if (thread->is_Compiler_thread()) {
4778       CompilerThread* ct = (CompilerThread*) thread;
4779 
4780       // Keep task in local variable for NULL check.
4781       // ct->_task might be set to NULL by concurring compiler thread
4782       // because it completed the compilation. The task is never freed,
4783       // though, just returned to a free list.
4784       CompileTask* task = ct->task();
4785       if (task != NULL) {
4786         thread->print_name_on_error(st, buf, buflen);
4787         st->print("  ");
4788         task->print(st, NULL, short_form, true);
4789       }
4790     }
4791   }
4792 }
4793 
4794 
4795 // Internal SpinLock and Mutex
4796 // Based on ParkEvent
4797 
4798 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4799 //
4800 // We employ SpinLocks _only for low-contention, fixed-length
4801 // short-duration critical sections where we're concerned
4802 // about native mutex_t or HotSpot Mutex:: latency.
4803 // The mux construct provides a spin-then-block mutual exclusion
4804 // mechanism.
4805 //
4806 // Testing has shown that contention on the ListLock guarding gFreeList
4807 // is common.  If we implement ListLock as a simple SpinLock it's common
4808 // for the JVM to devolve to yielding with little progress.  This is true
4809 // despite the fact that the critical sections protected by ListLock are
4810 // extremely short.
4811 //
4812 // TODO-FIXME: ListLock should be of type SpinLock.
4813 // We should make this a 1st-class type, integrated into the lock
4814 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4815 // should have sufficient padding to avoid false-sharing and excessive
4816 // cache-coherency traffic.
4817 
4818 
4819 typedef volatile int SpinLockT;
4820 
4821 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4822   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4823     return;   // normal fast-path return
4824   }
4825 
4826   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4827   int ctr = 0;
4828   int Yields = 0;
4829   for (;;) {
4830     while (*adr != 0) {
4831       ++ctr;
4832       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4833         if (Yields > 5) {
4834           os::naked_short_sleep(1);
4835         } else {
4836           os::naked_yield();
4837           ++Yields;
4838         }
4839       } else {
4840         SpinPause();
4841       }
4842     }
4843     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4844   }
4845 }
4846 
4847 void Thread::SpinRelease(volatile int * adr) {
4848   assert(*adr != 0, "invariant");
4849   OrderAccess::fence();      // guarantee at least release consistency.
4850   // Roach-motel semantics.
4851   // It's safe if subsequent LDs and STs float "up" into the critical section,
4852   // but prior LDs and STs within the critical section can't be allowed
4853   // to reorder or float past the ST that releases the lock.
4854   // Loads and stores in the critical section - which appear in program
4855   // order before the store that releases the lock - must also appear
4856   // before the store that releases the lock in memory visibility order.
4857   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4858   // the ST of 0 into the lock-word which releases the lock, so fence
4859   // more than covers this on all platforms.
4860   *adr = 0;
4861 }
4862 
4863 // muxAcquire and muxRelease:
4864 //
4865 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4866 //    The LSB of the word is set IFF the lock is held.
4867 //    The remainder of the word points to the head of a singly-linked list
4868 //    of threads blocked on the lock.
4869 //
4870 // *  The current implementation of muxAcquire-muxRelease uses its own
4871 //    dedicated Thread._MuxEvent instance.  If we're interested in
4872 //    minimizing the peak number of extant ParkEvent instances then
4873 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4874 //    as certain invariants were satisfied.  Specifically, care would need
4875 //    to be taken with regards to consuming unpark() "permits".
4876 //    A safe rule of thumb is that a thread would never call muxAcquire()
4877 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4878 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4879 //    consume an unpark() permit intended for monitorenter, for instance.
4880 //    One way around this would be to widen the restricted-range semaphore
4881 //    implemented in park().  Another alternative would be to provide
4882 //    multiple instances of the PlatformEvent() for each thread.  One
4883 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4884 //
4885 // *  Usage:
4886 //    -- Only as leaf locks
4887 //    -- for short-term locking only as muxAcquire does not perform
4888 //       thread state transitions.
4889 //
4890 // Alternatives:
4891 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4892 //    but with parking or spin-then-park instead of pure spinning.
4893 // *  Use Taura-Oyama-Yonenzawa locks.
4894 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4895 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4896 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4897 //    acquiring threads use timers (ParkTimed) to detect and recover from
4898 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4899 //    boundaries by using placement-new.
4900 // *  Augment MCS with advisory back-link fields maintained with CAS().
4901 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4902 //    The validity of the backlinks must be ratified before we trust the value.
4903 //    If the backlinks are invalid the exiting thread must back-track through the
4904 //    the forward links, which are always trustworthy.
4905 // *  Add a successor indication.  The LockWord is currently encoded as
4906 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4907 //    to provide the usual futile-wakeup optimization.
4908 //    See RTStt for details.
4909 //
4910 
4911 
4912 const intptr_t LOCKBIT = 1;
4913 
4914 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4915   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4916   if (w == 0) return;
4917   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4918     return;
4919   }
4920 
4921   ParkEvent * const Self = Thread::current()->_MuxEvent;
4922   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4923   for (;;) {
4924     int its = (os::is_MP() ? 100 : 0) + 1;
4925 
4926     // Optional spin phase: spin-then-park strategy
4927     while (--its >= 0) {
4928       w = *Lock;
4929       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4930         return;
4931       }
4932     }
4933 
4934     Self->reset();
4935     Self->OnList = intptr_t(Lock);
4936     // The following fence() isn't _strictly necessary as the subsequent
4937     // CAS() both serializes execution and ratifies the fetched *Lock value.
4938     OrderAccess::fence();
4939     for (;;) {
4940       w = *Lock;
4941       if ((w & LOCKBIT) == 0) {
4942         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4943           Self->OnList = 0;   // hygiene - allows stronger asserts
4944           return;
4945         }
4946         continue;      // Interference -- *Lock changed -- Just retry
4947       }
4948       assert(w & LOCKBIT, "invariant");
4949       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4950       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4951     }
4952 
4953     while (Self->OnList != 0) {
4954       Self->park();
4955     }
4956   }
4957 }
4958 
4959 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4960   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4961   if (w == 0) return;
4962   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4963     return;
4964   }
4965 
4966   ParkEvent * ReleaseAfter = NULL;
4967   if (ev == NULL) {
4968     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4969   }
4970   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4971   for (;;) {
4972     guarantee(ev->OnList == 0, "invariant");
4973     int its = (os::is_MP() ? 100 : 0) + 1;
4974 
4975     // Optional spin phase: spin-then-park strategy
4976     while (--its >= 0) {
4977       w = *Lock;
4978       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4979         if (ReleaseAfter != NULL) {
4980           ParkEvent::Release(ReleaseAfter);
4981         }
4982         return;
4983       }
4984     }
4985 
4986     ev->reset();
4987     ev->OnList = intptr_t(Lock);
4988     // The following fence() isn't _strictly necessary as the subsequent
4989     // CAS() both serializes execution and ratifies the fetched *Lock value.
4990     OrderAccess::fence();
4991     for (;;) {
4992       w = *Lock;
4993       if ((w & LOCKBIT) == 0) {
4994         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4995           ev->OnList = 0;
4996           // We call ::Release while holding the outer lock, thus
4997           // artificially lengthening the critical section.
4998           // Consider deferring the ::Release() until the subsequent unlock(),
4999           // after we've dropped the outer lock.
5000           if (ReleaseAfter != NULL) {
5001             ParkEvent::Release(ReleaseAfter);
5002           }
5003           return;
5004         }
5005         continue;      // Interference -- *Lock changed -- Just retry
5006       }
5007       assert(w & LOCKBIT, "invariant");
5008       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5009       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5010     }
5011 
5012     while (ev->OnList != 0) {
5013       ev->park();
5014     }
5015   }
5016 }
5017 
5018 // Release() must extract a successor from the list and then wake that thread.
5019 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5020 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5021 // Release() would :
5022 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5023 // (B) Extract a successor from the private list "in-hand"
5024 // (C) attempt to CAS() the residual back into *Lock over null.
5025 //     If there were any newly arrived threads and the CAS() would fail.
5026 //     In that case Release() would detach the RATs, re-merge the list in-hand
5027 //     with the RATs and repeat as needed.  Alternately, Release() might
5028 //     detach and extract a successor, but then pass the residual list to the wakee.
5029 //     The wakee would be responsible for reattaching and remerging before it
5030 //     competed for the lock.
5031 //
5032 // Both "pop" and DMR are immune from ABA corruption -- there can be
5033 // multiple concurrent pushers, but only one popper or detacher.
5034 // This implementation pops from the head of the list.  This is unfair,
5035 // but tends to provide excellent throughput as hot threads remain hot.
5036 // (We wake recently run threads first).
5037 //
5038 // All paths through muxRelease() will execute a CAS.
5039 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5040 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5041 // executed within the critical section are complete and globally visible before the
5042 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5043 void Thread::muxRelease(volatile intptr_t * Lock)  {
5044   for (;;) {
5045     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5046     assert(w & LOCKBIT, "invariant");
5047     if (w == LOCKBIT) return;
5048     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5049     assert(List != NULL, "invariant");
5050     assert(List->OnList == intptr_t(Lock), "invariant");
5051     ParkEvent * const nxt = List->ListNext;
5052     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5053 
5054     // The following CAS() releases the lock and pops the head element.
5055     // The CAS() also ratifies the previously fetched lock-word value.
5056     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5057       continue;
5058     }
5059     List->OnList = 0;
5060     OrderAccess::fence();
5061     List->unpark();
5062     return;
5063   }
5064 }
5065 
5066 
5067 void Threads::verify() {
5068   ALL_JAVA_THREADS(p) {
5069     p->verify();
5070   }
5071   VMThread* thread = VMThread::vm_thread();
5072   if (thread != NULL) thread->verify();
5073 }