1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "gc/parallel/adjoiningGenerations.hpp"
  28 #include "gc/parallel/adjoiningGenerationsForHeteroHeap.hpp"
  29 #include "gc/parallel/adjoiningVirtualSpaces.hpp"
  30 #include "gc/parallel/parallelArguments.hpp"
  31 #include "gc/parallel/objectStartArray.inline.hpp"
  32 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  33 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  34 #include "gc/parallel/psMarkSweepProxy.hpp"
  35 #include "gc/parallel/psMemoryPool.hpp"
  36 #include "gc/parallel/psParallelCompact.inline.hpp"
  37 #include "gc/parallel/psPromotionManager.hpp"
  38 #include "gc/parallel/psScavenge.hpp"
  39 #include "gc/parallel/psVMOperations.hpp"
  40 #include "gc/shared/gcHeapSummary.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "gc/shared/gcWhen.hpp"
  43 #include "gc/shared/genArguments.hpp"
  44 #include "gc/shared/locationPrinter.inline.hpp"
  45 #include "gc/shared/scavengableNMethods.hpp"
  46 #include "logging/log.hpp"
  47 #include "memory/metaspaceCounters.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/memoryManager.hpp"
  54 #include "services/memTracker.hpp"
  55 #include "utilities/macros.hpp"
  56 #include "utilities/vmError.hpp"
  57 
  58 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  59 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  60 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  61 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  62 
  63 jint ParallelScavengeHeap::initialize() {
  64   const size_t reserved_heap_size = ParallelArguments::heap_reserved_size_bytes();
  65 
  66   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_heap_size, HeapAlignment);
  67 
  68   os::trace_page_sizes("Heap",
  69                        MinHeapSize,
  70                        reserved_heap_size,
  71                        GenAlignment,
  72                        heap_rs.base(),
  73                        heap_rs.size());
  74 
  75   initialize_reserved_region(heap_rs);
  76 
  77   PSCardTable* card_table = new PSCardTable(heap_rs.region());
  78   card_table->initialize();
  79   CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table);
  80   barrier_set->initialize();
  81   BarrierSet::set_barrier_set(barrier_set);
  82 
  83   // Make up the generations
  84   // Calculate the maximum size that a generation can grow.  This
  85   // includes growth into the other generation.  Note that the
  86   // parameter _max_gen_size is kept as the maximum
  87   // size of the generation as the boundaries currently stand.
  88   // _max_gen_size is still used as that value.
  89   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  90   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  91 
  92   _gens = AdjoiningGenerations::create_adjoining_generations(heap_rs);
  93 
  94   _old_gen = _gens->old_gen();
  95   _young_gen = _gens->young_gen();
  96 
  97   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
  98   const size_t old_capacity = _old_gen->capacity_in_bytes();
  99   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 100   _size_policy =
 101     new PSAdaptiveSizePolicy(eden_capacity,
 102                              initial_promo_size,
 103                              young_gen()->to_space()->capacity_in_bytes(),
 104                              GenAlignment,
 105                              max_gc_pause_sec,
 106                              max_gc_minor_pause_sec,
 107                              GCTimeRatio
 108                              );
 109 
 110   assert(ParallelArguments::is_heterogeneous_heap() || !UseAdaptiveGCBoundary ||
 111     (old_gen()->virtual_space()->high_boundary() ==
 112      young_gen()->virtual_space()->low_boundary()),
 113     "Boundaries must meet");
 114   // initialize the policy counters - 2 collectors, 2 generations
 115   _gc_policy_counters =
 116     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
 117 
 118   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 119     return JNI_ENOMEM;
 120   }
 121 
 122   // Set up WorkGang
 123   _workers.initialize_workers();
 124 
 125   return JNI_OK;
 126 }
 127 
 128 void ParallelScavengeHeap::initialize_serviceability() {
 129 
 130   _eden_pool = new EdenMutableSpacePool(_young_gen,
 131                                         _young_gen->eden_space(),
 132                                         "PS Eden Space",
 133                                         false /* support_usage_threshold */);
 134 
 135   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,
 136                                                 "PS Survivor Space",
 137                                                 false /* support_usage_threshold */);
 138 
 139   _old_pool = new PSGenerationPool(_old_gen,
 140                                    "PS Old Gen",
 141                                    true /* support_usage_threshold */);
 142 
 143   _young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
 144   _old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
 145 
 146   _old_manager->add_pool(_eden_pool);
 147   _old_manager->add_pool(_survivor_pool);
 148   _old_manager->add_pool(_old_pool);
 149 
 150   _young_manager->add_pool(_eden_pool);
 151   _young_manager->add_pool(_survivor_pool);
 152 
 153 }
 154 
 155 class PSIsScavengable : public BoolObjectClosure {
 156   bool do_object_b(oop obj) {
 157     return ParallelScavengeHeap::heap()->is_in_young(obj);
 158   }
 159 };
 160 
 161 static PSIsScavengable _is_scavengable;
 162 
 163 void ParallelScavengeHeap::post_initialize() {
 164   CollectedHeap::post_initialize();
 165   // Need to init the tenuring threshold
 166   PSScavenge::initialize();
 167   if (UseParallelOldGC) {
 168     PSParallelCompact::post_initialize();
 169   } else {
 170     PSMarkSweepProxy::initialize();
 171   }
 172   PSPromotionManager::initialize();
 173 
 174   ScavengableNMethods::initialize(&_is_scavengable);
 175 }
 176 
 177 void ParallelScavengeHeap::update_counters() {
 178   young_gen()->update_counters();
 179   old_gen()->update_counters();
 180   MetaspaceCounters::update_performance_counters();
 181   CompressedClassSpaceCounters::update_performance_counters();
 182 }
 183 
 184 size_t ParallelScavengeHeap::capacity() const {
 185   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 186   return value;
 187 }
 188 
 189 size_t ParallelScavengeHeap::used() const {
 190   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 191   return value;
 192 }
 193 
 194 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 195   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 196 }
 197 
 198 
 199 size_t ParallelScavengeHeap::max_capacity() const {
 200   size_t estimated = reserved_region().byte_size();
 201   if (UseAdaptiveSizePolicy) {
 202     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 203   } else {
 204     estimated -= young_gen()->to_space()->capacity_in_bytes();
 205   }
 206   return MAX2(estimated, capacity());
 207 }
 208 
 209 bool ParallelScavengeHeap::is_in(const void* p) const {
 210   return young_gen()->is_in(p) || old_gen()->is_in(p);
 211 }
 212 
 213 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 214   return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
 215 }
 216 
 217 // There are two levels of allocation policy here.
 218 //
 219 // When an allocation request fails, the requesting thread must invoke a VM
 220 // operation, transfer control to the VM thread, and await the results of a
 221 // garbage collection. That is quite expensive, and we should avoid doing it
 222 // multiple times if possible.
 223 //
 224 // To accomplish this, we have a basic allocation policy, and also a
 225 // failed allocation policy.
 226 //
 227 // The basic allocation policy controls how you allocate memory without
 228 // attempting garbage collection. It is okay to grab locks and
 229 // expand the heap, if that can be done without coming to a safepoint.
 230 // It is likely that the basic allocation policy will not be very
 231 // aggressive.
 232 //
 233 // The failed allocation policy is invoked from the VM thread after
 234 // the basic allocation policy is unable to satisfy a mem_allocate
 235 // request. This policy needs to cover the entire range of collection,
 236 // heap expansion, and out-of-memory conditions. It should make every
 237 // attempt to allocate the requested memory.
 238 
 239 // Basic allocation policy. Should never be called at a safepoint, or
 240 // from the VM thread.
 241 //
 242 // This method must handle cases where many mem_allocate requests fail
 243 // simultaneously. When that happens, only one VM operation will succeed,
 244 // and the rest will not be executed. For that reason, this method loops
 245 // during failed allocation attempts. If the java heap becomes exhausted,
 246 // we rely on the size_policy object to force a bail out.
 247 HeapWord* ParallelScavengeHeap::mem_allocate(
 248                                      size_t size,
 249                                      bool* gc_overhead_limit_was_exceeded) {
 250   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 251   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 252   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 253 
 254   // In general gc_overhead_limit_was_exceeded should be false so
 255   // set it so here and reset it to true only if the gc time
 256   // limit is being exceeded as checked below.
 257   *gc_overhead_limit_was_exceeded = false;
 258 
 259   HeapWord* result = young_gen()->allocate(size);
 260 
 261   uint loop_count = 0;
 262   uint gc_count = 0;
 263   uint gclocker_stalled_count = 0;
 264 
 265   while (result == NULL) {
 266     // We don't want to have multiple collections for a single filled generation.
 267     // To prevent this, each thread tracks the total_collections() value, and if
 268     // the count has changed, does not do a new collection.
 269     //
 270     // The collection count must be read only while holding the heap lock. VM
 271     // operations also hold the heap lock during collections. There is a lock
 272     // contention case where thread A blocks waiting on the Heap_lock, while
 273     // thread B is holding it doing a collection. When thread A gets the lock,
 274     // the collection count has already changed. To prevent duplicate collections,
 275     // The policy MUST attempt allocations during the same period it reads the
 276     // total_collections() value!
 277     {
 278       MutexLocker ml(Heap_lock);
 279       gc_count = total_collections();
 280 
 281       result = young_gen()->allocate(size);
 282       if (result != NULL) {
 283         return result;
 284       }
 285 
 286       // If certain conditions hold, try allocating from the old gen.
 287       result = mem_allocate_old_gen(size);
 288       if (result != NULL) {
 289         return result;
 290       }
 291 
 292       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 293         return NULL;
 294       }
 295 
 296       // Failed to allocate without a gc.
 297       if (GCLocker::is_active_and_needs_gc()) {
 298         // If this thread is not in a jni critical section, we stall
 299         // the requestor until the critical section has cleared and
 300         // GC allowed. When the critical section clears, a GC is
 301         // initiated by the last thread exiting the critical section; so
 302         // we retry the allocation sequence from the beginning of the loop,
 303         // rather than causing more, now probably unnecessary, GC attempts.
 304         JavaThread* jthr = JavaThread::current();
 305         if (!jthr->in_critical()) {
 306           MutexUnlocker mul(Heap_lock);
 307           GCLocker::stall_until_clear();
 308           gclocker_stalled_count += 1;
 309           continue;
 310         } else {
 311           if (CheckJNICalls) {
 312             fatal("Possible deadlock due to allocating while"
 313                   " in jni critical section");
 314           }
 315           return NULL;
 316         }
 317       }
 318     }
 319 
 320     if (result == NULL) {
 321       // Generate a VM operation
 322       VM_ParallelGCFailedAllocation op(size, gc_count);
 323       VMThread::execute(&op);
 324 
 325       // Did the VM operation execute? If so, return the result directly.
 326       // This prevents us from looping until time out on requests that can
 327       // not be satisfied.
 328       if (op.prologue_succeeded()) {
 329         assert(is_in_or_null(op.result()), "result not in heap");
 330 
 331         // If GC was locked out during VM operation then retry allocation
 332         // and/or stall as necessary.
 333         if (op.gc_locked()) {
 334           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 335           continue;  // retry and/or stall as necessary
 336         }
 337 
 338         // Exit the loop if the gc time limit has been exceeded.
 339         // The allocation must have failed above ("result" guarding
 340         // this path is NULL) and the most recent collection has exceeded the
 341         // gc overhead limit (although enough may have been collected to
 342         // satisfy the allocation).  Exit the loop so that an out-of-memory
 343         // will be thrown (return a NULL ignoring the contents of
 344         // op.result()),
 345         // but clear gc_overhead_limit_exceeded so that the next collection
 346         // starts with a clean slate (i.e., forgets about previous overhead
 347         // excesses).  Fill op.result() with a filler object so that the
 348         // heap remains parsable.
 349         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 350         const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 351 
 352         if (limit_exceeded && softrefs_clear) {
 353           *gc_overhead_limit_was_exceeded = true;
 354           size_policy()->set_gc_overhead_limit_exceeded(false);
 355           log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
 356           if (op.result() != NULL) {
 357             CollectedHeap::fill_with_object(op.result(), size);
 358           }
 359           return NULL;
 360         }
 361 
 362         return op.result();
 363       }
 364     }
 365 
 366     // The policy object will prevent us from looping forever. If the
 367     // time spent in gc crosses a threshold, we will bail out.
 368     loop_count++;
 369     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 370         (loop_count % QueuedAllocationWarningCount == 0)) {
 371       log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
 372       log_warning(gc)("\tsize=" SIZE_FORMAT, size);
 373     }
 374   }
 375 
 376   return result;
 377 }
 378 
 379 // A "death march" is a series of ultra-slow allocations in which a full gc is
 380 // done before each allocation, and after the full gc the allocation still
 381 // cannot be satisfied from the young gen.  This routine detects that condition;
 382 // it should be called after a full gc has been done and the allocation
 383 // attempted from the young gen. The parameter 'addr' should be the result of
 384 // that young gen allocation attempt.
 385 void
 386 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 387   if (addr != NULL) {
 388     _death_march_count = 0;  // death march has ended
 389   } else if (_death_march_count == 0) {
 390     if (should_alloc_in_eden(size)) {
 391       _death_march_count = 1;    // death march has started
 392     }
 393   }
 394 }
 395 
 396 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 397   if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
 398     // Size is too big for eden, or gc is locked out.
 399     return old_gen()->allocate(size);
 400   }
 401 
 402   // If a "death march" is in progress, allocate from the old gen a limited
 403   // number of times before doing a GC.
 404   if (_death_march_count > 0) {
 405     if (_death_march_count < 64) {
 406       ++_death_march_count;
 407       return old_gen()->allocate(size);
 408     } else {
 409       _death_march_count = 0;
 410     }
 411   }
 412   return NULL;
 413 }
 414 
 415 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 416   if (UseParallelOldGC) {
 417     // The do_full_collection() parameter clear_all_soft_refs
 418     // is interpreted here as maximum_compaction which will
 419     // cause SoftRefs to be cleared.
 420     bool maximum_compaction = clear_all_soft_refs;
 421     PSParallelCompact::invoke(maximum_compaction);
 422   } else {
 423     PSMarkSweepProxy::invoke(clear_all_soft_refs);
 424   }
 425 }
 426 
 427 // Failed allocation policy. Must be called from the VM thread, and
 428 // only at a safepoint! Note that this method has policy for allocation
 429 // flow, and NOT collection policy. So we do not check for gc collection
 430 // time over limit here, that is the responsibility of the heap specific
 431 // collection methods. This method decides where to attempt allocations,
 432 // and when to attempt collections, but no collection specific policy.
 433 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 434   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 435   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 436   assert(!is_gc_active(), "not reentrant");
 437   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 438 
 439   // We assume that allocation in eden will fail unless we collect.
 440 
 441   // First level allocation failure, scavenge and allocate in young gen.
 442   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 443   const bool invoked_full_gc = PSScavenge::invoke();
 444   HeapWord* result = young_gen()->allocate(size);
 445 
 446   // Second level allocation failure.
 447   //   Mark sweep and allocate in young generation.
 448   if (result == NULL && !invoked_full_gc) {
 449     do_full_collection(false);
 450     result = young_gen()->allocate(size);
 451   }
 452 
 453   death_march_check(result, size);
 454 
 455   // Third level allocation failure.
 456   //   After mark sweep and young generation allocation failure,
 457   //   allocate in old generation.
 458   if (result == NULL) {
 459     result = old_gen()->allocate(size);
 460   }
 461 
 462   // Fourth level allocation failure. We're running out of memory.
 463   //   More complete mark sweep and allocate in young generation.
 464   if (result == NULL) {
 465     do_full_collection(true);
 466     result = young_gen()->allocate(size);
 467   }
 468 
 469   // Fifth level allocation failure.
 470   //   After more complete mark sweep, allocate in old generation.
 471   if (result == NULL) {
 472     result = old_gen()->allocate(size);
 473   }
 474 
 475   return result;
 476 }
 477 
 478 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 479   CollectedHeap::ensure_parsability(retire_tlabs);
 480   young_gen()->eden_space()->ensure_parsability();
 481 }
 482 
 483 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 484   return young_gen()->eden_space()->tlab_capacity(thr);
 485 }
 486 
 487 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
 488   return young_gen()->eden_space()->tlab_used(thr);
 489 }
 490 
 491 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 492   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 493 }
 494 
 495 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) {
 496   HeapWord* result = young_gen()->allocate(requested_size);
 497   if (result != NULL) {
 498     *actual_size = requested_size;
 499   }
 500 
 501   return result;
 502 }
 503 
 504 void ParallelScavengeHeap::resize_all_tlabs() {
 505   CollectedHeap::resize_all_tlabs();
 506 }
 507 
 508 // This method is used by System.gc() and JVMTI.
 509 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 510   assert(!Heap_lock->owned_by_self(),
 511     "this thread should not own the Heap_lock");
 512 
 513   uint gc_count      = 0;
 514   uint full_gc_count = 0;
 515   {
 516     MutexLocker ml(Heap_lock);
 517     // This value is guarded by the Heap_lock
 518     gc_count      = total_collections();
 519     full_gc_count = total_full_collections();
 520   }
 521 
 522   if (GCLocker::should_discard(cause, gc_count)) {
 523     return;
 524   }
 525 
 526   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 527   VMThread::execute(&op);
 528 }
 529 
 530 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 531   young_gen()->object_iterate(cl);
 532   old_gen()->object_iterate(cl);
 533 }
 534 
 535 
 536 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 537   if (young_gen()->is_in_reserved(addr)) {
 538     assert(young_gen()->is_in(addr),
 539            "addr should be in allocated part of young gen");
 540     // called from os::print_location by find or VMError
 541     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 542     Unimplemented();
 543   } else if (old_gen()->is_in_reserved(addr)) {
 544     assert(old_gen()->is_in(addr),
 545            "addr should be in allocated part of old gen");
 546     return old_gen()->start_array()->object_start((HeapWord*)addr);
 547   }
 548   return 0;
 549 }
 550 
 551 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 552   return block_start(addr) == addr;
 553 }
 554 
 555 jlong ParallelScavengeHeap::millis_since_last_gc() {
 556   return UseParallelOldGC ?
 557     PSParallelCompact::millis_since_last_gc() :
 558     PSMarkSweepProxy::millis_since_last_gc();
 559 }
 560 
 561 void ParallelScavengeHeap::prepare_for_verify() {
 562   ensure_parsability(false);  // no need to retire TLABs for verification
 563 }
 564 
 565 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 566   PSOldGen* old = old_gen();
 567   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 568   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 569   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 570 
 571   PSYoungGen* young = young_gen();
 572   VirtualSpaceSummary young_summary(young->reserved().start(),
 573     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 574 
 575   MutableSpace* eden = young_gen()->eden_space();
 576   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 577 
 578   MutableSpace* from = young_gen()->from_space();
 579   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 580 
 581   MutableSpace* to = young_gen()->to_space();
 582   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 583 
 584   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 585   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 586 }
 587 
 588 bool ParallelScavengeHeap::print_location(outputStream* st, void* addr) const {
 589   return BlockLocationPrinter<ParallelScavengeHeap>::print_location(st, addr);
 590 }
 591 
 592 void ParallelScavengeHeap::print_on(outputStream* st) const {
 593   young_gen()->print_on(st);
 594   old_gen()->print_on(st);
 595   MetaspaceUtils::print_on(st);
 596 }
 597 
 598 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 599   this->CollectedHeap::print_on_error(st);
 600 
 601   if (UseParallelOldGC) {
 602     st->cr();
 603     PSParallelCompact::print_on_error(st);
 604   }
 605 }
 606 
 607 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 608   ParallelScavengeHeap::heap()->workers().threads_do(tc);
 609 }
 610 
 611 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 612   ParallelScavengeHeap::heap()->workers().print_worker_threads_on(st);
 613 }
 614 
 615 void ParallelScavengeHeap::print_tracing_info() const {
 616   AdaptiveSizePolicyOutput::print();
 617   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
 618   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
 619       UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweepProxy::accumulated_time()->seconds());
 620 }
 621 
 622 PreGenGCValues ParallelScavengeHeap::get_pre_gc_values() const {
 623   const PSYoungGen* const young = young_gen();
 624   const MutableSpace* const eden = young->eden_space();
 625   const MutableSpace* const from = young->from_space();
 626   const PSOldGen* const old = old_gen();
 627 
 628   return PreGenGCValues(young->used_in_bytes(),
 629                         young->capacity_in_bytes(),
 630                         eden->used_in_bytes(),
 631                         eden->capacity_in_bytes(),
 632                         from->used_in_bytes(),
 633                         from->capacity_in_bytes(),
 634                         old->used_in_bytes(),
 635                         old->capacity_in_bytes());
 636 }
 637 
 638 void ParallelScavengeHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
 639   const PSYoungGen* const young = young_gen();
 640   const MutableSpace* const eden = young->eden_space();
 641   const MutableSpace* const from = young->from_space();
 642   const PSOldGen* const old = old_gen();
 643 
 644   log_info(gc, heap)(HEAP_CHANGE_FORMAT" "
 645                      HEAP_CHANGE_FORMAT" "
 646                      HEAP_CHANGE_FORMAT,
 647                      HEAP_CHANGE_FORMAT_ARGS(young->name(),
 648                                              pre_gc_values.young_gen_used(),
 649                                              pre_gc_values.young_gen_capacity(),
 650                                              young->used_in_bytes(),
 651                                              young->capacity_in_bytes()),
 652                      HEAP_CHANGE_FORMAT_ARGS("Eden",
 653                                              pre_gc_values.eden_used(),
 654                                              pre_gc_values.eden_capacity(),
 655                                              eden->used_in_bytes(),
 656                                              eden->capacity_in_bytes()),
 657                      HEAP_CHANGE_FORMAT_ARGS("From",
 658                                              pre_gc_values.from_used(),
 659                                              pre_gc_values.from_capacity(),
 660                                              from->used_in_bytes(),
 661                                              from->capacity_in_bytes()));
 662   log_info(gc, heap)(HEAP_CHANGE_FORMAT,
 663                      HEAP_CHANGE_FORMAT_ARGS(old->name(),
 664                                              pre_gc_values.old_gen_used(),
 665                                              pre_gc_values.old_gen_capacity(),
 666                                              old->used_in_bytes(),
 667                                              old->capacity_in_bytes()));
 668   MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes());
 669 }
 670 
 671 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
 672   // Why do we need the total_collections()-filter below?
 673   if (total_collections() > 0) {
 674     log_debug(gc, verify)("Tenured");
 675     old_gen()->verify();
 676 
 677     log_debug(gc, verify)("Eden");
 678     young_gen()->verify();
 679   }
 680 }
 681 
 682 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 683   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 684   gc_tracer->report_gc_heap_summary(when, heap_summary);
 685 
 686   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 687   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 688 }
 689 
 690 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 691   CollectedHeap* heap = Universe::heap();
 692   assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 693   assert(heap->kind() == CollectedHeap::Parallel, "Invalid name");
 694   return (ParallelScavengeHeap*)heap;
 695 }
 696 
 697 CardTableBarrierSet* ParallelScavengeHeap::barrier_set() {
 698   return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
 699 }
 700 
 701 PSCardTable* ParallelScavengeHeap::card_table() {
 702   return static_cast<PSCardTable*>(barrier_set()->card_table());
 703 }
 704 
 705 // Before delegating the resize to the young generation,
 706 // the reserved space for the young and old generations
 707 // may be changed to accommodate the desired resize.
 708 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 709     size_t survivor_size) {
 710   if (UseAdaptiveGCBoundary) {
 711     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 712       size_policy()->reset_bytes_absorbed_from_eden();
 713       return;  // The generation changed size already.
 714     }
 715     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 716   }
 717 
 718   // Delegate the resize to the generation.
 719   _young_gen->resize(eden_size, survivor_size);
 720 }
 721 
 722 // Before delegating the resize to the old generation,
 723 // the reserved space for the young and old generations
 724 // may be changed to accommodate the desired resize.
 725 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 726   if (UseAdaptiveGCBoundary) {
 727     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 728       size_policy()->reset_bytes_absorbed_from_eden();
 729       return;  // The generation changed size already.
 730     }
 731     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 732   }
 733 
 734   // Delegate the resize to the generation.
 735   _old_gen->resize(desired_free_space);
 736 }
 737 
 738 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 739   // nothing particular
 740 }
 741 
 742 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 743   // nothing particular
 744 }
 745 
 746 #ifndef PRODUCT
 747 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 748   if (ZapUnusedHeapArea) {
 749     young_gen()->record_spaces_top();
 750     old_gen()->record_spaces_top();
 751   }
 752 }
 753 
 754 void ParallelScavengeHeap::gen_mangle_unused_area() {
 755   if (ZapUnusedHeapArea) {
 756     young_gen()->eden_space()->mangle_unused_area();
 757     young_gen()->to_space()->mangle_unused_area();
 758     young_gen()->from_space()->mangle_unused_area();
 759     old_gen()->object_space()->mangle_unused_area();
 760   }
 761 }
 762 #endif
 763 
 764 void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
 765   ScavengableNMethods::register_nmethod(nm);
 766 }
 767 
 768 void ParallelScavengeHeap::unregister_nmethod(nmethod* nm) {
 769   ScavengableNMethods::unregister_nmethod(nm);
 770 }
 771 
 772 void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
 773   ScavengableNMethods::verify_nmethod(nm);
 774 }
 775 
 776 void ParallelScavengeHeap::flush_nmethod(nmethod* nm) {
 777   // nothing particular
 778 }
 779 
 780 void ParallelScavengeHeap::prune_scavengable_nmethods() {
 781   ScavengableNMethods::prune_nmethods();
 782 }
 783 
 784 GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
 785   GrowableArray<GCMemoryManager*> memory_managers(2);
 786   memory_managers.append(_young_manager);
 787   memory_managers.append(_old_manager);
 788   return memory_managers;
 789 }
 790 
 791 GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
 792   GrowableArray<MemoryPool*> memory_pools(3);
 793   memory_pools.append(_eden_pool);
 794   memory_pools.append(_survivor_pool);
 795   memory_pools.append(_old_pool);
 796   return memory_pools;
 797 }