1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compilationPolicy.hpp"
  35 #include "interpreter/bytecode.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "interpreter/oopMapCache.hpp"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "memory/universe.hpp"
  42 #include "oops/constantPool.hpp"
  43 #include "oops/method.hpp"
  44 #include "oops/objArrayKlass.hpp"
  45 #include "oops/objArrayOop.inline.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "oops/fieldStreams.inline.hpp"
  48 #include "oops/typeArrayOop.inline.hpp"
  49 #include "oops/verifyOopClosure.hpp"
  50 #include "prims/jvmtiThreadState.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/fieldDescriptor.hpp"
  54 #include "runtime/fieldDescriptor.inline.hpp"
  55 #include "runtime/frame.inline.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/interfaceSupport.inline.hpp"
  59 #include "runtime/safepointVerifiers.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/signature.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/thread.hpp"
  64 #include "runtime/threadSMR.hpp"
  65 #include "runtime/vframe.hpp"
  66 #include "runtime/vframeArray.hpp"
  67 #include "runtime/vframe_hp.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/preserveException.hpp"
  70 #include "utilities/xmlstream.hpp"
  71 
  72 
  73 bool DeoptimizationMarker::_is_active = false;
  74 
  75 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  76                                          int  caller_adjustment,
  77                                          int  caller_actual_parameters,
  78                                          int  number_of_frames,
  79                                          intptr_t* frame_sizes,
  80                                          address* frame_pcs,
  81                                          BasicType return_type,
  82                                          int exec_mode) {
  83   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  84   _caller_adjustment         = caller_adjustment;
  85   _caller_actual_parameters  = caller_actual_parameters;
  86   _number_of_frames          = number_of_frames;
  87   _frame_sizes               = frame_sizes;
  88   _frame_pcs                 = frame_pcs;
  89   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  90   _return_type               = return_type;
  91   _initial_info              = 0;
  92   // PD (x86 only)
  93   _counter_temp              = 0;
  94   _unpack_kind               = exec_mode;
  95   _sender_sp_temp            = 0;
  96 
  97   _total_frame_sizes         = size_of_frames();
  98   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  99 }
 100 
 101 
 102 Deoptimization::UnrollBlock::~UnrollBlock() {
 103   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 104   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 105   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 106 }
 107 
 108 
 109 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 110   assert(register_number < RegisterMap::reg_count, "checking register number");
 111   return &_register_block[register_number * 2];
 112 }
 113 
 114 
 115 
 116 int Deoptimization::UnrollBlock::size_of_frames() const {
 117   // Acount first for the adjustment of the initial frame
 118   int result = _caller_adjustment;
 119   for (int index = 0; index < number_of_frames(); index++) {
 120     result += frame_sizes()[index];
 121   }
 122   return result;
 123 }
 124 
 125 
 126 void Deoptimization::UnrollBlock::print() {
 127   ttyLocker ttyl;
 128   tty->print_cr("UnrollBlock");
 129   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 130   tty->print(   "  frame_sizes: ");
 131   for (int index = 0; index < number_of_frames(); index++) {
 132     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 133   }
 134   tty->cr();
 135 }
 136 
 137 
 138 // In order to make fetch_unroll_info work properly with escape
 139 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 140 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 141 // of previously eliminated objects occurs in realloc_objects, which is
 142 // called from the method fetch_unroll_info_helper below.
 143 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 144   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 145   // but makes the entry a little slower. There is however a little dance we have to
 146   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 147 
 148   // fetch_unroll_info() is called at the beginning of the deoptimization
 149   // handler. Note this fact before we start generating temporary frames
 150   // that can confuse an asynchronous stack walker. This counter is
 151   // decremented at the end of unpack_frames().
 152   if (TraceDeoptimization) {
 153     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 154   }
 155   thread->inc_in_deopt_handler();
 156 
 157   return fetch_unroll_info_helper(thread, exec_mode);
 158 JRT_END
 159 
 160 #if COMPILER2_OR_JVMCI
 161 static bool eliminate_allocations(JavaThread* thread, int exec_mode, CompiledMethod* compiled_method,
 162                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk) {
 163   bool realloc_failures = false;
 164   assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 165 
 166   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 167 
 168   // The flag return_oop() indicates call sites which return oop
 169   // in compiled code. Such sites include java method calls,
 170   // runtime calls (for example, used to allocate new objects/arrays
 171   // on slow code path) and any other calls generated in compiled code.
 172   // It is not guaranteed that we can get such information here only
 173   // by analyzing bytecode in deoptimized frames. This is why this flag
 174   // is set during method compilation (see Compile::Process_OopMap_Node()).
 175   // If the previous frame was popped or if we are dispatching an exception,
 176   // we don't have an oop result.
 177   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 178   Handle return_value;
 179   if (save_oop_result) {
 180     // Reallocation may trigger GC. If deoptimization happened on return from
 181     // call which returns oop we need to save it since it is not in oopmap.
 182     oop result = deoptee.saved_oop_result(&map);
 183     assert(oopDesc::is_oop_or_null(result), "must be oop");
 184     return_value = Handle(thread, result);
 185     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 186     if (TraceDeoptimization) {
 187       ttyLocker ttyl;
 188       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 189     }
 190   }
 191   if (objects != NULL) {
 192     JRT_BLOCK
 193       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 194     JRT_END
 195     bool skip_internal = (compiled_method != NULL) && !compiled_method->is_compiled_by_jvmci();
 196     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 197 #ifndef PRODUCT
 198     if (TraceDeoptimization) {
 199       ttyLocker ttyl;
 200       tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 201       Deoptimization::print_objects(objects, realloc_failures);
 202     }
 203 #endif
 204   }
 205   if (save_oop_result) {
 206     // Restore result.
 207     deoptee.set_saved_oop_result(&map, return_value());
 208   }
 209   return realloc_failures;
 210 }
 211 
 212 static void eliminate_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
 213 #ifndef PRODUCT
 214   bool first = true;
 215 #endif
 216   for (int i = 0; i < chunk->length(); i++) {
 217     compiledVFrame* cvf = chunk->at(i);
 218     assert (cvf->scope() != NULL,"expect only compiled java frames");
 219     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 220     if (monitors->is_nonempty()) {
 221       Deoptimization::relock_objects(monitors, thread, realloc_failures);
 222 #ifndef PRODUCT
 223       if (PrintDeoptimizationDetails) {
 224         ttyLocker ttyl;
 225         for (int j = 0; j < monitors->length(); j++) {
 226           MonitorInfo* mi = monitors->at(j);
 227           if (mi->eliminated()) {
 228             if (first) {
 229               first = false;
 230               tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 231             }
 232             if (mi->owner_is_scalar_replaced()) {
 233               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 234               tty->print_cr("     failed reallocation for klass %s", k->external_name());
 235             } else {
 236               tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 237             }
 238           }
 239         }
 240       }
 241 #endif // !PRODUCT
 242     }
 243   }
 244 }
 245 #endif // COMPILER2_OR_JVMCI
 246 
 247 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 248 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 249 
 250   // Note: there is a safepoint safety issue here. No matter whether we enter
 251   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 252   // the vframeArray is created.
 253   //
 254 
 255   // Allocate our special deoptimization ResourceMark
 256   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 257   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 258   thread->set_deopt_mark(dmark);
 259 
 260   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 261   RegisterMap map(thread, true);
 262   RegisterMap dummy_map(thread, false);
 263   // Now get the deoptee with a valid map
 264   frame deoptee = stub_frame.sender(&map);
 265   // Set the deoptee nmethod
 266   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 267   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 268   thread->set_deopt_compiled_method(cm);
 269 
 270   if (VerifyStack) {
 271     thread->validate_frame_layout();
 272   }
 273 
 274   // Create a growable array of VFrames where each VFrame represents an inlined
 275   // Java frame.  This storage is allocated with the usual system arena.
 276   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 277   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 278   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 279   while (!vf->is_top()) {
 280     assert(vf->is_compiled_frame(), "Wrong frame type");
 281     chunk->push(compiledVFrame::cast(vf));
 282     vf = vf->sender();
 283   }
 284   assert(vf->is_compiled_frame(), "Wrong frame type");
 285   chunk->push(compiledVFrame::cast(vf));
 286 
 287   bool realloc_failures = false;
 288 
 289 #if COMPILER2_OR_JVMCI
 290 #if INCLUDE_JVMCI
 291   bool jvmci_enabled = true;
 292 #else
 293   bool jvmci_enabled = false;
 294 #endif
 295 
 296   // Reallocate the non-escaping objects and restore their fields. Then
 297   // relock objects if synchronization on them was eliminated.
 298   if (jvmci_enabled || (DoEscapeAnalysis && EliminateAllocations)) {
 299     realloc_failures = eliminate_allocations(thread, exec_mode, cm, deoptee, map, chunk);
 300   }
 301 #endif // COMPILER2_OR_JVMCI
 302 
 303   // Revoke biases, done with in java state.
 304   // No safepoints allowed after this
 305   revoke_from_deopt_handler(thread, deoptee, &map);
 306 
 307   // Ensure that no safepoint is taken after pointers have been stored
 308   // in fields of rematerialized objects.  If a safepoint occurs from here on
 309   // out the java state residing in the vframeArray will be missed.
 310   // Locks may be rebaised in a safepoint.
 311   NoSafepointVerifier no_safepoint;
 312 
 313 #if COMPILER2_OR_JVMCI
 314   if (jvmci_enabled || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks)) {
 315     eliminate_locks(thread, chunk, realloc_failures);
 316   }
 317 #endif // COMPILER2_OR_JVMCI
 318 
 319   ScopeDesc* trap_scope = chunk->at(0)->scope();
 320   Handle exceptionObject;
 321   if (trap_scope->rethrow_exception()) {
 322     if (PrintDeoptimizationDetails) {
 323       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 324     }
 325     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 326     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 327     ScopeValue* topOfStack = expressions->top();
 328     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 329     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 330   }
 331 
 332   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 333 #if COMPILER2_OR_JVMCI
 334   if (realloc_failures) {
 335     pop_frames_failed_reallocs(thread, array);
 336   }
 337 #endif
 338 
 339   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 340   thread->set_vframe_array_head(array);
 341 
 342   // Now that the vframeArray has been created if we have any deferred local writes
 343   // added by jvmti then we can free up that structure as the data is now in the
 344   // vframeArray
 345 
 346   if (thread->deferred_locals() != NULL) {
 347     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 348     int i = 0;
 349     do {
 350       // Because of inlining we could have multiple vframes for a single frame
 351       // and several of the vframes could have deferred writes. Find them all.
 352       if (list->at(i)->id() == array->original().id()) {
 353         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 354         list->remove_at(i);
 355         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 356         delete dlv;
 357       } else {
 358         i++;
 359       }
 360     } while ( i < list->length() );
 361     if (list->length() == 0) {
 362       thread->set_deferred_locals(NULL);
 363       // free the list and elements back to C heap.
 364       delete list;
 365     }
 366 
 367   }
 368 
 369   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 370   CodeBlob* cb = stub_frame.cb();
 371   // Verify we have the right vframeArray
 372   assert(cb->frame_size() >= 0, "Unexpected frame size");
 373   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 374 
 375   // If the deopt call site is a MethodHandle invoke call site we have
 376   // to adjust the unpack_sp.
 377   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 378   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 379     unpack_sp = deoptee.unextended_sp();
 380 
 381 #ifdef ASSERT
 382   assert(cb->is_deoptimization_stub() ||
 383          cb->is_uncommon_trap_stub() ||
 384          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 385          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 386          "unexpected code blob: %s", cb->name());
 387 #endif
 388 
 389   // This is a guarantee instead of an assert because if vframe doesn't match
 390   // we will unpack the wrong deoptimized frame and wind up in strange places
 391   // where it will be very difficult to figure out what went wrong. Better
 392   // to die an early death here than some very obscure death later when the
 393   // trail is cold.
 394   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 395   // in that it will fail to detect a problem when there is one. This needs
 396   // more work in tiger timeframe.
 397   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 398 
 399   int number_of_frames = array->frames();
 400 
 401   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 402   // virtual activation, which is the reverse of the elements in the vframes array.
 403   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 404   // +1 because we always have an interpreter return address for the final slot.
 405   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 406   int popframe_extra_args = 0;
 407   // Create an interpreter return address for the stub to use as its return
 408   // address so the skeletal frames are perfectly walkable
 409   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 410 
 411   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 412   // activation be put back on the expression stack of the caller for reexecution
 413   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 414     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 415   }
 416 
 417   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 418   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 419   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 420   //
 421   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 422   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 423 
 424   // It's possible that the number of parameters at the call site is
 425   // different than number of arguments in the callee when method
 426   // handles are used.  If the caller is interpreted get the real
 427   // value so that the proper amount of space can be added to it's
 428   // frame.
 429   bool caller_was_method_handle = false;
 430   if (deopt_sender.is_interpreted_frame()) {
 431     methodHandle method(thread, deopt_sender.interpreter_frame_method());
 432     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 433     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 434       // Method handle invokes may involve fairly arbitrary chains of
 435       // calls so it's impossible to know how much actual space the
 436       // caller has for locals.
 437       caller_was_method_handle = true;
 438     }
 439   }
 440 
 441   //
 442   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 443   // frame_sizes/frame_pcs[1] next oldest frame (int)
 444   // frame_sizes/frame_pcs[n] youngest frame (int)
 445   //
 446   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 447   // owns the space for the return address to it's caller).  Confusing ain't it.
 448   //
 449   // The vframe array can address vframes with indices running from
 450   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 451   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 452   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 453   // so things look a little strange in this loop.
 454   //
 455   int callee_parameters = 0;
 456   int callee_locals = 0;
 457   for (int index = 0; index < array->frames(); index++ ) {
 458     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 459     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 460     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 461     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 462                                                                                                     callee_locals,
 463                                                                                                     index == 0,
 464                                                                                                     popframe_extra_args);
 465     // This pc doesn't have to be perfect just good enough to identify the frame
 466     // as interpreted so the skeleton frame will be walkable
 467     // The correct pc will be set when the skeleton frame is completely filled out
 468     // The final pc we store in the loop is wrong and will be overwritten below
 469     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 470 
 471     callee_parameters = array->element(index)->method()->size_of_parameters();
 472     callee_locals = array->element(index)->method()->max_locals();
 473     popframe_extra_args = 0;
 474   }
 475 
 476   // Compute whether the root vframe returns a float or double value.
 477   BasicType return_type;
 478   {
 479     methodHandle method(thread, array->element(0)->method());
 480     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 481     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 482   }
 483 
 484   // Compute information for handling adapters and adjusting the frame size of the caller.
 485   int caller_adjustment = 0;
 486 
 487   // Compute the amount the oldest interpreter frame will have to adjust
 488   // its caller's stack by. If the caller is a compiled frame then
 489   // we pretend that the callee has no parameters so that the
 490   // extension counts for the full amount of locals and not just
 491   // locals-parms. This is because without a c2i adapter the parm
 492   // area as created by the compiled frame will not be usable by
 493   // the interpreter. (Depending on the calling convention there
 494   // may not even be enough space).
 495 
 496   // QQQ I'd rather see this pushed down into last_frame_adjust
 497   // and have it take the sender (aka caller).
 498 
 499   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 500     caller_adjustment = last_frame_adjust(0, callee_locals);
 501   } else if (callee_locals > callee_parameters) {
 502     // The caller frame may need extending to accommodate
 503     // non-parameter locals of the first unpacked interpreted frame.
 504     // Compute that adjustment.
 505     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 506   }
 507 
 508   // If the sender is deoptimized the we must retrieve the address of the handler
 509   // since the frame will "magically" show the original pc before the deopt
 510   // and we'd undo the deopt.
 511 
 512   frame_pcs[0] = deopt_sender.raw_pc();
 513 
 514   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 515 
 516 #if INCLUDE_JVMCI
 517   if (exceptionObject() != NULL) {
 518     thread->set_exception_oop(exceptionObject());
 519     exec_mode = Unpack_exception;
 520   }
 521 #endif
 522 
 523   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 524     assert(thread->has_pending_exception(), "should have thrown OOME");
 525     thread->set_exception_oop(thread->pending_exception());
 526     thread->clear_pending_exception();
 527     exec_mode = Unpack_exception;
 528   }
 529 
 530 #if INCLUDE_JVMCI
 531   if (thread->frames_to_pop_failed_realloc() > 0) {
 532     thread->set_pending_monitorenter(false);
 533   }
 534 #endif
 535 
 536   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 537                                       caller_adjustment * BytesPerWord,
 538                                       caller_was_method_handle ? 0 : callee_parameters,
 539                                       number_of_frames,
 540                                       frame_sizes,
 541                                       frame_pcs,
 542                                       return_type,
 543                                       exec_mode);
 544   // On some platforms, we need a way to pass some platform dependent
 545   // information to the unpacking code so the skeletal frames come out
 546   // correct (initial fp value, unextended sp, ...)
 547   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 548 
 549   if (array->frames() > 1) {
 550     if (VerifyStack && TraceDeoptimization) {
 551       ttyLocker ttyl;
 552       tty->print_cr("Deoptimizing method containing inlining");
 553     }
 554   }
 555 
 556   array->set_unroll_block(info);
 557   return info;
 558 }
 559 
 560 // Called to cleanup deoptimization data structures in normal case
 561 // after unpacking to stack and when stack overflow error occurs
 562 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 563                                         vframeArray *array) {
 564 
 565   // Get array if coming from exception
 566   if (array == NULL) {
 567     array = thread->vframe_array_head();
 568   }
 569   thread->set_vframe_array_head(NULL);
 570 
 571   // Free the previous UnrollBlock
 572   vframeArray* old_array = thread->vframe_array_last();
 573   thread->set_vframe_array_last(array);
 574 
 575   if (old_array != NULL) {
 576     UnrollBlock* old_info = old_array->unroll_block();
 577     old_array->set_unroll_block(NULL);
 578     delete old_info;
 579     delete old_array;
 580   }
 581 
 582   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 583   // inside the vframeArray (StackValueCollections)
 584 
 585   delete thread->deopt_mark();
 586   thread->set_deopt_mark(NULL);
 587   thread->set_deopt_compiled_method(NULL);
 588 
 589 
 590   if (JvmtiExport::can_pop_frame()) {
 591 #ifndef CC_INTERP
 592     // Regardless of whether we entered this routine with the pending
 593     // popframe condition bit set, we should always clear it now
 594     thread->clear_popframe_condition();
 595 #else
 596     // C++ interpreter will clear has_pending_popframe when it enters
 597     // with method_resume. For deopt_resume2 we clear it now.
 598     if (thread->popframe_forcing_deopt_reexecution())
 599         thread->clear_popframe_condition();
 600 #endif /* CC_INTERP */
 601   }
 602 
 603   // unpack_frames() is called at the end of the deoptimization handler
 604   // and (in C2) at the end of the uncommon trap handler. Note this fact
 605   // so that an asynchronous stack walker can work again. This counter is
 606   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 607   // the beginning of uncommon_trap().
 608   thread->dec_in_deopt_handler();
 609 }
 610 
 611 // Moved from cpu directories because none of the cpus has callee save values.
 612 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 613 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 614 
 615   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 616   // the days we had adapter frames. When we deoptimize a situation where a
 617   // compiled caller calls a compiled caller will have registers it expects
 618   // to survive the call to the callee. If we deoptimize the callee the only
 619   // way we can restore these registers is to have the oldest interpreter
 620   // frame that we create restore these values. That is what this routine
 621   // will accomplish.
 622 
 623   // At the moment we have modified c2 to not have any callee save registers
 624   // so this problem does not exist and this routine is just a place holder.
 625 
 626   assert(f->is_interpreted_frame(), "must be interpreted");
 627 }
 628 
 629 // Return BasicType of value being returned
 630 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 631 
 632   // We are already active in the special DeoptResourceMark any ResourceObj's we
 633   // allocate will be freed at the end of the routine.
 634 
 635   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 636   // but makes the entry a little slower. There is however a little dance we have to
 637   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 638   ResetNoHandleMark rnhm; // No-op in release/product versions
 639   HandleMark hm;
 640 
 641   frame stub_frame = thread->last_frame();
 642 
 643   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 644   // must point to the vframeArray for the unpack frame.
 645   vframeArray* array = thread->vframe_array_head();
 646 
 647 #ifndef PRODUCT
 648   if (TraceDeoptimization) {
 649     ttyLocker ttyl;
 650     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 651                   p2i(thread), p2i(array), exec_mode);
 652   }
 653 #endif
 654   Events::log_deopt_message(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 655               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 656 
 657   UnrollBlock* info = array->unroll_block();
 658 
 659   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 660   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 661 
 662   BasicType bt = info->return_type();
 663 
 664   // If we have an exception pending, claim that the return type is an oop
 665   // so the deopt_blob does not overwrite the exception_oop.
 666 
 667   if (exec_mode == Unpack_exception)
 668     bt = T_OBJECT;
 669 
 670   // Cleanup thread deopt data
 671   cleanup_deopt_info(thread, array);
 672 
 673 #ifndef PRODUCT
 674   if (VerifyStack) {
 675     ResourceMark res_mark;
 676     // Clear pending exception to not break verification code (restored afterwards)
 677     PRESERVE_EXCEPTION_MARK;
 678 
 679     thread->validate_frame_layout();
 680 
 681     // Verify that the just-unpacked frames match the interpreter's
 682     // notions of expression stack and locals
 683     vframeArray* cur_array = thread->vframe_array_last();
 684     RegisterMap rm(thread, false);
 685     rm.set_include_argument_oops(false);
 686     bool is_top_frame = true;
 687     int callee_size_of_parameters = 0;
 688     int callee_max_locals = 0;
 689     for (int i = 0; i < cur_array->frames(); i++) {
 690       vframeArrayElement* el = cur_array->element(i);
 691       frame* iframe = el->iframe();
 692       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 693 
 694       // Get the oop map for this bci
 695       InterpreterOopMap mask;
 696       int cur_invoke_parameter_size = 0;
 697       bool try_next_mask = false;
 698       int next_mask_expression_stack_size = -1;
 699       int top_frame_expression_stack_adjustment = 0;
 700       methodHandle mh(thread, iframe->interpreter_frame_method());
 701       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 702       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 703       int max_bci = mh->code_size();
 704       // Get to the next bytecode if possible
 705       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 706       // Check to see if we can grab the number of outgoing arguments
 707       // at an uncommon trap for an invoke (where the compiler
 708       // generates debug info before the invoke has executed)
 709       Bytecodes::Code cur_code = str.next();
 710       if (Bytecodes::is_invoke(cur_code)) {
 711         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 712         cur_invoke_parameter_size = invoke.size_of_parameters();
 713         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 714           callee_size_of_parameters++;
 715         }
 716       }
 717       if (str.bci() < max_bci) {
 718         Bytecodes::Code next_code = str.next();
 719         if (next_code >= 0) {
 720           // The interpreter oop map generator reports results before
 721           // the current bytecode has executed except in the case of
 722           // calls. It seems to be hard to tell whether the compiler
 723           // has emitted debug information matching the "state before"
 724           // a given bytecode or the state after, so we try both
 725           if (!Bytecodes::is_invoke(cur_code) && cur_code != Bytecodes::_athrow) {
 726             // Get expression stack size for the next bytecode
 727             InterpreterOopMap next_mask;
 728             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 729             next_mask_expression_stack_size = next_mask.expression_stack_size();
 730             if (Bytecodes::is_invoke(next_code)) {
 731               Bytecode_invoke invoke(mh, str.bci());
 732               next_mask_expression_stack_size += invoke.size_of_parameters();
 733             }
 734             // Need to subtract off the size of the result type of
 735             // the bytecode because this is not described in the
 736             // debug info but returned to the interpreter in the TOS
 737             // caching register
 738             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 739             if (bytecode_result_type != T_ILLEGAL) {
 740               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 741             }
 742             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 743             try_next_mask = true;
 744           }
 745         }
 746       }
 747 
 748       // Verify stack depth and oops in frame
 749       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 750       if (!(
 751             /* SPARC */
 752             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 753             /* x86 */
 754             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 755             (try_next_mask &&
 756              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 757                                                                     top_frame_expression_stack_adjustment))) ||
 758             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 759             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 760              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 761             )) {
 762         {
 763           ttyLocker ttyl;
 764 
 765           // Print out some information that will help us debug the problem
 766           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 767           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 768           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 769                         iframe->interpreter_frame_expression_stack_size());
 770           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 771           tty->print_cr("  try_next_mask = %d", try_next_mask);
 772           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 773           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 774           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 775           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 776           tty->print_cr("  exec_mode = %d", exec_mode);
 777           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 778           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 779           tty->print_cr("  Interpreted frames:");
 780           for (int k = 0; k < cur_array->frames(); k++) {
 781             vframeArrayElement* el = cur_array->element(k);
 782             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 783           }
 784           cur_array->print_on_2(tty);
 785         } // release tty lock before calling guarantee
 786         guarantee(false, "wrong number of expression stack elements during deopt");
 787       }
 788       VerifyOopClosure verify;
 789       iframe->oops_interpreted_do(&verify, &rm, false);
 790       callee_size_of_parameters = mh->size_of_parameters();
 791       callee_max_locals = mh->max_locals();
 792       is_top_frame = false;
 793     }
 794   }
 795 #endif /* !PRODUCT */
 796 
 797 
 798   return bt;
 799 JRT_END
 800 
 801 class DeoptimizeMarkedTC : public ThreadClosure {
 802  public:
 803   virtual void do_thread(Thread* thread) {
 804     assert(thread->is_Java_thread(), "must be");
 805     JavaThread* jt = (JavaThread*)thread;
 806     jt->deoptimize_marked_methods();
 807   }
 808 };
 809 
 810 class DeoptimizeMarkedHS : public HandshakeOperation {
 811  public:
 812   const char* name() { return "Deoptimize"; }
 813   void do_thread(JavaThread* jt) {
 814     jt->deoptimize_marked_methods();
 815   }
 816 };
 817 
 818 
 819 void Deoptimization::deoptimize_all_marked() {
 820   ResourceMark rm;
 821   DeoptimizationMarker dm;
 822 
 823   if (SafepointSynchronize::is_at_safepoint()) {
 824     DeoptimizeMarkedTC deopt;
 825     // Make the dependent methods not entrant
 826     CodeCache::make_marked_nmethods_not_entrant();
 827     Threads::java_threads_do(&deopt);
 828   } else {
 829     // Make the dependent methods not entrant
 830     {
 831       MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 832       CodeCache::make_marked_nmethods_not_entrant();
 833     }
 834     DeoptimizeMarkedHS deopt;
 835     Handshake::execute(&deopt);
 836   }
 837 }
 838 
 839 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 840   = Deoptimization::Action_reinterpret;
 841 
 842 
 843 
 844 #if INCLUDE_JVMCI || INCLUDE_AOT
 845 template<typename CacheType>
 846 class BoxCacheBase : public CHeapObj<mtCompiler> {
 847 protected:
 848   static InstanceKlass* find_cache_klass(Symbol* klass_name, TRAPS) {
 849     ResourceMark rm;
 850     char* klass_name_str = klass_name->as_C_string();
 851     Klass* k = SystemDictionary::find(klass_name, Handle(), Handle(), THREAD);
 852     guarantee(k != NULL, "%s must be loaded", klass_name_str);
 853     InstanceKlass* ik = InstanceKlass::cast(k);
 854     guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
 855     CacheType::compute_offsets(ik);
 856     return ik;
 857   }
 858 };
 859 
 860 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
 861   PrimitiveType _low;
 862   PrimitiveType _high;
 863   jobject _cache;
 864 protected:
 865   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
 866   BoxCache(Thread* thread) {
 867     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(CacheType::symbol(), thread);
 868     objArrayOop cache = CacheType::cache(ik);
 869     assert(cache->length() > 0, "Empty cache");
 870     _low = BoxType::value(cache->obj_at(0));
 871     _high = _low + cache->length() - 1;
 872     _cache = JNIHandles::make_global(Handle(thread, cache));
 873   }
 874   ~BoxCache() {
 875     JNIHandles::destroy_global(_cache);
 876   }
 877 public:
 878   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
 879     if (_singleton == NULL) {
 880       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
 881       if (!Atomic::replace_if_null(s, &_singleton)) {
 882         delete s;
 883       }
 884     }
 885     return _singleton;
 886   }
 887   oop lookup(PrimitiveType value) {
 888     if (_low <= value && value <= _high) {
 889       int offset = value - _low;
 890       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
 891     }
 892     return NULL;
 893   }
 894   oop lookup_raw(intptr_t raw_value) {
 895     // Have to cast to avoid little/big-endian problems.
 896     if (sizeof(PrimitiveType) > sizeof(jint)) {
 897       jlong value = (jlong)raw_value;
 898       return lookup(value);
 899     }
 900     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
 901     return lookup(value);
 902   }
 903 };
 904 
 905 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
 906 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
 907 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
 908 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
 909 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
 910 
 911 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = NULL;
 912 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = NULL;
 913 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = NULL;
 914 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = NULL;
 915 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = NULL;
 916 
 917 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
 918   jobject _true_cache;
 919   jobject _false_cache;
 920 protected:
 921   static BooleanBoxCache *_singleton;
 922   BooleanBoxCache(Thread *thread) {
 923     InstanceKlass* ik = find_cache_klass(java_lang_Boolean::symbol(), thread);
 924     _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
 925     _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
 926   }
 927   ~BooleanBoxCache() {
 928     JNIHandles::destroy_global(_true_cache);
 929     JNIHandles::destroy_global(_false_cache);
 930   }
 931 public:
 932   static BooleanBoxCache* singleton(Thread* thread) {
 933     if (_singleton == NULL) {
 934       BooleanBoxCache* s = new BooleanBoxCache(thread);
 935       if (!Atomic::replace_if_null(s, &_singleton)) {
 936         delete s;
 937       }
 938     }
 939     return _singleton;
 940   }
 941   oop lookup_raw(intptr_t raw_value) {
 942     // Have to cast to avoid little/big-endian problems.
 943     jboolean value = (jboolean)*((jint*)&raw_value);
 944     return lookup(value);
 945   }
 946   oop lookup(jboolean value) {
 947     if (value != 0) {
 948       return JNIHandles::resolve_non_null(_true_cache);
 949     }
 950     return JNIHandles::resolve_non_null(_false_cache);
 951   }
 952 };
 953 
 954 BooleanBoxCache* BooleanBoxCache::_singleton = NULL;
 955 
 956 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, TRAPS) {
 957    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
 958    BasicType box_type = SystemDictionary::box_klass_type(k);
 959    if (box_type != T_OBJECT) {
 960      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
 961      switch(box_type) {
 962        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 963        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 964        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 965        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 966        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 967        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 968        default:;
 969      }
 970    }
 971    return NULL;
 972 }
 973 #endif // INCLUDE_JVMCI || INCLUDE_AOT
 974 
 975 #if COMPILER2_OR_JVMCI
 976 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
 977   Handle pending_exception(THREAD, thread->pending_exception());
 978   const char* exception_file = thread->exception_file();
 979   int exception_line = thread->exception_line();
 980   thread->clear_pending_exception();
 981 
 982   bool failures = false;
 983 
 984   for (int i = 0; i < objects->length(); i++) {
 985     assert(objects->at(i)->is_object(), "invalid debug information");
 986     ObjectValue* sv = (ObjectValue*) objects->at(i);
 987 
 988     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 989     oop obj = NULL;
 990 
 991     if (k->is_instance_klass()) {
 992 #if INCLUDE_JVMCI || INCLUDE_AOT
 993       CompiledMethod* cm = fr->cb()->as_compiled_method_or_null();
 994       if (cm->is_compiled_by_jvmci() && sv->is_auto_box()) {
 995         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
 996         obj = get_cached_box(abv, fr, reg_map, THREAD);
 997         if (obj != NULL) {
 998           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
 999           abv->set_cached(true);
1000         }
1001       }
1002 #endif // INCLUDE_JVMCI || INCLUDE_AOT
1003       InstanceKlass* ik = InstanceKlass::cast(k);
1004       if (obj == NULL) {
1005         obj = ik->allocate_instance(THREAD);
1006       }
1007     } else if (k->is_typeArray_klass()) {
1008       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1009       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1010       int len = sv->field_size() / type2size[ak->element_type()];
1011       obj = ak->allocate(len, THREAD);
1012     } else if (k->is_objArray_klass()) {
1013       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1014       obj = ak->allocate(sv->field_size(), THREAD);
1015     }
1016 
1017     if (obj == NULL) {
1018       failures = true;
1019     }
1020 
1021     assert(sv->value().is_null(), "redundant reallocation");
1022     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
1023     CLEAR_PENDING_EXCEPTION;
1024     sv->set_value(obj);
1025   }
1026 
1027   if (failures) {
1028     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1029   } else if (pending_exception.not_null()) {
1030     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1031   }
1032 
1033   return failures;
1034 }
1035 
1036 // restore elements of an eliminated type array
1037 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1038   int index = 0;
1039   intptr_t val;
1040 
1041   for (int i = 0; i < sv->field_size(); i++) {
1042     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1043     switch(type) {
1044     case T_LONG: case T_DOUBLE: {
1045       assert(value->type() == T_INT, "Agreement.");
1046       StackValue* low =
1047         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1048 #ifdef _LP64
1049       jlong res = (jlong)low->get_int();
1050 #else
1051 #ifdef SPARC
1052       // For SPARC we have to swap high and low words.
1053       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1054 #else
1055       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1056 #endif //SPARC
1057 #endif
1058       obj->long_at_put(index, res);
1059       break;
1060     }
1061 
1062     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1063     case T_INT: case T_FLOAT: { // 4 bytes.
1064       assert(value->type() == T_INT, "Agreement.");
1065       bool big_value = false;
1066       if (i + 1 < sv->field_size() && type == T_INT) {
1067         if (sv->field_at(i)->is_location()) {
1068           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1069           if (type == Location::dbl || type == Location::lng) {
1070             big_value = true;
1071           }
1072         } else if (sv->field_at(i)->is_constant_int()) {
1073           ScopeValue* next_scope_field = sv->field_at(i + 1);
1074           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1075             big_value = true;
1076           }
1077         }
1078       }
1079 
1080       if (big_value) {
1081         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1082   #ifdef _LP64
1083         jlong res = (jlong)low->get_int();
1084   #else
1085   #ifdef SPARC
1086         // For SPARC we have to swap high and low words.
1087         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1088   #else
1089         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1090   #endif //SPARC
1091   #endif
1092         obj->int_at_put(index, (jint)*((jint*)&res));
1093         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
1094       } else {
1095         val = value->get_int();
1096         obj->int_at_put(index, (jint)*((jint*)&val));
1097       }
1098       break;
1099     }
1100 
1101     case T_SHORT:
1102       assert(value->type() == T_INT, "Agreement.");
1103       val = value->get_int();
1104       obj->short_at_put(index, (jshort)*((jint*)&val));
1105       break;
1106 
1107     case T_CHAR:
1108       assert(value->type() == T_INT, "Agreement.");
1109       val = value->get_int();
1110       obj->char_at_put(index, (jchar)*((jint*)&val));
1111       break;
1112 
1113     case T_BYTE:
1114       assert(value->type() == T_INT, "Agreement.");
1115       val = value->get_int();
1116       obj->byte_at_put(index, (jbyte)*((jint*)&val));
1117       break;
1118 
1119     case T_BOOLEAN:
1120       assert(value->type() == T_INT, "Agreement.");
1121       val = value->get_int();
1122       obj->bool_at_put(index, (jboolean)*((jint*)&val));
1123       break;
1124 
1125       default:
1126         ShouldNotReachHere();
1127     }
1128     index++;
1129   }
1130 }
1131 
1132 
1133 // restore fields of an eliminated object array
1134 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1135   for (int i = 0; i < sv->field_size(); i++) {
1136     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1137     assert(value->type() == T_OBJECT, "object element expected");
1138     obj->obj_at_put(i, value->get_obj()());
1139   }
1140 }
1141 
1142 class ReassignedField {
1143 public:
1144   int _offset;
1145   BasicType _type;
1146 public:
1147   ReassignedField() {
1148     _offset = 0;
1149     _type = T_ILLEGAL;
1150   }
1151 };
1152 
1153 int compare(ReassignedField* left, ReassignedField* right) {
1154   return left->_offset - right->_offset;
1155 }
1156 
1157 // Restore fields of an eliminated instance object using the same field order
1158 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1159 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1160   if (klass->superklass() != NULL) {
1161     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
1162   }
1163 
1164   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1165   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1166     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
1167       ReassignedField field;
1168       field._offset = fs.offset();
1169       field._type = FieldType::basic_type(fs.signature());
1170       fields->append(field);
1171     }
1172   }
1173   fields->sort(compare);
1174   for (int i = 0; i < fields->length(); i++) {
1175     intptr_t val;
1176     ScopeValue* scope_field = sv->field_at(svIndex);
1177     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1178     int offset = fields->at(i)._offset;
1179     BasicType type = fields->at(i)._type;
1180     switch (type) {
1181       case T_OBJECT: case T_ARRAY:
1182         assert(value->type() == T_OBJECT, "Agreement.");
1183         obj->obj_field_put(offset, value->get_obj()());
1184         break;
1185 
1186       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1187       case T_INT: case T_FLOAT: { // 4 bytes.
1188         assert(value->type() == T_INT, "Agreement.");
1189         bool big_value = false;
1190         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1191           if (scope_field->is_location()) {
1192             Location::Type type = ((LocationValue*) scope_field)->location().type();
1193             if (type == Location::dbl || type == Location::lng) {
1194               big_value = true;
1195             }
1196           }
1197           if (scope_field->is_constant_int()) {
1198             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1199             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1200               big_value = true;
1201             }
1202           }
1203         }
1204 
1205         if (big_value) {
1206           i++;
1207           assert(i < fields->length(), "second T_INT field needed");
1208           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1209         } else {
1210           val = value->get_int();
1211           obj->int_field_put(offset, (jint)*((jint*)&val));
1212           break;
1213         }
1214       }
1215         /* no break */
1216 
1217       case T_LONG: case T_DOUBLE: {
1218         assert(value->type() == T_INT, "Agreement.");
1219         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1220 #ifdef _LP64
1221         jlong res = (jlong)low->get_int();
1222 #else
1223 #ifdef SPARC
1224         // For SPARC we have to swap high and low words.
1225         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1226 #else
1227         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1228 #endif //SPARC
1229 #endif
1230         obj->long_field_put(offset, res);
1231         break;
1232       }
1233 
1234       case T_SHORT:
1235         assert(value->type() == T_INT, "Agreement.");
1236         val = value->get_int();
1237         obj->short_field_put(offset, (jshort)*((jint*)&val));
1238         break;
1239 
1240       case T_CHAR:
1241         assert(value->type() == T_INT, "Agreement.");
1242         val = value->get_int();
1243         obj->char_field_put(offset, (jchar)*((jint*)&val));
1244         break;
1245 
1246       case T_BYTE:
1247         assert(value->type() == T_INT, "Agreement.");
1248         val = value->get_int();
1249         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1250         break;
1251 
1252       case T_BOOLEAN:
1253         assert(value->type() == T_INT, "Agreement.");
1254         val = value->get_int();
1255         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1256         break;
1257 
1258       default:
1259         ShouldNotReachHere();
1260     }
1261     svIndex++;
1262   }
1263   return svIndex;
1264 }
1265 
1266 // restore fields of all eliminated objects and arrays
1267 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1268   for (int i = 0; i < objects->length(); i++) {
1269     ObjectValue* sv = (ObjectValue*) objects->at(i);
1270     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1271     Handle obj = sv->value();
1272     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1273     if (PrintDeoptimizationDetails) {
1274       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1275     }
1276     if (obj.is_null()) {
1277       continue;
1278     }
1279 #if INCLUDE_JVMCI || INCLUDE_AOT
1280     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1281     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1282       continue;
1283     }
1284 #endif // INCLUDE_JVMCI || INCLUDE_AOT
1285     if (k->is_instance_klass()) {
1286       InstanceKlass* ik = InstanceKlass::cast(k);
1287       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1288     } else if (k->is_typeArray_klass()) {
1289       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1290       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1291     } else if (k->is_objArray_klass()) {
1292       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1293     }
1294   }
1295 }
1296 
1297 
1298 // relock objects for which synchronization was eliminated
1299 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1300   for (int i = 0; i < monitors->length(); i++) {
1301     MonitorInfo* mon_info = monitors->at(i);
1302     if (mon_info->eliminated()) {
1303       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1304       if (!mon_info->owner_is_scalar_replaced()) {
1305         Handle obj(thread, mon_info->owner());
1306         markWord mark = obj->mark();
1307         if (UseBiasedLocking && mark.has_bias_pattern()) {
1308           // New allocated objects may have the mark set to anonymously biased.
1309           // Also the deoptimized method may called methods with synchronization
1310           // where the thread-local object is bias locked to the current thread.
1311           assert(mark.is_biased_anonymously() ||
1312                  mark.biased_locker() == thread, "should be locked to current thread");
1313           // Reset mark word to unbiased prototype.
1314           markWord unbiased_prototype = markWord::prototype().set_age(mark.age());
1315           obj->set_mark(unbiased_prototype);
1316         }
1317         BasicLock* lock = mon_info->lock();
1318         ObjectSynchronizer::enter(obj, lock, thread);
1319         assert(mon_info->owner()->is_locked(), "object must be locked now");
1320       }
1321     }
1322   }
1323 }
1324 
1325 
1326 #ifndef PRODUCT
1327 // print information about reallocated objects
1328 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1329   fieldDescriptor fd;
1330 
1331   for (int i = 0; i < objects->length(); i++) {
1332     ObjectValue* sv = (ObjectValue*) objects->at(i);
1333     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1334     Handle obj = sv->value();
1335 
1336     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1337     k->print_value();
1338     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1339     if (obj.is_null()) {
1340       tty->print(" allocation failed");
1341     } else {
1342       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1343     }
1344     tty->cr();
1345 
1346     if (Verbose && !obj.is_null()) {
1347       k->oop_print_on(obj(), tty);
1348     }
1349   }
1350 }
1351 #endif
1352 #endif // COMPILER2_OR_JVMCI
1353 
1354 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1355   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1356 
1357 #ifndef PRODUCT
1358   if (PrintDeoptimizationDetails) {
1359     ttyLocker ttyl;
1360     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1361     fr.print_on(tty);
1362     tty->print_cr("     Virtual frames (innermost first):");
1363     for (int index = 0; index < chunk->length(); index++) {
1364       compiledVFrame* vf = chunk->at(index);
1365       tty->print("       %2d - ", index);
1366       vf->print_value();
1367       int bci = chunk->at(index)->raw_bci();
1368       const char* code_name;
1369       if (bci == SynchronizationEntryBCI) {
1370         code_name = "sync entry";
1371       } else {
1372         Bytecodes::Code code = vf->method()->code_at(bci);
1373         code_name = Bytecodes::name(code);
1374       }
1375       tty->print(" - %s", code_name);
1376       tty->print_cr(" @ bci %d ", bci);
1377       if (Verbose) {
1378         vf->print();
1379         tty->cr();
1380       }
1381     }
1382   }
1383 #endif
1384 
1385   // Register map for next frame (used for stack crawl).  We capture
1386   // the state of the deopt'ing frame's caller.  Thus if we need to
1387   // stuff a C2I adapter we can properly fill in the callee-save
1388   // register locations.
1389   frame caller = fr.sender(reg_map);
1390   int frame_size = caller.sp() - fr.sp();
1391 
1392   frame sender = caller;
1393 
1394   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1395   // the vframeArray containing the unpacking information is allocated in the C heap.
1396   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1397   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1398 
1399   // Compare the vframeArray to the collected vframes
1400   assert(array->structural_compare(thread, chunk), "just checking");
1401 
1402 #ifndef PRODUCT
1403   if (PrintDeoptimizationDetails) {
1404     ttyLocker ttyl;
1405     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1406   }
1407 #endif // PRODUCT
1408 
1409   return array;
1410 }
1411 
1412 #if COMPILER2_OR_JVMCI
1413 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1414   // Reallocation of some scalar replaced objects failed. Record
1415   // that we need to pop all the interpreter frames for the
1416   // deoptimized compiled frame.
1417   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1418   thread->set_frames_to_pop_failed_realloc(array->frames());
1419   // Unlock all monitors here otherwise the interpreter will see a
1420   // mix of locked and unlocked monitors (because of failed
1421   // reallocations of synchronized objects) and be confused.
1422   for (int i = 0; i < array->frames(); i++) {
1423     MonitorChunk* monitors = array->element(i)->monitors();
1424     if (monitors != NULL) {
1425       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1426         BasicObjectLock* src = monitors->at(j);
1427         if (src->obj() != NULL) {
1428           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1429         }
1430       }
1431       array->element(i)->free_monitors(thread);
1432 #ifdef ASSERT
1433       array->element(i)->set_removed_monitors();
1434 #endif
1435     }
1436   }
1437 }
1438 #endif
1439 
1440 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1441   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1442   Thread* thread = Thread::current();
1443   for (int i = 0; i < monitors->length(); i++) {
1444     MonitorInfo* mon_info = monitors->at(i);
1445     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1446       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1447     }
1448   }
1449 }
1450 
1451 static void get_monitors_from_stack(GrowableArray<Handle>* objects_to_revoke, JavaThread* thread, frame fr, RegisterMap* map) {
1452   // Unfortunately we don't have a RegisterMap available in most of
1453   // the places we want to call this routine so we need to walk the
1454   // stack again to update the register map.
1455   if (map == NULL || !map->update_map()) {
1456     StackFrameStream sfs(thread, true);
1457     bool found = false;
1458     while (!found && !sfs.is_done()) {
1459       frame* cur = sfs.current();
1460       sfs.next();
1461       found = cur->id() == fr.id();
1462     }
1463     assert(found, "frame to be deoptimized not found on target thread's stack");
1464     map = sfs.register_map();
1465   }
1466 
1467   vframe* vf = vframe::new_vframe(&fr, map, thread);
1468   compiledVFrame* cvf = compiledVFrame::cast(vf);
1469   // Revoke monitors' biases in all scopes
1470   while (!cvf->is_top()) {
1471     collect_monitors(cvf, objects_to_revoke);
1472     cvf = compiledVFrame::cast(cvf->sender());
1473   }
1474   collect_monitors(cvf, objects_to_revoke);
1475 }
1476 
1477 void Deoptimization::revoke_from_deopt_handler(JavaThread* thread, frame fr, RegisterMap* map) {
1478   if (!UseBiasedLocking) {
1479     return;
1480   }
1481   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1482   get_monitors_from_stack(objects_to_revoke, thread, fr, map);
1483 
1484   int len = objects_to_revoke->length();
1485   for (int i = 0; i < len; i++) {
1486     oop obj = (objects_to_revoke->at(i))();
1487     BiasedLocking::revoke_own_lock(objects_to_revoke->at(i), thread);
1488     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
1489   }
1490 }
1491 
1492 
1493 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1494   assert(fr.can_be_deoptimized(), "checking frame type");
1495 
1496   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1497 
1498   if (LogCompilation && xtty != NULL) {
1499     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1500     assert(cm != NULL, "only compiled methods can deopt");
1501 
1502     ttyLocker ttyl;
1503     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1504     cm->log_identity(xtty);
1505     xtty->end_head();
1506     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1507       xtty->begin_elem("jvms bci='%d'", sd->bci());
1508       xtty->method(sd->method());
1509       xtty->end_elem();
1510       if (sd->is_top())  break;
1511     }
1512     xtty->tail("deoptimized");
1513   }
1514 
1515   // Patch the compiled method so that when execution returns to it we will
1516   // deopt the execution state and return to the interpreter.
1517   fr.deoptimize(thread);
1518 }
1519 
1520 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1521   // Deoptimize only if the frame comes from compile code.
1522   // Do not deoptimize the frame which is already patched
1523   // during the execution of the loops below.
1524   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1525     return;
1526   }
1527   ResourceMark rm;
1528   DeoptimizationMarker dm;
1529   deoptimize_single_frame(thread, fr, reason);
1530 }
1531 
1532 #if INCLUDE_JVMCI
1533 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1534   // there is no exception handler for this pc => deoptimize
1535   cm->make_not_entrant();
1536 
1537   // Use Deoptimization::deoptimize for all of its side-effects:
1538   // revoking biases of monitors, gathering traps statistics, logging...
1539   // it also patches the return pc but we do not care about that
1540   // since we return a continuation to the deopt_blob below.
1541   JavaThread* thread = JavaThread::current();
1542   RegisterMap reg_map(thread, UseBiasedLocking);
1543   frame runtime_frame = thread->last_frame();
1544   frame caller_frame = runtime_frame.sender(&reg_map);
1545   assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method");
1546   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1547 
1548   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, cm->method()), true);
1549   if (trap_mdo != NULL) {
1550     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1551   }
1552 
1553   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1554 }
1555 #endif
1556 
1557 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1558   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1559          "can only deoptimize other thread at a safepoint");
1560   // Compute frame and register map based on thread and sp.
1561   RegisterMap reg_map(thread, UseBiasedLocking);
1562   frame fr = thread->last_frame();
1563   while (fr.id() != id) {
1564     fr = fr.sender(&reg_map);
1565   }
1566   deoptimize(thread, fr, &reg_map, reason);
1567 }
1568 
1569 
1570 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1571   if (thread == Thread::current()) {
1572     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1573   } else {
1574     VM_DeoptimizeFrame deopt(thread, id, reason);
1575     VMThread::execute(&deopt);
1576   }
1577 }
1578 
1579 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1580   deoptimize_frame(thread, id, Reason_constraint);
1581 }
1582 
1583 // JVMTI PopFrame support
1584 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1585 {
1586   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1587 }
1588 JRT_END
1589 
1590 MethodData*
1591 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1592                                 bool create_if_missing) {
1593   Thread* THREAD = thread;
1594   MethodData* mdo = m()->method_data();
1595   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1596     // Build an MDO.  Ignore errors like OutOfMemory;
1597     // that simply means we won't have an MDO to update.
1598     Method::build_interpreter_method_data(m, THREAD);
1599     if (HAS_PENDING_EXCEPTION) {
1600       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1601       CLEAR_PENDING_EXCEPTION;
1602     }
1603     mdo = m()->method_data();
1604   }
1605   return mdo;
1606 }
1607 
1608 #if COMPILER2_OR_JVMCI
1609 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1610   // in case of an unresolved klass entry, load the class.
1611   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1612     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1613     return;
1614   }
1615 
1616   if (!constant_pool->tag_at(index).is_symbol()) return;
1617 
1618   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1619   Symbol*  symbol  = constant_pool->symbol_at(index);
1620 
1621   // class name?
1622   if (symbol->char_at(0) != '(') {
1623     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1624     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1625     return;
1626   }
1627 
1628   // then it must be a signature!
1629   ResourceMark rm(THREAD);
1630   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1631     if (ss.is_object()) {
1632       Symbol* class_name = ss.as_symbol();
1633       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1634       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1635     }
1636   }
1637 }
1638 
1639 
1640 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1641   EXCEPTION_MARK;
1642   load_class_by_index(constant_pool, index, THREAD);
1643   if (HAS_PENDING_EXCEPTION) {
1644     // Exception happened during classloading. We ignore the exception here, since it
1645     // is going to be rethrown since the current activation is going to be deoptimized and
1646     // the interpreter will re-execute the bytecode.
1647     CLEAR_PENDING_EXCEPTION;
1648     // Class loading called java code which may have caused a stack
1649     // overflow. If the exception was thrown right before the return
1650     // to the runtime the stack is no longer guarded. Reguard the
1651     // stack otherwise if we return to the uncommon trap blob and the
1652     // stack bang causes a stack overflow we crash.
1653     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1654     JavaThread* thread = (JavaThread*)THREAD;
1655     bool guard_pages_enabled = thread->stack_guards_enabled();
1656     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1657     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1658   }
1659 }
1660 
1661 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1662   HandleMark hm;
1663 
1664   // uncommon_trap() is called at the beginning of the uncommon trap
1665   // handler. Note this fact before we start generating temporary frames
1666   // that can confuse an asynchronous stack walker. This counter is
1667   // decremented at the end of unpack_frames().
1668   thread->inc_in_deopt_handler();
1669 
1670   // We need to update the map if we have biased locking.
1671 #if INCLUDE_JVMCI
1672   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1673   RegisterMap reg_map(thread, true);
1674 #else
1675   RegisterMap reg_map(thread, UseBiasedLocking);
1676 #endif
1677   frame stub_frame = thread->last_frame();
1678   frame fr = stub_frame.sender(&reg_map);
1679   // Make sure the calling nmethod is not getting deoptimized and removed
1680   // before we are done with it.
1681   nmethodLocker nl(fr.pc());
1682 
1683   // Log a message
1684   Events::log_deopt_message(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1685               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1686 
1687   {
1688     ResourceMark rm;
1689 
1690     DeoptReason reason = trap_request_reason(trap_request);
1691     DeoptAction action = trap_request_action(trap_request);
1692 #if INCLUDE_JVMCI
1693     int debug_id = trap_request_debug_id(trap_request);
1694 #endif
1695     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1696 
1697     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1698     compiledVFrame* cvf = compiledVFrame::cast(vf);
1699 
1700     CompiledMethod* nm = cvf->code();
1701 
1702     ScopeDesc*      trap_scope  = cvf->scope();
1703 
1704     if (TraceDeoptimization) {
1705       ttyLocker ttyl;
1706       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1707 #if INCLUDE_JVMCI
1708           , debug_id
1709 #endif
1710           );
1711     }
1712 
1713     methodHandle    trap_method(THREAD, trap_scope->method());
1714     int             trap_bci    = trap_scope->bci();
1715 #if INCLUDE_JVMCI
1716     jlong           speculation = thread->pending_failed_speculation();
1717     if (nm->is_compiled_by_jvmci() && nm->is_nmethod()) { // Exclude AOTed methods
1718       nm->as_nmethod()->update_speculation(thread);
1719     } else {
1720       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
1721     }
1722 
1723     if (trap_bci == SynchronizationEntryBCI) {
1724       trap_bci = 0;
1725       thread->set_pending_monitorenter(true);
1726     }
1727 
1728     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1729       thread->set_pending_transfer_to_interpreter(true);
1730     }
1731 #endif
1732 
1733     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1734     // Record this event in the histogram.
1735     gather_statistics(reason, action, trap_bc);
1736 
1737     // Ensure that we can record deopt. history:
1738     // Need MDO to record RTM code generation state.
1739     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1740 
1741     methodHandle profiled_method;
1742 #if INCLUDE_JVMCI
1743     if (nm->is_compiled_by_jvmci()) {
1744       profiled_method = methodHandle(THREAD, nm->method());
1745     } else {
1746       profiled_method = trap_method;
1747     }
1748 #else
1749     profiled_method = trap_method;
1750 #endif
1751 
1752     MethodData* trap_mdo =
1753       get_method_data(thread, profiled_method, create_if_missing);
1754 
1755     // Log a message
1756     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1757                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1758                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1759 
1760     // Print a bunch of diagnostics, if requested.
1761     if (TraceDeoptimization || LogCompilation) {
1762       ResourceMark rm;
1763       ttyLocker ttyl;
1764       char buf[100];
1765       if (xtty != NULL) {
1766         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1767                          os::current_thread_id(),
1768                          format_trap_request(buf, sizeof(buf), trap_request));
1769 #if INCLUDE_JVMCI
1770         if (speculation != 0) {
1771           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
1772         }
1773 #endif
1774         nm->log_identity(xtty);
1775       }
1776       Symbol* class_name = NULL;
1777       bool unresolved = false;
1778       if (unloaded_class_index >= 0) {
1779         constantPoolHandle constants (THREAD, trap_method->constants());
1780         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1781           class_name = constants->klass_name_at(unloaded_class_index);
1782           unresolved = true;
1783           if (xtty != NULL)
1784             xtty->print(" unresolved='1'");
1785         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1786           class_name = constants->symbol_at(unloaded_class_index);
1787         }
1788         if (xtty != NULL)
1789           xtty->name(class_name);
1790       }
1791       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1792         // Dump the relevant MDO state.
1793         // This is the deopt count for the current reason, any previous
1794         // reasons or recompiles seen at this point.
1795         int dcnt = trap_mdo->trap_count(reason);
1796         if (dcnt != 0)
1797           xtty->print(" count='%d'", dcnt);
1798         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1799         int dos = (pdata == NULL)? 0: pdata->trap_state();
1800         if (dos != 0) {
1801           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1802           if (trap_state_is_recompiled(dos)) {
1803             int recnt2 = trap_mdo->overflow_recompile_count();
1804             if (recnt2 != 0)
1805               xtty->print(" recompiles2='%d'", recnt2);
1806           }
1807         }
1808       }
1809       if (xtty != NULL) {
1810         xtty->stamp();
1811         xtty->end_head();
1812       }
1813       if (TraceDeoptimization) {  // make noise on the tty
1814         tty->print("Uncommon trap occurred in");
1815         nm->method()->print_short_name(tty);
1816         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1817 #if INCLUDE_JVMCI
1818         if (nm->is_nmethod()) {
1819           const char* installed_code_name = nm->as_nmethod()->jvmci_name();
1820           if (installed_code_name != NULL) {
1821             tty->print(" (JVMCI: installed code name=%s) ", installed_code_name);
1822           }
1823         }
1824 #endif
1825         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1826                    p2i(fr.pc()),
1827                    os::current_thread_id(),
1828                    trap_reason_name(reason),
1829                    trap_action_name(action),
1830                    unloaded_class_index
1831 #if INCLUDE_JVMCI
1832                    , debug_id
1833 #endif
1834                    );
1835         if (class_name != NULL) {
1836           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1837           class_name->print_symbol_on(tty);
1838         }
1839         tty->cr();
1840       }
1841       if (xtty != NULL) {
1842         // Log the precise location of the trap.
1843         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1844           xtty->begin_elem("jvms bci='%d'", sd->bci());
1845           xtty->method(sd->method());
1846           xtty->end_elem();
1847           if (sd->is_top())  break;
1848         }
1849         xtty->tail("uncommon_trap");
1850       }
1851     }
1852     // (End diagnostic printout.)
1853 
1854     // Load class if necessary
1855     if (unloaded_class_index >= 0) {
1856       constantPoolHandle constants(THREAD, trap_method->constants());
1857       load_class_by_index(constants, unloaded_class_index);
1858     }
1859 
1860     // Flush the nmethod if necessary and desirable.
1861     //
1862     // We need to avoid situations where we are re-flushing the nmethod
1863     // because of a hot deoptimization site.  Repeated flushes at the same
1864     // point need to be detected by the compiler and avoided.  If the compiler
1865     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1866     // module must take measures to avoid an infinite cycle of recompilation
1867     // and deoptimization.  There are several such measures:
1868     //
1869     //   1. If a recompilation is ordered a second time at some site X
1870     //   and for the same reason R, the action is adjusted to 'reinterpret',
1871     //   to give the interpreter time to exercise the method more thoroughly.
1872     //   If this happens, the method's overflow_recompile_count is incremented.
1873     //
1874     //   2. If the compiler fails to reduce the deoptimization rate, then
1875     //   the method's overflow_recompile_count will begin to exceed the set
1876     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1877     //   is adjusted to 'make_not_compilable', and the method is abandoned
1878     //   to the interpreter.  This is a performance hit for hot methods,
1879     //   but is better than a disastrous infinite cycle of recompilations.
1880     //   (Actually, only the method containing the site X is abandoned.)
1881     //
1882     //   3. In parallel with the previous measures, if the total number of
1883     //   recompilations of a method exceeds the much larger set limit
1884     //   PerMethodRecompilationCutoff, the method is abandoned.
1885     //   This should only happen if the method is very large and has
1886     //   many "lukewarm" deoptimizations.  The code which enforces this
1887     //   limit is elsewhere (class nmethod, class Method).
1888     //
1889     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1890     // to recompile at each bytecode independently of the per-BCI cutoff.
1891     //
1892     // The decision to update code is up to the compiler, and is encoded
1893     // in the Action_xxx code.  If the compiler requests Action_none
1894     // no trap state is changed, no compiled code is changed, and the
1895     // computation suffers along in the interpreter.
1896     //
1897     // The other action codes specify various tactics for decompilation
1898     // and recompilation.  Action_maybe_recompile is the loosest, and
1899     // allows the compiled code to stay around until enough traps are seen,
1900     // and until the compiler gets around to recompiling the trapping method.
1901     //
1902     // The other actions cause immediate removal of the present code.
1903 
1904     // Traps caused by injected profile shouldn't pollute trap counts.
1905     bool injected_profile_trap = trap_method->has_injected_profile() &&
1906                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1907 
1908     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1909     bool make_not_entrant = false;
1910     bool make_not_compilable = false;
1911     bool reprofile = false;
1912     switch (action) {
1913     case Action_none:
1914       // Keep the old code.
1915       update_trap_state = false;
1916       break;
1917     case Action_maybe_recompile:
1918       // Do not need to invalidate the present code, but we can
1919       // initiate another
1920       // Start compiler without (necessarily) invalidating the nmethod.
1921       // The system will tolerate the old code, but new code should be
1922       // generated when possible.
1923       break;
1924     case Action_reinterpret:
1925       // Go back into the interpreter for a while, and then consider
1926       // recompiling form scratch.
1927       make_not_entrant = true;
1928       // Reset invocation counter for outer most method.
1929       // This will allow the interpreter to exercise the bytecodes
1930       // for a while before recompiling.
1931       // By contrast, Action_make_not_entrant is immediate.
1932       //
1933       // Note that the compiler will track null_check, null_assert,
1934       // range_check, and class_check events and log them as if they
1935       // had been traps taken from compiled code.  This will update
1936       // the MDO trap history so that the next compilation will
1937       // properly detect hot trap sites.
1938       reprofile = true;
1939       break;
1940     case Action_make_not_entrant:
1941       // Request immediate recompilation, and get rid of the old code.
1942       // Make them not entrant, so next time they are called they get
1943       // recompiled.  Unloaded classes are loaded now so recompile before next
1944       // time they are called.  Same for uninitialized.  The interpreter will
1945       // link the missing class, if any.
1946       make_not_entrant = true;
1947       break;
1948     case Action_make_not_compilable:
1949       // Give up on compiling this method at all.
1950       make_not_entrant = true;
1951       make_not_compilable = true;
1952       break;
1953     default:
1954       ShouldNotReachHere();
1955     }
1956 
1957     // Setting +ProfileTraps fixes the following, on all platforms:
1958     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1959     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1960     // recompile relies on a MethodData* to record heroic opt failures.
1961 
1962     // Whether the interpreter is producing MDO data or not, we also need
1963     // to use the MDO to detect hot deoptimization points and control
1964     // aggressive optimization.
1965     bool inc_recompile_count = false;
1966     ProfileData* pdata = NULL;
1967     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1968       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1969       uint this_trap_count = 0;
1970       bool maybe_prior_trap = false;
1971       bool maybe_prior_recompile = false;
1972       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1973 #if INCLUDE_JVMCI
1974                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1975 #endif
1976                                    nm->method(),
1977                                    //outputs:
1978                                    this_trap_count,
1979                                    maybe_prior_trap,
1980                                    maybe_prior_recompile);
1981       // Because the interpreter also counts null, div0, range, and class
1982       // checks, these traps from compiled code are double-counted.
1983       // This is harmless; it just means that the PerXTrapLimit values
1984       // are in effect a little smaller than they look.
1985 
1986       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1987       if (per_bc_reason != Reason_none) {
1988         // Now take action based on the partially known per-BCI history.
1989         if (maybe_prior_trap
1990             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1991           // If there are too many traps at this BCI, force a recompile.
1992           // This will allow the compiler to see the limit overflow, and
1993           // take corrective action, if possible.  The compiler generally
1994           // does not use the exact PerBytecodeTrapLimit value, but instead
1995           // changes its tactics if it sees any traps at all.  This provides
1996           // a little hysteresis, delaying a recompile until a trap happens
1997           // several times.
1998           //
1999           // Actually, since there is only one bit of counter per BCI,
2000           // the possible per-BCI counts are {0,1,(per-method count)}.
2001           // This produces accurate results if in fact there is only
2002           // one hot trap site, but begins to get fuzzy if there are
2003           // many sites.  For example, if there are ten sites each
2004           // trapping two or more times, they each get the blame for
2005           // all of their traps.
2006           make_not_entrant = true;
2007         }
2008 
2009         // Detect repeated recompilation at the same BCI, and enforce a limit.
2010         if (make_not_entrant && maybe_prior_recompile) {
2011           // More than one recompile at this point.
2012           inc_recompile_count = maybe_prior_trap;
2013         }
2014       } else {
2015         // For reasons which are not recorded per-bytecode, we simply
2016         // force recompiles unconditionally.
2017         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2018         make_not_entrant = true;
2019       }
2020 
2021       // Go back to the compiler if there are too many traps in this method.
2022       if (this_trap_count >= per_method_trap_limit(reason)) {
2023         // If there are too many traps in this method, force a recompile.
2024         // This will allow the compiler to see the limit overflow, and
2025         // take corrective action, if possible.
2026         // (This condition is an unlikely backstop only, because the
2027         // PerBytecodeTrapLimit is more likely to take effect first,
2028         // if it is applicable.)
2029         make_not_entrant = true;
2030       }
2031 
2032       // Here's more hysteresis:  If there has been a recompile at
2033       // this trap point already, run the method in the interpreter
2034       // for a while to exercise it more thoroughly.
2035       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2036         reprofile = true;
2037       }
2038     }
2039 
2040     // Take requested actions on the method:
2041 
2042     // Recompile
2043     if (make_not_entrant) {
2044       if (!nm->make_not_entrant()) {
2045         return; // the call did not change nmethod's state
2046       }
2047 
2048       if (pdata != NULL) {
2049         // Record the recompilation event, if any.
2050         int tstate0 = pdata->trap_state();
2051         int tstate1 = trap_state_set_recompiled(tstate0, true);
2052         if (tstate1 != tstate0)
2053           pdata->set_trap_state(tstate1);
2054       }
2055 
2056 #if INCLUDE_RTM_OPT
2057       // Restart collecting RTM locking abort statistic if the method
2058       // is recompiled for a reason other than RTM state change.
2059       // Assume that in new recompiled code the statistic could be different,
2060       // for example, due to different inlining.
2061       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
2062           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
2063         trap_mdo->atomic_set_rtm_state(ProfileRTM);
2064       }
2065 #endif
2066       // For code aging we count traps separately here, using make_not_entrant()
2067       // as a guard against simultaneous deopts in multiple threads.
2068       if (reason == Reason_tenured && trap_mdo != NULL) {
2069         trap_mdo->inc_tenure_traps();
2070       }
2071     }
2072 
2073     if (inc_recompile_count) {
2074       trap_mdo->inc_overflow_recompile_count();
2075       if ((uint)trap_mdo->overflow_recompile_count() >
2076           (uint)PerBytecodeRecompilationCutoff) {
2077         // Give up on the method containing the bad BCI.
2078         if (trap_method() == nm->method()) {
2079           make_not_compilable = true;
2080         } else {
2081           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2082           // But give grace to the enclosing nm->method().
2083         }
2084       }
2085     }
2086 
2087     // Reprofile
2088     if (reprofile) {
2089       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
2090     }
2091 
2092     // Give up compiling
2093     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2094       assert(make_not_entrant, "consistent");
2095       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2096     }
2097 
2098   } // Free marked resources
2099 
2100 }
2101 JRT_END
2102 
2103 ProfileData*
2104 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2105                                          int trap_bci,
2106                                          Deoptimization::DeoptReason reason,
2107                                          bool update_total_trap_count,
2108 #if INCLUDE_JVMCI
2109                                          bool is_osr,
2110 #endif
2111                                          Method* compiled_method,
2112                                          //outputs:
2113                                          uint& ret_this_trap_count,
2114                                          bool& ret_maybe_prior_trap,
2115                                          bool& ret_maybe_prior_recompile) {
2116   bool maybe_prior_trap = false;
2117   bool maybe_prior_recompile = false;
2118   uint this_trap_count = 0;
2119   if (update_total_trap_count) {
2120     uint idx = reason;
2121 #if INCLUDE_JVMCI
2122     if (is_osr) {
2123       idx += Reason_LIMIT;
2124     }
2125 #endif
2126     uint prior_trap_count = trap_mdo->trap_count(idx);
2127     this_trap_count  = trap_mdo->inc_trap_count(idx);
2128 
2129     // If the runtime cannot find a place to store trap history,
2130     // it is estimated based on the general condition of the method.
2131     // If the method has ever been recompiled, or has ever incurred
2132     // a trap with the present reason , then this BCI is assumed
2133     // (pessimistically) to be the culprit.
2134     maybe_prior_trap      = (prior_trap_count != 0);
2135     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2136   }
2137   ProfileData* pdata = NULL;
2138 
2139 
2140   // For reasons which are recorded per bytecode, we check per-BCI data.
2141   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2142   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2143   if (per_bc_reason != Reason_none) {
2144     // Find the profile data for this BCI.  If there isn't one,
2145     // try to allocate one from the MDO's set of spares.
2146     // This will let us detect a repeated trap at this point.
2147     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2148 
2149     if (pdata != NULL) {
2150       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2151         if (LogCompilation && xtty != NULL) {
2152           ttyLocker ttyl;
2153           // no more room for speculative traps in this MDO
2154           xtty->elem("speculative_traps_oom");
2155         }
2156       }
2157       // Query the trap state of this profile datum.
2158       int tstate0 = pdata->trap_state();
2159       if (!trap_state_has_reason(tstate0, per_bc_reason))
2160         maybe_prior_trap = false;
2161       if (!trap_state_is_recompiled(tstate0))
2162         maybe_prior_recompile = false;
2163 
2164       // Update the trap state of this profile datum.
2165       int tstate1 = tstate0;
2166       // Record the reason.
2167       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2168       // Store the updated state on the MDO, for next time.
2169       if (tstate1 != tstate0)
2170         pdata->set_trap_state(tstate1);
2171     } else {
2172       if (LogCompilation && xtty != NULL) {
2173         ttyLocker ttyl;
2174         // Missing MDP?  Leave a small complaint in the log.
2175         xtty->elem("missing_mdp bci='%d'", trap_bci);
2176       }
2177     }
2178   }
2179 
2180   // Return results:
2181   ret_this_trap_count = this_trap_count;
2182   ret_maybe_prior_trap = maybe_prior_trap;
2183   ret_maybe_prior_recompile = maybe_prior_recompile;
2184   return pdata;
2185 }
2186 
2187 void
2188 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2189   ResourceMark rm;
2190   // Ignored outputs:
2191   uint ignore_this_trap_count;
2192   bool ignore_maybe_prior_trap;
2193   bool ignore_maybe_prior_recompile;
2194   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2195   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2196   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2197   query_update_method_data(trap_mdo, trap_bci,
2198                            (DeoptReason)reason,
2199                            update_total_counts,
2200 #if INCLUDE_JVMCI
2201                            false,
2202 #endif
2203                            NULL,
2204                            ignore_this_trap_count,
2205                            ignore_maybe_prior_trap,
2206                            ignore_maybe_prior_recompile);
2207 }
2208 
2209 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2210   if (TraceDeoptimization) {
2211     tty->print("Uncommon trap ");
2212   }
2213   // Still in Java no safepoints
2214   {
2215     // This enters VM and may safepoint
2216     uncommon_trap_inner(thread, trap_request);
2217   }
2218   return fetch_unroll_info_helper(thread, exec_mode);
2219 }
2220 
2221 // Local derived constants.
2222 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2223 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2224 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2225 
2226 //---------------------------trap_state_reason---------------------------------
2227 Deoptimization::DeoptReason
2228 Deoptimization::trap_state_reason(int trap_state) {
2229   // This assert provides the link between the width of DataLayout::trap_bits
2230   // and the encoding of "recorded" reasons.  It ensures there are enough
2231   // bits to store all needed reasons in the per-BCI MDO profile.
2232   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2233   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2234   trap_state -= recompile_bit;
2235   if (trap_state == DS_REASON_MASK) {
2236     return Reason_many;
2237   } else {
2238     assert((int)Reason_none == 0, "state=0 => Reason_none");
2239     return (DeoptReason)trap_state;
2240   }
2241 }
2242 //-------------------------trap_state_has_reason-------------------------------
2243 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2244   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2245   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2246   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2247   trap_state -= recompile_bit;
2248   if (trap_state == DS_REASON_MASK) {
2249     return -1;  // true, unspecifically (bottom of state lattice)
2250   } else if (trap_state == reason) {
2251     return 1;   // true, definitely
2252   } else if (trap_state == 0) {
2253     return 0;   // false, definitely (top of state lattice)
2254   } else {
2255     return 0;   // false, definitely
2256   }
2257 }
2258 //-------------------------trap_state_add_reason-------------------------------
2259 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2260   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2261   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2262   trap_state -= recompile_bit;
2263   if (trap_state == DS_REASON_MASK) {
2264     return trap_state + recompile_bit;     // already at state lattice bottom
2265   } else if (trap_state == reason) {
2266     return trap_state + recompile_bit;     // the condition is already true
2267   } else if (trap_state == 0) {
2268     return reason + recompile_bit;          // no condition has yet been true
2269   } else {
2270     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2271   }
2272 }
2273 //-----------------------trap_state_is_recompiled------------------------------
2274 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2275   return (trap_state & DS_RECOMPILE_BIT) != 0;
2276 }
2277 //-----------------------trap_state_set_recompiled-----------------------------
2278 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2279   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2280   else    return trap_state & ~DS_RECOMPILE_BIT;
2281 }
2282 //---------------------------format_trap_state---------------------------------
2283 // This is used for debugging and diagnostics, including LogFile output.
2284 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2285                                               int trap_state) {
2286   assert(buflen > 0, "sanity");
2287   DeoptReason reason      = trap_state_reason(trap_state);
2288   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2289   // Re-encode the state from its decoded components.
2290   int decoded_state = 0;
2291   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2292     decoded_state = trap_state_add_reason(decoded_state, reason);
2293   if (recomp_flag)
2294     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2295   // If the state re-encodes properly, format it symbolically.
2296   // Because this routine is used for debugging and diagnostics,
2297   // be robust even if the state is a strange value.
2298   size_t len;
2299   if (decoded_state != trap_state) {
2300     // Random buggy state that doesn't decode??
2301     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2302   } else {
2303     len = jio_snprintf(buf, buflen, "%s%s",
2304                        trap_reason_name(reason),
2305                        recomp_flag ? " recompiled" : "");
2306   }
2307   return buf;
2308 }
2309 
2310 
2311 //--------------------------------statics--------------------------------------
2312 const char* Deoptimization::_trap_reason_name[] = {
2313   // Note:  Keep this in sync. with enum DeoptReason.
2314   "none",
2315   "null_check",
2316   "null_assert" JVMCI_ONLY("_or_unreached0"),
2317   "range_check",
2318   "class_check",
2319   "array_check",
2320   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2321   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2322   "profile_predicate",
2323   "unloaded",
2324   "uninitialized",
2325   "initialized",
2326   "unreached",
2327   "unhandled",
2328   "constraint",
2329   "div0_check",
2330   "age",
2331   "predicate",
2332   "loop_limit_check",
2333   "speculate_class_check",
2334   "speculate_null_check",
2335   "speculate_null_assert",
2336   "rtm_state_change",
2337   "unstable_if",
2338   "unstable_fused_if",
2339 #if INCLUDE_JVMCI
2340   "aliasing",
2341   "transfer_to_interpreter",
2342   "not_compiled_exception_handler",
2343   "unresolved",
2344   "jsr_mismatch",
2345 #endif
2346   "tenured"
2347 };
2348 const char* Deoptimization::_trap_action_name[] = {
2349   // Note:  Keep this in sync. with enum DeoptAction.
2350   "none",
2351   "maybe_recompile",
2352   "reinterpret",
2353   "make_not_entrant",
2354   "make_not_compilable"
2355 };
2356 
2357 const char* Deoptimization::trap_reason_name(int reason) {
2358   // Check that every reason has a name
2359   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2360 
2361   if (reason == Reason_many)  return "many";
2362   if ((uint)reason < Reason_LIMIT)
2363     return _trap_reason_name[reason];
2364   static char buf[20];
2365   sprintf(buf, "reason%d", reason);
2366   return buf;
2367 }
2368 const char* Deoptimization::trap_action_name(int action) {
2369   // Check that every action has a name
2370   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2371 
2372   if ((uint)action < Action_LIMIT)
2373     return _trap_action_name[action];
2374   static char buf[20];
2375   sprintf(buf, "action%d", action);
2376   return buf;
2377 }
2378 
2379 // This is used for debugging and diagnostics, including LogFile output.
2380 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2381                                                 int trap_request) {
2382   jint unloaded_class_index = trap_request_index(trap_request);
2383   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2384   const char* action = trap_action_name(trap_request_action(trap_request));
2385 #if INCLUDE_JVMCI
2386   int debug_id = trap_request_debug_id(trap_request);
2387 #endif
2388   size_t len;
2389   if (unloaded_class_index < 0) {
2390     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2391                        reason, action
2392 #if INCLUDE_JVMCI
2393                        ,debug_id
2394 #endif
2395                        );
2396   } else {
2397     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2398                        reason, action, unloaded_class_index
2399 #if INCLUDE_JVMCI
2400                        ,debug_id
2401 #endif
2402                        );
2403   }
2404   return buf;
2405 }
2406 
2407 juint Deoptimization::_deoptimization_hist
2408         [Deoptimization::Reason_LIMIT]
2409     [1 + Deoptimization::Action_LIMIT]
2410         [Deoptimization::BC_CASE_LIMIT]
2411   = {0};
2412 
2413 enum {
2414   LSB_BITS = 8,
2415   LSB_MASK = right_n_bits(LSB_BITS)
2416 };
2417 
2418 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2419                                        Bytecodes::Code bc) {
2420   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2421   assert(action >= 0 && action < Action_LIMIT, "oob");
2422   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2423   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2424   juint* cases = _deoptimization_hist[reason][1+action];
2425   juint* bc_counter_addr = NULL;
2426   juint  bc_counter      = 0;
2427   // Look for an unused counter, or an exact match to this BC.
2428   if (bc != Bytecodes::_illegal) {
2429     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2430       juint* counter_addr = &cases[bc_case];
2431       juint  counter = *counter_addr;
2432       if ((counter == 0 && bc_counter_addr == NULL)
2433           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2434         // this counter is either free or is already devoted to this BC
2435         bc_counter_addr = counter_addr;
2436         bc_counter = counter | bc;
2437       }
2438     }
2439   }
2440   if (bc_counter_addr == NULL) {
2441     // Overflow, or no given bytecode.
2442     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2443     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2444   }
2445   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2446 }
2447 
2448 jint Deoptimization::total_deoptimization_count() {
2449   return _deoptimization_hist[Reason_none][0][0];
2450 }
2451 
2452 void Deoptimization::print_statistics() {
2453   juint total = total_deoptimization_count();
2454   juint account = total;
2455   if (total != 0) {
2456     ttyLocker ttyl;
2457     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2458     tty->print_cr("Deoptimization traps recorded:");
2459     #define PRINT_STAT_LINE(name, r) \
2460       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2461     PRINT_STAT_LINE("total", total);
2462     // For each non-zero entry in the histogram, print the reason,
2463     // the action, and (if specifically known) the type of bytecode.
2464     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2465       for (int action = 0; action < Action_LIMIT; action++) {
2466         juint* cases = _deoptimization_hist[reason][1+action];
2467         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2468           juint counter = cases[bc_case];
2469           if (counter != 0) {
2470             char name[1*K];
2471             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2472             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2473               bc = Bytecodes::_illegal;
2474             sprintf(name, "%s/%s/%s",
2475                     trap_reason_name(reason),
2476                     trap_action_name(action),
2477                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2478             juint r = counter >> LSB_BITS;
2479             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2480             account -= r;
2481           }
2482         }
2483       }
2484     }
2485     if (account != 0) {
2486       PRINT_STAT_LINE("unaccounted", account);
2487     }
2488     #undef PRINT_STAT_LINE
2489     if (xtty != NULL)  xtty->tail("statistics");
2490   }
2491 }
2492 #else // COMPILER2_OR_JVMCI
2493 
2494 
2495 // Stubs for C1 only system.
2496 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2497   return false;
2498 }
2499 
2500 const char* Deoptimization::trap_reason_name(int reason) {
2501   return "unknown";
2502 }
2503 
2504 void Deoptimization::print_statistics() {
2505   // no output
2506 }
2507 
2508 void
2509 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2510   // no udpate
2511 }
2512 
2513 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2514   return 0;
2515 }
2516 
2517 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2518                                        Bytecodes::Code bc) {
2519   // no update
2520 }
2521 
2522 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2523                                               int trap_state) {
2524   jio_snprintf(buf, buflen, "#%d", trap_state);
2525   return buf;
2526 }
2527 
2528 #endif // COMPILER2_OR_JVMCI