1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "gc/serial/defNewGeneration.hpp"
  35 #include "gc/shared/adaptiveSizePolicy.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/cardTableRS.hpp"
  38 #include "gc/shared/collectedHeap.inline.hpp"
  39 #include "gc/shared/collectorCounters.hpp"
  40 #include "gc/shared/gcId.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "gc/shared/gcPolicyCounters.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genArguments.hpp"
  46 #include "gc/shared/gcVMOperations.hpp"
  47 #include "gc/shared/genCollectedHeap.hpp"
  48 #include "gc/shared/genOopClosures.inline.hpp"
  49 #include "gc/shared/generationSpec.hpp"
  50 #include "gc/shared/locationPrinter.inline.hpp"
  51 #include "gc/shared/oopStorageParState.inline.hpp"
  52 #include "gc/shared/scavengableNMethods.hpp"
  53 #include "gc/shared/space.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/weakProcessor.hpp"
  56 #include "gc/shared/workgroup.hpp"
  57 #include "memory/filemap.hpp"
  58 #include "memory/metaspaceCounters.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "memory/universe.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "runtime/biasedLocking.hpp"
  63 #include "runtime/flags/flagSetting.hpp"
  64 #include "runtime/handles.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "services/management.hpp"
  69 #include "services/memoryService.hpp"
  70 #include "utilities/debug.hpp"
  71 #include "utilities/formatBuffer.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 #include "utilities/vmError.hpp"
  75 #if INCLUDE_JVMCI
  76 #include "jvmci/jvmci.hpp"
  77 #endif
  78 
  79 GenCollectedHeap::GenCollectedHeap(Generation::Name young,
  80                                    Generation::Name old,
  81                                    const char* policy_counters_name) :
  82   CollectedHeap(),
  83   _young_gen_spec(new GenerationSpec(young,
  84                                      NewSize,
  85                                      MaxNewSize,
  86                                      GenAlignment)),
  87   _old_gen_spec(new GenerationSpec(old,
  88                                    OldSize,
  89                                    MaxOldSize,
  90                                    GenAlignment)),
  91   _rem_set(NULL),
  92   _soft_ref_gen_policy(),
  93   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
  94   _full_collections_completed(0),
  95   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)) {
  96 }
  97 
  98 jint GenCollectedHeap::initialize() {
  99   // While there are no constraints in the GC code that HeapWordSize
 100   // be any particular value, there are multiple other areas in the
 101   // system which believe this to be true (e.g. oop->object_size in some
 102   // cases incorrectly returns the size in wordSize units rather than
 103   // HeapWordSize).
 104   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 105 
 106   // Allocate space for the heap.
 107 
 108   ReservedHeapSpace heap_rs = allocate(HeapAlignment);
 109 
 110   if (!heap_rs.is_reserved()) {
 111     vm_shutdown_during_initialization(
 112       "Could not reserve enough space for object heap");
 113     return JNI_ENOMEM;
 114   }
 115 
 116   initialize_reserved_region(heap_rs);
 117 
 118   _rem_set = create_rem_set(heap_rs.region());
 119   _rem_set->initialize();
 120   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 121   bs->initialize();
 122   BarrierSet::set_barrier_set(bs);
 123 
 124   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size(), false, false);
 125   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 126   ReservedSpace old_rs = heap_rs.last_part(_young_gen_spec->max_size());
 127 
 128   old_rs = old_rs.first_part(_old_gen_spec->max_size(), false, false);
 129   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 130   clear_incremental_collection_failed();
 131 
 132   return JNI_OK;
 133 }
 134 
 135 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 136   return new CardTableRS(reserved_region, false /* scan_concurrently */);
 137 }
 138 
 139 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 140                                               size_t init_promo_size,
 141                                               size_t init_survivor_size) {
 142   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 143   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 144                                         init_promo_size,
 145                                         init_survivor_size,
 146                                         max_gc_pause_sec,
 147                                         GCTimeRatio);
 148 }
 149 
 150 ReservedHeapSpace GenCollectedHeap::allocate(size_t alignment) {
 151   // Now figure out the total size.
 152   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 153   assert(alignment % pageSize == 0, "Must be");
 154 
 155   // Check for overflow.
 156   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 157   if (total_reserved < _young_gen_spec->max_size()) {
 158     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 159                                   "the maximum representable size");
 160   }
 161   assert(total_reserved % alignment == 0,
 162          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 163          SIZE_FORMAT, total_reserved, alignment);
 164 
 165   ReservedHeapSpace heap_rs = Universe::reserve_heap(total_reserved, alignment);
 166 
 167   os::trace_page_sizes("Heap",
 168                        MinHeapSize,
 169                        total_reserved,
 170                        alignment,
 171                        heap_rs.base(),
 172                        heap_rs.size());
 173 
 174   return heap_rs;
 175 }
 176 
 177 class GenIsScavengable : public BoolObjectClosure {
 178 public:
 179   bool do_object_b(oop obj) {
 180     return GenCollectedHeap::heap()->is_in_young(obj);
 181   }
 182 };
 183 
 184 static GenIsScavengable _is_scavengable;
 185 
 186 void GenCollectedHeap::post_initialize() {
 187   CollectedHeap::post_initialize();
 188   ref_processing_init();
 189 
 190   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 191 
 192   initialize_size_policy(def_new_gen->eden()->capacity(),
 193                          _old_gen->capacity(),
 194                          def_new_gen->from()->capacity());
 195 
 196   MarkSweep::initialize();
 197 
 198   ScavengableNMethods::initialize(&_is_scavengable);
 199 }
 200 
 201 void GenCollectedHeap::ref_processing_init() {
 202   _young_gen->ref_processor_init();
 203   _old_gen->ref_processor_init();
 204 }
 205 
 206 PreGenGCValues GenCollectedHeap::get_pre_gc_values() const {
 207   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
 208 
 209   return PreGenGCValues(def_new_gen->used(),
 210                         def_new_gen->capacity(),
 211                         def_new_gen->eden()->used(),
 212                         def_new_gen->eden()->capacity(),
 213                         def_new_gen->from()->used(),
 214                         def_new_gen->from()->capacity(),
 215                         old_gen()->used(),
 216                         old_gen()->capacity());
 217 }
 218 
 219 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 220   return _young_gen_spec;
 221 }
 222 
 223 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 224   return _old_gen_spec;
 225 }
 226 
 227 size_t GenCollectedHeap::capacity() const {
 228   return _young_gen->capacity() + _old_gen->capacity();
 229 }
 230 
 231 size_t GenCollectedHeap::used() const {
 232   return _young_gen->used() + _old_gen->used();
 233 }
 234 
 235 void GenCollectedHeap::save_used_regions() {
 236   _old_gen->save_used_region();
 237   _young_gen->save_used_region();
 238 }
 239 
 240 size_t GenCollectedHeap::max_capacity() const {
 241   return _young_gen->max_capacity() + _old_gen->max_capacity();
 242 }
 243 
 244 // Update the _full_collections_completed counter
 245 // at the end of a stop-world full GC.
 246 unsigned int GenCollectedHeap::update_full_collections_completed() {
 247   MonitorLocker ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 248   assert(_full_collections_completed <= _total_full_collections,
 249          "Can't complete more collections than were started");
 250   _full_collections_completed = _total_full_collections;
 251   ml.notify_all();
 252   return _full_collections_completed;
 253 }
 254 
 255 // Update the _full_collections_completed counter, as appropriate,
 256 // at the end of a concurrent GC cycle. Note the conditional update
 257 // below to allow this method to be called by a concurrent collector
 258 // without synchronizing in any manner with the VM thread (which
 259 // may already have initiated a STW full collection "concurrently").
 260 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 261   MonitorLocker ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 262   assert((_full_collections_completed <= _total_full_collections) &&
 263          (count <= _total_full_collections),
 264          "Can't complete more collections than were started");
 265   if (count > _full_collections_completed) {
 266     _full_collections_completed = count;
 267     ml.notify_all();
 268   }
 269   return _full_collections_completed;
 270 }
 271 
 272 // Return true if any of the following is true:
 273 // . the allocation won't fit into the current young gen heap
 274 // . gc locker is occupied (jni critical section)
 275 // . heap memory is tight -- the most recent previous collection
 276 //   was a full collection because a partial collection (would
 277 //   have) failed and is likely to fail again
 278 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 279   size_t young_capacity = _young_gen->capacity_before_gc();
 280   return    (word_size > heap_word_size(young_capacity))
 281          || GCLocker::is_active_and_needs_gc()
 282          || incremental_collection_failed();
 283 }
 284 
 285 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 286   HeapWord* result = NULL;
 287   if (_old_gen->should_allocate(size, is_tlab)) {
 288     result = _old_gen->expand_and_allocate(size, is_tlab);
 289   }
 290   if (result == NULL) {
 291     if (_young_gen->should_allocate(size, is_tlab)) {
 292       result = _young_gen->expand_and_allocate(size, is_tlab);
 293     }
 294   }
 295   assert(result == NULL || is_in_reserved(result), "result not in heap");
 296   return result;
 297 }
 298 
 299 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 300                                               bool is_tlab,
 301                                               bool* gc_overhead_limit_was_exceeded) {
 302   // In general gc_overhead_limit_was_exceeded should be false so
 303   // set it so here and reset it to true only if the gc time
 304   // limit is being exceeded as checked below.
 305   *gc_overhead_limit_was_exceeded = false;
 306 
 307   HeapWord* result = NULL;
 308 
 309   // Loop until the allocation is satisfied, or unsatisfied after GC.
 310   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 311     HandleMark hm; // Discard any handles allocated in each iteration.
 312 
 313     // First allocation attempt is lock-free.
 314     Generation *young = _young_gen;
 315     assert(young->supports_inline_contig_alloc(),
 316       "Otherwise, must do alloc within heap lock");
 317     if (young->should_allocate(size, is_tlab)) {
 318       result = young->par_allocate(size, is_tlab);
 319       if (result != NULL) {
 320         assert(is_in_reserved(result), "result not in heap");
 321         return result;
 322       }
 323     }
 324     uint gc_count_before;  // Read inside the Heap_lock locked region.
 325     {
 326       MutexLocker ml(Heap_lock);
 327       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 328       // Note that only large objects get a shot at being
 329       // allocated in later generations.
 330       bool first_only = !should_try_older_generation_allocation(size);
 331 
 332       result = attempt_allocation(size, is_tlab, first_only);
 333       if (result != NULL) {
 334         assert(is_in_reserved(result), "result not in heap");
 335         return result;
 336       }
 337 
 338       if (GCLocker::is_active_and_needs_gc()) {
 339         if (is_tlab) {
 340           return NULL;  // Caller will retry allocating individual object.
 341         }
 342         if (!is_maximal_no_gc()) {
 343           // Try and expand heap to satisfy request.
 344           result = expand_heap_and_allocate(size, is_tlab);
 345           // Result could be null if we are out of space.
 346           if (result != NULL) {
 347             return result;
 348           }
 349         }
 350 
 351         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 352           return NULL; // We didn't get to do a GC and we didn't get any memory.
 353         }
 354 
 355         // If this thread is not in a jni critical section, we stall
 356         // the requestor until the critical section has cleared and
 357         // GC allowed. When the critical section clears, a GC is
 358         // initiated by the last thread exiting the critical section; so
 359         // we retry the allocation sequence from the beginning of the loop,
 360         // rather than causing more, now probably unnecessary, GC attempts.
 361         JavaThread* jthr = JavaThread::current();
 362         if (!jthr->in_critical()) {
 363           MutexUnlocker mul(Heap_lock);
 364           // Wait for JNI critical section to be exited
 365           GCLocker::stall_until_clear();
 366           gclocker_stalled_count += 1;
 367           continue;
 368         } else {
 369           if (CheckJNICalls) {
 370             fatal("Possible deadlock due to allocating while"
 371                   " in jni critical section");
 372           }
 373           return NULL;
 374         }
 375       }
 376 
 377       // Read the gc count while the heap lock is held.
 378       gc_count_before = total_collections();
 379     }
 380 
 381     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 382     VMThread::execute(&op);
 383     if (op.prologue_succeeded()) {
 384       result = op.result();
 385       if (op.gc_locked()) {
 386          assert(result == NULL, "must be NULL if gc_locked() is true");
 387          continue;  // Retry and/or stall as necessary.
 388       }
 389 
 390       // Allocation has failed and a collection
 391       // has been done.  If the gc time limit was exceeded the
 392       // this time, return NULL so that an out-of-memory
 393       // will be thrown.  Clear gc_overhead_limit_exceeded
 394       // so that the overhead exceeded does not persist.
 395 
 396       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 397       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 398 
 399       if (limit_exceeded && softrefs_clear) {
 400         *gc_overhead_limit_was_exceeded = true;
 401         size_policy()->set_gc_overhead_limit_exceeded(false);
 402         if (op.result() != NULL) {
 403           CollectedHeap::fill_with_object(op.result(), size);
 404         }
 405         return NULL;
 406       }
 407       assert(result == NULL || is_in_reserved(result),
 408              "result not in heap");
 409       return result;
 410     }
 411 
 412     // Give a warning if we seem to be looping forever.
 413     if ((QueuedAllocationWarningCount > 0) &&
 414         (try_count % QueuedAllocationWarningCount == 0)) {
 415           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 416                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 417     }
 418   }
 419 }
 420 
 421 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 422                                                bool is_tlab,
 423                                                bool first_only) {
 424   HeapWord* res = NULL;
 425 
 426   if (_young_gen->should_allocate(size, is_tlab)) {
 427     res = _young_gen->allocate(size, is_tlab);
 428     if (res != NULL || first_only) {
 429       return res;
 430     }
 431   }
 432 
 433   if (_old_gen->should_allocate(size, is_tlab)) {
 434     res = _old_gen->allocate(size, is_tlab);
 435   }
 436 
 437   return res;
 438 }
 439 
 440 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 441                                          bool* gc_overhead_limit_was_exceeded) {
 442   return mem_allocate_work(size,
 443                            false /* is_tlab */,
 444                            gc_overhead_limit_was_exceeded);
 445 }
 446 
 447 bool GenCollectedHeap::must_clear_all_soft_refs() {
 448   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 449          _gc_cause == GCCause::_wb_full_gc;
 450 }
 451 
 452 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 453                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 454                                           bool restore_marks_for_biased_locking) {
 455   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 456   GCTraceTime(Trace, gc, phases) t1(title);
 457   TraceCollectorStats tcs(gen->counters());
 458   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 459 
 460   gen->stat_record()->invocations++;
 461   gen->stat_record()->accumulated_time.start();
 462 
 463   // Must be done anew before each collection because
 464   // a previous collection will do mangling and will
 465   // change top of some spaces.
 466   record_gen_tops_before_GC();
 467 
 468   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 469 
 470   if (run_verification && VerifyBeforeGC) {
 471     HandleMark hm;  // Discard invalid handles created during verification
 472     Universe::verify("Before GC");
 473   }
 474   COMPILER2_PRESENT(DerivedPointerTable::clear());
 475 
 476   if (restore_marks_for_biased_locking) {
 477     // We perform this mark word preservation work lazily
 478     // because it's only at this point that we know whether we
 479     // absolutely have to do it; we want to avoid doing it for
 480     // scavenge-only collections where it's unnecessary
 481     BiasedLocking::preserve_marks();
 482   }
 483 
 484   // Do collection work
 485   {
 486     // Note on ref discovery: For what appear to be historical reasons,
 487     // GCH enables and disabled (by enqueing) refs discovery.
 488     // In the future this should be moved into the generation's
 489     // collect method so that ref discovery and enqueueing concerns
 490     // are local to a generation. The collect method could return
 491     // an appropriate indication in the case that notification on
 492     // the ref lock was needed. This will make the treatment of
 493     // weak refs more uniform (and indeed remove such concerns
 494     // from GCH). XXX
 495 
 496     HandleMark hm;  // Discard invalid handles created during gc
 497     save_marks();   // save marks for all gens
 498     // We want to discover references, but not process them yet.
 499     // This mode is disabled in process_discovered_references if the
 500     // generation does some collection work, or in
 501     // enqueue_discovered_references if the generation returns
 502     // without doing any work.
 503     ReferenceProcessor* rp = gen->ref_processor();
 504     // If the discovery of ("weak") refs in this generation is
 505     // atomic wrt other collectors in this configuration, we
 506     // are guaranteed to have empty discovered ref lists.
 507     if (rp->discovery_is_atomic()) {
 508       rp->enable_discovery();
 509       rp->setup_policy(clear_soft_refs);
 510     } else {
 511       // collect() below will enable discovery as appropriate
 512     }
 513     gen->collect(full, clear_soft_refs, size, is_tlab);
 514     if (!rp->enqueuing_is_done()) {
 515       rp->disable_discovery();
 516     } else {
 517       rp->set_enqueuing_is_done(false);
 518     }
 519     rp->verify_no_references_recorded();
 520   }
 521 
 522   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 523 
 524   gen->stat_record()->accumulated_time.stop();
 525 
 526   update_gc_stats(gen, full);
 527 
 528   if (run_verification && VerifyAfterGC) {
 529     HandleMark hm;  // Discard invalid handles created during verification
 530     Universe::verify("After GC");
 531   }
 532 }
 533 
 534 void GenCollectedHeap::do_collection(bool           full,
 535                                      bool           clear_all_soft_refs,
 536                                      size_t         size,
 537                                      bool           is_tlab,
 538                                      GenerationType max_generation) {
 539   ResourceMark rm;
 540   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 541 
 542   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 543   assert(my_thread->is_VM_thread() ||
 544          my_thread->is_ConcurrentGC_thread(),
 545          "incorrect thread type capability");
 546   assert(Heap_lock->is_locked(),
 547          "the requesting thread should have the Heap_lock");
 548   guarantee(!is_gc_active(), "collection is not reentrant");
 549 
 550   if (GCLocker::check_active_before_gc()) {
 551     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 552   }
 553 
 554   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 555                           soft_ref_policy()->should_clear_all_soft_refs();
 556 
 557   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 558 
 559   FlagSetting fl(_is_gc_active, true);
 560 
 561   bool complete = full && (max_generation == OldGen);
 562   bool old_collects_young = complete && !ScavengeBeforeFullGC;
 563   bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 564 
 565   const PreGenGCValues pre_gc_values = get_pre_gc_values();
 566 
 567   bool run_verification = total_collections() >= VerifyGCStartAt;
 568   bool prepared_for_verification = false;
 569   bool do_full_collection = false;
 570 
 571   if (do_young_collection) {
 572     GCIdMark gc_id_mark;
 573     GCTraceCPUTime tcpu;
 574     GCTraceTime(Info, gc) t("Pause Young", NULL, gc_cause(), true);
 575 
 576     print_heap_before_gc();
 577 
 578     if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 579       prepare_for_verify();
 580       prepared_for_verification = true;
 581     }
 582 
 583     gc_prologue(complete);
 584     increment_total_collections(complete);
 585 
 586     collect_generation(_young_gen,
 587                        full,
 588                        size,
 589                        is_tlab,
 590                        run_verification && VerifyGCLevel <= 0,
 591                        do_clear_all_soft_refs,
 592                        false);
 593 
 594     if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 595         size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 596       // Allocation request was met by young GC.
 597       size = 0;
 598     }
 599 
 600     // Ask if young collection is enough. If so, do the final steps for young collection,
 601     // and fallthrough to the end.
 602     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 603     if (!do_full_collection) {
 604       // Adjust generation sizes.
 605       _young_gen->compute_new_size();
 606 
 607       print_heap_change(pre_gc_values);
 608 
 609       // Track memory usage and detect low memory after GC finishes
 610       MemoryService::track_memory_usage();
 611 
 612       gc_epilogue(complete);
 613     }
 614 
 615     print_heap_after_gc();
 616 
 617   } else {
 618     // No young collection, ask if we need to perform Full collection.
 619     do_full_collection = should_do_full_collection(size, full, is_tlab, max_generation);
 620   }
 621 
 622   if (do_full_collection) {
 623     GCIdMark gc_id_mark;
 624     GCTraceCPUTime tcpu;
 625     GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 626 
 627     print_heap_before_gc();
 628 
 629     if (!prepared_for_verification && run_verification &&
 630         VerifyGCLevel <= 1 && VerifyBeforeGC) {
 631       prepare_for_verify();
 632     }
 633 
 634     if (!do_young_collection) {
 635       gc_prologue(complete);
 636       increment_total_collections(complete);
 637     }
 638 
 639     // Accounting quirk: total full collections would be incremented when "complete"
 640     // is set, by calling increment_total_collections above. However, we also need to
 641     // account Full collections that had "complete" unset.
 642     if (!complete) {
 643       increment_total_full_collections();
 644     }
 645 
 646     collect_generation(_old_gen,
 647                        full,
 648                        size,
 649                        is_tlab,
 650                        run_verification && VerifyGCLevel <= 1,
 651                        do_clear_all_soft_refs,
 652                        true);
 653 
 654     // Adjust generation sizes.
 655     _old_gen->compute_new_size();
 656     _young_gen->compute_new_size();
 657 
 658     // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 659     ClassLoaderDataGraph::purge();
 660     MetaspaceUtils::verify_metrics();
 661     // Resize the metaspace capacity after full collections
 662     MetaspaceGC::compute_new_size();
 663     update_full_collections_completed();
 664 
 665     print_heap_change(pre_gc_values);
 666 
 667     // Track memory usage and detect low memory after GC finishes
 668     MemoryService::track_memory_usage();
 669 
 670     // Need to tell the epilogue code we are done with Full GC, regardless what was
 671     // the initial value for "complete" flag.
 672     gc_epilogue(true);
 673 
 674     BiasedLocking::restore_marks();
 675 
 676     print_heap_after_gc();
 677   }
 678 
 679 #ifdef TRACESPINNING
 680   ParallelTaskTerminator::print_termination_counts();
 681 #endif
 682 }
 683 
 684 bool GenCollectedHeap::should_do_full_collection(size_t size, bool full, bool is_tlab,
 685                                                  GenCollectedHeap::GenerationType max_gen) const {
 686   return max_gen == OldGen && _old_gen->should_collect(full, size, is_tlab);
 687 }
 688 
 689 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 690   ScavengableNMethods::register_nmethod(nm);
 691 }
 692 
 693 void GenCollectedHeap::unregister_nmethod(nmethod* nm) {
 694   ScavengableNMethods::unregister_nmethod(nm);
 695 }
 696 
 697 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 698   ScavengableNMethods::verify_nmethod(nm);
 699 }
 700 
 701 void GenCollectedHeap::flush_nmethod(nmethod* nm) {
 702   // Do nothing.
 703 }
 704 
 705 void GenCollectedHeap::prune_scavengable_nmethods() {
 706   ScavengableNMethods::prune_nmethods();
 707 }
 708 
 709 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 710   GCCauseSetter x(this, GCCause::_allocation_failure);
 711   HeapWord* result = NULL;
 712 
 713   assert(size != 0, "Precondition violated");
 714   if (GCLocker::is_active_and_needs_gc()) {
 715     // GC locker is active; instead of a collection we will attempt
 716     // to expand the heap, if there's room for expansion.
 717     if (!is_maximal_no_gc()) {
 718       result = expand_heap_and_allocate(size, is_tlab);
 719     }
 720     return result;   // Could be null if we are out of space.
 721   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 722     // Do an incremental collection.
 723     do_collection(false,                     // full
 724                   false,                     // clear_all_soft_refs
 725                   size,                      // size
 726                   is_tlab,                   // is_tlab
 727                   GenCollectedHeap::OldGen); // max_generation
 728   } else {
 729     log_trace(gc)(" :: Trying full because partial may fail :: ");
 730     // Try a full collection; see delta for bug id 6266275
 731     // for the original code and why this has been simplified
 732     // with from-space allocation criteria modified and
 733     // such allocation moved out of the safepoint path.
 734     do_collection(true,                      // full
 735                   false,                     // clear_all_soft_refs
 736                   size,                      // size
 737                   is_tlab,                   // is_tlab
 738                   GenCollectedHeap::OldGen); // max_generation
 739   }
 740 
 741   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 742 
 743   if (result != NULL) {
 744     assert(is_in_reserved(result), "result not in heap");
 745     return result;
 746   }
 747 
 748   // OK, collection failed, try expansion.
 749   result = expand_heap_and_allocate(size, is_tlab);
 750   if (result != NULL) {
 751     return result;
 752   }
 753 
 754   // If we reach this point, we're really out of memory. Try every trick
 755   // we can to reclaim memory. Force collection of soft references. Force
 756   // a complete compaction of the heap. Any additional methods for finding
 757   // free memory should be here, especially if they are expensive. If this
 758   // attempt fails, an OOM exception will be thrown.
 759   {
 760     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 761 
 762     do_collection(true,                      // full
 763                   true,                      // clear_all_soft_refs
 764                   size,                      // size
 765                   is_tlab,                   // is_tlab
 766                   GenCollectedHeap::OldGen); // max_generation
 767   }
 768 
 769   result = attempt_allocation(size, is_tlab, false /* first_only */);
 770   if (result != NULL) {
 771     assert(is_in_reserved(result), "result not in heap");
 772     return result;
 773   }
 774 
 775   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 776     "Flag should have been handled and cleared prior to this point");
 777 
 778   // What else?  We might try synchronous finalization later.  If the total
 779   // space available is large enough for the allocation, then a more
 780   // complete compaction phase than we've tried so far might be
 781   // appropriate.
 782   return NULL;
 783 }
 784 
 785 #ifdef ASSERT
 786 class AssertNonScavengableClosure: public OopClosure {
 787 public:
 788   virtual void do_oop(oop* p) {
 789     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 790       "Referent should not be scavengable.");  }
 791   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 792 };
 793 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 794 #endif
 795 
 796 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 797                                      ScanningOption so,
 798                                      OopClosure* strong_roots,
 799                                      CLDClosure* strong_cld_closure,
 800                                      CLDClosure* weak_cld_closure,
 801                                      CodeBlobToOopClosure* code_roots) {
 802   // General roots.
 803   assert(code_roots != NULL, "code root closure should always be set");
 804   // _n_termination for _process_strong_tasks should be set up stream
 805   // in a method not running in a GC worker.  Otherwise the GC worker
 806   // could be trying to change the termination condition while the task
 807   // is executing in another GC worker.
 808 
 809   if (_process_strong_tasks->try_claim_task(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 810     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 811   }
 812 
 813   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 814   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 815 
 816   bool is_par = scope->n_threads() > 1;
 817   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 818 
 819   if (_process_strong_tasks->try_claim_task(GCH_PS_Universe_oops_do)) {
 820     Universe::oops_do(strong_roots);
 821   }
 822   // Global (strong) JNI handles
 823   if (_process_strong_tasks->try_claim_task(GCH_PS_JNIHandles_oops_do)) {
 824     JNIHandles::oops_do(strong_roots);
 825   }
 826 
 827   if (_process_strong_tasks->try_claim_task(GCH_PS_ObjectSynchronizer_oops_do)) {
 828     ObjectSynchronizer::oops_do(strong_roots);
 829   }
 830   if (_process_strong_tasks->try_claim_task(GCH_PS_Management_oops_do)) {
 831     Management::oops_do(strong_roots);
 832   }
 833   if (_process_strong_tasks->try_claim_task(GCH_PS_jvmti_oops_do)) {
 834     JvmtiExport::oops_do(strong_roots);
 835   }
 836 #if INCLUDE_AOT
 837   if (UseAOT && _process_strong_tasks->try_claim_task(GCH_PS_aot_oops_do)) {
 838     AOTLoader::oops_do(strong_roots);
 839   }
 840 #endif
 841   if (_process_strong_tasks->try_claim_task(GCH_PS_SystemDictionary_oops_do)) {
 842     SystemDictionary::oops_do(strong_roots);
 843   }
 844 
 845   if (_process_strong_tasks->try_claim_task(GCH_PS_CodeCache_oops_do)) {
 846     if (so & SO_ScavengeCodeCache) {
 847       assert(code_roots != NULL, "must supply closure for code cache");
 848 
 849       // We only visit parts of the CodeCache when scavenging.
 850       ScavengableNMethods::nmethods_do(code_roots);
 851     }
 852     if (so & SO_AllCodeCache) {
 853       assert(code_roots != NULL, "must supply closure for code cache");
 854 
 855       // CMSCollector uses this to do intermediate-strength collections.
 856       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 857       CodeCache::blobs_do(code_roots);
 858     }
 859     // Verify that the code cache contents are not subject to
 860     // movement by a scavenging collection.
 861     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 862     DEBUG_ONLY(ScavengableNMethods::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 863   }
 864 }
 865 
 866 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 867                                            OopsInGenClosure* root_closure,
 868                                            OopsInGenClosure* old_gen_closure,
 869                                            CLDClosure* cld_closure) {
 870   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 871 
 872   process_roots(scope, SO_ScavengeCodeCache, root_closure,
 873                 cld_closure, cld_closure, &mark_code_closure);
 874 
 875   if (_process_strong_tasks->try_claim_task(GCH_PS_younger_gens)) {
 876     root_closure->reset_generation();
 877   }
 878 
 879   // When collection is parallel, all threads get to cooperate to do
 880   // old generation scanning.
 881   old_gen_closure->set_generation(_old_gen);
 882   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 883   old_gen_closure->reset_generation();
 884 
 885   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 886 }
 887 
 888 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 889                                           bool is_adjust_phase,
 890                                           ScanningOption so,
 891                                           bool only_strong_roots,
 892                                           OopsInGenClosure* root_closure,
 893                                           CLDClosure* cld_closure) {
 894   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 895   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 896 
 897   process_roots(scope, so, root_closure, cld_closure, weak_cld_closure, &mark_code_closure);
 898   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 899 }
 900 
 901 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 902   WeakProcessor::oops_do(root_closure);
 903   _young_gen->ref_processor()->weak_oops_do(root_closure);
 904   _old_gen->ref_processor()->weak_oops_do(root_closure);
 905 }
 906 
 907 bool GenCollectedHeap::no_allocs_since_save_marks() {
 908   return _young_gen->no_allocs_since_save_marks() &&
 909          _old_gen->no_allocs_since_save_marks();
 910 }
 911 
 912 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 913   return _young_gen->supports_inline_contig_alloc();
 914 }
 915 
 916 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 917   return _young_gen->top_addr();
 918 }
 919 
 920 HeapWord** GenCollectedHeap::end_addr() const {
 921   return _young_gen->end_addr();
 922 }
 923 
 924 // public collection interfaces
 925 
 926 void GenCollectedHeap::collect(GCCause::Cause cause) {
 927   if ((cause == GCCause::_wb_young_gc) ||
 928       (cause == GCCause::_gc_locker)) {
 929     // Young collection for WhiteBox or GCLocker.
 930     collect(cause, YoungGen);
 931   } else {
 932 #ifdef ASSERT
 933   if (cause == GCCause::_scavenge_alot) {
 934     // Young collection only.
 935     collect(cause, YoungGen);
 936   } else {
 937     // Stop-the-world full collection.
 938     collect(cause, OldGen);
 939   }
 940 #else
 941     // Stop-the-world full collection.
 942     collect(cause, OldGen);
 943 #endif
 944   }
 945 }
 946 
 947 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 948   // The caller doesn't have the Heap_lock
 949   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 950   MutexLocker ml(Heap_lock);
 951   collect_locked(cause, max_generation);
 952 }
 953 
 954 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 955   // The caller has the Heap_lock
 956   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 957   collect_locked(cause, OldGen);
 958 }
 959 
 960 // this is the private collection interface
 961 // The Heap_lock is expected to be held on entry.
 962 
 963 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 964   // Read the GC count while holding the Heap_lock
 965   unsigned int gc_count_before      = total_collections();
 966   unsigned int full_gc_count_before = total_full_collections();
 967 
 968   if (GCLocker::should_discard(cause, gc_count_before)) {
 969     return;
 970   }
 971 
 972   {
 973     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 974     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 975                          cause, max_generation);
 976     VMThread::execute(&op);
 977   }
 978 }
 979 
 980 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 981    do_full_collection(clear_all_soft_refs, OldGen);
 982 }
 983 
 984 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 985                                           GenerationType last_generation) {
 986   do_collection(true,                   // full
 987                 clear_all_soft_refs,    // clear_all_soft_refs
 988                 0,                      // size
 989                 false,                  // is_tlab
 990                 last_generation);       // last_generation
 991   // Hack XXX FIX ME !!!
 992   // A scavenge may not have been attempted, or may have
 993   // been attempted and failed, because the old gen was too full
 994   if (gc_cause() == GCCause::_gc_locker && incremental_collection_failed()) {
 995     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 996     // This time allow the old gen to be collected as well
 997     do_collection(true,                // full
 998                   clear_all_soft_refs, // clear_all_soft_refs
 999                   0,                   // size
1000                   false,               // is_tlab
1001                   OldGen);             // last_generation
1002   }
1003 }
1004 
1005 bool GenCollectedHeap::is_in_young(oop p) {
1006   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
1007   assert(result == _young_gen->is_in_reserved(p),
1008          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1009   return result;
1010 }
1011 
1012 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1013 bool GenCollectedHeap::is_in(const void* p) const {
1014   return _young_gen->is_in(p) || _old_gen->is_in(p);
1015 }
1016 
1017 #ifdef ASSERT
1018 // Don't implement this by using is_in_young().  This method is used
1019 // in some cases to check that is_in_young() is correct.
1020 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1021   assert(is_in_reserved(p) || p == NULL,
1022     "Does not work if address is non-null and outside of the heap");
1023   return p < _young_gen->reserved().end() && p != NULL;
1024 }
1025 #endif
1026 
1027 void GenCollectedHeap::oop_iterate(OopIterateClosure* cl) {
1028   _young_gen->oop_iterate(cl);
1029   _old_gen->oop_iterate(cl);
1030 }
1031 
1032 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1033   _young_gen->object_iterate(cl);
1034   _old_gen->object_iterate(cl);
1035 }
1036 
1037 Space* GenCollectedHeap::space_containing(const void* addr) const {
1038   Space* res = _young_gen->space_containing(addr);
1039   if (res != NULL) {
1040     return res;
1041   }
1042   res = _old_gen->space_containing(addr);
1043   assert(res != NULL, "Could not find containing space");
1044   return res;
1045 }
1046 
1047 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1048   assert(is_in_reserved(addr), "block_start of address outside of heap");
1049   if (_young_gen->is_in_reserved(addr)) {
1050     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1051     return _young_gen->block_start(addr);
1052   }
1053 
1054   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1055   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1056   return _old_gen->block_start(addr);
1057 }
1058 
1059 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1060   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1061   assert(block_start(addr) == addr, "addr must be a block start");
1062   if (_young_gen->is_in_reserved(addr)) {
1063     return _young_gen->block_is_obj(addr);
1064   }
1065 
1066   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1067   return _old_gen->block_is_obj(addr);
1068 }
1069 
1070 bool GenCollectedHeap::supports_tlab_allocation() const {
1071   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1072   return _young_gen->supports_tlab_allocation();
1073 }
1074 
1075 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1076   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1077   if (_young_gen->supports_tlab_allocation()) {
1078     return _young_gen->tlab_capacity();
1079   }
1080   return 0;
1081 }
1082 
1083 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1084   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1085   if (_young_gen->supports_tlab_allocation()) {
1086     return _young_gen->tlab_used();
1087   }
1088   return 0;
1089 }
1090 
1091 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1092   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1093   if (_young_gen->supports_tlab_allocation()) {
1094     return _young_gen->unsafe_max_tlab_alloc();
1095   }
1096   return 0;
1097 }
1098 
1099 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t min_size,
1100                                               size_t requested_size,
1101                                               size_t* actual_size) {
1102   bool gc_overhead_limit_was_exceeded;
1103   HeapWord* result = mem_allocate_work(requested_size /* size */,
1104                                        true /* is_tlab */,
1105                                        &gc_overhead_limit_was_exceeded);
1106   if (result != NULL) {
1107     *actual_size = requested_size;
1108   }
1109 
1110   return result;
1111 }
1112 
1113 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1114 // from the list headed by "*prev_ptr".
1115 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1116   bool first = true;
1117   size_t min_size = 0;   // "first" makes this conceptually infinite.
1118   ScratchBlock **smallest_ptr, *smallest;
1119   ScratchBlock  *cur = *prev_ptr;
1120   while (cur) {
1121     assert(*prev_ptr == cur, "just checking");
1122     if (first || cur->num_words < min_size) {
1123       smallest_ptr = prev_ptr;
1124       smallest     = cur;
1125       min_size     = smallest->num_words;
1126       first        = false;
1127     }
1128     prev_ptr = &cur->next;
1129     cur     =  cur->next;
1130   }
1131   smallest      = *smallest_ptr;
1132   *smallest_ptr = smallest->next;
1133   return smallest;
1134 }
1135 
1136 // Sort the scratch block list headed by res into decreasing size order,
1137 // and set "res" to the result.
1138 static void sort_scratch_list(ScratchBlock*& list) {
1139   ScratchBlock* sorted = NULL;
1140   ScratchBlock* unsorted = list;
1141   while (unsorted) {
1142     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1143     smallest->next  = sorted;
1144     sorted          = smallest;
1145   }
1146   list = sorted;
1147 }
1148 
1149 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1150                                                size_t max_alloc_words) {
1151   ScratchBlock* res = NULL;
1152   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1153   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1154   sort_scratch_list(res);
1155   return res;
1156 }
1157 
1158 void GenCollectedHeap::release_scratch() {
1159   _young_gen->reset_scratch();
1160   _old_gen->reset_scratch();
1161 }
1162 
1163 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1164   void do_generation(Generation* gen) {
1165     gen->prepare_for_verify();
1166   }
1167 };
1168 
1169 void GenCollectedHeap::prepare_for_verify() {
1170   ensure_parsability(false);        // no need to retire TLABs
1171   GenPrepareForVerifyClosure blk;
1172   generation_iterate(&blk, false);
1173 }
1174 
1175 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1176                                           bool old_to_young) {
1177   if (old_to_young) {
1178     cl->do_generation(_old_gen);
1179     cl->do_generation(_young_gen);
1180   } else {
1181     cl->do_generation(_young_gen);
1182     cl->do_generation(_old_gen);
1183   }
1184 }
1185 
1186 bool GenCollectedHeap::is_maximal_no_gc() const {
1187   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1188 }
1189 
1190 void GenCollectedHeap::save_marks() {
1191   _young_gen->save_marks();
1192   _old_gen->save_marks();
1193 }
1194 
1195 GenCollectedHeap* GenCollectedHeap::heap() {
1196   CollectedHeap* heap = Universe::heap();
1197   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1198   assert(heap->kind() == CollectedHeap::Serial, "Invalid name");
1199   return (GenCollectedHeap*) heap;
1200 }
1201 
1202 #if INCLUDE_SERIALGC
1203 void GenCollectedHeap::prepare_for_compaction() {
1204   // Start by compacting into same gen.
1205   CompactPoint cp(_old_gen);
1206   _old_gen->prepare_for_compaction(&cp);
1207   _young_gen->prepare_for_compaction(&cp);
1208 }
1209 #endif // INCLUDE_SERIALGC
1210 
1211 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1212   log_debug(gc, verify)("%s", _old_gen->name());
1213   _old_gen->verify();
1214 
1215   log_debug(gc, verify)("%s", _old_gen->name());
1216   _young_gen->verify();
1217 
1218   log_debug(gc, verify)("RemSet");
1219   rem_set()->verify();
1220 }
1221 
1222 void GenCollectedHeap::print_on(outputStream* st) const {
1223   _young_gen->print_on(st);
1224   _old_gen->print_on(st);
1225   MetaspaceUtils::print_on(st);
1226 }
1227 
1228 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1229 }
1230 
1231 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1232 }
1233 
1234 bool GenCollectedHeap::print_location(outputStream* st, void* addr) const {
1235   return BlockLocationPrinter<GenCollectedHeap>::print_location(st, addr);
1236 }
1237 
1238 void GenCollectedHeap::print_tracing_info() const {
1239   if (log_is_enabled(Debug, gc, heap, exit)) {
1240     LogStreamHandle(Debug, gc, heap, exit) lsh;
1241     _young_gen->print_summary_info_on(&lsh);
1242     _old_gen->print_summary_info_on(&lsh);
1243   }
1244 }
1245 
1246 void GenCollectedHeap::print_heap_change(const PreGenGCValues& pre_gc_values) const {
1247   const DefNewGeneration* const def_new_gen = (DefNewGeneration*) young_gen();
1248 
1249   log_info(gc, heap)(HEAP_CHANGE_FORMAT" "
1250                      HEAP_CHANGE_FORMAT" "
1251                      HEAP_CHANGE_FORMAT,
1252                      HEAP_CHANGE_FORMAT_ARGS(def_new_gen->short_name(),
1253                                              pre_gc_values.young_gen_used(),
1254                                              pre_gc_values.young_gen_capacity(),
1255                                              def_new_gen->used(),
1256                                              def_new_gen->capacity()),
1257                      HEAP_CHANGE_FORMAT_ARGS("Eden",
1258                                              pre_gc_values.eden_used(),
1259                                              pre_gc_values.eden_capacity(),
1260                                              def_new_gen->eden()->used(),
1261                                              def_new_gen->eden()->capacity()),
1262                      HEAP_CHANGE_FORMAT_ARGS("From",
1263                                              pre_gc_values.from_used(),
1264                                              pre_gc_values.from_capacity(),
1265                                              def_new_gen->from()->used(),
1266                                              def_new_gen->from()->capacity()));
1267   log_info(gc, heap)(HEAP_CHANGE_FORMAT,
1268                      HEAP_CHANGE_FORMAT_ARGS(old_gen()->short_name(),
1269                                              pre_gc_values.old_gen_used(),
1270                                              pre_gc_values.old_gen_capacity(),
1271                                              old_gen()->used(),
1272                                              old_gen()->capacity()));
1273   MetaspaceUtils::print_metaspace_change(pre_gc_values.metaspace_sizes());
1274 }
1275 
1276 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1277  private:
1278   bool _full;
1279  public:
1280   void do_generation(Generation* gen) {
1281     gen->gc_prologue(_full);
1282   }
1283   GenGCPrologueClosure(bool full) : _full(full) {};
1284 };
1285 
1286 void GenCollectedHeap::gc_prologue(bool full) {
1287   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1288 
1289   // Fill TLAB's and such
1290   ensure_parsability(true);   // retire TLABs
1291 
1292   // Walk generations
1293   GenGCPrologueClosure blk(full);
1294   generation_iterate(&blk, false);  // not old-to-young.
1295 };
1296 
1297 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1298  private:
1299   bool _full;
1300  public:
1301   void do_generation(Generation* gen) {
1302     gen->gc_epilogue(_full);
1303   }
1304   GenGCEpilogueClosure(bool full) : _full(full) {};
1305 };
1306 
1307 void GenCollectedHeap::gc_epilogue(bool full) {
1308 #if COMPILER2_OR_JVMCI
1309   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1310   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1311   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1312 #endif // COMPILER2_OR_JVMCI
1313 
1314   resize_all_tlabs();
1315 
1316   GenGCEpilogueClosure blk(full);
1317   generation_iterate(&blk, false);  // not old-to-young.
1318 
1319   if (!CleanChunkPoolAsync) {
1320     Chunk::clean_chunk_pool();
1321   }
1322 
1323   MetaspaceCounters::update_performance_counters();
1324   CompressedClassSpaceCounters::update_performance_counters();
1325 };
1326 
1327 #ifndef PRODUCT
1328 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1329  private:
1330  public:
1331   void do_generation(Generation* gen) {
1332     gen->record_spaces_top();
1333   }
1334 };
1335 
1336 void GenCollectedHeap::record_gen_tops_before_GC() {
1337   if (ZapUnusedHeapArea) {
1338     GenGCSaveTopsBeforeGCClosure blk;
1339     generation_iterate(&blk, false);  // not old-to-young.
1340   }
1341 }
1342 #endif  // not PRODUCT
1343 
1344 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1345  public:
1346   void do_generation(Generation* gen) {
1347     gen->ensure_parsability();
1348   }
1349 };
1350 
1351 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1352   CollectedHeap::ensure_parsability(retire_tlabs);
1353   GenEnsureParsabilityClosure ep_cl;
1354   generation_iterate(&ep_cl, false);
1355 }
1356 
1357 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1358                                               oop obj,
1359                                               size_t obj_size) {
1360   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1361   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1362   HeapWord* result = NULL;
1363 
1364   result = old_gen->expand_and_allocate(obj_size, false);
1365 
1366   if (result != NULL) {
1367     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1368   }
1369   return oop(result);
1370 }
1371 
1372 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1373   jlong _time;   // in ms
1374   jlong _now;    // in ms
1375 
1376  public:
1377   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1378 
1379   jlong time() { return _time; }
1380 
1381   void do_generation(Generation* gen) {
1382     _time = MIN2(_time, gen->time_of_last_gc(_now));
1383   }
1384 };
1385 
1386 jlong GenCollectedHeap::millis_since_last_gc() {
1387   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1388   // provided the underlying platform provides such a time source
1389   // (and it is bug free). So we still have to guard against getting
1390   // back a time later than 'now'.
1391   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1392   GenTimeOfLastGCClosure tolgc_cl(now);
1393   // iterate over generations getting the oldest
1394   // time that a generation was collected
1395   generation_iterate(&tolgc_cl, false);
1396 
1397   jlong retVal = now - tolgc_cl.time();
1398   if (retVal < 0) {
1399     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1400        ". returning zero instead.", retVal);
1401     return 0;
1402   }
1403   return retVal;
1404 }