1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1BufferNodeList.hpp"
  27 #include "gc/g1/g1CardTableEntryClosure.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1DirtyCardQueue.hpp"
  30 #include "gc/g1/g1FreeIdSet.hpp"
  31 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  32 #include "gc/g1/g1RemSet.hpp"
  33 #include "gc/g1/g1ThreadLocalData.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/shared/suspendibleThreadSet.hpp"
  36 #include "gc/shared/workgroup.hpp"
  37 #include "runtime/flags/flagSetting.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "runtime/orderAccess.hpp"
  40 #include "runtime/os.hpp"
  41 #include "runtime/safepoint.hpp"
  42 #include "runtime/thread.inline.hpp"
  43 #include "runtime/threadSMR.hpp"
  44 #include "utilities/quickSort.hpp"
  45 
  46 G1DirtyCardQueue::G1DirtyCardQueue(G1DirtyCardQueueSet* qset) :
  47   // Dirty card queues are always active, so we create them with their
  48   // active field set to true.
  49   PtrQueue(qset, true /* active */)
  50 { }
  51 
  52 G1DirtyCardQueue::~G1DirtyCardQueue() {
  53   flush();
  54 }
  55 
  56 void G1DirtyCardQueue::handle_completed_buffer() {
  57   assert(_buf != NULL, "precondition");
  58   BufferNode* node = BufferNode::make_node_from_buffer(_buf, index());
  59   G1DirtyCardQueueSet* dcqs = dirty_card_qset();
  60   if (dcqs->process_or_enqueue_completed_buffer(node)) {
  61     reset();                    // Buffer fully processed, reset index.
  62   } else {
  63     allocate_buffer();          // Buffer enqueued, get a new one.
  64   }
  65 }
  66 
  67 // Assumed to be zero by concurrent threads.
  68 static uint par_ids_start() { return 0; }
  69 
  70 G1DirtyCardQueueSet::G1DirtyCardQueueSet(Monitor* cbl_mon,
  71                                          BufferNode::Allocator* allocator) :
  72   PtrQueueSet(allocator),
  73   _cbl_mon(cbl_mon),
  74   _completed_buffers_head(NULL),
  75   _completed_buffers_tail(NULL),
  76   _num_cards(0),
  77   _process_cards_threshold(ProcessCardsThresholdNever),
  78   _process_completed_buffers(false),
  79   _max_cards(MaxCardsUnlimited),
  80   _max_cards_padding(0),
  81   _free_ids(par_ids_start(), num_par_ids()),
  82   _mutator_refined_cards_counters(NEW_C_HEAP_ARRAY(size_t, num_par_ids(), mtGC))
  83 {
  84   ::memset(_mutator_refined_cards_counters, 0, num_par_ids() * sizeof(size_t));
  85   _all_active = true;
  86 }
  87 
  88 G1DirtyCardQueueSet::~G1DirtyCardQueueSet() {
  89   abandon_completed_buffers();
  90   FREE_C_HEAP_ARRAY(size_t, _mutator_refined_cards_counters);
  91 }
  92 
  93 // Determines how many mutator threads can process the buffers in parallel.
  94 uint G1DirtyCardQueueSet::num_par_ids() {
  95   return (uint)os::initial_active_processor_count();
  96 }
  97 
  98 size_t G1DirtyCardQueueSet::total_mutator_refined_cards() const {
  99   size_t sum = 0;
 100   for (uint i = 0; i < num_par_ids(); ++i) {
 101     sum += _mutator_refined_cards_counters[i];
 102   }
 103   return sum;
 104 }
 105 
 106 void G1DirtyCardQueueSet::handle_zero_index_for_thread(Thread* t) {
 107   G1ThreadLocalData::dirty_card_queue(t).handle_zero_index();
 108 }
 109 
 110 void G1DirtyCardQueueSet::enqueue_completed_buffer(BufferNode* cbn) {
 111   MonitorLocker ml(_cbl_mon, Mutex::_no_safepoint_check_flag);
 112   cbn->set_next(NULL);
 113   if (_completed_buffers_tail == NULL) {
 114     assert(_completed_buffers_head == NULL, "Well-formedness");
 115     _completed_buffers_head = cbn;
 116     _completed_buffers_tail = cbn;
 117   } else {
 118     _completed_buffers_tail->set_next(cbn);
 119     _completed_buffers_tail = cbn;
 120   }
 121   _num_cards += buffer_size() - cbn->index();
 122 
 123   if (!process_completed_buffers() &&
 124       (num_cards() > process_cards_threshold())) {
 125     set_process_completed_buffers(true);
 126     ml.notify_all();
 127   }
 128   verify_num_cards();
 129 }
 130 
 131 BufferNode* G1DirtyCardQueueSet::get_completed_buffer(size_t stop_at) {
 132   MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
 133 
 134   if (num_cards() <= stop_at) {
 135     return NULL;
 136   }
 137 
 138   assert(num_cards() > 0, "invariant");
 139   assert(_completed_buffers_head != NULL, "invariant");
 140   assert(_completed_buffers_tail != NULL, "invariant");
 141 
 142   BufferNode* bn = _completed_buffers_head;
 143   _num_cards -= buffer_size() - bn->index();
 144   _completed_buffers_head = bn->next();
 145   if (_completed_buffers_head == NULL) {
 146     assert(num_cards() == 0, "invariant");
 147     _completed_buffers_tail = NULL;
 148     set_process_completed_buffers(false);
 149   }
 150   verify_num_cards();
 151   bn->set_next(NULL);
 152   return bn;
 153 }
 154 
 155 #ifdef ASSERT
 156 void G1DirtyCardQueueSet::verify_num_cards() const {
 157   size_t actual = 0;
 158   BufferNode* cur = _completed_buffers_head;
 159   while (cur != NULL) {
 160     actual += buffer_size() - cur->index();
 161     cur = cur->next();
 162   }
 163   assert(actual == _num_cards,
 164          "Num entries in completed buffers should be " SIZE_FORMAT " but are " SIZE_FORMAT,
 165          _num_cards, actual);
 166 }
 167 #endif
 168 
 169 void G1DirtyCardQueueSet::abandon_completed_buffers() {
 170   BufferNode* buffers_to_delete = NULL;
 171   {
 172     MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
 173     buffers_to_delete = _completed_buffers_head;
 174     _completed_buffers_head = NULL;
 175     _completed_buffers_tail = NULL;
 176     _num_cards = 0;
 177     set_process_completed_buffers(false);
 178   }
 179   while (buffers_to_delete != NULL) {
 180     BufferNode* bn = buffers_to_delete;
 181     buffers_to_delete = bn->next();
 182     bn->set_next(NULL);
 183     deallocate_buffer(bn);
 184   }
 185 }
 186 
 187 void G1DirtyCardQueueSet::notify_if_necessary() {
 188   MonitorLocker ml(_cbl_mon, Mutex::_no_safepoint_check_flag);
 189   if (num_cards() > process_cards_threshold()) {
 190     set_process_completed_buffers(true);
 191     ml.notify_all();
 192   }
 193 }
 194 
 195 // Merge lists of buffers. Notify the processing threads.
 196 // The source queue is emptied as a result. The queues
 197 // must share the monitor.
 198 void G1DirtyCardQueueSet::merge_bufferlists(G1RedirtyCardsQueueSet* src) {
 199   assert(allocator() == src->allocator(), "precondition");
 200   const G1BufferNodeList from = src->take_all_completed_buffers();
 201   if (from._head == NULL) return;
 202 
 203   MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
 204   if (_completed_buffers_tail == NULL) {
 205     assert(_completed_buffers_head == NULL, "Well-formedness");
 206     _completed_buffers_head = from._head;
 207     _completed_buffers_tail = from._tail;
 208   } else {
 209     assert(_completed_buffers_head != NULL, "Well formedness");
 210     _completed_buffers_tail->set_next(from._head);
 211     _completed_buffers_tail = from._tail;
 212   }
 213   _num_cards += from._entry_count;
 214 
 215   assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL ||
 216          _completed_buffers_head != NULL && _completed_buffers_tail != NULL,
 217          "Sanity");
 218   verify_num_cards();
 219 }
 220 
 221 G1BufferNodeList G1DirtyCardQueueSet::take_all_completed_buffers() {
 222   MutexLocker x(_cbl_mon, Mutex::_no_safepoint_check_flag);
 223   G1BufferNodeList result(_completed_buffers_head, _completed_buffers_tail, _num_cards);
 224   _completed_buffers_head = NULL;
 225   _completed_buffers_tail = NULL;
 226   _num_cards = 0;
 227   return result;
 228 }
 229 
 230 class G1RefineBufferedCards : public StackObj {
 231   BufferNode* const _node;
 232   CardTable::CardValue** const _node_buffer;
 233   const size_t _node_buffer_size;
 234   const uint _worker_id;
 235   size_t* _total_refined_cards;
 236   G1RemSet* const _g1rs;
 237 
 238   static inline int compare_card(const CardTable::CardValue* p1,
 239                                  const CardTable::CardValue* p2) {
 240     return p2 - p1;
 241   }
 242 
 243   // Sorts the cards from start_index to _node_buffer_size in *decreasing*
 244   // address order. Tests showed that this order is preferable to not sorting
 245   // or increasing address order.
 246   void sort_cards(size_t start_index) {
 247     QuickSort::sort(&_node_buffer[start_index],
 248                     _node_buffer_size - start_index,
 249                     compare_card,
 250                     false);
 251   }
 252 
 253   // Returns the index to the first clean card in the buffer.
 254   size_t clean_cards() {
 255     const size_t start = _node->index();
 256     assert(start <= _node_buffer_size, "invariant");
 257 
 258     // Two-fingered compaction algorithm similar to the filtering mechanism in
 259     // SATBMarkQueue. The main difference is that clean_card_before_refine()
 260     // could change the buffer element in-place.
 261     // We don't check for SuspendibleThreadSet::should_yield(), because
 262     // cleaning and redirtying the cards is fast.
 263     CardTable::CardValue** src = &_node_buffer[start];
 264     CardTable::CardValue** dst = &_node_buffer[_node_buffer_size];
 265     assert(src <= dst, "invariant");
 266     for ( ; src < dst; ++src) {
 267       // Search low to high for a card to keep.
 268       if (_g1rs->clean_card_before_refine(src)) {
 269         // Found keeper.  Search high to low for a card to discard.
 270         while (src < --dst) {
 271           if (!_g1rs->clean_card_before_refine(dst)) {
 272             *dst = *src;         // Replace discard with keeper.
 273             break;
 274           }
 275         }
 276         // If discard search failed (src == dst), the outer loop will also end.
 277       }
 278     }
 279 
 280     // dst points to the first retained clean card, or the end of the buffer
 281     // if all the cards were discarded.
 282     const size_t first_clean = dst - _node_buffer;
 283     assert(first_clean >= start && first_clean <= _node_buffer_size, "invariant");
 284     // Discarded cards are considered as refined.
 285     *_total_refined_cards += first_clean - start;
 286     return first_clean;
 287   }
 288 
 289   bool refine_cleaned_cards(size_t start_index) {
 290     bool result = true;
 291     size_t i = start_index;
 292     for ( ; i < _node_buffer_size; ++i) {
 293       if (SuspendibleThreadSet::should_yield()) {
 294         redirty_unrefined_cards(i);
 295         result = false;
 296         break;
 297       }
 298       _g1rs->refine_card_concurrently(_node_buffer[i], _worker_id);
 299     }
 300     _node->set_index(i);
 301     *_total_refined_cards += i - start_index;
 302     return result;
 303   }
 304 
 305   void redirty_unrefined_cards(size_t start) {
 306     for ( ; start < _node_buffer_size; ++start) {
 307       *_node_buffer[start] = G1CardTable::dirty_card_val();
 308     }
 309   }
 310 
 311 public:
 312   G1RefineBufferedCards(BufferNode* node,
 313                         size_t node_buffer_size,
 314                         uint worker_id,
 315                         size_t* total_refined_cards) :
 316     _node(node),
 317     _node_buffer(reinterpret_cast<CardTable::CardValue**>(BufferNode::make_buffer_from_node(node))),
 318     _node_buffer_size(node_buffer_size),
 319     _worker_id(worker_id),
 320     _total_refined_cards(total_refined_cards),
 321     _g1rs(G1CollectedHeap::heap()->rem_set()) {}
 322 
 323   bool refine() {
 324     size_t first_clean_index = clean_cards();
 325     if (first_clean_index == _node_buffer_size) {
 326       _node->set_index(first_clean_index);
 327       return true;
 328     }
 329     // This fence serves two purposes. First, the cards must be cleaned
 330     // before processing the contents. Second, we can't proceed with
 331     // processing a region until after the read of the region's top in
 332     // collect_and_clean_cards(), for synchronization with possibly concurrent
 333     // humongous object allocation (see comment at the StoreStore fence before
 334     // setting the regions' tops in humongous allocation path).
 335     // It's okay that reading region's top and reading region's type were racy
 336     // wrto each other. We need both set, in any order, to proceed.
 337     OrderAccess::fence();
 338     sort_cards(first_clean_index);
 339     return refine_cleaned_cards(first_clean_index);
 340   }
 341 };
 342 
 343 bool G1DirtyCardQueueSet::refine_buffer(BufferNode* node,
 344                                         uint worker_id,
 345                                         size_t* total_refined_cards) {
 346   G1RefineBufferedCards buffered_cards(node,
 347                                        buffer_size(),
 348                                        worker_id,
 349                                        total_refined_cards);
 350   return buffered_cards.refine();
 351 }
 352 
 353 #ifndef ASSERT
 354 #define assert_fully_consumed(node, buffer_size)
 355 #else
 356 #define assert_fully_consumed(node, buffer_size)                \
 357   do {                                                          \
 358     size_t _afc_index = (node)->index();                        \
 359     size_t _afc_size = (buffer_size);                           \
 360     assert(_afc_index == _afc_size,                             \
 361            "Buffer was not fully consumed as claimed: index: "  \
 362            SIZE_FORMAT ", size: " SIZE_FORMAT,                  \
 363             _afc_index, _afc_size);                             \
 364   } while (0)
 365 #endif // ASSERT
 366 
 367 bool G1DirtyCardQueueSet::process_or_enqueue_completed_buffer(BufferNode* node) {
 368   if (Thread::current()->is_Java_thread()) {
 369     // If the number of buffers exceeds the limit, make this Java
 370     // thread do the processing itself.  We don't lock to access
 371     // buffer count or padding; it is fine to be imprecise here.  The
 372     // add of padding could overflow, which is treated as unlimited.
 373     size_t limit = max_cards() + max_cards_padding();
 374     if ((num_cards() > limit) && (limit >= max_cards())) {
 375       if (mut_process_buffer(node)) {
 376         return true;
 377       }
 378     }
 379   }
 380   enqueue_completed_buffer(node);
 381   return false;
 382 }
 383 
 384 bool G1DirtyCardQueueSet::mut_process_buffer(BufferNode* node) {
 385   uint worker_id = _free_ids.claim_par_id(); // temporarily claim an id
 386   uint counter_index = worker_id - par_ids_start();
 387   size_t* counter = &_mutator_refined_cards_counters[counter_index];
 388   bool result = refine_buffer(node, worker_id, counter);
 389   _free_ids.release_par_id(worker_id); // release the id
 390 
 391   if (result) {
 392     assert_fully_consumed(node, buffer_size());
 393   }
 394   return result;
 395 }
 396 
 397 bool G1DirtyCardQueueSet::refine_completed_buffer_concurrently(uint worker_id,
 398                                                                size_t stop_at,
 399                                                                size_t* total_refined_cards) {
 400   BufferNode* node = get_completed_buffer(stop_at);
 401   if (node == NULL) {
 402     return false;
 403   } else if (refine_buffer(node, worker_id, total_refined_cards)) {
 404     assert_fully_consumed(node, buffer_size());
 405     // Done with fully processed buffer.
 406     deallocate_buffer(node);
 407     return true;
 408   } else {
 409     // Return partially processed buffer to the queue.
 410     enqueue_completed_buffer(node);
 411     return true;
 412   }
 413 }
 414 
 415 void G1DirtyCardQueueSet::abandon_logs() {
 416   assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
 417   abandon_completed_buffers();
 418 
 419   // Since abandon is done only at safepoints, we can safely manipulate
 420   // these queues.
 421   struct AbandonThreadLogClosure : public ThreadClosure {
 422     virtual void do_thread(Thread* t) {
 423       G1ThreadLocalData::dirty_card_queue(t).reset();
 424     }
 425   } closure;
 426   Threads::threads_do(&closure);
 427 
 428   G1BarrierSet::shared_dirty_card_queue().reset();
 429 }
 430 
 431 void G1DirtyCardQueueSet::concatenate_logs() {
 432   // Iterate over all the threads, if we find a partial log add it to
 433   // the global list of logs.  Temporarily turn off the limit on the number
 434   // of outstanding buffers.
 435   assert(SafepointSynchronize::is_at_safepoint(), "Must be at safepoint.");
 436   size_t old_limit = max_cards();
 437   set_max_cards(MaxCardsUnlimited);
 438 
 439   struct ConcatenateThreadLogClosure : public ThreadClosure {
 440     virtual void do_thread(Thread* t) {
 441       G1DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(t);
 442       if (!dcq.is_empty()) {
 443         dcq.flush();
 444       }
 445     }
 446   } closure;
 447   Threads::threads_do(&closure);
 448 
 449   G1BarrierSet::shared_dirty_card_queue().flush();
 450   set_max_cards(old_limit);
 451 }