1 /*
   2  * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "logging/logStream.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/metaspaceShared.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markOop.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/osThread.hpp"
  45 #include "runtime/safepointVerifiers.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/synchronizer.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "runtime/timer.hpp"
  51 #include "runtime/vframe.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "utilities/align.hpp"
  54 #include "utilities/dtrace.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/preserveException.hpp"
  57 
  58 // The "core" versions of monitor enter and exit reside in this file.
  59 // The interpreter and compilers contain specialized transliterated
  60 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  61 // for instance.  If you make changes here, make sure to modify the
  62 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  63 //
  64 // -----------------------------------------------------------------------------
  65 
  66 #ifdef DTRACE_ENABLED
  67 
  68 // Only bother with this argument setup if dtrace is available
  69 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  70 
  71 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  72   char* bytes = NULL;                                                      \
  73   int len = 0;                                                             \
  74   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  75   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  76   if (klassname != NULL) {                                                 \
  77     bytes = (char*)klassname->bytes();                                     \
  78     len = klassname->utf8_length();                                        \
  79   }
  80 
  81 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  82   {                                                                        \
  83     if (DTraceMonitorProbes) {                                             \
  84       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  85       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  86                            (uintptr_t)(monitor), bytes, len, (millis));    \
  87     }                                                                      \
  88   }
  89 
  90 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  93 
  94 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  95   {                                                                        \
  96     if (DTraceMonitorProbes) {                                             \
  97       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  98       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  99                                     (uintptr_t)(monitor), bytes, len);     \
 100     }                                                                      \
 101   }
 102 
 103 #else //  ndef DTRACE_ENABLED
 104 
 105 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 106 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 107 
 108 #endif // ndef DTRACE_ENABLED
 109 
 110 // This exists only as a workaround of dtrace bug 6254741
 111 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 112   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 113   return 0;
 114 }
 115 
 116 #define NINFLATIONLOCKS 256
 117 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 118 
 119 // global list of blocks of monitors
 120 PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL;
 121 // global monitor free list
 122 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 123 // global monitor in-use list, for moribund threads,
 124 // monitors they inflated need to be scanned for deflation
 125 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 126 // count of entries in gOmInUseList
 127 int ObjectSynchronizer::gOmInUseCount = 0;
 128 
 129 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 130 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 131 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 132 
 133 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 134 
 135 
 136 // =====================> Quick functions
 137 
 138 // The quick_* forms are special fast-path variants used to improve
 139 // performance.  In the simplest case, a "quick_*" implementation could
 140 // simply return false, in which case the caller will perform the necessary
 141 // state transitions and call the slow-path form.
 142 // The fast-path is designed to handle frequently arising cases in an efficient
 143 // manner and is just a degenerate "optimistic" variant of the slow-path.
 144 // returns true  -- to indicate the call was satisfied.
 145 // returns false -- to indicate the call needs the services of the slow-path.
 146 // A no-loitering ordinance is in effect for code in the quick_* family
 147 // operators: safepoints or indefinite blocking (blocking that might span a
 148 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 149 // entry.
 150 //
 151 // Consider: An interesting optimization is to have the JIT recognize the
 152 // following common idiom:
 153 //   synchronized (someobj) { .... ; notify(); }
 154 // That is, we find a notify() or notifyAll() call that immediately precedes
 155 // the monitorexit operation.  In that case the JIT could fuse the operations
 156 // into a single notifyAndExit() runtime primitive.
 157 
 158 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 159   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 160   assert(self->is_Java_thread(), "invariant");
 161   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 162   NoSafepointVerifier nsv;
 163   if (obj == NULL) return false;  // slow-path for invalid obj
 164   const markOop mark = obj->mark();
 165 
 166   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 167     // Degenerate notify
 168     // stack-locked by caller so by definition the implied waitset is empty.
 169     return true;
 170   }
 171 
 172   if (mark->has_monitor()) {
 173     ObjectMonitor * const mon = mark->monitor();
 174     assert(oopDesc::equals((oop) mon->object(), obj), "invariant");
 175     if (mon->owner() != self) return false;  // slow-path for IMS exception
 176 
 177     if (mon->first_waiter() != NULL) {
 178       // We have one or more waiters. Since this is an inflated monitor
 179       // that we own, we can transfer one or more threads from the waitset
 180       // to the entrylist here and now, avoiding the slow-path.
 181       if (all) {
 182         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 183       } else {
 184         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 185       }
 186       int tally = 0;
 187       do {
 188         mon->INotify(self);
 189         ++tally;
 190       } while (mon->first_waiter() != NULL && all);
 191       OM_PERFDATA_OP(Notifications, inc(tally));
 192     }
 193     return true;
 194   }
 195 
 196   // biased locking and any other IMS exception states take the slow-path
 197   return false;
 198 }
 199 
 200 
 201 // The LockNode emitted directly at the synchronization site would have
 202 // been too big if it were to have included support for the cases of inflated
 203 // recursive enter and exit, so they go here instead.
 204 // Note that we can't safely call AsyncPrintJavaStack() from within
 205 // quick_enter() as our thread state remains _in_Java.
 206 
 207 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 208                                      BasicLock * lock) {
 209   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 210   assert(Self->is_Java_thread(), "invariant");
 211   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 212   NoSafepointVerifier nsv;
 213   if (obj == NULL) return false;       // Need to throw NPE
 214   const markOop mark = obj->mark();
 215 
 216   if (mark->has_monitor()) {
 217     ObjectMonitor * const m = mark->monitor();
 218     assert(oopDesc::equals((oop) m->object(), obj), "invariant");
 219     Thread * const owner = (Thread *) m->_owner;
 220 
 221     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 222     // and observability
 223     // Case: light contention possibly amenable to TLE
 224     // Case: TLE inimical operations such as nested/recursive synchronization
 225 
 226     if (owner == Self) {
 227       m->_recursions++;
 228       return true;
 229     }
 230 
 231     // This Java Monitor is inflated so obj's header will never be
 232     // displaced to this thread's BasicLock. Make the displaced header
 233     // non-NULL so this BasicLock is not seen as recursive nor as
 234     // being locked. We do this unconditionally so that this thread's
 235     // BasicLock cannot be mis-interpreted by any stack walkers. For
 236     // performance reasons, stack walkers generally first check for
 237     // Biased Locking in the object's header, the second check is for
 238     // stack-locking in the object's header, the third check is for
 239     // recursive stack-locking in the displaced header in the BasicLock,
 240     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 241     lock->set_displaced_header(markOopDesc::unused_mark());
 242 
 243     if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) {
 244       assert(m->_recursions == 0, "invariant");
 245       assert(m->_owner == Self, "invariant");
 246       return true;
 247     }
 248   }
 249 
 250   // Note that we could inflate in quick_enter.
 251   // This is likely a useful optimization
 252   // Critically, in quick_enter() we must not:
 253   // -- perform bias revocation, or
 254   // -- block indefinitely, or
 255   // -- reach a safepoint
 256 
 257   return false;        // revert to slow-path
 258 }
 259 
 260 // -----------------------------------------------------------------------------
 261 //  Fast Monitor Enter/Exit
 262 // This the fast monitor enter. The interpreter and compiler use
 263 // some assembly copies of this code. Make sure update those code
 264 // if the following function is changed. The implementation is
 265 // extremely sensitive to race condition. Be careful.
 266 
 267 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 268                                     bool attempt_rebias, TRAPS) {
 269   if (UseBiasedLocking) {
 270     if (!SafepointSynchronize::is_at_safepoint()) {
 271       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 272       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 273         return;
 274       }
 275     } else {
 276       assert(!attempt_rebias, "can not rebias toward VM thread");
 277       BiasedLocking::revoke_at_safepoint(obj);
 278     }
 279     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 280   }
 281 
 282   slow_enter(obj, lock, THREAD);
 283 }
 284 
 285 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 286   markOop mark = object->mark();
 287   // We cannot check for Biased Locking if we are racing an inflation.
 288   assert(mark == markOopDesc::INFLATING() ||
 289          !mark->has_bias_pattern(), "should not see bias pattern here");
 290 
 291   markOop dhw = lock->displaced_header();
 292   if (dhw == NULL) {
 293     // If the displaced header is NULL, then this exit matches up with
 294     // a recursive enter. No real work to do here except for diagnostics.
 295 #ifndef PRODUCT
 296     if (mark != markOopDesc::INFLATING()) {
 297       // Only do diagnostics if we are not racing an inflation. Simply
 298       // exiting a recursive enter of a Java Monitor that is being
 299       // inflated is safe; see the has_monitor() comment below.
 300       assert(!mark->is_neutral(), "invariant");
 301       assert(!mark->has_locker() ||
 302              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 303       if (mark->has_monitor()) {
 304         // The BasicLock's displaced_header is marked as a recursive
 305         // enter and we have an inflated Java Monitor (ObjectMonitor).
 306         // This is a special case where the Java Monitor was inflated
 307         // after this thread entered the stack-lock recursively. When a
 308         // Java Monitor is inflated, we cannot safely walk the Java
 309         // Monitor owner's stack and update the BasicLocks because a
 310         // Java Monitor can be asynchronously inflated by a thread that
 311         // does not own the Java Monitor.
 312         ObjectMonitor * m = mark->monitor();
 313         assert(((oop)(m->object()))->mark() == mark, "invariant");
 314         assert(m->is_entered(THREAD), "invariant");
 315       }
 316     }
 317 #endif
 318     return;
 319   }
 320 
 321   if (mark == (markOop) lock) {
 322     // If the object is stack-locked by the current thread, try to
 323     // swing the displaced header from the BasicLock back to the mark.
 324     assert(dhw->is_neutral(), "invariant");
 325     if (object->cas_set_mark(dhw, mark) == mark) {
 326       return;
 327     }
 328   }
 329 
 330   // We have to take the slow-path of possible inflation and then exit.
 331   inflate(THREAD, object, inflate_cause_vm_internal)->exit(true, THREAD);
 332 }
 333 
 334 // -----------------------------------------------------------------------------
 335 // Interpreter/Compiler Slow Case
 336 // This routine is used to handle interpreter/compiler slow case
 337 // We don't need to use fast path here, because it must have been
 338 // failed in the interpreter/compiler code.
 339 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 340   markOop mark = obj->mark();
 341   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 342 
 343   if (mark->is_neutral()) {
 344     // Anticipate successful CAS -- the ST of the displaced mark must
 345     // be visible <= the ST performed by the CAS.
 346     lock->set_displaced_header(mark);
 347     if (mark == obj()->cas_set_mark((markOop) lock, mark)) {
 348       return;
 349     }
 350     // Fall through to inflate() ...
 351   } else if (mark->has_locker() &&
 352              THREAD->is_lock_owned((address)mark->locker())) {
 353     assert(lock != mark->locker(), "must not re-lock the same lock");
 354     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 355     lock->set_displaced_header(NULL);
 356     return;
 357   }
 358 
 359   // The object header will never be displaced to this lock,
 360   // so it does not matter what the value is, except that it
 361   // must be non-zero to avoid looking like a re-entrant lock,
 362   // and must not look locked either.
 363   lock->set_displaced_header(markOopDesc::unused_mark());
 364   inflate(THREAD, obj(), inflate_cause_monitor_enter)->enter(THREAD);
 365 }
 366 
 367 // This routine is used to handle interpreter/compiler slow case
 368 // We don't need to use fast path here, because it must have
 369 // failed in the interpreter/compiler code. Simply use the heavy
 370 // weight monitor should be ok, unless someone find otherwise.
 371 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 372   fast_exit(object, lock, THREAD);
 373 }
 374 
 375 // -----------------------------------------------------------------------------
 376 // Class Loader  support to workaround deadlocks on the class loader lock objects
 377 // Also used by GC
 378 // complete_exit()/reenter() are used to wait on a nested lock
 379 // i.e. to give up an outer lock completely and then re-enter
 380 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 381 //  1) complete_exit lock1 - saving recursion count
 382 //  2) wait on lock2
 383 //  3) when notified on lock2, unlock lock2
 384 //  4) reenter lock1 with original recursion count
 385 //  5) lock lock2
 386 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 387 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 388   if (UseBiasedLocking) {
 389     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 390     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 391   }
 392 
 393   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 394 
 395   return monitor->complete_exit(THREAD);
 396 }
 397 
 398 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 399 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 400   if (UseBiasedLocking) {
 401     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 402     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 403   }
 404 
 405   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal);
 406 
 407   monitor->reenter(recursion, THREAD);
 408 }
 409 // -----------------------------------------------------------------------------
 410 // JNI locks on java objects
 411 // NOTE: must use heavy weight monitor to handle jni monitor enter
 412 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 413   // the current locking is from JNI instead of Java code
 414   if (UseBiasedLocking) {
 415     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 416     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 417   }
 418   THREAD->set_current_pending_monitor_is_from_java(false);
 419   inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
 420   THREAD->set_current_pending_monitor_is_from_java(true);
 421 }
 422 
 423 // NOTE: must use heavy weight monitor to handle jni monitor exit
 424 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 425   if (UseBiasedLocking) {
 426     Handle h_obj(THREAD, obj);
 427     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 428     obj = h_obj();
 429   }
 430   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 431 
 432   ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit);
 433   // If this thread has locked the object, exit the monitor.  Note:  can't use
 434   // monitor->check(CHECK); must exit even if an exception is pending.
 435   if (monitor->check(THREAD)) {
 436     monitor->exit(true, THREAD);
 437   }
 438 }
 439 
 440 // -----------------------------------------------------------------------------
 441 // Internal VM locks on java objects
 442 // standard constructor, allows locking failures
 443 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 444   _dolock = doLock;
 445   _thread = thread;
 446   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 447   _obj = obj;
 448 
 449   if (_dolock) {
 450     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 451   }
 452 }
 453 
 454 ObjectLocker::~ObjectLocker() {
 455   if (_dolock) {
 456     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 457   }
 458 }
 459 
 460 
 461 // -----------------------------------------------------------------------------
 462 //  Wait/Notify/NotifyAll
 463 // NOTE: must use heavy weight monitor to handle wait()
 464 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 465   if (UseBiasedLocking) {
 466     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 467     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 468   }
 469   if (millis < 0) {
 470     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 471   }
 472   ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait);
 473 
 474   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 475   monitor->wait(millis, true, THREAD);
 476 
 477   // This dummy call is in place to get around dtrace bug 6254741.  Once
 478   // that's fixed we can uncomment the following line, remove the call
 479   // and change this function back into a "void" func.
 480   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 481   return dtrace_waited_probe(monitor, obj, THREAD);
 482 }
 483 
 484 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 485   if (UseBiasedLocking) {
 486     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 487     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 488   }
 489   if (millis < 0) {
 490     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 491   }
 492   inflate(THREAD, obj(), inflate_cause_wait)->wait(millis, false, THREAD);
 493 }
 494 
 495 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 496   if (UseBiasedLocking) {
 497     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 498     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 499   }
 500 
 501   markOop mark = obj->mark();
 502   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 503     return;
 504   }
 505   inflate(THREAD, obj(), inflate_cause_notify)->notify(THREAD);
 506 }
 507 
 508 // NOTE: see comment of notify()
 509 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 510   if (UseBiasedLocking) {
 511     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 512     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 513   }
 514 
 515   markOop mark = obj->mark();
 516   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 517     return;
 518   }
 519   inflate(THREAD, obj(), inflate_cause_notify)->notifyAll(THREAD);
 520 }
 521 
 522 // -----------------------------------------------------------------------------
 523 // Hash Code handling
 524 //
 525 // Performance concern:
 526 // OrderAccess::storestore() calls release() which at one time stored 0
 527 // into the global volatile OrderAccess::dummy variable. This store was
 528 // unnecessary for correctness. Many threads storing into a common location
 529 // causes considerable cache migration or "sloshing" on large SMP systems.
 530 // As such, I avoided using OrderAccess::storestore(). In some cases
 531 // OrderAccess::fence() -- which incurs local latency on the executing
 532 // processor -- is a better choice as it scales on SMP systems.
 533 //
 534 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 535 // a discussion of coherency costs. Note that all our current reference
 536 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 537 // x64, and SPARC.
 538 //
 539 // As a general policy we use "volatile" to control compiler-based reordering
 540 // and explicit fences (barriers) to control for architectural reordering
 541 // performed by the CPU(s) or platform.
 542 
 543 struct SharedGlobals {
 544   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 545   // These are highly shared mostly-read variables.
 546   // To avoid false-sharing they need to be the sole occupants of a cache line.
 547   volatile int stwRandom;
 548   volatile int stwCycle;
 549   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 550   // Hot RW variable -- Sequester to avoid false-sharing
 551   volatile int hcSequence;
 552   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 553 };
 554 
 555 static SharedGlobals GVars;
 556 static int MonitorScavengeThreshold = 1000000;
 557 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 558 
 559 static markOop ReadStableMark(oop obj) {
 560   markOop mark = obj->mark();
 561   if (!mark->is_being_inflated()) {
 562     return mark;       // normal fast-path return
 563   }
 564 
 565   int its = 0;
 566   for (;;) {
 567     markOop mark = obj->mark();
 568     if (!mark->is_being_inflated()) {
 569       return mark;    // normal fast-path return
 570     }
 571 
 572     // The object is being inflated by some other thread.
 573     // The caller of ReadStableMark() must wait for inflation to complete.
 574     // Avoid live-lock
 575     // TODO: consider calling SafepointSynchronize::do_call_back() while
 576     // spinning to see if there's a safepoint pending.  If so, immediately
 577     // yielding or blocking would be appropriate.  Avoid spinning while
 578     // there is a safepoint pending.
 579     // TODO: add inflation contention performance counters.
 580     // TODO: restrict the aggregate number of spinners.
 581 
 582     ++its;
 583     if (its > 10000 || !os::is_MP()) {
 584       if (its & 1) {
 585         os::naked_yield();
 586       } else {
 587         // Note that the following code attenuates the livelock problem but is not
 588         // a complete remedy.  A more complete solution would require that the inflating
 589         // thread hold the associated inflation lock.  The following code simply restricts
 590         // the number of spinners to at most one.  We'll have N-2 threads blocked
 591         // on the inflationlock, 1 thread holding the inflation lock and using
 592         // a yield/park strategy, and 1 thread in the midst of inflation.
 593         // A more refined approach would be to change the encoding of INFLATING
 594         // to allow encapsulation of a native thread pointer.  Threads waiting for
 595         // inflation to complete would use CAS to push themselves onto a singly linked
 596         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 597         // and calling park().  When inflation was complete the thread that accomplished inflation
 598         // would detach the list and set the markword to inflated with a single CAS and
 599         // then for each thread on the list, set the flag and unpark() the thread.
 600         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 601         // wakes at most one thread whereas we need to wake the entire list.
 602         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 603         int YieldThenBlock = 0;
 604         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 605         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 606         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 607         while (obj->mark() == markOopDesc::INFLATING()) {
 608           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 609           // so we periodically call Self->_ParkEvent->park(1).
 610           // We use a mixed spin/yield/block mechanism.
 611           if ((YieldThenBlock++) >= 16) {
 612             Thread::current()->_ParkEvent->park(1);
 613           } else {
 614             os::naked_yield();
 615           }
 616         }
 617         Thread::muxRelease(gInflationLocks + ix);
 618       }
 619     } else {
 620       SpinPause();       // SMP-polite spinning
 621     }
 622   }
 623 }
 624 
 625 // hashCode() generation :
 626 //
 627 // Possibilities:
 628 // * MD5Digest of {obj,stwRandom}
 629 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 630 // * A DES- or AES-style SBox[] mechanism
 631 // * One of the Phi-based schemes, such as:
 632 //   2654435761 = 2^32 * Phi (golden ratio)
 633 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 634 // * A variation of Marsaglia's shift-xor RNG scheme.
 635 // * (obj ^ stwRandom) is appealing, but can result
 636 //   in undesirable regularity in the hashCode values of adjacent objects
 637 //   (objects allocated back-to-back, in particular).  This could potentially
 638 //   result in hashtable collisions and reduced hashtable efficiency.
 639 //   There are simple ways to "diffuse" the middle address bits over the
 640 //   generated hashCode values:
 641 
 642 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 643   intptr_t value = 0;
 644   if (hashCode == 0) {
 645     // This form uses global Park-Miller RNG.
 646     // On MP system we'll have lots of RW access to a global, so the
 647     // mechanism induces lots of coherency traffic.
 648     value = os::random();
 649   } else if (hashCode == 1) {
 650     // This variation has the property of being stable (idempotent)
 651     // between STW operations.  This can be useful in some of the 1-0
 652     // synchronization schemes.
 653     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 654     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 655   } else if (hashCode == 2) {
 656     value = 1;            // for sensitivity testing
 657   } else if (hashCode == 3) {
 658     value = ++GVars.hcSequence;
 659   } else if (hashCode == 4) {
 660     value = cast_from_oop<intptr_t>(obj);
 661   } else {
 662     // Marsaglia's xor-shift scheme with thread-specific state
 663     // This is probably the best overall implementation -- we'll
 664     // likely make this the default in future releases.
 665     unsigned t = Self->_hashStateX;
 666     t ^= (t << 11);
 667     Self->_hashStateX = Self->_hashStateY;
 668     Self->_hashStateY = Self->_hashStateZ;
 669     Self->_hashStateZ = Self->_hashStateW;
 670     unsigned v = Self->_hashStateW;
 671     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 672     Self->_hashStateW = v;
 673     value = v;
 674   }
 675 
 676   value &= markOopDesc::hash_mask;
 677   if (value == 0) value = 0xBAD;
 678   assert(value != markOopDesc::no_hash, "invariant");
 679   return value;
 680 }
 681 
 682 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 683   if (UseBiasedLocking) {
 684     // NOTE: many places throughout the JVM do not expect a safepoint
 685     // to be taken here, in particular most operations on perm gen
 686     // objects. However, we only ever bias Java instances and all of
 687     // the call sites of identity_hash that might revoke biases have
 688     // been checked to make sure they can handle a safepoint. The
 689     // added check of the bias pattern is to avoid useless calls to
 690     // thread-local storage.
 691     if (obj->mark()->has_bias_pattern()) {
 692       // Handle for oop obj in case of STW safepoint
 693       Handle hobj(Self, obj);
 694       // Relaxing assertion for bug 6320749.
 695       assert(Universe::verify_in_progress() ||
 696              !SafepointSynchronize::is_at_safepoint(),
 697              "biases should not be seen by VM thread here");
 698       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 699       obj = hobj();
 700       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 701     }
 702   }
 703 
 704   // hashCode() is a heap mutator ...
 705   // Relaxing assertion for bug 6320749.
 706   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 707          !SafepointSynchronize::is_at_safepoint(), "invariant");
 708   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 709          Self->is_Java_thread() , "invariant");
 710   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 711          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 712 
 713   ObjectMonitor* monitor = NULL;
 714   markOop temp, test;
 715   intptr_t hash;
 716   markOop mark = ReadStableMark(obj);
 717 
 718   // object should remain ineligible for biased locking
 719   assert(!mark->has_bias_pattern(), "invariant");
 720 
 721   if (mark->is_neutral()) {
 722     hash = mark->hash();              // this is a normal header
 723     if (hash != 0) {                  // if it has hash, just return it
 724       return hash;
 725     }
 726     hash = get_next_hash(Self, obj);  // allocate a new hash code
 727     temp = mark->copy_set_hash(hash); // merge the hash code into header
 728     // use (machine word version) atomic operation to install the hash
 729     test = obj->cas_set_mark(temp, mark);
 730     if (test == mark) {
 731       return hash;
 732     }
 733     // If atomic operation failed, we must inflate the header
 734     // into heavy weight monitor. We could add more code here
 735     // for fast path, but it does not worth the complexity.
 736   } else if (mark->has_monitor()) {
 737     monitor = mark->monitor();
 738     temp = monitor->header();
 739     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 740     hash = temp->hash();
 741     if (hash != 0) {
 742       return hash;
 743     }
 744     // Skip to the following code to reduce code size
 745   } else if (Self->is_lock_owned((address)mark->locker())) {
 746     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 747     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 748     hash = temp->hash();              // by current thread, check if the displaced
 749     if (hash != 0) {                  // header contains hash code
 750       return hash;
 751     }
 752     // WARNING:
 753     // The displaced header in the BasicLock on a thread's stack
 754     // is strictly immutable. It CANNOT be changed in ANY cases.
 755     // So we have to inflate the stack lock into an ObjectMonitor
 756     // even if the current thread owns the lock. The BasicLock on
 757     // a thread's stack can be asynchronously read by other threads
 758     // during an inflate() call so any change to that stack memory
 759     // may not propagate to other threads correctly.
 760   }
 761 
 762   // Inflate the monitor to set hash code
 763   monitor = inflate(Self, obj, inflate_cause_hash_code);
 764   // Load displaced header and check it has hash code
 765   mark = monitor->header();
 766   assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
 767   hash = mark->hash();
 768   if (hash == 0) {
 769     hash = get_next_hash(Self, obj);
 770     temp = mark->copy_set_hash(hash); // merge hash code into header
 771     assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp));
 772     test = Atomic::cmpxchg(temp, monitor->header_addr(), mark);
 773     if (test != mark) {
 774       // The only update to the ObjectMonitor's header/dmw field
 775       // is to merge in the hash code. If someone adds a new usage
 776       // of the header/dmw field, please update this code.
 777       hash = test->hash();
 778       assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test));
 779       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 780     }
 781   }
 782   // We finally get the hash
 783   return hash;
 784 }
 785 
 786 // Deprecated -- use FastHashCode() instead.
 787 
 788 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 789   return FastHashCode(Thread::current(), obj());
 790 }
 791 
 792 
 793 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 794                                                    Handle h_obj) {
 795   if (UseBiasedLocking) {
 796     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 797     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 798   }
 799 
 800   assert(thread == JavaThread::current(), "Can only be called on current thread");
 801   oop obj = h_obj();
 802 
 803   markOop mark = ReadStableMark(obj);
 804 
 805   // Uncontended case, header points to stack
 806   if (mark->has_locker()) {
 807     return thread->is_lock_owned((address)mark->locker());
 808   }
 809   // Contended case, header points to ObjectMonitor (tagged pointer)
 810   if (mark->has_monitor()) {
 811     ObjectMonitor* monitor = mark->monitor();
 812     return monitor->is_entered(thread) != 0;
 813   }
 814   // Unlocked case, header in place
 815   assert(mark->is_neutral(), "sanity check");
 816   return false;
 817 }
 818 
 819 // Be aware of this method could revoke bias of the lock object.
 820 // This method queries the ownership of the lock handle specified by 'h_obj'.
 821 // If the current thread owns the lock, it returns owner_self. If no
 822 // thread owns the lock, it returns owner_none. Otherwise, it will return
 823 // owner_other.
 824 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 825 (JavaThread *self, Handle h_obj) {
 826   // The caller must beware this method can revoke bias, and
 827   // revocation can result in a safepoint.
 828   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 829   assert(self->thread_state() != _thread_blocked, "invariant");
 830 
 831   // Possible mark states: neutral, biased, stack-locked, inflated
 832 
 833   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 834     // CASE: biased
 835     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 836     assert(!h_obj->mark()->has_bias_pattern(),
 837            "biases should be revoked by now");
 838   }
 839 
 840   assert(self == JavaThread::current(), "Can only be called on current thread");
 841   oop obj = h_obj();
 842   markOop mark = ReadStableMark(obj);
 843 
 844   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 845   if (mark->has_locker()) {
 846     return self->is_lock_owned((address)mark->locker()) ?
 847       owner_self : owner_other;
 848   }
 849 
 850   // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor.
 851   // The Object:ObjectMonitor relationship is stable as long as we're
 852   // not at a safepoint.
 853   if (mark->has_monitor()) {
 854     void * owner = mark->monitor()->_owner;
 855     if (owner == NULL) return owner_none;
 856     return (owner == self ||
 857             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 858   }
 859 
 860   // CASE: neutral
 861   assert(mark->is_neutral(), "sanity check");
 862   return owner_none;           // it's unlocked
 863 }
 864 
 865 // FIXME: jvmti should call this
 866 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
 867   if (UseBiasedLocking) {
 868     if (SafepointSynchronize::is_at_safepoint()) {
 869       BiasedLocking::revoke_at_safepoint(h_obj);
 870     } else {
 871       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 872     }
 873     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 874   }
 875 
 876   oop obj = h_obj();
 877   address owner = NULL;
 878 
 879   markOop mark = ReadStableMark(obj);
 880 
 881   // Uncontended case, header points to stack
 882   if (mark->has_locker()) {
 883     owner = (address) mark->locker();
 884   }
 885 
 886   // Contended case, header points to ObjectMonitor (tagged pointer)
 887   else if (mark->has_monitor()) {
 888     ObjectMonitor* monitor = mark->monitor();
 889     assert(monitor != NULL, "monitor should be non-null");
 890     owner = (address) monitor->owner();
 891   }
 892 
 893   if (owner != NULL) {
 894     // owning_thread_from_monitor_owner() may also return NULL here
 895     return Threads::owning_thread_from_monitor_owner(t_list, owner);
 896   }
 897 
 898   // Unlocked case, header in place
 899   // Cannot have assertion since this object may have been
 900   // locked by another thread when reaching here.
 901   // assert(mark->is_neutral(), "sanity check");
 902 
 903   return NULL;
 904 }
 905 
 906 // Visitors ...
 907 
 908 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 909   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
 910   while (block != NULL) {
 911     assert(block->object() == CHAINMARKER, "must be a block header");
 912     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 913       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 914       oop object = (oop)mid->object();
 915       if (object != NULL) {
 916         closure->do_monitor(mid);
 917       }
 918     }
 919     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
 920   }
 921 }
 922 
 923 // Get the next block in the block list.
 924 static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) {
 925   assert(block->object() == CHAINMARKER, "must be a block header");
 926   block = (PaddedEnd<ObjectMonitor>*) block->FreeNext;
 927   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 928   return block;
 929 }
 930 
 931 static bool monitors_used_above_threshold() {
 932   if (gMonitorPopulation == 0) {
 933     return false;
 934   }
 935   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
 936   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
 937   return monitor_usage > MonitorUsedDeflationThreshold;
 938 }
 939 
 940 bool ObjectSynchronizer::is_cleanup_needed() {
 941   if (MonitorUsedDeflationThreshold > 0) {
 942     return monitors_used_above_threshold();
 943   }
 944   return false;
 945 }
 946 
 947 void ObjectSynchronizer::oops_do(OopClosure* f) {
 948   // We only scan the global used list here (for moribund threads), and
 949   // the thread-local monitors in Thread::oops_do().
 950   global_used_oops_do(f);
 951 }
 952 
 953 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
 954   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 955   list_oops_do(gOmInUseList, f);
 956 }
 957 
 958 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
 959   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 960   list_oops_do(thread->omInUseList, f);
 961 }
 962 
 963 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
 964   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 965   ObjectMonitor* mid;
 966   for (mid = list; mid != NULL; mid = mid->FreeNext) {
 967     if (mid->object() != NULL) {
 968       f->do_oop((oop*)mid->object_addr());
 969     }
 970   }
 971 }
 972 
 973 
 974 // -----------------------------------------------------------------------------
 975 // ObjectMonitor Lifecycle
 976 // -----------------------
 977 // Inflation unlinks monitors from the global gFreeList and
 978 // associates them with objects.  Deflation -- which occurs at
 979 // STW-time -- disassociates idle monitors from objects.  Such
 980 // scavenged monitors are returned to the gFreeList.
 981 //
 982 // The global list is protected by gListLock.  All the critical sections
 983 // are short and operate in constant-time.
 984 //
 985 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
 986 //
 987 // Lifecycle:
 988 // --   unassigned and on the global free list
 989 // --   unassigned and on a thread's private omFreeList
 990 // --   assigned to an object.  The object is inflated and the mark refers
 991 //      to the objectmonitor.
 992 
 993 
 994 // Constraining monitor pool growth via MonitorBound ...
 995 //
 996 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
 997 // the rate of scavenging is driven primarily by GC.  As such,  we can find
 998 // an inordinate number of monitors in circulation.
 999 // To avoid that scenario we can artificially induce a STW safepoint
1000 // if the pool appears to be growing past some reasonable bound.
1001 // Generally we favor time in space-time tradeoffs, but as there's no
1002 // natural back-pressure on the # of extant monitors we need to impose some
1003 // type of limit.  Beware that if MonitorBound is set to too low a value
1004 // we could just loop. In addition, if MonitorBound is set to a low value
1005 // we'll incur more safepoints, which are harmful to performance.
1006 // See also: GuaranteedSafepointInterval
1007 //
1008 // The current implementation uses asynchronous VM operations.
1009 
1010 static void InduceScavenge(Thread * Self, const char * Whence) {
1011   // Induce STW safepoint to trim monitors
1012   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1013   // More precisely, trigger an asynchronous STW safepoint as the number
1014   // of active monitors passes the specified threshold.
1015   // TODO: assert thread state is reasonable
1016 
1017   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1018     // Induce a 'null' safepoint to scavenge monitors
1019     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1020     // to the VMthread and have a lifespan longer than that of this activation record.
1021     // The VMThread will delete the op when completed.
1022     VMThread::execute(new VM_ScavengeMonitors());
1023   }
1024 }
1025 
1026 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) {
1027   // A large MAXPRIVATE value reduces both list lock contention
1028   // and list coherency traffic, but also tends to increase the
1029   // number of objectMonitors in circulation as well as the STW
1030   // scavenge costs.  As usual, we lean toward time in space-time
1031   // tradeoffs.
1032   const int MAXPRIVATE = 1024;
1033   for (;;) {
1034     ObjectMonitor * m;
1035 
1036     // 1: try to allocate from the thread's local omFreeList.
1037     // Threads will attempt to allocate first from their local list, then
1038     // from the global list, and only after those attempts fail will the thread
1039     // attempt to instantiate new monitors.   Thread-local free lists take
1040     // heat off the gListLock and improve allocation latency, as well as reducing
1041     // coherency traffic on the shared global list.
1042     m = Self->omFreeList;
1043     if (m != NULL) {
1044       Self->omFreeList = m->FreeNext;
1045       Self->omFreeCount--;
1046       guarantee(m->object() == NULL, "invariant");
1047       m->FreeNext = Self->omInUseList;
1048       Self->omInUseList = m;
1049       Self->omInUseCount++;
1050       return m;
1051     }
1052 
1053     // 2: try to allocate from the global gFreeList
1054     // CONSIDER: use muxTry() instead of muxAcquire().
1055     // If the muxTry() fails then drop immediately into case 3.
1056     // If we're using thread-local free lists then try
1057     // to reprovision the caller's free list.
1058     if (gFreeList != NULL) {
1059       // Reprovision the thread's omFreeList.
1060       // Use bulk transfers to reduce the allocation rate and heat
1061       // on various locks.
1062       Thread::muxAcquire(&gListLock, "omAlloc(1)");
1063       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1064         gMonitorFreeCount--;
1065         ObjectMonitor * take = gFreeList;
1066         gFreeList = take->FreeNext;
1067         guarantee(take->object() == NULL, "invariant");
1068         guarantee(!take->is_busy(), "invariant");
1069         take->Recycle();
1070         omRelease(Self, take, false);
1071       }
1072       Thread::muxRelease(&gListLock);
1073       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1074       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1075 
1076       const int mx = MonitorBound;
1077       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1078         // We can't safely induce a STW safepoint from omAlloc() as our thread
1079         // state may not be appropriate for such activities and callers may hold
1080         // naked oops, so instead we defer the action.
1081         InduceScavenge(Self, "omAlloc");
1082       }
1083       continue;
1084     }
1085 
1086     // 3: allocate a block of new ObjectMonitors
1087     // Both the local and global free lists are empty -- resort to malloc().
1088     // In the current implementation objectMonitors are TSM - immortal.
1089     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1090     // each ObjectMonitor to start at the beginning of a cache line,
1091     // so we use align_up().
1092     // A better solution would be to use C++ placement-new.
1093     // BEWARE: As it stands currently, we don't run the ctors!
1094     assert(_BLOCKSIZE > 1, "invariant");
1095     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1096     PaddedEnd<ObjectMonitor> * temp;
1097     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1098     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1099                                                       mtInternal);
1100     temp = (PaddedEnd<ObjectMonitor> *)
1101              align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE);
1102 
1103     // NOTE: (almost) no way to recover if allocation failed.
1104     // We might be able to induce a STW safepoint and scavenge enough
1105     // objectMonitors to permit progress.
1106     if (temp == NULL) {
1107       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1108                             "Allocate ObjectMonitors");
1109     }
1110     (void)memset((void *) temp, 0, neededsize);
1111 
1112     // Format the block.
1113     // initialize the linked list, each monitor points to its next
1114     // forming the single linked free list, the very first monitor
1115     // will points to next block, which forms the block list.
1116     // The trick of using the 1st element in the block as gBlockList
1117     // linkage should be reconsidered.  A better implementation would
1118     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1119 
1120     for (int i = 1; i < _BLOCKSIZE; i++) {
1121       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1122     }
1123 
1124     // terminate the last monitor as the end of list
1125     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1126 
1127     // Element [0] is reserved for global list linkage
1128     temp[0].set_object(CHAINMARKER);
1129 
1130     // Consider carving out this thread's current request from the
1131     // block in hand.  This avoids some lock traffic and redundant
1132     // list activity.
1133 
1134     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1135     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1136     Thread::muxAcquire(&gListLock, "omAlloc(2)");
1137     gMonitorPopulation += _BLOCKSIZE-1;
1138     gMonitorFreeCount += _BLOCKSIZE-1;
1139 
1140     // Add the new block to the list of extant blocks (gBlockList).
1141     // The very first objectMonitor in a block is reserved and dedicated.
1142     // It serves as blocklist "next" linkage.
1143     temp[0].FreeNext = gBlockList;
1144     // There are lock-free uses of gBlockList so make sure that
1145     // the previous stores happen before we update gBlockList.
1146     OrderAccess::release_store(&gBlockList, temp);
1147 
1148     // Add the new string of objectMonitors to the global free list
1149     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1150     gFreeList = temp + 1;
1151     Thread::muxRelease(&gListLock);
1152   }
1153 }
1154 
1155 // Place "m" on the caller's private per-thread omFreeList.
1156 // In practice there's no need to clamp or limit the number of
1157 // monitors on a thread's omFreeList as the only time we'll call
1158 // omRelease is to return a monitor to the free list after a CAS
1159 // attempt failed.  This doesn't allow unbounded #s of monitors to
1160 // accumulate on a thread's free list.
1161 //
1162 // Key constraint: all ObjectMonitors on a thread's free list and the global
1163 // free list must have their object field set to null. This prevents the
1164 // scavenger -- deflate_monitor_list() -- from reclaiming them.
1165 
1166 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1167                                    bool fromPerThreadAlloc) {
1168   guarantee(m->header() == NULL, "invariant");
1169   guarantee(m->object() == NULL, "invariant");
1170   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1171   // Remove from omInUseList
1172   if (fromPerThreadAlloc) {
1173     ObjectMonitor* cur_mid_in_use = NULL;
1174     bool extracted = false;
1175     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1176       if (m == mid) {
1177         // extract from per-thread in-use list
1178         if (mid == Self->omInUseList) {
1179           Self->omInUseList = mid->FreeNext;
1180         } else if (cur_mid_in_use != NULL) {
1181           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1182         }
1183         extracted = true;
1184         Self->omInUseCount--;
1185         break;
1186       }
1187     }
1188     assert(extracted, "Should have extracted from in-use list");
1189   }
1190 
1191   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1192   m->FreeNext = Self->omFreeList;
1193   Self->omFreeList = m;
1194   Self->omFreeCount++;
1195 }
1196 
1197 // Return the monitors of a moribund thread's local free list to
1198 // the global free list.  Typically a thread calls omFlush() when
1199 // it's dying.  We could also consider having the VM thread steal
1200 // monitors from threads that have not run java code over a few
1201 // consecutive STW safepoints.  Relatedly, we might decay
1202 // omFreeProvision at STW safepoints.
1203 //
1204 // Also return the monitors of a moribund thread's omInUseList to
1205 // a global gOmInUseList under the global list lock so these
1206 // will continue to be scanned.
1207 //
1208 // We currently call omFlush() from Threads::remove() _before the thread
1209 // has been excised from the thread list and is no longer a mutator.
1210 // This means that omFlush() cannot run concurrently with a safepoint and
1211 // interleave with the deflate_idle_monitors scavenge operator. In particular,
1212 // this ensures that the thread's monitors are scanned by a GC safepoint,
1213 // either via Thread::oops_do() (if safepoint happens before omFlush()) or via
1214 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1215 // monitors have been transferred to the global in-use list).
1216 
1217 void ObjectSynchronizer::omFlush(Thread * Self) {
1218   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1219   ObjectMonitor * tail = NULL;
1220   int tally = 0;
1221   if (list != NULL) {
1222     ObjectMonitor * s;
1223     // The thread is going away, the per-thread free monitors
1224     // are freed via set_owner(NULL)
1225     // Link them to tail, which will be linked into the global free list
1226     // gFreeList below, under the gListLock
1227     for (s = list; s != NULL; s = s->FreeNext) {
1228       tally++;
1229       tail = s;
1230       guarantee(s->object() == NULL, "invariant");
1231       guarantee(!s->is_busy(), "invariant");
1232       s->set_owner(NULL);   // redundant but good hygiene
1233     }
1234     guarantee(tail != NULL, "invariant");
1235     assert(Self->omFreeCount == tally, "free-count off");
1236     Self->omFreeList = NULL;
1237     Self->omFreeCount = 0;
1238   }
1239 
1240   ObjectMonitor * inUseList = Self->omInUseList;
1241   ObjectMonitor * inUseTail = NULL;
1242   int inUseTally = 0;
1243   if (inUseList != NULL) {
1244     ObjectMonitor *cur_om;
1245     // The thread is going away, however the omInUseList inflated
1246     // monitors may still be in-use by other threads.
1247     // Link them to inUseTail, which will be linked into the global in-use list
1248     // gOmInUseList below, under the gListLock
1249     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1250       inUseTail = cur_om;
1251       inUseTally++;
1252     }
1253     guarantee(inUseTail != NULL, "invariant");
1254     assert(Self->omInUseCount == inUseTally, "in-use count off");
1255     Self->omInUseList = NULL;
1256     Self->omInUseCount = 0;
1257   }
1258 
1259   Thread::muxAcquire(&gListLock, "omFlush");
1260   if (tail != NULL) {
1261     tail->FreeNext = gFreeList;
1262     gFreeList = list;
1263     gMonitorFreeCount += tally;
1264   }
1265 
1266   if (inUseTail != NULL) {
1267     inUseTail->FreeNext = gOmInUseList;
1268     gOmInUseList = inUseList;
1269     gOmInUseCount += inUseTally;
1270   }
1271 
1272   Thread::muxRelease(&gListLock);
1273 
1274   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1275   LogStreamHandle(Info, monitorinflation) lsh_info;
1276   LogStream * ls = NULL;
1277   if (log_is_enabled(Debug, monitorinflation)) {
1278     ls = &lsh_debug;
1279   } else if ((tally != 0 || inUseTally != 0) &&
1280              log_is_enabled(Info, monitorinflation)) {
1281     ls = &lsh_info;
1282   }
1283   if (ls != NULL) {
1284     ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d"
1285                  ", in_use_monitor_tally=%d" ", omFreeProvision=%d",
1286                  p2i(Self), tally, inUseTally, Self->omFreeProvision);
1287   }
1288 }
1289 
1290 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1291                                        const oop obj,
1292                                        ObjectSynchronizer::InflateCause cause) {
1293   assert(event != NULL, "invariant");
1294   assert(event->should_commit(), "invariant");
1295   event->set_monitorClass(obj->klass());
1296   event->set_address((uintptr_t)(void*)obj);
1297   event->set_cause((u1)cause);
1298   event->commit();
1299 }
1300 
1301 // Fast path code shared by multiple functions
1302 void ObjectSynchronizer::inflate_helper(oop obj) {
1303   markOop mark = obj->mark();
1304   if (mark->has_monitor()) {
1305     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1306     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1307     return;
1308   }
1309   inflate(Thread::current(), obj, inflate_cause_vm_internal);
1310 }
1311 
1312 ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self,
1313                                            oop object,
1314                                            const InflateCause cause) {
1315   // Inflate mutates the heap ...
1316   // Relaxing assertion for bug 6320749.
1317   assert(Universe::verify_in_progress() ||
1318          !SafepointSynchronize::is_at_safepoint(), "invariant");
1319 
1320   EventJavaMonitorInflate event;
1321 
1322   for (;;) {
1323     const markOop mark = object->mark();
1324     assert(!mark->has_bias_pattern(), "invariant");
1325 
1326     // The mark can be in one of the following states:
1327     // *  Inflated     - just return
1328     // *  Stack-locked - coerce it to inflated
1329     // *  INFLATING    - busy wait for conversion to complete
1330     // *  Neutral      - aggressively inflate the object.
1331     // *  BIASED       - Illegal.  We should never see this
1332 
1333     // CASE: inflated
1334     if (mark->has_monitor()) {
1335       ObjectMonitor * inf = mark->monitor();
1336       markOop dmw = inf->header();
1337       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1338       assert(oopDesc::equals((oop) inf->object(), object), "invariant");
1339       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1340       return inf;
1341     }
1342 
1343     // CASE: inflation in progress - inflating over a stack-lock.
1344     // Some other thread is converting from stack-locked to inflated.
1345     // Only that thread can complete inflation -- other threads must wait.
1346     // The INFLATING value is transient.
1347     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1348     // We could always eliminate polling by parking the thread on some auxiliary list.
1349     if (mark == markOopDesc::INFLATING()) {
1350       ReadStableMark(object);
1351       continue;
1352     }
1353 
1354     // CASE: stack-locked
1355     // Could be stack-locked either by this thread or by some other thread.
1356     //
1357     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1358     // to install INFLATING into the mark word.  We originally installed INFLATING,
1359     // allocated the objectmonitor, and then finally STed the address of the
1360     // objectmonitor into the mark.  This was correct, but artificially lengthened
1361     // the interval in which INFLATED appeared in the mark, thus increasing
1362     // the odds of inflation contention.
1363     //
1364     // We now use per-thread private objectmonitor free lists.
1365     // These list are reprovisioned from the global free list outside the
1366     // critical INFLATING...ST interval.  A thread can transfer
1367     // multiple objectmonitors en-mass from the global free list to its local free list.
1368     // This reduces coherency traffic and lock contention on the global free list.
1369     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1370     // before or after the CAS(INFLATING) operation.
1371     // See the comments in omAlloc().
1372 
1373     LogStreamHandle(Trace, monitorinflation) lsh;
1374 
1375     if (mark->has_locker()) {
1376       ObjectMonitor * m = omAlloc(Self);
1377       // Optimistically prepare the objectmonitor - anticipate successful CAS
1378       // We do this before the CAS in order to minimize the length of time
1379       // in which INFLATING appears in the mark.
1380       m->Recycle();
1381       m->_Responsible  = NULL;
1382       m->_recursions   = 0;
1383       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1384 
1385       markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark);
1386       if (cmp != mark) {
1387         omRelease(Self, m, true);
1388         continue;       // Interference -- just retry
1389       }
1390 
1391       // We've successfully installed INFLATING (0) into the mark-word.
1392       // This is the only case where 0 will appear in a mark-word.
1393       // Only the singular thread that successfully swings the mark-word
1394       // to 0 can perform (or more precisely, complete) inflation.
1395       //
1396       // Why do we CAS a 0 into the mark-word instead of just CASing the
1397       // mark-word from the stack-locked value directly to the new inflated state?
1398       // Consider what happens when a thread unlocks a stack-locked object.
1399       // It attempts to use CAS to swing the displaced header value from the
1400       // on-stack basiclock back into the object header.  Recall also that the
1401       // header value (hash code, etc) can reside in (a) the object header, or
1402       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1403       // header in an objectMonitor.  The inflate() routine must copy the header
1404       // value from the basiclock on the owner's stack to the objectMonitor, all
1405       // the while preserving the hashCode stability invariants.  If the owner
1406       // decides to release the lock while the value is 0, the unlock will fail
1407       // and control will eventually pass from slow_exit() to inflate.  The owner
1408       // will then spin, waiting for the 0 value to disappear.   Put another way,
1409       // the 0 causes the owner to stall if the owner happens to try to
1410       // drop the lock (restoring the header from the basiclock to the object)
1411       // while inflation is in-progress.  This protocol avoids races that might
1412       // would otherwise permit hashCode values to change or "flicker" for an object.
1413       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1414       // 0 serves as a "BUSY" inflate-in-progress indicator.
1415 
1416 
1417       // fetch the displaced mark from the owner's stack.
1418       // The owner can't die or unwind past the lock while our INFLATING
1419       // object is in the mark.  Furthermore the owner can't complete
1420       // an unlock on the object, either.
1421       markOop dmw = mark->displaced_mark_helper();
1422       // Catch if the object's header is not neutral (not locked and
1423       // not marked is what we care about here).
1424       assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1425 
1426       // Setup monitor fields to proper values -- prepare the monitor
1427       m->set_header(dmw);
1428 
1429       // Optimization: if the mark->locker stack address is associated
1430       // with this thread we could simply set m->_owner = Self.
1431       // Note that a thread can inflate an object
1432       // that it has stack-locked -- as might happen in wait() -- directly
1433       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1434       m->set_owner(mark->locker());
1435       m->set_object(object);
1436       // TODO-FIXME: assert BasicLock->dhw != 0.
1437 
1438       // Must preserve store ordering. The monitor state must
1439       // be stable at the time of publishing the monitor address.
1440       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1441       object->release_set_mark(markOopDesc::encode(m));
1442 
1443       // Hopefully the performance counters are allocated on distinct cache lines
1444       // to avoid false sharing on MP systems ...
1445       OM_PERFDATA_OP(Inflations, inc());
1446       if (log_is_enabled(Trace, monitorinflation)) {
1447         ResourceMark rm(Self);
1448         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1449                      INTPTR_FORMAT ", type='%s'", p2i(object),
1450                      p2i(object->mark()), object->klass()->external_name());
1451       }
1452       if (event.should_commit()) {
1453         post_monitor_inflate_event(&event, object, cause);
1454       }
1455       return m;
1456     }
1457 
1458     // CASE: neutral
1459     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1460     // If we know we're inflating for entry it's better to inflate by swinging a
1461     // pre-locked objectMonitor pointer into the object header.   A successful
1462     // CAS inflates the object *and* confers ownership to the inflating thread.
1463     // In the current implementation we use a 2-step mechanism where we CAS()
1464     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1465     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1466     // would be useful.
1467 
1468     // Catch if the object's header is not neutral (not locked and
1469     // not marked is what we care about here).
1470     assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark));
1471     ObjectMonitor * m = omAlloc(Self);
1472     // prepare m for installation - set monitor to initial state
1473     m->Recycle();
1474     m->set_header(mark);
1475     m->set_owner(NULL);
1476     m->set_object(object);
1477     m->_recursions   = 0;
1478     m->_Responsible  = NULL;
1479     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1480 
1481     if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) {
1482       m->set_header(NULL);
1483       m->set_object(NULL);
1484       m->Recycle();
1485       omRelease(Self, m, true);
1486       m = NULL;
1487       continue;
1488       // interference - the markword changed - just retry.
1489       // The state-transitions are one-way, so there's no chance of
1490       // live-lock -- "Inflated" is an absorbing state.
1491     }
1492 
1493     // Hopefully the performance counters are allocated on distinct
1494     // cache lines to avoid false sharing on MP systems ...
1495     OM_PERFDATA_OP(Inflations, inc());
1496     if (log_is_enabled(Trace, monitorinflation)) {
1497       ResourceMark rm(Self);
1498       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1499                    INTPTR_FORMAT ", type='%s'", p2i(object),
1500                    p2i(object->mark()), object->klass()->external_name());
1501     }
1502     if (event.should_commit()) {
1503       post_monitor_inflate_event(&event, object, cause);
1504     }
1505     return m;
1506   }
1507 }
1508 
1509 
1510 // We maintain a list of in-use monitors for each thread.
1511 //
1512 // deflate_thread_local_monitors() scans a single thread's in-use list, while
1513 // deflate_idle_monitors() scans only a global list of in-use monitors which
1514 // is populated only as a thread dies (see omFlush()).
1515 //
1516 // These operations are called at all safepoints, immediately after mutators
1517 // are stopped, but before any objects have moved. Collectively they traverse
1518 // the population of in-use monitors, deflating where possible. The scavenged
1519 // monitors are returned to the global monitor free list.
1520 //
1521 // Beware that we scavenge at *every* stop-the-world point. Having a large
1522 // number of monitors in-use could negatively impact performance. We also want
1523 // to minimize the total # of monitors in circulation, as they incur a small
1524 // footprint penalty.
1525 //
1526 // Perversely, the heap size -- and thus the STW safepoint rate --
1527 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1528 // which in turn can mean large(r) numbers of ObjectMonitors in circulation.
1529 // This is an unfortunate aspect of this design.
1530 
1531 // Deflate a single monitor if not in-use
1532 // Return true if deflated, false if in-use
1533 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1534                                          ObjectMonitor** freeHeadp,
1535                                          ObjectMonitor** freeTailp) {
1536   bool deflated;
1537   // Normal case ... The monitor is associated with obj.
1538   const markOop mark = obj->mark();
1539   guarantee(mark == markOopDesc::encode(mid), "should match: mark="
1540             INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark),
1541             p2i(markOopDesc::encode(mid)));
1542   // Make sure that mark->monitor() and markOopDesc::encode() agree:
1543   guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT
1544             ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid));
1545   const markOop dmw = mid->header();
1546   guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw));
1547 
1548   if (mid->is_busy()) {
1549     deflated = false;
1550   } else {
1551     // Deflate the monitor if it is no longer being used
1552     // It's idle - scavenge and return to the global free list
1553     // plain old deflation ...
1554     if (log_is_enabled(Trace, monitorinflation)) {
1555       ResourceMark rm;
1556       log_trace(monitorinflation)("deflate_monitor: "
1557                                   "object=" INTPTR_FORMAT ", mark="
1558                                   INTPTR_FORMAT ", type='%s'", p2i(obj),
1559                                   p2i(mark), obj->klass()->external_name());
1560     }
1561 
1562     // Restore the header back to obj
1563     obj->release_set_mark(dmw);
1564     mid->clear();
1565 
1566     assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT,
1567            p2i(mid->object()));
1568 
1569     // Move the object to the working free list defined by freeHeadp, freeTailp
1570     if (*freeHeadp == NULL) *freeHeadp = mid;
1571     if (*freeTailp != NULL) {
1572       ObjectMonitor * prevtail = *freeTailp;
1573       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1574       prevtail->FreeNext = mid;
1575     }
1576     *freeTailp = mid;
1577     deflated = true;
1578   }
1579   return deflated;
1580 }
1581 
1582 // Walk a given monitor list, and deflate idle monitors
1583 // The given list could be a per-thread list or a global list
1584 // Caller acquires gListLock as needed.
1585 //
1586 // In the case of parallel processing of thread local monitor lists,
1587 // work is done by Threads::parallel_threads_do() which ensures that
1588 // each Java thread is processed by exactly one worker thread, and
1589 // thus avoid conflicts that would arise when worker threads would
1590 // process the same monitor lists concurrently.
1591 //
1592 // See also ParallelSPCleanupTask and
1593 // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and
1594 // Threads::parallel_java_threads_do() in thread.cpp.
1595 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1596                                              ObjectMonitor** freeHeadp,
1597                                              ObjectMonitor** freeTailp) {
1598   ObjectMonitor* mid;
1599   ObjectMonitor* next;
1600   ObjectMonitor* cur_mid_in_use = NULL;
1601   int deflated_count = 0;
1602 
1603   for (mid = *listHeadp; mid != NULL;) {
1604     oop obj = (oop) mid->object();
1605     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1606       // if deflate_monitor succeeded,
1607       // extract from per-thread in-use list
1608       if (mid == *listHeadp) {
1609         *listHeadp = mid->FreeNext;
1610       } else if (cur_mid_in_use != NULL) {
1611         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1612       }
1613       next = mid->FreeNext;
1614       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1615       mid = next;
1616       deflated_count++;
1617     } else {
1618       cur_mid_in_use = mid;
1619       mid = mid->FreeNext;
1620     }
1621   }
1622   return deflated_count;
1623 }
1624 
1625 void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1626   counters->nInuse = 0;              // currently associated with objects
1627   counters->nInCirculation = 0;      // extant
1628   counters->nScavenged = 0;          // reclaimed (global and per-thread)
1629   counters->perThreadScavenged = 0;  // per-thread scavenge total
1630   counters->perThreadTimes = 0.0;    // per-thread scavenge times
1631 }
1632 
1633 void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) {
1634   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1635   bool deflated = false;
1636 
1637   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1638   ObjectMonitor * freeTailp = NULL;
1639   elapsedTimer timer;
1640 
1641   if (log_is_enabled(Info, monitorinflation)) {
1642     timer.start();
1643   }
1644 
1645   // Prevent omFlush from changing mids in Thread dtor's during deflation
1646   // And in case the vm thread is acquiring a lock during a safepoint
1647   // See e.g. 6320749
1648   Thread::muxAcquire(&gListLock, "deflate_idle_monitors");
1649 
1650   // Note: the thread-local monitors lists get deflated in
1651   // a separate pass. See deflate_thread_local_monitors().
1652 
1653   // For moribund threads, scan gOmInUseList
1654   int deflated_count = 0;
1655   if (gOmInUseList) {
1656     counters->nInCirculation += gOmInUseCount;
1657     deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1658     gOmInUseCount -= deflated_count;
1659     counters->nScavenged += deflated_count;
1660     counters->nInuse += gOmInUseCount;
1661   }
1662 
1663   // Move the scavenged monitors back to the global free list.
1664   if (freeHeadp != NULL) {
1665     guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant");
1666     assert(freeTailp->FreeNext == NULL, "invariant");
1667     // constant-time list splice - prepend scavenged segment to gFreeList
1668     freeTailp->FreeNext = gFreeList;
1669     gFreeList = freeHeadp;
1670   }
1671   Thread::muxRelease(&gListLock);
1672   timer.stop();
1673 
1674   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1675   LogStreamHandle(Info, monitorinflation) lsh_info;
1676   LogStream * ls = NULL;
1677   if (log_is_enabled(Debug, monitorinflation)) {
1678     ls = &lsh_debug;
1679   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1680     ls = &lsh_info;
1681   }
1682   if (ls != NULL) {
1683     ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors", timer.seconds(), deflated_count);
1684   }
1685 }
1686 
1687 void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) {
1688   // Report the cumulative time for deflating each thread's idle
1689   // monitors. Note: if the work is split among more than one
1690   // worker thread, then the reported time will likely be more
1691   // than a beginning to end measurement of the phase.
1692   log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d", counters->perThreadTimes, counters->perThreadScavenged);
1693 
1694   gMonitorFreeCount += counters->nScavenged;
1695 
1696   if (log_is_enabled(Debug, monitorinflation)) {
1697     // exit_globals()'s call to audit_and_print_stats() is done
1698     // at the Info level.
1699     ObjectSynchronizer::audit_and_print_stats(false /* on_exit */);
1700   } else if (log_is_enabled(Info, monitorinflation)) {
1701     Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors");
1702     log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, "
1703                                "gMonitorFreeCount=%d", gMonitorPopulation,
1704                                gOmInUseCount, gMonitorFreeCount);
1705     Thread::muxRelease(&gListLock);
1706   }
1707 
1708   ForceMonitorScavenge = 0;    // Reset
1709 
1710   OM_PERFDATA_OP(Deflations, inc(counters->nScavenged));
1711   OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation));
1712 
1713   GVars.stwRandom = os::random();
1714   GVars.stwCycle++;
1715 }
1716 
1717 void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) {
1718   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1719 
1720   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1721   ObjectMonitor * freeTailp = NULL;
1722   elapsedTimer timer;
1723 
1724   if (log_is_enabled(Info, safepoint, cleanup) ||
1725       log_is_enabled(Info, monitorinflation)) {
1726     timer.start();
1727   }
1728 
1729   int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp);
1730 
1731   Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors");
1732 
1733   // Adjust counters
1734   counters->nInCirculation += thread->omInUseCount;
1735   thread->omInUseCount -= deflated_count;
1736   counters->nScavenged += deflated_count;
1737   counters->nInuse += thread->omInUseCount;
1738   counters->perThreadScavenged += deflated_count;
1739 
1740   // Move the scavenged monitors back to the global free list.
1741   if (freeHeadp != NULL) {
1742     guarantee(freeTailp != NULL && deflated_count > 0, "invariant");
1743     assert(freeTailp->FreeNext == NULL, "invariant");
1744 
1745     // constant-time list splice - prepend scavenged segment to gFreeList
1746     freeTailp->FreeNext = gFreeList;
1747     gFreeList = freeHeadp;
1748   }
1749 
1750   timer.stop();
1751   // Safepoint logging cares about cumulative perThreadTimes and
1752   // we'll capture most of the cost, but not the muxRelease() which
1753   // should be cheap.
1754   counters->perThreadTimes += timer.seconds();
1755 
1756   Thread::muxRelease(&gListLock);
1757 
1758   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1759   LogStreamHandle(Info, monitorinflation) lsh_info;
1760   LogStream * ls = NULL;
1761   if (log_is_enabled(Debug, monitorinflation)) {
1762     ls = &lsh_debug;
1763   } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) {
1764     ls = &lsh_info;
1765   }
1766   if (ls != NULL) {
1767     ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors", p2i(thread), timer.seconds(), deflated_count);
1768   }
1769 }
1770 
1771 // Monitor cleanup on JavaThread::exit
1772 
1773 // Iterate through monitor cache and attempt to release thread's monitors
1774 // Gives up on a particular monitor if an exception occurs, but continues
1775 // the overall iteration, swallowing the exception.
1776 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1777  private:
1778   TRAPS;
1779 
1780  public:
1781   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1782   void do_monitor(ObjectMonitor* mid) {
1783     if (mid->owner() == THREAD) {
1784       (void)mid->complete_exit(CHECK);
1785     }
1786   }
1787 };
1788 
1789 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1790 // ignored.  This is meant to be called during JNI thread detach which assumes
1791 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1792 // Scanning the extant monitor list can be time consuming.
1793 // A simple optimization is to add a per-thread flag that indicates a thread
1794 // called jni_monitorenter() during its lifetime.
1795 //
1796 // Instead of No_Savepoint_Verifier it might be cheaper to
1797 // use an idiom of the form:
1798 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1799 //   <code that must not run at safepoint>
1800 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1801 // Since the tests are extremely cheap we could leave them enabled
1802 // for normal product builds.
1803 
1804 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1805   assert(THREAD == JavaThread::current(), "must be current Java thread");
1806   NoSafepointVerifier nsv;
1807   ReleaseJavaMonitorsClosure rjmc(THREAD);
1808   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1809   ObjectSynchronizer::monitors_iterate(&rjmc);
1810   Thread::muxRelease(&gListLock);
1811   THREAD->clear_pending_exception();
1812 }
1813 
1814 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1815   switch (cause) {
1816     case inflate_cause_vm_internal:    return "VM Internal";
1817     case inflate_cause_monitor_enter:  return "Monitor Enter";
1818     case inflate_cause_wait:           return "Monitor Wait";
1819     case inflate_cause_notify:         return "Monitor Notify";
1820     case inflate_cause_hash_code:      return "Monitor Hash Code";
1821     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1822     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1823     default:
1824       ShouldNotReachHere();
1825   }
1826   return "Unknown";
1827 }
1828 
1829 //------------------------------------------------------------------------------
1830 // Debugging code
1831 
1832 u_char* ObjectSynchronizer::get_gvars_addr() {
1833   return (u_char*)&GVars;
1834 }
1835 
1836 u_char* ObjectSynchronizer::get_gvars_hcSequence_addr() {
1837   return (u_char*)&GVars.hcSequence;
1838 }
1839 
1840 size_t ObjectSynchronizer::get_gvars_size() {
1841   return sizeof(SharedGlobals);
1842 }
1843 
1844 u_char* ObjectSynchronizer::get_gvars_stwRandom_addr() {
1845   return (u_char*)&GVars.stwRandom;
1846 }
1847 
1848 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
1849   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
1850 
1851   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1852   LogStreamHandle(Info, monitorinflation) lsh_info;
1853   LogStreamHandle(Trace, monitorinflation) lsh_trace;
1854   LogStream * ls = NULL;
1855   if (log_is_enabled(Trace, monitorinflation)) {
1856     ls = &lsh_trace;
1857   } else if (log_is_enabled(Debug, monitorinflation)) {
1858     ls = &lsh_debug;
1859   } else if (log_is_enabled(Info, monitorinflation)) {
1860     ls = &lsh_info;
1861   }
1862   assert(ls != NULL, "sanity check");
1863 
1864   if (!on_exit) {
1865     // Not at VM exit so grab the global list lock.
1866     Thread::muxAcquire(&gListLock, "audit_and_print_stats");
1867   }
1868 
1869   // Log counts for the global and per-thread monitor lists:
1870   int chkMonitorPopulation = log_monitor_list_counts(ls);
1871   int error_cnt = 0;
1872 
1873   ls->print_cr("Checking global lists:");
1874 
1875   // Check gMonitorPopulation:
1876   if (gMonitorPopulation == chkMonitorPopulation) {
1877     ls->print_cr("gMonitorPopulation=%d equals chkMonitorPopulation=%d",
1878                  gMonitorPopulation, chkMonitorPopulation);
1879   } else {
1880     ls->print_cr("ERROR: gMonitorPopulation=%d is not equal to "
1881                  "chkMonitorPopulation=%d", gMonitorPopulation,
1882                  chkMonitorPopulation);
1883     error_cnt++;
1884   }
1885 
1886   // Check gOmInUseList and gOmInUseCount:
1887   chk_global_in_use_list_and_count(ls, &error_cnt);
1888 
1889   // Check gFreeList and gMonitorFreeCount:
1890   chk_global_free_list_and_count(ls, &error_cnt);
1891 
1892   if (!on_exit) {
1893     Thread::muxRelease(&gListLock);
1894   }
1895 
1896   ls->print_cr("Checking per-thread lists:");
1897 
1898   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1899     // Check omInUseList and omInUseCount:
1900     chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt);
1901 
1902     // Check omFreeList and omFreeCount:
1903     chk_per_thread_free_list_and_count(jt, ls, &error_cnt);
1904   }
1905 
1906   if (error_cnt == 0) {
1907     ls->print_cr("No errors found in monitor list checks.");
1908   } else {
1909     log_error(monitorinflation)("found monitor list errors: error_cnt=%d", error_cnt);
1910   }
1911 
1912   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
1913       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
1914     // When exiting this log output is at the Info level. When called
1915     // at a safepoint, this log output is at the Trace level since
1916     // there can be a lot of it.
1917     log_in_use_monitor_details(ls, on_exit);
1918   }
1919 
1920   ls->flush();
1921 
1922   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1923 }
1924 
1925 // Check a free monitor entry; log any errors.
1926 void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n,
1927                                         outputStream * out, int *error_cnt_p) {
1928   if (n->is_busy()) {
1929     if (jt != NULL) {
1930       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1931                     ": free per-thread monitor must not be busy.", p2i(jt),
1932                     p2i(n));
1933     } else {
1934       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1935                     "must not be busy.", p2i(n));
1936     }
1937     *error_cnt_p = *error_cnt_p + 1;
1938   }
1939   if (n->header() != NULL) {
1940     if (jt != NULL) {
1941       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1942                     ": free per-thread monitor must have NULL _header "
1943                     "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n),
1944                     p2i(n->header()));
1945     } else {
1946       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1947                     "must have NULL _header field: _header=" INTPTR_FORMAT,
1948                     p2i(n), p2i(n->header()));
1949     }
1950     *error_cnt_p = *error_cnt_p + 1;
1951   }
1952   if (n->object() != NULL) {
1953     if (jt != NULL) {
1954       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
1955                     ": free per-thread monitor must have NULL _object "
1956                     "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n),
1957                     p2i(n->object()));
1958     } else {
1959       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor "
1960                     "must have NULL _object field: _object=" INTPTR_FORMAT,
1961                     p2i(n), p2i(n->object()));
1962     }
1963     *error_cnt_p = *error_cnt_p + 1;
1964   }
1965 }
1966 
1967 // Check the global free list and count; log the results of the checks.
1968 void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out,
1969                                                         int *error_cnt_p) {
1970   int chkMonitorFreeCount = 0;
1971   for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) {
1972     chk_free_entry(NULL /* jt */, n, out, error_cnt_p);
1973     chkMonitorFreeCount++;
1974   }
1975   if (gMonitorFreeCount == chkMonitorFreeCount) {
1976     out->print_cr("gMonitorFreeCount=%d equals chkMonitorFreeCount=%d",
1977                   gMonitorFreeCount, chkMonitorFreeCount);
1978   } else {
1979     out->print_cr("ERROR: gMonitorFreeCount=%d is not equal to "
1980                   "chkMonitorFreeCount=%d", gMonitorFreeCount,
1981                   chkMonitorFreeCount);
1982     *error_cnt_p = *error_cnt_p + 1;
1983   }
1984 }
1985 
1986 // Check the global in-use list and count; log the results of the checks.
1987 void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out,
1988                                                           int *error_cnt_p) {
1989   int chkOmInUseCount = 0;
1990   for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
1991     chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p);
1992     chkOmInUseCount++;
1993   }
1994   if (gOmInUseCount == chkOmInUseCount) {
1995     out->print_cr("gOmInUseCount=%d equals chkOmInUseCount=%d", gOmInUseCount,
1996                   chkOmInUseCount);
1997   } else {
1998     out->print_cr("ERROR: gOmInUseCount=%d is not equal to chkOmInUseCount=%d",
1999                   gOmInUseCount, chkOmInUseCount);
2000     *error_cnt_p = *error_cnt_p + 1;
2001   }
2002 }
2003 
2004 // Check an in-use monitor entry; log any errors.
2005 void ObjectSynchronizer::chk_in_use_entry(JavaThread * jt, ObjectMonitor * n,
2006                                           outputStream * out, int *error_cnt_p) {
2007   if (n->header() == NULL) {
2008     if (jt != NULL) {
2009       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2010                     ": in-use per-thread monitor must have non-NULL _header "
2011                     "field.", p2i(jt), p2i(n));
2012     } else {
2013       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2014                     "must have non-NULL _header field.", p2i(n));
2015     }
2016     *error_cnt_p = *error_cnt_p + 1;
2017   }
2018   if (n->object() == NULL) {
2019     if (jt != NULL) {
2020       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2021                     ": in-use per-thread monitor must have non-NULL _object "
2022                     "field.", p2i(jt), p2i(n));
2023     } else {
2024       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor "
2025                     "must have non-NULL _object field.", p2i(n));
2026     }
2027     *error_cnt_p = *error_cnt_p + 1;
2028   }
2029   const oop obj = (oop)n->object();
2030   const markOop mark = obj->mark();
2031   if (!mark->has_monitor()) {
2032     if (jt != NULL) {
2033       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2034                     ": in-use per-thread monitor's object does not think "
2035                     "it has a monitor: obj=" INTPTR_FORMAT ", mark="
2036                     INTPTR_FORMAT,  p2i(jt), p2i(n), p2i(obj), p2i(mark));
2037     } else {
2038       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2039                     "monitor's object does not think it has a monitor: obj="
2040                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2041                     p2i(obj), p2i(mark));
2042     }
2043     *error_cnt_p = *error_cnt_p + 1;
2044   }
2045   ObjectMonitor * const obj_mon = mark->monitor();
2046   if (n != obj_mon) {
2047     if (jt != NULL) {
2048       out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT
2049                     ": in-use per-thread monitor's object does not refer "
2050                     "to the same monitor: obj=" INTPTR_FORMAT ", mark="
2051                     INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt),
2052                     p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2053     } else {
2054       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global "
2055                     "monitor's object does not refer to the same monitor: obj="
2056                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2057                     INTPTR_FORMAT, p2i(n), p2i(obj), p2i(mark), p2i(obj_mon));
2058     }
2059     *error_cnt_p = *error_cnt_p + 1;
2060   }
2061 }
2062 
2063 // Check the thread's free list and count; log the results of the checks.
2064 void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt,
2065                                                             outputStream * out,
2066                                                             int *error_cnt_p) {
2067   int chkOmFreeCount = 0;
2068   for (ObjectMonitor * n = jt->omFreeList; n != NULL; n = n->FreeNext) {
2069     chk_free_entry(jt, n, out, error_cnt_p);
2070     chkOmFreeCount++;
2071   }
2072   if (jt->omFreeCount == chkOmFreeCount) {
2073     out->print_cr("jt=" INTPTR_FORMAT ": omFreeCount=%d equals "
2074                   "chkOmFreeCount=%d", p2i(jt), jt->omFreeCount, chkOmFreeCount);
2075   } else {
2076     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omFreeCount=%d is not "
2077                   "equal to chkOmFreeCount=%d", p2i(jt), jt->omFreeCount,
2078                   chkOmFreeCount);
2079     *error_cnt_p = *error_cnt_p + 1;
2080   }
2081 }
2082 
2083 // Check the thread's in-use list and count; log the results of the checks.
2084 void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt,
2085                                                               outputStream * out,
2086                                                               int *error_cnt_p) {
2087   int chkOmInUseCount = 0;
2088   for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2089     chk_in_use_entry(jt, n, out, error_cnt_p);
2090     chkOmInUseCount++;
2091   }
2092   if (jt->omInUseCount == chkOmInUseCount) {
2093     out->print_cr("jt=" INTPTR_FORMAT ": omInUseCount=%d equals "
2094                   "chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2095                   chkOmInUseCount);
2096   } else {
2097     out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not "
2098                   "equal to chkOmInUseCount=%d", p2i(jt), jt->omInUseCount,
2099                   chkOmInUseCount);
2100     *error_cnt_p = *error_cnt_p + 1;
2101   }
2102 }
2103 
2104 // Log details about ObjectMonitors on the in-use lists. The 'BHL'
2105 // flags indicate why the entry is in-use, 'object' and 'object type'
2106 // indicate the associated object and its type.
2107 void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out,
2108                                                     bool on_exit) {
2109   if (!on_exit) {
2110     // Not at VM exit so grab the global list lock.
2111     Thread::muxAcquire(&gListLock, "log_in_use_monitor_details");
2112   }
2113 
2114   if (gOmInUseCount > 0) {
2115     out->print_cr("In-use global monitor info:");
2116     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2117     out->print_cr("%18s  %s  %18s  %18s",
2118                   "monitor", "BHL", "object", "object type");
2119     out->print_cr("==================  ===  ==================  ==================");
2120     for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) {
2121       const oop obj = (oop) n->object();
2122       const markOop mark = n->header();
2123       ResourceMark rm;
2124       out->print_cr(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(n),
2125                     n->is_busy() != 0, mark->hash() != 0, n->owner() != NULL,
2126                     p2i(obj), obj->klass()->external_name());
2127     }
2128   }
2129 
2130   if (!on_exit) {
2131     Thread::muxRelease(&gListLock);
2132   }
2133 
2134   out->print_cr("In-use per-thread monitor info:");
2135   out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2136   out->print_cr("%18s  %18s  %s  %18s  %18s",
2137                 "jt", "monitor", "BHL", "object", "object type");
2138   out->print_cr("==================  ==================  ===  ==================  ==================");
2139   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2140     for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) {
2141       const oop obj = (oop) n->object();
2142       const markOop mark = n->header();
2143       ResourceMark rm;
2144       out->print_cr(INTPTR_FORMAT "  " INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT
2145                     "  %s", p2i(jt), p2i(n), n->is_busy() != 0,
2146                     mark->hash() != 0, n->owner() != NULL, p2i(obj),
2147                     obj->klass()->external_name());
2148     }
2149   }
2150 
2151   out->flush();
2152 }
2153 
2154 // Log counts for the global and per-thread monitor lists and return
2155 // the population count.
2156 int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) {
2157   int popCount = 0;
2158   out->print_cr("%18s  %10s  %10s  %10s",
2159                 "Global Lists:", "InUse", "Free", "Total");
2160   out->print_cr("==================  ==========  ==========  ==========");
2161   out->print_cr("%18s  %10d  %10d  %10d", "",
2162                 gOmInUseCount, gMonitorFreeCount, gMonitorPopulation);
2163   popCount += gOmInUseCount + gMonitorFreeCount;
2164 
2165   out->print_cr("%18s  %10s  %10s  %10s",
2166                 "Per-Thread Lists:", "InUse", "Free", "Provision");
2167   out->print_cr("==================  ==========  ==========  ==========");
2168 
2169   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2170     out->print_cr(INTPTR_FORMAT "  %10d  %10d  %10d", p2i(jt),
2171                   jt->omInUseCount, jt->omFreeCount, jt->omFreeProvision);
2172     popCount += jt->omInUseCount + jt->omFreeCount;
2173   }
2174   return popCount;
2175 }
2176 
2177 #ifndef PRODUCT
2178 
2179 // Check if monitor belongs to the monitor cache
2180 // The list is grow-only so it's *relatively* safe to traverse
2181 // the list of extant blocks without taking a lock.
2182 
2183 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2184   PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList);
2185   while (block != NULL) {
2186     assert(block->object() == CHAINMARKER, "must be a block header");
2187     if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) {
2188       address mon = (address)monitor;
2189       address blk = (address)block;
2190       size_t diff = mon - blk;
2191       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
2192       return 1;
2193     }
2194     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
2195   }
2196   return 0;
2197 }
2198 
2199 #endif