1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "gc/g1/g1ConcurrentMarkBitMap.hpp"
  29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
  30 #include "gc/g1/g1HeapVerifier.hpp"
  31 #include "gc/g1/g1RegionMarkStatsCache.hpp"
  32 #include "gc/g1/heapRegionSet.hpp"
  33 #include "gc/shared/taskqueue.hpp"
  34 #include "gc/shared/verifyOption.hpp"
  35 #include "gc/shared/workgroup.hpp"
  36 #include "memory/allocation.hpp"
  37 #include "utilities/compilerWarnings.hpp"
  38 
  39 class ConcurrentGCTimer;
  40 class G1ConcurrentMarkThread;
  41 class G1CollectedHeap;
  42 class G1CMOopClosure;
  43 class G1CMTask;
  44 class G1ConcurrentMark;
  45 class G1OldTracer;
  46 class G1RegionToSpaceMapper;
  47 class G1SurvivorRegions;
  48 class ThreadClosure;
  49 
  50 PRAGMA_DIAG_PUSH
  51 // warning C4522: multiple assignment operators specified
  52 PRAGMA_DISABLE_MSVC_WARNING(4522)
  53 
  54 // This is a container class for either an oop or a continuation address for
  55 // mark stack entries. Both are pushed onto the mark stack.
  56 class G1TaskQueueEntry {
  57 private:
  58   void* _holder;
  59 
  60   static const uintptr_t ArraySliceBit = 1;
  61 
  62   G1TaskQueueEntry(oop obj) : _holder(obj) {
  63     assert(_holder != NULL, "Not allowed to set NULL task queue element");
  64   }
  65   G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
  66 public:
  67   G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; }
  68   G1TaskQueueEntry() : _holder(NULL) { }
  69 
  70   static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
  71   static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
  72 
  73   G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) {
  74     _holder = t._holder;
  75     return *this;
  76   }
  77 
  78   volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile {
  79     _holder = t._holder;
  80     return *this;
  81   }
  82 
  83   oop obj() const {
  84     assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
  85     return (oop)_holder;
  86   }
  87 
  88   HeapWord* slice() const {
  89     assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
  90     return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
  91   }
  92 
  93   bool is_oop() const { return !is_array_slice(); }
  94   bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
  95   bool is_null() const { return _holder == NULL; }
  96 };
  97 
  98 PRAGMA_DIAG_POP
  99 
 100 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
 101 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
 102 
 103 // Closure used by CM during concurrent reference discovery
 104 // and reference processing (during remarking) to determine
 105 // if a particular object is alive. It is primarily used
 106 // to determine if referents of discovered reference objects
 107 // are alive. An instance is also embedded into the
 108 // reference processor as the _is_alive_non_header field
 109 class G1CMIsAliveClosure : public BoolObjectClosure {
 110   G1CollectedHeap* _g1h;
 111 public:
 112   G1CMIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
 113   bool do_object_b(oop obj);
 114 };
 115 
 116 class G1CMSubjectToDiscoveryClosure : public BoolObjectClosure {
 117   G1CollectedHeap* _g1h;
 118 public:
 119   G1CMSubjectToDiscoveryClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
 120   bool do_object_b(oop obj);
 121 };
 122 
 123 // Represents the overflow mark stack used by concurrent marking.
 124 //
 125 // Stores oops in a huge buffer in virtual memory that is always fully committed.
 126 // Resizing may only happen during a STW pause when the stack is empty.
 127 //
 128 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
 129 // stack memory is split into evenly sized chunks of oops. Users can only
 130 // add or remove entries on that basis.
 131 // Chunks are filled in increasing address order. Not completely filled chunks
 132 // have a NULL element as a terminating element.
 133 //
 134 // Every chunk has a header containing a single pointer element used for memory
 135 // management. This wastes some space, but is negligible (< .1% with current sizing).
 136 //
 137 // Memory management is done using a mix of tracking a high water-mark indicating
 138 // that all chunks at a lower address are valid chunks, and a singly linked free
 139 // list connecting all empty chunks.
 140 class G1CMMarkStack {
 141 public:
 142   // Number of TaskQueueEntries that can fit in a single chunk.
 143   static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
 144 private:
 145   struct TaskQueueEntryChunk {
 146     TaskQueueEntryChunk* next;
 147     G1TaskQueueEntry data[EntriesPerChunk];
 148   };
 149 
 150   size_t _max_chunk_capacity;    // Maximum number of TaskQueueEntryChunk elements on the stack.
 151 
 152   TaskQueueEntryChunk* _base;    // Bottom address of allocated memory area.
 153   size_t _chunk_capacity;        // Current maximum number of TaskQueueEntryChunk elements.
 154 
 155   char _pad0[DEFAULT_CACHE_LINE_SIZE];
 156   TaskQueueEntryChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
 157   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
 158   TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
 159   volatile size_t _chunks_in_chunk_list;
 160   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
 161 
 162   volatile size_t _hwm;          // High water mark within the reserved space.
 163   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
 164 
 165   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
 166   // NULL if out of memory.
 167   TaskQueueEntryChunk* allocate_new_chunk();
 168 
 169   // Atomically add the given chunk to the list.
 170   void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
 171   // Atomically remove and return a chunk from the given list. Returns NULL if the
 172   // list is empty.
 173   TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
 174 
 175   void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
 176   void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
 177 
 178   TaskQueueEntryChunk* remove_chunk_from_chunk_list();
 179   TaskQueueEntryChunk* remove_chunk_from_free_list();
 180 
 181   // Resizes the mark stack to the given new capacity. Releases any previous
 182   // memory if successful.
 183   bool resize(size_t new_capacity);
 184 
 185  public:
 186   G1CMMarkStack();
 187   ~G1CMMarkStack();
 188 
 189   // Alignment and minimum capacity of this mark stack in number of oops.
 190   static size_t capacity_alignment();
 191 
 192   // Allocate and initialize the mark stack with the given number of oops.
 193   bool initialize(size_t initial_capacity, size_t max_capacity);
 194 
 195   // Pushes the given buffer containing at most EntriesPerChunk elements on the mark
 196   // stack. If less than EntriesPerChunk elements are to be pushed, the array must
 197   // be terminated with a NULL.
 198   // Returns whether the buffer contents were successfully pushed to the global mark
 199   // stack.
 200   bool par_push_chunk(G1TaskQueueEntry* buffer);
 201 
 202   // Pops a chunk from this mark stack, copying them into the given buffer. This
 203   // chunk may contain up to EntriesPerChunk elements. If there are less, the last
 204   // element in the array is a NULL pointer.
 205   bool par_pop_chunk(G1TaskQueueEntry* buffer);
 206 
 207   // Return whether the chunk list is empty. Racy due to unsynchronized access to
 208   // _chunk_list.
 209   bool is_empty() const { return _chunk_list == NULL; }
 210 
 211   size_t capacity() const  { return _chunk_capacity; }
 212 
 213   // Expand the stack, typically in response to an overflow condition
 214   void expand();
 215 
 216   // Return the approximate number of oops on this mark stack. Racy due to
 217   // unsynchronized access to _chunks_in_chunk_list.
 218   size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
 219 
 220   void set_empty();
 221 
 222   // Apply Fn to every oop on the mark stack. The mark stack must not
 223   // be modified while iterating.
 224   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
 225 };
 226 
 227 // Root MemRegions are memory areas that contain objects which references are
 228 // roots wrt to the marking. They must be scanned before marking to maintain the
 229 // SATB invariant.
 230 // Typically they contain the areas from nTAMS to top of the regions.
 231 // We could scan and mark through these objects during the initial-mark pause, but for
 232 // pause time reasons we move this work to the concurrent phase.
 233 // We need to complete this procedure before the next GC because it might determine
 234 // that some of these "root objects" are dead, potentially dropping some required
 235 // references.
 236 // Root MemRegions comprise of the contents of survivor regions at the end
 237 // of the GC, and any objects copied into the old gen during GC.
 238 class G1CMRootMemRegions {
 239   // The set of root MemRegions.
 240   MemRegion*   _root_regions;
 241   size_t const _max_regions;
 242 
 243   volatile size_t _num_root_regions; // Actual number of root regions.
 244 
 245   volatile size_t _claimed_root_regions; // Number of root regions currently claimed.
 246 
 247   volatile bool _scan_in_progress;
 248   volatile bool _should_abort;
 249 
 250   void notify_scan_done();
 251 
 252 public:
 253   G1CMRootMemRegions(uint const max_regions);
 254   ~G1CMRootMemRegions();
 255 
 256   // Reset the data structure to allow addition of new root regions.
 257   void reset();
 258 
 259   void add(HeapWord* start, HeapWord* end);
 260 
 261   // Reset the claiming / scanning of the root regions.
 262   void prepare_for_scan();
 263 
 264   // Forces get_next() to return NULL so that the iteration aborts early.
 265   void abort() { _should_abort = true; }
 266 
 267   // Return true if the CM thread are actively scanning root regions,
 268   // false otherwise.
 269   bool scan_in_progress() { return _scan_in_progress; }
 270 
 271   // Claim the next root MemRegion to scan atomically, or return NULL if
 272   // all have been claimed.
 273   const MemRegion* claim_next();
 274 
 275   // The number of root regions to scan.
 276   uint num_root_regions() const;
 277 
 278   void cancel_scan();
 279 
 280   // Flag that we're done with root region scanning and notify anyone
 281   // who's waiting on it. If aborted is false, assume that all regions
 282   // have been claimed.
 283   void scan_finished();
 284 
 285   // If CM threads are still scanning root regions, wait until they
 286   // are done. Return true if we had to wait, false otherwise.
 287   bool wait_until_scan_finished();
 288 };
 289 
 290 // This class manages data structures and methods for doing liveness analysis in
 291 // G1's concurrent cycle.
 292 class G1ConcurrentMark : public CHeapObj<mtGC> {
 293   friend class G1ConcurrentMarkThread;
 294   friend class G1CMRefProcTaskProxy;
 295   friend class G1CMRefProcTaskExecutor;
 296   friend class G1CMKeepAliveAndDrainClosure;
 297   friend class G1CMDrainMarkingStackClosure;
 298   friend class G1CMBitMapClosure;
 299   friend class G1CMConcurrentMarkingTask;
 300   friend class G1CMRemarkTask;
 301   friend class G1CMTask;
 302 
 303   G1ConcurrentMarkThread* _cm_thread;     // The thread doing the work
 304   G1CollectedHeap*        _g1h;           // The heap
 305   bool                    _completed_initialization; // Set to true when initialization is complete
 306 
 307   // Concurrent marking support structures
 308   G1CMBitMap              _mark_bitmap_1;
 309   G1CMBitMap              _mark_bitmap_2;
 310   G1CMBitMap*             _prev_mark_bitmap; // Completed mark bitmap
 311   G1CMBitMap*             _next_mark_bitmap; // Under-construction mark bitmap
 312 
 313   // Heap bounds
 314   MemRegion const         _heap;
 315 
 316   // Root region tracking and claiming
 317   G1CMRootMemRegions         _root_regions;
 318 
 319   // For grey objects
 320   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
 321   HeapWord* volatile      _finger;            // The global finger, region aligned,
 322                                               // always pointing to the end of the
 323                                               // last claimed region
 324 
 325   uint                    _worker_id_offset;
 326   uint                    _max_num_tasks;    // Maximum number of marking tasks
 327   uint                    _num_active_tasks; // Number of tasks currently active
 328   G1CMTask**              _tasks;            // Task queue array (max_worker_id length)
 329 
 330   G1CMTaskQueueSet*       _task_queues; // Task queue set
 331   TaskTerminator          _terminator;  // For termination
 332 
 333   // Two sync barriers that are used to synchronize tasks when an
 334   // overflow occurs. The algorithm is the following. All tasks enter
 335   // the first one to ensure that they have all stopped manipulating
 336   // the global data structures. After they exit it, they re-initialize
 337   // their data structures and task 0 re-initializes the global data
 338   // structures. Then, they enter the second sync barrier. This
 339   // ensure, that no task starts doing work before all data
 340   // structures (local and global) have been re-initialized. When they
 341   // exit it, they are free to start working again.
 342   WorkGangBarrierSync     _first_overflow_barrier_sync;
 343   WorkGangBarrierSync     _second_overflow_barrier_sync;
 344 
 345   // This is set by any task, when an overflow on the global data
 346   // structures is detected
 347   volatile bool           _has_overflown;
 348   // True: marking is concurrent, false: we're in remark
 349   volatile bool           _concurrent;
 350   // Set at the end of a Full GC so that marking aborts
 351   volatile bool           _has_aborted;
 352 
 353   // Used when remark aborts due to an overflow to indicate that
 354   // another concurrent marking phase should start
 355   volatile bool           _restart_for_overflow;
 356 
 357   ConcurrentGCTimer*      _gc_timer_cm;
 358 
 359   G1OldTracer*            _gc_tracer_cm;
 360 
 361   // Timing statistics. All of them are in ms
 362   NumberSeq _init_times;
 363   NumberSeq _remark_times;
 364   NumberSeq _remark_mark_times;
 365   NumberSeq _remark_weak_ref_times;
 366   NumberSeq _cleanup_times;
 367   double    _total_cleanup_time;
 368 
 369   double*   _accum_task_vtime;   // Accumulated task vtime
 370 
 371   WorkGang* _concurrent_workers;
 372   uint      _num_concurrent_workers; // The number of marking worker threads we're using
 373   uint      _max_concurrent_workers; // Maximum number of marking worker threads
 374 
 375   void verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller);
 376 
 377   void finalize_marking();
 378 
 379   void weak_refs_work_parallel_part(BoolObjectClosure* is_alive, bool purged_classes);
 380   void weak_refs_work(bool clear_all_soft_refs);
 381 
 382   void report_object_count(bool mark_completed);
 383 
 384   void swap_mark_bitmaps();
 385 
 386   void reclaim_empty_regions();
 387 
 388   // After reclaiming empty regions, update heap sizes.
 389   void compute_new_sizes();
 390 
 391   // Clear statistics gathered during the concurrent cycle for the given region after
 392   // it has been reclaimed.
 393   void clear_statistics(HeapRegion* r);
 394 
 395   // Resets the global marking data structures, as well as the
 396   // task local ones; should be called during initial mark.
 397   void reset();
 398 
 399   // Resets all the marking data structures. Called when we have to restart
 400   // marking or when marking completes (via set_non_marking_state below).
 401   void reset_marking_for_restart();
 402 
 403   // We do this after we're done with marking so that the marking data
 404   // structures are initialized to a sensible and predictable state.
 405   void reset_at_marking_complete();
 406 
 407   // Called to indicate how many threads are currently active.
 408   void set_concurrency(uint active_tasks);
 409 
 410   // Should be called to indicate which phase we're in (concurrent
 411   // mark or remark) and how many threads are currently active.
 412   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 413 
 414   // Prints all gathered CM-related statistics
 415   void print_stats();
 416 
 417   HeapWord*               finger()           { return _finger;   }
 418   bool                    concurrent()       { return _concurrent; }
 419   uint                    active_tasks()     { return _num_active_tasks; }
 420   ParallelTaskTerminator* terminator() const { return _terminator.terminator(); }
 421 
 422   // Claims the next available region to be scanned by a marking
 423   // task/thread. It might return NULL if the next region is empty or
 424   // we have run out of regions. In the latter case, out_of_regions()
 425   // determines whether we've really run out of regions or the task
 426   // should call claim_region() again. This might seem a bit
 427   // awkward. Originally, the code was written so that claim_region()
 428   // either successfully returned with a non-empty region or there
 429   // were no more regions to be claimed. The problem with this was
 430   // that, in certain circumstances, it iterated over large chunks of
 431   // the heap finding only empty regions and, while it was working, it
 432   // was preventing the calling task to call its regular clock
 433   // method. So, this way, each task will spend very little time in
 434   // claim_region() and is allowed to call the regular clock method
 435   // frequently.
 436   HeapRegion* claim_region(uint worker_id);
 437 
 438   // Determines whether we've run out of regions to scan. Note that
 439   // the finger can point past the heap end in case the heap was expanded
 440   // to satisfy an allocation without doing a GC. This is fine, because all
 441   // objects in those regions will be considered live anyway because of
 442   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 443   bool out_of_regions() { return _finger >= _heap.end(); }
 444 
 445   // Returns the task with the given id
 446   G1CMTask* task(uint id) {
 447     // During initial mark we use the parallel gc threads to do some work, so
 448     // we can only compare against _max_num_tasks.
 449     assert(id < _max_num_tasks, "Task id %u not within bounds up to %u", id, _max_num_tasks);
 450     return _tasks[id];
 451   }
 452 
 453   // Access / manipulation of the overflow flag which is set to
 454   // indicate that the global stack has overflown
 455   bool has_overflown()           { return _has_overflown; }
 456   void set_has_overflown()       { _has_overflown = true; }
 457   void clear_has_overflown()     { _has_overflown = false; }
 458   bool restart_for_overflow()    { return _restart_for_overflow; }
 459 
 460   // Methods to enter the two overflow sync barriers
 461   void enter_first_sync_barrier(uint worker_id);
 462   void enter_second_sync_barrier(uint worker_id);
 463 
 464   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 465   // true, periodically insert checks to see if this method should exit prematurely.
 466   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 467 
 468   // Region statistics gathered during marking.
 469   G1RegionMarkStats* _region_mark_stats;
 470   // Top pointer for each region at the start of the rebuild remembered set process
 471   // for regions which remembered sets need to be rebuilt. A NULL for a given region
 472   // means that this region does not be scanned during the rebuilding remembered
 473   // set phase at all.
 474   HeapWord* volatile* _top_at_rebuild_starts;
 475 public:
 476   void add_to_liveness(uint worker_id, oop const obj, size_t size);
 477   // Liveness of the given region as determined by concurrent marking, i.e. the amount of
 478   // live words between bottom and nTAMS.
 479   size_t liveness(uint region) const { return _region_mark_stats[region]._live_words; }
 480 
 481   // Sets the internal top_at_region_start for the given region to current top of the region.
 482   inline void update_top_at_rebuild_start(HeapRegion* r);
 483   // TARS for the given region during remembered set rebuilding.
 484   inline HeapWord* top_at_rebuild_start(uint region) const;
 485 
 486   // Clear statistics gathered during the concurrent cycle for the given region after
 487   // it has been reclaimed.
 488   void clear_statistics_in_region(uint region_idx);
 489   // Notification for eagerly reclaimed regions to clean up.
 490   void humongous_object_eagerly_reclaimed(HeapRegion* r);
 491   // Manipulation of the global mark stack.
 492   // The push and pop operations are used by tasks for transfers
 493   // between task-local queues and the global mark stack.
 494   bool mark_stack_push(G1TaskQueueEntry* arr) {
 495     if (!_global_mark_stack.par_push_chunk(arr)) {
 496       set_has_overflown();
 497       return false;
 498     }
 499     return true;
 500   }
 501   bool mark_stack_pop(G1TaskQueueEntry* arr) {
 502     return _global_mark_stack.par_pop_chunk(arr);
 503   }
 504   size_t mark_stack_size() const                { return _global_mark_stack.size(); }
 505   size_t partial_mark_stack_size_target() const { return _global_mark_stack.capacity() / 3; }
 506   bool mark_stack_empty() const                 { return _global_mark_stack.is_empty(); }
 507 
 508   G1CMRootMemRegions* root_regions() { return &_root_regions; }
 509 
 510   void concurrent_cycle_start();
 511   // Abandon current marking iteration due to a Full GC.
 512   void concurrent_cycle_abort();
 513   void concurrent_cycle_end();
 514 
 515   void update_accum_task_vtime(int i, double vtime) {
 516     _accum_task_vtime[i] += vtime;
 517   }
 518 
 519   double all_task_accum_vtime() {
 520     double ret = 0.0;
 521     for (uint i = 0; i < _max_num_tasks; ++i)
 522       ret += _accum_task_vtime[i];
 523     return ret;
 524   }
 525 
 526   // Attempts to steal an object from the task queues of other tasks
 527   bool try_stealing(uint worker_id, G1TaskQueueEntry& task_entry);
 528 
 529   G1ConcurrentMark(G1CollectedHeap* g1h,
 530                    G1RegionToSpaceMapper* prev_bitmap_storage,
 531                    G1RegionToSpaceMapper* next_bitmap_storage);
 532   ~G1ConcurrentMark();
 533 
 534   G1ConcurrentMarkThread* cm_thread() { return _cm_thread; }
 535 
 536   const G1CMBitMap* const prev_mark_bitmap() const { return _prev_mark_bitmap; }
 537   G1CMBitMap* next_mark_bitmap() const { return _next_mark_bitmap; }
 538 
 539   // Calculates the number of concurrent GC threads to be used in the marking phase.
 540   uint calc_active_marking_workers();
 541 
 542   // Moves all per-task cached data into global state.
 543   void flush_all_task_caches();
 544   // Prepare internal data structures for the next mark cycle. This includes clearing
 545   // the next mark bitmap and some internal data structures. This method is intended
 546   // to be called concurrently to the mutator. It will yield to safepoint requests.
 547   void cleanup_for_next_mark();
 548 
 549   // Clear the previous marking bitmap during safepoint.
 550   void clear_prev_bitmap(WorkGang* workers);
 551 
 552   // These two methods do the work that needs to be done at the start and end of the
 553   // initial mark pause.
 554   void pre_initial_mark();
 555   void post_initial_mark();
 556 
 557   // Scan all the root regions and mark everything reachable from
 558   // them.
 559   void scan_root_regions();
 560 
 561   // Scan a single root MemRegion to mark everything reachable from it.
 562   void scan_root_region(const MemRegion* region, uint worker_id);
 563 
 564   // Do concurrent phase of marking, to a tentative transitive closure.
 565   void mark_from_roots();
 566 
 567   // Do concurrent preclean work.
 568   void preclean();
 569 
 570   void remark();
 571 
 572   void cleanup();
 573   // Mark in the previous bitmap. Caution: the prev bitmap is usually read-only, so use
 574   // this carefully.
 575   inline void mark_in_prev_bitmap(oop p);
 576 
 577   // Clears marks for all objects in the given range, for the prev or
 578   // next bitmaps.  Caution: the previous bitmap is usually
 579   // read-only, so use this carefully!
 580   void clear_range_in_prev_bitmap(MemRegion mr);
 581 
 582   inline bool is_marked_in_prev_bitmap(oop p) const;
 583 
 584   // Verify that there are no collection set oops on the stacks (taskqueues /
 585   // global mark stack) and fingers (global / per-task).
 586   // If marking is not in progress, it's a no-op.
 587   void verify_no_collection_set_oops() PRODUCT_RETURN;
 588 
 589   inline bool do_yield_check();
 590 
 591   bool has_aborted()      { return _has_aborted; }
 592 
 593   void print_summary_info();
 594 
 595   void print_worker_threads_on(outputStream* st) const;
 596   void threads_do(ThreadClosure* tc) const;
 597 
 598   void print_on_error(outputStream* st) const;
 599 
 600   // Mark the given object on the next bitmap if it is below nTAMS.
 601   inline bool mark_in_next_bitmap(uint worker_id, HeapRegion* const hr, oop const obj);
 602   inline bool mark_in_next_bitmap(uint worker_id, oop const obj);
 603 
 604   inline bool is_marked_in_next_bitmap(oop p) const;
 605 
 606   // Returns true if initialization was successfully completed.
 607   bool completed_initialization() const {
 608     return _completed_initialization;
 609   }
 610 
 611   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 612   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 613 
 614 private:
 615   // Rebuilds the remembered sets for chosen regions in parallel and concurrently to the application.
 616   void rebuild_rem_set_concurrently();
 617 };
 618 
 619 // A class representing a marking task.
 620 class G1CMTask : public TerminatorTerminator {
 621 private:
 622   enum PrivateConstants {
 623     // The regular clock call is called once the scanned words reaches
 624     // this limit
 625     words_scanned_period          = 12*1024,
 626     // The regular clock call is called once the number of visited
 627     // references reaches this limit
 628     refs_reached_period           = 1024,
 629     // Initial value for the hash seed, used in the work stealing code
 630     init_hash_seed                = 17
 631   };
 632 
 633   // Number of entries in the per-task stats entry. This seems enough to have a very
 634   // low cache miss rate.
 635   static const uint RegionMarkStatsCacheSize = 1024;
 636 
 637   G1CMObjArrayProcessor       _objArray_processor;
 638 
 639   uint                        _worker_id;
 640   G1CollectedHeap*            _g1h;
 641   G1ConcurrentMark*           _cm;
 642   G1CMBitMap*                 _next_mark_bitmap;
 643   // the task queue of this task
 644   G1CMTaskQueue*              _task_queue;
 645 
 646   G1RegionMarkStatsCache      _mark_stats_cache;
 647   // Number of calls to this task
 648   uint                        _calls;
 649 
 650   // When the virtual timer reaches this time, the marking step should exit
 651   double                      _time_target_ms;
 652   // Start time of the current marking step
 653   double                      _start_time_ms;
 654 
 655   // Oop closure used for iterations over oops
 656   G1CMOopClosure*             _cm_oop_closure;
 657 
 658   // Region this task is scanning, NULL if we're not scanning any
 659   HeapRegion*                 _curr_region;
 660   // Local finger of this task, NULL if we're not scanning a region
 661   HeapWord*                   _finger;
 662   // Limit of the region this task is scanning, NULL if we're not scanning one
 663   HeapWord*                   _region_limit;
 664 
 665   // Number of words this task has scanned
 666   size_t                      _words_scanned;
 667   // When _words_scanned reaches this limit, the regular clock is
 668   // called. Notice that this might be decreased under certain
 669   // circumstances (i.e. when we believe that we did an expensive
 670   // operation).
 671   size_t                      _words_scanned_limit;
 672   // Initial value of _words_scanned_limit (i.e. what it was
 673   // before it was decreased).
 674   size_t                      _real_words_scanned_limit;
 675 
 676   // Number of references this task has visited
 677   size_t                      _refs_reached;
 678   // When _refs_reached reaches this limit, the regular clock is
 679   // called. Notice this this might be decreased under certain
 680   // circumstances (i.e. when we believe that we did an expensive
 681   // operation).
 682   size_t                      _refs_reached_limit;
 683   // Initial value of _refs_reached_limit (i.e. what it was before
 684   // it was decreased).
 685   size_t                      _real_refs_reached_limit;
 686 
 687   // If true, then the task has aborted for some reason
 688   bool                        _has_aborted;
 689   // Set when the task aborts because it has met its time quota
 690   bool                        _has_timed_out;
 691   // True when we're draining SATB buffers; this avoids the task
 692   // aborting due to SATB buffers being available (as we're already
 693   // dealing with them)
 694   bool                        _draining_satb_buffers;
 695 
 696   // Number sequence of past step times
 697   NumberSeq                   _step_times_ms;
 698   // Elapsed time of this task
 699   double                      _elapsed_time_ms;
 700   // Termination time of this task
 701   double                      _termination_time_ms;
 702   // When this task got into the termination protocol
 703   double                      _termination_start_time_ms;
 704 
 705   TruncatedSeq                _marking_step_diff_ms;
 706 
 707   // Updates the local fields after this task has claimed
 708   // a new region to scan
 709   void setup_for_region(HeapRegion* hr);
 710   // Makes the limit of the region up-to-date
 711   void update_region_limit();
 712 
 713   // Called when either the words scanned or the refs visited limit
 714   // has been reached
 715   void reached_limit();
 716   // Recalculates the words scanned and refs visited limits
 717   void recalculate_limits();
 718   // Decreases the words scanned and refs visited limits when we reach
 719   // an expensive operation
 720   void decrease_limits();
 721   // Checks whether the words scanned or refs visited reached their
 722   // respective limit and calls reached_limit() if they have
 723   void check_limits() {
 724     if (_words_scanned >= _words_scanned_limit ||
 725         _refs_reached >= _refs_reached_limit) {
 726       reached_limit();
 727     }
 728   }
 729   // Supposed to be called regularly during a marking step as
 730   // it checks a bunch of conditions that might cause the marking step
 731   // to abort
 732   // Return true if the marking step should continue. Otherwise, return false to abort
 733   bool regular_clock_call();
 734 
 735   // Set abort flag if regular_clock_call() check fails
 736   inline void abort_marking_if_regular_check_fail();
 737 
 738   // Test whether obj might have already been passed over by the
 739   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 740   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 741 
 742   template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
 743 public:
 744   // Apply the closure on the given area of the objArray. Return the number of words
 745   // scanned.
 746   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
 747   // Resets the task; should be called right at the beginning of a marking phase.
 748   void reset(G1CMBitMap* next_mark_bitmap);
 749   // Clears all the fields that correspond to a claimed region.
 750   void clear_region_fields();
 751 
 752   // The main method of this class which performs a marking step
 753   // trying not to exceed the given duration. However, it might exit
 754   // prematurely, according to some conditions (i.e. SATB buffers are
 755   // available for processing).
 756   void do_marking_step(double target_ms,
 757                        bool do_termination,
 758                        bool is_serial);
 759 
 760   // These two calls start and stop the timer
 761   void record_start_time() {
 762     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 763   }
 764   void record_end_time() {
 765     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 766   }
 767 
 768   // Returns the worker ID associated with this task.
 769   uint worker_id() { return _worker_id; }
 770 
 771   // From TerminatorTerminator. It determines whether this task should
 772   // exit the termination protocol after it's entered it.
 773   virtual bool should_exit_termination();
 774 
 775   // Resets the local region fields after a task has finished scanning a
 776   // region; or when they have become stale as a result of the region
 777   // being evacuated.
 778   void giveup_current_region();
 779 
 780   HeapWord* finger()            { return _finger; }
 781 
 782   bool has_aborted()            { return _has_aborted; }
 783   void set_has_aborted()        { _has_aborted = true; }
 784   void clear_has_aborted()      { _has_aborted = false; }
 785 
 786   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 787 
 788   // Increment the number of references this task has visited.
 789   void increment_refs_reached() { ++_refs_reached; }
 790 
 791   // Grey the object by marking it.  If not already marked, push it on
 792   // the local queue if below the finger. obj is required to be below its region's NTAMS.
 793   // Returns whether there has been a mark to the bitmap.
 794   inline bool make_reference_grey(oop obj);
 795 
 796   // Grey the object (by calling make_grey_reference) if required,
 797   // e.g. obj is below its containing region's NTAMS.
 798   // Precondition: obj is a valid heap object.
 799   // Returns true if the reference caused a mark to be set in the next bitmap.
 800   template <class T>
 801   inline bool deal_with_reference(T* p);
 802 
 803   // Scans an object and visits its children.
 804   inline void scan_task_entry(G1TaskQueueEntry task_entry);
 805 
 806   // Pushes an object on the local queue.
 807   inline void push(G1TaskQueueEntry task_entry);
 808 
 809   // Move entries to the global stack.
 810   void move_entries_to_global_stack();
 811   // Move entries from the global stack, return true if we were successful to do so.
 812   bool get_entries_from_global_stack();
 813 
 814   // Pops and scans objects from the local queue. If partially is
 815   // true, then it stops when the queue size is of a given limit. If
 816   // partially is false, then it stops when the queue is empty.
 817   void drain_local_queue(bool partially);
 818   // Moves entries from the global stack to the local queue and
 819   // drains the local queue. If partially is true, then it stops when
 820   // both the global stack and the local queue reach a given size. If
 821   // partially if false, it tries to empty them totally.
 822   void drain_global_stack(bool partially);
 823   // Keeps picking SATB buffers and processing them until no SATB
 824   // buffers are available.
 825   void drain_satb_buffers();
 826 
 827   // Moves the local finger to a new location
 828   inline void move_finger_to(HeapWord* new_finger) {
 829     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 830     _finger = new_finger;
 831   }
 832 
 833   G1CMTask(uint worker_id,
 834            G1ConcurrentMark *cm,
 835            G1CMTaskQueue* task_queue,
 836            G1RegionMarkStats* mark_stats,
 837            uint max_regions);
 838 
 839   inline void update_liveness(oop const obj, size_t const obj_size);
 840 
 841   // Clear (without flushing) the mark cache entry for the given region.
 842   void clear_mark_stats_cache(uint region_idx);
 843   // Evict the whole statistics cache into the global statistics. Returns the
 844   // number of cache hits and misses so far.
 845   Pair<size_t, size_t> flush_mark_stats_cache();
 846   // Prints statistics associated with this task
 847   void print_stats();
 848 };
 849 
 850 // Class that's used to to print out per-region liveness
 851 // information. It's currently used at the end of marking and also
 852 // after we sort the old regions at the end of the cleanup operation.
 853 class G1PrintRegionLivenessInfoClosure : public HeapRegionClosure {
 854   // Accumulators for these values.
 855   size_t _total_used_bytes;
 856   size_t _total_capacity_bytes;
 857   size_t _total_prev_live_bytes;
 858   size_t _total_next_live_bytes;
 859 
 860   // Accumulator for the remembered set size
 861   size_t _total_remset_bytes;
 862 
 863   // Accumulator for strong code roots memory size
 864   size_t _total_strong_code_roots_bytes;
 865 
 866   static double bytes_to_mb(size_t val) {
 867     return (double) val / (double) M;
 868   }
 869 
 870 public:
 871   // The header and footer are printed in the constructor and
 872   // destructor respectively.
 873   G1PrintRegionLivenessInfoClosure(const char* phase_name);
 874   virtual bool do_heap_region(HeapRegion* r);
 875   ~G1PrintRegionLivenessInfoClosure();
 876 };
 877 
 878 #endif // SHARE_GC_G1_G1CONCURRENTMARK_HPP