1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/iterator.hpp"
  51 #include "memory/metaspaceShared.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/instanceKlass.hpp"
  57 #include "oops/objArrayOop.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "oops/symbol.hpp"
  60 #include "oops/typeArrayOop.inline.hpp"
  61 #include "oops/verifyOopClosure.hpp"
  62 #include "prims/jvm_misc.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "prims/jvmtiThreadState.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/biasedLocking.hpp"
  68 #include "runtime/fieldDescriptor.inline.hpp"
  69 #include "runtime/flags/jvmFlagConstraintList.hpp"
  70 #include "runtime/flags/jvmFlagRangeList.hpp"
  71 #include "runtime/flags/jvmFlagWriteableList.hpp"
  72 #include "runtime/deoptimization.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handles.inline.hpp"
  75 #include "runtime/handshake.hpp"
  76 #include "runtime/init.hpp"
  77 #include "runtime/interfaceSupport.inline.hpp"
  78 #include "runtime/java.hpp"
  79 #include "runtime/javaCalls.hpp"
  80 #include "runtime/jniHandles.inline.hpp"
  81 #include "runtime/jniPeriodicChecker.hpp"
  82 #include "runtime/memprofiler.hpp"
  83 #include "runtime/mutexLocker.hpp"
  84 #include "runtime/objectMonitor.hpp"
  85 #include "runtime/orderAccess.hpp"
  86 #include "runtime/osThread.hpp"
  87 #include "runtime/prefetch.inline.hpp"
  88 #include "runtime/safepoint.hpp"
  89 #include "runtime/safepointMechanism.inline.hpp"
  90 #include "runtime/safepointVerifiers.hpp"
  91 #include "runtime/sharedRuntime.hpp"
  92 #include "runtime/statSampler.hpp"
  93 #include "runtime/stubRoutines.hpp"
  94 #include "runtime/sweeper.hpp"
  95 #include "runtime/task.hpp"
  96 #include "runtime/thread.inline.hpp"
  97 #include "runtime/threadCritical.hpp"
  98 #include "runtime/threadSMR.inline.hpp"
  99 #include "runtime/threadStatisticalInfo.hpp"
 100 #include "runtime/timer.hpp"
 101 #include "runtime/timerTrace.hpp"
 102 #include "runtime/vframe.inline.hpp"
 103 #include "runtime/vframeArray.hpp"
 104 #include "runtime/vframe_hp.hpp"
 105 #include "runtime/vmThread.hpp"
 106 #include "runtime/vmOperations.hpp"
 107 #include "runtime/vm_version.hpp"
 108 #include "services/attachListener.hpp"
 109 #include "services/management.hpp"
 110 #include "services/memTracker.hpp"
 111 #include "services/threadService.hpp"
 112 #include "utilities/align.hpp"
 113 #include "utilities/copy.hpp"
 114 #include "utilities/defaultStream.hpp"
 115 #include "utilities/dtrace.hpp"
 116 #include "utilities/events.hpp"
 117 #include "utilities/macros.hpp"
 118 #include "utilities/preserveException.hpp"
 119 #include "utilities/singleWriterSynchronizer.hpp"
 120 #include "utilities/vmError.hpp"
 121 #if INCLUDE_JVMCI
 122 #include "jvmci/jvmci.hpp"
 123 #include "jvmci/jvmciEnv.hpp"
 124 #endif
 125 #ifdef COMPILER1
 126 #include "c1/c1_Compiler.hpp"
 127 #endif
 128 #ifdef COMPILER2
 129 #include "opto/c2compiler.hpp"
 130 #include "opto/idealGraphPrinter.hpp"
 131 #endif
 132 #if INCLUDE_RTM_OPT
 133 #include "runtime/rtmLocking.hpp"
 134 #endif
 135 #if INCLUDE_JFR
 136 #include "jfr/jfr.hpp"
 137 #endif
 138 
 139 // Initialization after module runtime initialization
 140 void universe_post_module_init();  // must happen after call_initPhase2
 141 
 142 #ifdef DTRACE_ENABLED
 143 
 144 // Only bother with this argument setup if dtrace is available
 145 
 146   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 147   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 150     {                                                                      \
 151       ResourceMark rm(this);                                               \
 152       int len = 0;                                                         \
 153       const char* name = (javathread)->get_thread_name();                  \
 154       len = strlen(name);                                                  \
 155       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 156         (char *) name, len,                                                \
 157         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 158         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 159         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 160     }
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164   #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 169 // Current thread is maintained as a thread-local variable
 170 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 171 #endif
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const size_t alignment = markWord::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                                          AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (aligned_addr != real_malloc_addr) {
 187       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                               p2i(real_malloc_addr),
 189                               p2i(aligned_addr));
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     FreeHeap(((Thread*) p)->_real_malloc_address);
 202   } else {
 203     FreeHeap(p);
 204   }
 205 }
 206 
 207 void JavaThread::smr_delete() {
 208   if (_on_thread_list) {
 209     ThreadsSMRSupport::smr_delete(this);
 210   } else {
 211     delete this;
 212   }
 213 }
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 219 
 220 Thread::Thread() {
 221 
 222   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 223 
 224   // stack and get_thread
 225   set_stack_base(NULL);
 226   set_stack_size(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // Initial value of zero ==> never claimed.
 242   _threads_do_token = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   NOT_PRODUCT(_no_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _current_pending_raw_monitor = NULL;
 263   _num_nested_signal = 0;
 264   om_free_list = NULL;
 265   om_free_count = 0;
 266   om_free_provision = 32;
 267   om_in_use_list = NULL;
 268   om_in_use_count = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _MuxEvent    = ParkEvent::Allocate(this);
 297 
 298 #ifdef CHECK_UNHANDLED_OOPS
 299   if (CheckUnhandledOops) {
 300     _unhandled_oops = new UnhandledOops(this);
 301   }
 302 #endif // CHECK_UNHANDLED_OOPS
 303 #ifdef ASSERT
 304   if (UseBiasedLocking) {
 305     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 306     assert(this == _real_malloc_address ||
 307            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 308            "bug in forced alignment of thread objects");
 309   }
 310 #endif // ASSERT
 311 
 312   // Notify the barrier set that a thread is being created. The initial
 313   // thread is created before the barrier set is available.  The call to
 314   // BarrierSet::on_thread_create() for this thread is therefore deferred
 315   // to BarrierSet::set_barrier_set().
 316   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 317   if (barrier_set != NULL) {
 318     barrier_set->on_thread_create(this);
 319   } else {
 320     // Only the main thread should be created before the barrier set
 321     // and that happens just before Thread::current is set. No other thread
 322     // can attach as the VM is not created yet, so they can't execute this code.
 323     // If the main thread creates other threads before the barrier set that is an error.
 324     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 325   }
 326 }
 327 
 328 void Thread::initialize_thread_current() {
 329 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 330   assert(_thr_current == NULL, "Thread::current already initialized");
 331   _thr_current = this;
 332 #endif
 333   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 334   ThreadLocalStorage::set_thread(this);
 335   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 336 }
 337 
 338 void Thread::clear_thread_current() {
 339   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 340 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 341   _thr_current = NULL;
 342 #endif
 343   ThreadLocalStorage::set_thread(NULL);
 344 }
 345 
 346 void Thread::record_stack_base_and_size() {
 347   // Note: at this point, Thread object is not yet initialized. Do not rely on
 348   // any members being initialized. Do not rely on Thread::current() being set.
 349   // If possible, refrain from doing anything which may crash or assert since
 350   // quite probably those crash dumps will be useless.
 351   set_stack_base(os::current_stack_base());
 352   set_stack_size(os::current_stack_size());
 353 
 354 #ifdef SOLARIS
 355   if (os::is_primordial_thread()) {
 356     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 357   }
 358 #endif
 359 
 360   // Set stack limits after thread is initialized.
 361   if (is_Java_thread()) {
 362     ((JavaThread*) this)->set_stack_overflow_limit();
 363     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 364   }
 365 }
 366 
 367 #if INCLUDE_NMT
 368 void Thread::register_thread_stack_with_NMT() {
 369   MemTracker::record_thread_stack(stack_end(), stack_size());
 370 }
 371 #endif // INCLUDE_NMT
 372 
 373 void Thread::call_run() {
 374   DEBUG_ONLY(_run_state = CALL_RUN;)
 375 
 376   // At this point, Thread object should be fully initialized and
 377   // Thread::current() should be set.
 378 
 379   assert(Thread::current_or_null() != NULL, "current thread is unset");
 380   assert(Thread::current_or_null() == this, "current thread is wrong");
 381 
 382   // Perform common initialization actions
 383 
 384   register_thread_stack_with_NMT();
 385 
 386   JFR_ONLY(Jfr::on_thread_start(this);)
 387 
 388   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 389     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 390     os::current_thread_id(), p2i(stack_base() - stack_size()),
 391     p2i(stack_base()), stack_size()/1024);
 392 
 393   // Perform <ChildClass> initialization actions
 394   DEBUG_ONLY(_run_state = PRE_RUN;)
 395   this->pre_run();
 396 
 397   // Invoke <ChildClass>::run()
 398   DEBUG_ONLY(_run_state = RUN;)
 399   this->run();
 400   // Returned from <ChildClass>::run(). Thread finished.
 401 
 402   // Perform common tear-down actions
 403 
 404   assert(Thread::current_or_null() != NULL, "current thread is unset");
 405   assert(Thread::current_or_null() == this, "current thread is wrong");
 406 
 407   // Perform <ChildClass> tear-down actions
 408   DEBUG_ONLY(_run_state = POST_RUN;)
 409   this->post_run();
 410 
 411   // Note: at this point the thread object may already have deleted itself,
 412   // so from here on do not dereference *this*. Not all thread types currently
 413   // delete themselves when they terminate. But no thread should ever be deleted
 414   // asynchronously with respect to its termination - that is what _run_state can
 415   // be used to check.
 416 
 417   assert(Thread::current_or_null() == NULL, "current thread still present");
 418 }
 419 
 420 Thread::~Thread() {
 421 
 422   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 423   // get started due to errors etc. Any active thread should at least reach post_run
 424   // before it is deleted (usually in post_run()).
 425   assert(_run_state == PRE_CALL_RUN ||
 426          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 427          "_run_state=%d", (int)_run_state);
 428 
 429   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 430   // set might not be available if we encountered errors during bootstrapping.
 431   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 432   if (barrier_set != NULL) {
 433     barrier_set->on_thread_destroy(this);
 434   }
 435 
 436   // stack_base can be NULL if the thread is never started or exited before
 437   // record_stack_base_and_size called. Although, we would like to ensure
 438   // that all started threads do call record_stack_base_and_size(), there is
 439   // not proper way to enforce that.
 440 #if INCLUDE_NMT
 441   if (_stack_base != NULL) {
 442     MemTracker::release_thread_stack(stack_end(), stack_size());
 443 #ifdef ASSERT
 444     set_stack_base(NULL);
 445 #endif
 446   }
 447 #endif // INCLUDE_NMT
 448 
 449   // deallocate data structures
 450   delete resource_area();
 451   // since the handle marks are using the handle area, we have to deallocated the root
 452   // handle mark before deallocating the thread's handle area,
 453   assert(last_handle_mark() != NULL, "check we have an element");
 454   delete last_handle_mark();
 455   assert(last_handle_mark() == NULL, "check we have reached the end");
 456 
 457   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 458   // We NULL out the fields for good hygiene.
 459   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 460   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 461 
 462   delete handle_area();
 463   delete metadata_handles();
 464 
 465   // SR_handler uses this as a termination indicator -
 466   // needs to happen before os::free_thread()
 467   delete _SR_lock;
 468   _SR_lock = NULL;
 469 
 470   // osthread() can be NULL, if creation of thread failed.
 471   if (osthread() != NULL) os::free_thread(osthread());
 472 
 473   // Clear Thread::current if thread is deleting itself and it has not
 474   // already been done. This must be done before the memory is deallocated.
 475   // Needed to ensure JNI correctly detects non-attached threads.
 476   if (this == Thread::current_or_null()) {
 477     Thread::clear_thread_current();
 478   }
 479 
 480   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 481 }
 482 
 483 #ifdef ASSERT
 484 // A JavaThread is considered "dangling" if it is not the current
 485 // thread, has been added the Threads list, the system is not at a
 486 // safepoint and the Thread is not "protected".
 487 //
 488 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 489   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 490          !((JavaThread *) thread)->on_thread_list() ||
 491          SafepointSynchronize::is_at_safepoint() ||
 492          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 493          "possibility of dangling Thread pointer");
 494 }
 495 #endif
 496 
 497 ThreadPriority Thread::get_priority(const Thread* const thread) {
 498   ThreadPriority priority;
 499   // Can return an error!
 500   (void)os::get_priority(thread, priority);
 501   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 502   return priority;
 503 }
 504 
 505 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 506   debug_only(check_for_dangling_thread_pointer(thread);)
 507   // Can return an error!
 508   (void)os::set_priority(thread, priority);
 509 }
 510 
 511 
 512 void Thread::start(Thread* thread) {
 513   // Start is different from resume in that its safety is guaranteed by context or
 514   // being called from a Java method synchronized on the Thread object.
 515   if (!DisableStartThread) {
 516     if (thread->is_Java_thread()) {
 517       // Initialize the thread state to RUNNABLE before starting this thread.
 518       // Can not set it after the thread started because we do not know the
 519       // exact thread state at that time. It could be in MONITOR_WAIT or
 520       // in SLEEPING or some other state.
 521       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 522                                           java_lang_Thread::RUNNABLE);
 523     }
 524     os::start_thread(thread);
 525   }
 526 }
 527 
 528 // Enqueue a VM_Operation to do the job for us - sometime later
 529 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 530   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 531   VMThread::execute(vm_stop);
 532 }
 533 
 534 
 535 // Check if an external suspend request has completed (or has been
 536 // cancelled). Returns true if the thread is externally suspended and
 537 // false otherwise.
 538 //
 539 // The bits parameter returns information about the code path through
 540 // the routine. Useful for debugging:
 541 //
 542 // set in is_ext_suspend_completed():
 543 // 0x00000001 - routine was entered
 544 // 0x00000010 - routine return false at end
 545 // 0x00000100 - thread exited (return false)
 546 // 0x00000200 - suspend request cancelled (return false)
 547 // 0x00000400 - thread suspended (return true)
 548 // 0x00001000 - thread is in a suspend equivalent state (return true)
 549 // 0x00002000 - thread is native and walkable (return true)
 550 // 0x00004000 - thread is native_trans and walkable (needed retry)
 551 //
 552 // set in wait_for_ext_suspend_completion():
 553 // 0x00010000 - routine was entered
 554 // 0x00020000 - suspend request cancelled before loop (return false)
 555 // 0x00040000 - thread suspended before loop (return true)
 556 // 0x00080000 - suspend request cancelled in loop (return false)
 557 // 0x00100000 - thread suspended in loop (return true)
 558 // 0x00200000 - suspend not completed during retry loop (return false)
 559 
 560 // Helper class for tracing suspend wait debug bits.
 561 //
 562 // 0x00000100 indicates that the target thread exited before it could
 563 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 564 // 0x00080000 each indicate a cancelled suspend request so they don't
 565 // count as wait failures either.
 566 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 567 
 568 class TraceSuspendDebugBits : public StackObj {
 569  private:
 570   JavaThread * jt;
 571   bool         is_wait;
 572   bool         called_by_wait;  // meaningful when !is_wait
 573   uint32_t *   bits;
 574 
 575  public:
 576   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 577                         uint32_t *_bits) {
 578     jt             = _jt;
 579     is_wait        = _is_wait;
 580     called_by_wait = _called_by_wait;
 581     bits           = _bits;
 582   }
 583 
 584   ~TraceSuspendDebugBits() {
 585     if (!is_wait) {
 586 #if 1
 587       // By default, don't trace bits for is_ext_suspend_completed() calls.
 588       // That trace is very chatty.
 589       return;
 590 #else
 591       if (!called_by_wait) {
 592         // If tracing for is_ext_suspend_completed() is enabled, then only
 593         // trace calls to it from wait_for_ext_suspend_completion()
 594         return;
 595       }
 596 #endif
 597     }
 598 
 599     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 600       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 601         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 602         ResourceMark rm;
 603 
 604         tty->print_cr(
 605                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 606                       jt->get_thread_name(), *bits);
 607 
 608         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 609       }
 610     }
 611   }
 612 };
 613 #undef DEBUG_FALSE_BITS
 614 
 615 
 616 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 617                                           uint32_t *bits) {
 618   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 619 
 620   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 621   bool do_trans_retry;           // flag to force the retry
 622 
 623   *bits |= 0x00000001;
 624 
 625   do {
 626     do_trans_retry = false;
 627 
 628     if (is_exiting()) {
 629       // Thread is in the process of exiting. This is always checked
 630       // first to reduce the risk of dereferencing a freed JavaThread.
 631       *bits |= 0x00000100;
 632       return false;
 633     }
 634 
 635     if (!is_external_suspend()) {
 636       // Suspend request is cancelled. This is always checked before
 637       // is_ext_suspended() to reduce the risk of a rogue resume
 638       // confusing the thread that made the suspend request.
 639       *bits |= 0x00000200;
 640       return false;
 641     }
 642 
 643     if (is_ext_suspended()) {
 644       // thread is suspended
 645       *bits |= 0x00000400;
 646       return true;
 647     }
 648 
 649     // Now that we no longer do hard suspends of threads running
 650     // native code, the target thread can be changing thread state
 651     // while we are in this routine:
 652     //
 653     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 654     //
 655     // We save a copy of the thread state as observed at this moment
 656     // and make our decision about suspend completeness based on the
 657     // copy. This closes the race where the thread state is seen as
 658     // _thread_in_native_trans in the if-thread_blocked check, but is
 659     // seen as _thread_blocked in if-thread_in_native_trans check.
 660     JavaThreadState save_state = thread_state();
 661 
 662     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 663       // If the thread's state is _thread_blocked and this blocking
 664       // condition is known to be equivalent to a suspend, then we can
 665       // consider the thread to be externally suspended. This means that
 666       // the code that sets _thread_blocked has been modified to do
 667       // self-suspension if the blocking condition releases. We also
 668       // used to check for CONDVAR_WAIT here, but that is now covered by
 669       // the _thread_blocked with self-suspension check.
 670       //
 671       // Return true since we wouldn't be here unless there was still an
 672       // external suspend request.
 673       *bits |= 0x00001000;
 674       return true;
 675     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 676       // Threads running native code will self-suspend on native==>VM/Java
 677       // transitions. If its stack is walkable (should always be the case
 678       // unless this function is called before the actual java_suspend()
 679       // call), then the wait is done.
 680       *bits |= 0x00002000;
 681       return true;
 682     } else if (!called_by_wait && !did_trans_retry &&
 683                save_state == _thread_in_native_trans &&
 684                frame_anchor()->walkable()) {
 685       // The thread is transitioning from thread_in_native to another
 686       // thread state. check_safepoint_and_suspend_for_native_trans()
 687       // will force the thread to self-suspend. If it hasn't gotten
 688       // there yet we may have caught the thread in-between the native
 689       // code check above and the self-suspend. Lucky us. If we were
 690       // called by wait_for_ext_suspend_completion(), then it
 691       // will be doing the retries so we don't have to.
 692       //
 693       // Since we use the saved thread state in the if-statement above,
 694       // there is a chance that the thread has already transitioned to
 695       // _thread_blocked by the time we get here. In that case, we will
 696       // make a single unnecessary pass through the logic below. This
 697       // doesn't hurt anything since we still do the trans retry.
 698 
 699       *bits |= 0x00004000;
 700 
 701       // Once the thread leaves thread_in_native_trans for another
 702       // thread state, we break out of this retry loop. We shouldn't
 703       // need this flag to prevent us from getting back here, but
 704       // sometimes paranoia is good.
 705       did_trans_retry = true;
 706 
 707       // We wait for the thread to transition to a more usable state.
 708       for (int i = 1; i <= SuspendRetryCount; i++) {
 709         // We used to do an "os::yield_all(i)" call here with the intention
 710         // that yielding would increase on each retry. However, the parameter
 711         // is ignored on Linux which means the yield didn't scale up. Waiting
 712         // on the SR_lock below provides a much more predictable scale up for
 713         // the delay. It also provides a simple/direct point to check for any
 714         // safepoint requests from the VMThread
 715 
 716         // temporarily drops SR_lock while doing wait with safepoint check
 717         // (if we're a JavaThread - the WatcherThread can also call this)
 718         // and increase delay with each retry
 719         if (Thread::current()->is_Java_thread()) {
 720           SR_lock()->wait(i * delay);
 721         } else {
 722           SR_lock()->wait_without_safepoint_check(i * delay);
 723         }
 724 
 725         // check the actual thread state instead of what we saved above
 726         if (thread_state() != _thread_in_native_trans) {
 727           // the thread has transitioned to another thread state so
 728           // try all the checks (except this one) one more time.
 729           do_trans_retry = true;
 730           break;
 731         }
 732       } // end retry loop
 733 
 734 
 735     }
 736   } while (do_trans_retry);
 737 
 738   *bits |= 0x00000010;
 739   return false;
 740 }
 741 
 742 // Wait for an external suspend request to complete (or be cancelled).
 743 // Returns true if the thread is externally suspended and false otherwise.
 744 //
 745 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 746                                                  uint32_t *bits) {
 747   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 748                              false /* !called_by_wait */, bits);
 749 
 750   // local flag copies to minimize SR_lock hold time
 751   bool is_suspended;
 752   bool pending;
 753   uint32_t reset_bits;
 754 
 755   // set a marker so is_ext_suspend_completed() knows we are the caller
 756   *bits |= 0x00010000;
 757 
 758   // We use reset_bits to reinitialize the bits value at the top of
 759   // each retry loop. This allows the caller to make use of any
 760   // unused bits for their own marking purposes.
 761   reset_bits = *bits;
 762 
 763   {
 764     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 765     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 766                                             delay, bits);
 767     pending = is_external_suspend();
 768   }
 769   // must release SR_lock to allow suspension to complete
 770 
 771   if (!pending) {
 772     // A cancelled suspend request is the only false return from
 773     // is_ext_suspend_completed() that keeps us from entering the
 774     // retry loop.
 775     *bits |= 0x00020000;
 776     return false;
 777   }
 778 
 779   if (is_suspended) {
 780     *bits |= 0x00040000;
 781     return true;
 782   }
 783 
 784   for (int i = 1; i <= retries; i++) {
 785     *bits = reset_bits;  // reinit to only track last retry
 786 
 787     // We used to do an "os::yield_all(i)" call here with the intention
 788     // that yielding would increase on each retry. However, the parameter
 789     // is ignored on Linux which means the yield didn't scale up. Waiting
 790     // on the SR_lock below provides a much more predictable scale up for
 791     // the delay. It also provides a simple/direct point to check for any
 792     // safepoint requests from the VMThread
 793 
 794     {
 795       Thread* t = Thread::current();
 796       MonitorLocker ml(SR_lock(),
 797                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 798       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 799       // can also call this)  and increase delay with each retry
 800       ml.wait(i * delay);
 801 
 802       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 803                                               delay, bits);
 804 
 805       // It is possible for the external suspend request to be cancelled
 806       // (by a resume) before the actual suspend operation is completed.
 807       // Refresh our local copy to see if we still need to wait.
 808       pending = is_external_suspend();
 809     }
 810 
 811     if (!pending) {
 812       // A cancelled suspend request is the only false return from
 813       // is_ext_suspend_completed() that keeps us from staying in the
 814       // retry loop.
 815       *bits |= 0x00080000;
 816       return false;
 817     }
 818 
 819     if (is_suspended) {
 820       *bits |= 0x00100000;
 821       return true;
 822     }
 823   } // end retry loop
 824 
 825   // thread did not suspend after all our retries
 826   *bits |= 0x00200000;
 827   return false;
 828 }
 829 
 830 // Called from API entry points which perform stack walking. If the
 831 // associated JavaThread is the current thread, then wait_for_suspend
 832 // is not used. Otherwise, it determines if we should wait for the
 833 // "other" thread to complete external suspension. (NOTE: in future
 834 // releases the suspension mechanism should be reimplemented so this
 835 // is not necessary.)
 836 //
 837 bool
 838 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 839   if (this != JavaThread::current()) {
 840     // "other" threads require special handling.
 841     if (wait_for_suspend) {
 842       // We are allowed to wait for the external suspend to complete
 843       // so give the other thread a chance to get suspended.
 844       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 845                                            SuspendRetryDelay, bits)) {
 846         // Didn't make it so let the caller know.
 847         return false;
 848       }
 849     }
 850     // We aren't allowed to wait for the external suspend to complete
 851     // so if the other thread isn't externally suspended we need to
 852     // let the caller know.
 853     else if (!is_ext_suspend_completed_with_lock(bits)) {
 854       return false;
 855     }
 856   }
 857 
 858   return true;
 859 }
 860 
 861 // GC Support
 862 bool Thread::claim_par_threads_do(uintx claim_token) {
 863   uintx token = _threads_do_token;
 864   if (token != claim_token) {
 865     uintx res = Atomic::cmpxchg(&_threads_do_token, token, claim_token);
 866     if (res == token) {
 867       return true;
 868     }
 869     guarantee(res == claim_token, "invariant");
 870   }
 871   return false;
 872 }
 873 
 874 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 875   active_handles()->oops_do(f);
 876   // Do oop for ThreadShadow
 877   f->do_oop((oop*)&_pending_exception);
 878   handle_area()->oops_do(f);
 879 
 880   // We scan thread local monitor lists here, and the remaining global
 881   // monitors in ObjectSynchronizer::oops_do().
 882   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 883 }
 884 
 885 void Thread::metadata_handles_do(void f(Metadata*)) {
 886   // Only walk the Handles in Thread.
 887   if (metadata_handles() != NULL) {
 888     for (int i = 0; i< metadata_handles()->length(); i++) {
 889       f(metadata_handles()->at(i));
 890     }
 891   }
 892 }
 893 
 894 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 895   // get_priority assumes osthread initialized
 896   if (osthread() != NULL) {
 897     int os_prio;
 898     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 899       st->print("os_prio=%d ", os_prio);
 900     }
 901 
 902     st->print("cpu=%.2fms ",
 903               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 904               );
 905     st->print("elapsed=%.2fs ",
 906               _statistical_info.getElapsedTime() / 1000.0
 907               );
 908     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 909       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 910       st->print("allocated=" SIZE_FORMAT "%s ",
 911                 byte_size_in_proper_unit(allocated_bytes),
 912                 proper_unit_for_byte_size(allocated_bytes)
 913                 );
 914       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 915     }
 916 
 917     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 918     osthread()->print_on(st);
 919   }
 920   ThreadsSMRSupport::print_info_on(this, st);
 921   st->print(" ");
 922   debug_only(if (WizardMode) print_owned_locks_on(st);)
 923 }
 924 
 925 void Thread::print() const { print_on(tty); }
 926 
 927 // Thread::print_on_error() is called by fatal error handler. Don't use
 928 // any lock or allocate memory.
 929 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 930   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 931 
 932   if (is_VM_thread())                 { st->print("VMThread"); }
 933   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 934   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 935   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 936   else                                { st->print("Thread"); }
 937 
 938   if (is_Named_thread()) {
 939     st->print(" \"%s\"", name());
 940   }
 941 
 942   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 943             p2i(stack_end()), p2i(stack_base()));
 944 
 945   if (osthread()) {
 946     st->print(" [id=%d]", osthread()->thread_id());
 947   }
 948 
 949   ThreadsSMRSupport::print_info_on(this, st);
 950 }
 951 
 952 void Thread::print_value_on(outputStream* st) const {
 953   if (is_Named_thread()) {
 954     st->print(" \"%s\" ", name());
 955   }
 956   st->print(INTPTR_FORMAT, p2i(this));   // print address
 957 }
 958 
 959 #ifdef ASSERT
 960 void Thread::print_owned_locks_on(outputStream* st) const {
 961   Mutex* cur = _owned_locks;
 962   if (cur == NULL) {
 963     st->print(" (no locks) ");
 964   } else {
 965     st->print_cr(" Locks owned:");
 966     while (cur) {
 967       cur->print_on(st);
 968       cur = cur->next();
 969     }
 970   }
 971 }
 972 
 973 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 974 void Thread::check_possible_safepoint() {
 975   if (!is_Java_thread()) return;
 976 
 977   if (_no_safepoint_count > 0) {
 978     print_owned_locks();
 979     fatal("Possible safepoint reached by thread that does not allow it");
 980   }
 981 #ifdef CHECK_UNHANDLED_OOPS
 982   // Clear unhandled oops in JavaThreads so we get a crash right away.
 983   clear_unhandled_oops();
 984 #endif // CHECK_UNHANDLED_OOPS
 985 }
 986 
 987 void Thread::check_for_valid_safepoint_state() {
 988   if (!is_Java_thread()) return;
 989 
 990   // Check NoSafepointVerifier, which is implied by locks taken that can be
 991   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
 992   // are held.
 993   check_possible_safepoint();
 994 
 995   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
 996     fatal("LEAF method calling lock?");
 997   }
 998 
 999   if (GCALotAtAllSafepoints) {
1000     // We could enter a safepoint here and thus have a gc
1001     InterfaceSupport::check_gc_alot();
1002   }
1003 }
1004 #endif // ASSERT
1005 
1006 bool Thread::is_in_stack(address adr) const {
1007   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1008   address end = os::current_stack_pointer();
1009   // Allow non Java threads to call this without stack_base
1010   if (_stack_base == NULL) return true;
1011   if (stack_base() > adr && adr >= end) return true;
1012 
1013   return false;
1014 }
1015 
1016 bool Thread::is_in_usable_stack(address adr) const {
1017   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1018   size_t usable_stack_size = _stack_size - stack_guard_size;
1019 
1020   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1021 }
1022 
1023 
1024 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1025 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1026 // used for compilation in the future. If that change is made, the need for these methods
1027 // should be revisited, and they should be removed if possible.
1028 
1029 bool Thread::is_lock_owned(address adr) const {
1030   return on_local_stack(adr);
1031 }
1032 
1033 bool Thread::set_as_starting_thread() {
1034   assert(_starting_thread == NULL, "already initialized: "
1035          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1036   // NOTE: this must be called inside the main thread.
1037   DEBUG_ONLY(_starting_thread = this;)
1038   return os::create_main_thread((JavaThread*)this);
1039 }
1040 
1041 static void initialize_class(Symbol* class_name, TRAPS) {
1042   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1043   InstanceKlass::cast(klass)->initialize(CHECK);
1044 }
1045 
1046 
1047 // Creates the initial ThreadGroup
1048 static Handle create_initial_thread_group(TRAPS) {
1049   Handle system_instance = JavaCalls::construct_new_instance(
1050                             SystemDictionary::ThreadGroup_klass(),
1051                             vmSymbols::void_method_signature(),
1052                             CHECK_NH);
1053   Universe::set_system_thread_group(system_instance());
1054 
1055   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1056   Handle main_instance = JavaCalls::construct_new_instance(
1057                             SystemDictionary::ThreadGroup_klass(),
1058                             vmSymbols::threadgroup_string_void_signature(),
1059                             system_instance,
1060                             string,
1061                             CHECK_NH);
1062   return main_instance;
1063 }
1064 
1065 // Creates the initial Thread
1066 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1067                                  TRAPS) {
1068   InstanceKlass* ik = SystemDictionary::Thread_klass();
1069   assert(ik->is_initialized(), "must be");
1070   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1071 
1072   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1073   // constructor calls Thread.current(), which must be set here for the
1074   // initial thread.
1075   java_lang_Thread::set_thread(thread_oop(), thread);
1076   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1077   thread->set_threadObj(thread_oop());
1078 
1079   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1080 
1081   JavaValue result(T_VOID);
1082   JavaCalls::call_special(&result, thread_oop,
1083                           ik,
1084                           vmSymbols::object_initializer_name(),
1085                           vmSymbols::threadgroup_string_void_signature(),
1086                           thread_group,
1087                           string,
1088                           CHECK_NULL);
1089   return thread_oop();
1090 }
1091 
1092 char java_runtime_name[128] = "";
1093 char java_runtime_version[128] = "";
1094 char java_runtime_vendor_version[128] = "";
1095 char java_runtime_vendor_vm_bug_url[128] = "";
1096 
1097 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1098 static const char* get_java_runtime_name(TRAPS) {
1099   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1100                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1101   fieldDescriptor fd;
1102   bool found = k != NULL &&
1103                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1104                                                         vmSymbols::string_signature(), &fd);
1105   if (found) {
1106     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1107     if (name_oop == NULL) {
1108       return NULL;
1109     }
1110     const char* name = java_lang_String::as_utf8_string(name_oop,
1111                                                         java_runtime_name,
1112                                                         sizeof(java_runtime_name));
1113     return name;
1114   } else {
1115     return NULL;
1116   }
1117 }
1118 
1119 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1120 static const char* get_java_runtime_version(TRAPS) {
1121   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1122                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1123   fieldDescriptor fd;
1124   bool found = k != NULL &&
1125                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1126                                                         vmSymbols::string_signature(), &fd);
1127   if (found) {
1128     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1129     if (name_oop == NULL) {
1130       return NULL;
1131     }
1132     const char* name = java_lang_String::as_utf8_string(name_oop,
1133                                                         java_runtime_version,
1134                                                         sizeof(java_runtime_version));
1135     return name;
1136   } else {
1137     return NULL;
1138   }
1139 }
1140 
1141 // extract the JRE vendor version from java.lang.VersionProps.VENDOR_VERSION
1142 static const char* get_java_runtime_vendor_version(TRAPS) {
1143   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1144                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1145   fieldDescriptor fd;
1146   bool found = k != NULL &&
1147                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_version_name(),
1148                                                         vmSymbols::string_signature(), &fd);
1149   if (found) {
1150     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1151     if (name_oop == NULL) {
1152       return NULL;
1153     }
1154     const char* name = java_lang_String::as_utf8_string(name_oop,
1155                                                         java_runtime_vendor_version,
1156                                                         sizeof(java_runtime_vendor_version));
1157     return name;
1158   } else {
1159     return NULL;
1160   }
1161 }
1162 
1163 // extract the JRE vendor VM bug URL from java.lang.VersionProps.VENDOR_URL_VM_BUG
1164 static const char* get_java_runtime_vendor_vm_bug_url(TRAPS) {
1165   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1166                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1167   fieldDescriptor fd;
1168   bool found = k != NULL &&
1169                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_vm_bug_url_name(),
1170                                                         vmSymbols::string_signature(), &fd);
1171   if (found) {
1172     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1173     if (name_oop == NULL) {
1174       return NULL;
1175     }
1176     const char* name = java_lang_String::as_utf8_string(name_oop,
1177                                                         java_runtime_vendor_vm_bug_url,
1178                                                         sizeof(java_runtime_vendor_vm_bug_url));
1179     return name;
1180   } else {
1181     return NULL;
1182   }
1183 }
1184 
1185 // General purpose hook into Java code, run once when the VM is initialized.
1186 // The Java library method itself may be changed independently from the VM.
1187 static void call_postVMInitHook(TRAPS) {
1188   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1189   if (klass != NULL) {
1190     JavaValue result(T_VOID);
1191     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1192                            vmSymbols::void_method_signature(),
1193                            CHECK);
1194   }
1195 }
1196 
1197 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1198                                     bool daemon, TRAPS) {
1199   assert(thread_group.not_null(), "thread group should be specified");
1200   assert(threadObj() == NULL, "should only create Java thread object once");
1201 
1202   InstanceKlass* ik = SystemDictionary::Thread_klass();
1203   assert(ik->is_initialized(), "must be");
1204   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1205 
1206   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1207   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1208   // constructor calls Thread.current(), which must be set here.
1209   java_lang_Thread::set_thread(thread_oop(), this);
1210   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1211   set_threadObj(thread_oop());
1212 
1213   JavaValue result(T_VOID);
1214   if (thread_name != NULL) {
1215     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1216     // Thread gets assigned specified name and null target
1217     JavaCalls::call_special(&result,
1218                             thread_oop,
1219                             ik,
1220                             vmSymbols::object_initializer_name(),
1221                             vmSymbols::threadgroup_string_void_signature(),
1222                             thread_group,
1223                             name,
1224                             THREAD);
1225   } else {
1226     // Thread gets assigned name "Thread-nnn" and null target
1227     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1228     JavaCalls::call_special(&result,
1229                             thread_oop,
1230                             ik,
1231                             vmSymbols::object_initializer_name(),
1232                             vmSymbols::threadgroup_runnable_void_signature(),
1233                             thread_group,
1234                             Handle(),
1235                             THREAD);
1236   }
1237 
1238 
1239   if (daemon) {
1240     java_lang_Thread::set_daemon(thread_oop());
1241   }
1242 
1243   if (HAS_PENDING_EXCEPTION) {
1244     return;
1245   }
1246 
1247   Klass* group =  SystemDictionary::ThreadGroup_klass();
1248   Handle threadObj(THREAD, this->threadObj());
1249 
1250   JavaCalls::call_special(&result,
1251                           thread_group,
1252                           group,
1253                           vmSymbols::add_method_name(),
1254                           vmSymbols::thread_void_signature(),
1255                           threadObj,          // Arg 1
1256                           THREAD);
1257 }
1258 
1259 // List of all NonJavaThreads and safe iteration over that list.
1260 
1261 class NonJavaThread::List {
1262 public:
1263   NonJavaThread* volatile _head;
1264   SingleWriterSynchronizer _protect;
1265 
1266   List() : _head(NULL), _protect() {}
1267 };
1268 
1269 NonJavaThread::List NonJavaThread::_the_list;
1270 
1271 NonJavaThread::Iterator::Iterator() :
1272   _protect_enter(_the_list._protect.enter()),
1273   _current(Atomic::load_acquire(&_the_list._head))
1274 {}
1275 
1276 NonJavaThread::Iterator::~Iterator() {
1277   _the_list._protect.exit(_protect_enter);
1278 }
1279 
1280 void NonJavaThread::Iterator::step() {
1281   assert(!end(), "precondition");
1282   _current = Atomic::load_acquire(&_current->_next);
1283 }
1284 
1285 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1286   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1287 }
1288 
1289 NonJavaThread::~NonJavaThread() { }
1290 
1291 void NonJavaThread::add_to_the_list() {
1292   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1293   // Initialize BarrierSet-related data before adding to list.
1294   BarrierSet::barrier_set()->on_thread_attach(this);
1295   Atomic::release_store(&_next, _the_list._head);
1296   Atomic::release_store(&_the_list._head, this);
1297 }
1298 
1299 void NonJavaThread::remove_from_the_list() {
1300   {
1301     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1302     // Cleanup BarrierSet-related data before removing from list.
1303     BarrierSet::barrier_set()->on_thread_detach(this);
1304     NonJavaThread* volatile* p = &_the_list._head;
1305     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1306       if (t == this) {
1307         *p = _next;
1308         break;
1309       }
1310     }
1311   }
1312   // Wait for any in-progress iterators.  Concurrent synchronize is not
1313   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1314   // from NJTList_lock in case an iteration attempts to lock it.
1315   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1316   _the_list._protect.synchronize();
1317   _next = NULL;                 // Safe to drop the link now.
1318 }
1319 
1320 void NonJavaThread::pre_run() {
1321   add_to_the_list();
1322 
1323   // This is slightly odd in that NamedThread is a subclass, but
1324   // in fact name() is defined in Thread
1325   assert(this->name() != NULL, "thread name was not set before it was started");
1326   this->set_native_thread_name(this->name());
1327 }
1328 
1329 void NonJavaThread::post_run() {
1330   JFR_ONLY(Jfr::on_thread_exit(this);)
1331   remove_from_the_list();
1332   // Ensure thread-local-storage is cleared before termination.
1333   Thread::clear_thread_current();
1334 }
1335 
1336 // NamedThread --  non-JavaThread subclasses with multiple
1337 // uniquely named instances should derive from this.
1338 NamedThread::NamedThread() :
1339   NonJavaThread(),
1340   _name(NULL),
1341   _processed_thread(NULL),
1342   _gc_id(GCId::undefined())
1343 {}
1344 
1345 NamedThread::~NamedThread() {
1346   FREE_C_HEAP_ARRAY(char, _name);
1347 }
1348 
1349 void NamedThread::set_name(const char* format, ...) {
1350   guarantee(_name == NULL, "Only get to set name once.");
1351   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1352   va_list ap;
1353   va_start(ap, format);
1354   jio_vsnprintf(_name, max_name_len, format, ap);
1355   va_end(ap);
1356 }
1357 
1358 void NamedThread::print_on(outputStream* st) const {
1359   st->print("\"%s\" ", name());
1360   Thread::print_on(st);
1361   st->cr();
1362 }
1363 
1364 
1365 // ======= WatcherThread ========
1366 
1367 // The watcher thread exists to simulate timer interrupts.  It should
1368 // be replaced by an abstraction over whatever native support for
1369 // timer interrupts exists on the platform.
1370 
1371 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1372 bool WatcherThread::_startable = false;
1373 volatile bool  WatcherThread::_should_terminate = false;
1374 
1375 WatcherThread::WatcherThread() : NonJavaThread() {
1376   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1377   if (os::create_thread(this, os::watcher_thread)) {
1378     _watcher_thread = this;
1379 
1380     // Set the watcher thread to the highest OS priority which should not be
1381     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1382     // is created. The only normal thread using this priority is the reference
1383     // handler thread, which runs for very short intervals only.
1384     // If the VMThread's priority is not lower than the WatcherThread profiling
1385     // will be inaccurate.
1386     os::set_priority(this, MaxPriority);
1387     if (!DisableStartThread) {
1388       os::start_thread(this);
1389     }
1390   }
1391 }
1392 
1393 int WatcherThread::sleep() const {
1394   // The WatcherThread does not participate in the safepoint protocol
1395   // for the PeriodicTask_lock because it is not a JavaThread.
1396   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1397 
1398   if (_should_terminate) {
1399     // check for termination before we do any housekeeping or wait
1400     return 0;  // we did not sleep.
1401   }
1402 
1403   // remaining will be zero if there are no tasks,
1404   // causing the WatcherThread to sleep until a task is
1405   // enrolled
1406   int remaining = PeriodicTask::time_to_wait();
1407   int time_slept = 0;
1408 
1409   // we expect this to timeout - we only ever get unparked when
1410   // we should terminate or when a new task has been enrolled
1411   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1412 
1413   jlong time_before_loop = os::javaTimeNanos();
1414 
1415   while (true) {
1416     bool timedout = ml.wait(remaining);
1417     jlong now = os::javaTimeNanos();
1418 
1419     if (remaining == 0) {
1420       // if we didn't have any tasks we could have waited for a long time
1421       // consider the time_slept zero and reset time_before_loop
1422       time_slept = 0;
1423       time_before_loop = now;
1424     } else {
1425       // need to recalculate since we might have new tasks in _tasks
1426       time_slept = (int) ((now - time_before_loop) / 1000000);
1427     }
1428 
1429     // Change to task list or spurious wakeup of some kind
1430     if (timedout || _should_terminate) {
1431       break;
1432     }
1433 
1434     remaining = PeriodicTask::time_to_wait();
1435     if (remaining == 0) {
1436       // Last task was just disenrolled so loop around and wait until
1437       // another task gets enrolled
1438       continue;
1439     }
1440 
1441     remaining -= time_slept;
1442     if (remaining <= 0) {
1443       break;
1444     }
1445   }
1446 
1447   return time_slept;
1448 }
1449 
1450 void WatcherThread::run() {
1451   assert(this == watcher_thread(), "just checking");
1452 
1453   this->set_active_handles(JNIHandleBlock::allocate_block());
1454   while (true) {
1455     assert(watcher_thread() == Thread::current(), "thread consistency check");
1456     assert(watcher_thread() == this, "thread consistency check");
1457 
1458     // Calculate how long it'll be until the next PeriodicTask work
1459     // should be done, and sleep that amount of time.
1460     int time_waited = sleep();
1461 
1462     if (VMError::is_error_reported()) {
1463       // A fatal error has happened, the error handler(VMError::report_and_die)
1464       // should abort JVM after creating an error log file. However in some
1465       // rare cases, the error handler itself might deadlock. Here periodically
1466       // check for error reporting timeouts, and if it happens, just proceed to
1467       // abort the VM.
1468 
1469       // This code is in WatcherThread because WatcherThread wakes up
1470       // periodically so the fatal error handler doesn't need to do anything;
1471       // also because the WatcherThread is less likely to crash than other
1472       // threads.
1473 
1474       for (;;) {
1475         // Note: we use naked sleep in this loop because we want to avoid using
1476         // any kind of VM infrastructure which may be broken at this point.
1477         if (VMError::check_timeout()) {
1478           // We hit error reporting timeout. Error reporting was interrupted and
1479           // will be wrapping things up now (closing files etc). Give it some more
1480           // time, then quit the VM.
1481           os::naked_short_sleep(200);
1482           // Print a message to stderr.
1483           fdStream err(defaultStream::output_fd());
1484           err.print_raw_cr("# [ timer expired, abort... ]");
1485           // skip atexit/vm_exit/vm_abort hooks
1486           os::die();
1487         }
1488 
1489         // Wait a second, then recheck for timeout.
1490         os::naked_short_sleep(999);
1491       }
1492     }
1493 
1494     if (_should_terminate) {
1495       // check for termination before posting the next tick
1496       break;
1497     }
1498 
1499     PeriodicTask::real_time_tick(time_waited);
1500   }
1501 
1502   // Signal that it is terminated
1503   {
1504     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1505     _watcher_thread = NULL;
1506     Terminator_lock->notify_all();
1507   }
1508 }
1509 
1510 void WatcherThread::start() {
1511   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1512 
1513   if (watcher_thread() == NULL && _startable) {
1514     _should_terminate = false;
1515     // Create the single instance of WatcherThread
1516     new WatcherThread();
1517   }
1518 }
1519 
1520 void WatcherThread::make_startable() {
1521   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1522   _startable = true;
1523 }
1524 
1525 void WatcherThread::stop() {
1526   {
1527     // Follow normal safepoint aware lock enter protocol since the
1528     // WatcherThread is stopped by another JavaThread.
1529     MutexLocker ml(PeriodicTask_lock);
1530     _should_terminate = true;
1531 
1532     WatcherThread* watcher = watcher_thread();
1533     if (watcher != NULL) {
1534       // unpark the WatcherThread so it can see that it should terminate
1535       watcher->unpark();
1536     }
1537   }
1538 
1539   MonitorLocker mu(Terminator_lock);
1540 
1541   while (watcher_thread() != NULL) {
1542     // This wait should make safepoint checks, wait without a timeout,
1543     // and wait as a suspend-equivalent condition.
1544     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1545   }
1546 }
1547 
1548 void WatcherThread::unpark() {
1549   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1550   PeriodicTask_lock->notify();
1551 }
1552 
1553 void WatcherThread::print_on(outputStream* st) const {
1554   st->print("\"%s\" ", name());
1555   Thread::print_on(st);
1556   st->cr();
1557 }
1558 
1559 // ======= JavaThread ========
1560 
1561 #if INCLUDE_JVMCI
1562 
1563 jlong* JavaThread::_jvmci_old_thread_counters;
1564 
1565 bool jvmci_counters_include(JavaThread* thread) {
1566   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1567 }
1568 
1569 void JavaThread::collect_counters(jlong* array, int length) {
1570   assert(length == JVMCICounterSize, "wrong value");
1571   for (int i = 0; i < length; i++) {
1572     array[i] = _jvmci_old_thread_counters[i];
1573   }
1574   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1575     if (jvmci_counters_include(tp)) {
1576       for (int i = 0; i < length; i++) {
1577         array[i] += tp->_jvmci_counters[i];
1578       }
1579     }
1580   }
1581 }
1582 
1583 // Attempt to enlarge the array for per thread counters.
1584 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1585   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1586   if (old_counters == NULL) {
1587     old_counters = new_counters;
1588     memset(old_counters, 0, sizeof(jlong) * new_size);
1589   } else {
1590     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1591       new_counters[i] = old_counters[i];
1592     }
1593     if (new_size > current_size) {
1594       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1595     }
1596     FREE_C_HEAP_ARRAY(jlong, old_counters);
1597   }
1598   return new_counters;
1599 }
1600 
1601 // Attempt to enlarge the array for per thread counters.
1602 void JavaThread::resize_counters(int current_size, int new_size) {
1603   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1604 }
1605 
1606 class VM_JVMCIResizeCounters : public VM_Operation {
1607  private:
1608   int _new_size;
1609 
1610  public:
1611   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1612   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1613   bool allow_nested_vm_operations() const        { return true; }
1614   void doit() {
1615     // Resize the old thread counters array
1616     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1617     JavaThread::_jvmci_old_thread_counters = new_counters;
1618 
1619     // Now resize each threads array
1620     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1621       tp->resize_counters(JVMCICounterSize, _new_size);
1622     }
1623     JVMCICounterSize = _new_size;
1624   }
1625 };
1626 
1627 void JavaThread::resize_all_jvmci_counters(int new_size) {
1628   VM_JVMCIResizeCounters op(new_size);
1629   VMThread::execute(&op);
1630 }
1631 
1632 #endif // INCLUDE_JVMCI
1633 
1634 // A JavaThread is a normal Java thread
1635 
1636 void JavaThread::initialize() {
1637   // Initialize fields
1638 
1639   set_saved_exception_pc(NULL);
1640   set_threadObj(NULL);
1641   _anchor.clear();
1642   set_entry_point(NULL);
1643   set_jni_functions(jni_functions());
1644   set_callee_target(NULL);
1645   set_vm_result(NULL);
1646   set_vm_result_2(NULL);
1647   set_vframe_array_head(NULL);
1648   set_vframe_array_last(NULL);
1649   set_deferred_locals(NULL);
1650   set_deopt_mark(NULL);
1651   set_deopt_compiled_method(NULL);
1652   set_monitor_chunks(NULL);
1653   _on_thread_list = false;
1654   set_thread_state(_thread_new);
1655   _terminated = _not_terminated;
1656   _array_for_gc = NULL;
1657   _suspend_equivalent = false;
1658   _in_deopt_handler = 0;
1659   _doing_unsafe_access = false;
1660   _stack_guard_state = stack_guard_unused;
1661 #if INCLUDE_JVMCI
1662   _pending_monitorenter = false;
1663   _pending_deoptimization = -1;
1664   _pending_failed_speculation = 0;
1665   _pending_transfer_to_interpreter = false;
1666   _in_retryable_allocation = false;
1667   _jvmci._alternate_call_target = NULL;
1668   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1669   _jvmci_counters = NULL;
1670   if (JVMCICounterSize > 0) {
1671     resize_counters(0, (int) JVMCICounterSize);
1672   }
1673 #endif // INCLUDE_JVMCI
1674   _reserved_stack_activation = NULL;  // stack base not known yet
1675   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1676   _exception_pc  = 0;
1677   _exception_handler_pc = 0;
1678   _is_method_handle_return = 0;
1679   _jvmti_thread_state= NULL;
1680   _should_post_on_exceptions_flag = JNI_FALSE;
1681   _interp_only_mode    = 0;
1682   _special_runtime_exit_condition = _no_async_condition;
1683   _pending_async_exception = NULL;
1684   _thread_stat = NULL;
1685   _thread_stat = new ThreadStatistics();
1686   _jni_active_critical = 0;
1687   _pending_jni_exception_check_fn = NULL;
1688   _do_not_unlock_if_synchronized = false;
1689   _cached_monitor_info = NULL;
1690   _parker = Parker::Allocate(this);
1691   _SleepEvent = ParkEvent::Allocate(this);
1692   // Setup safepoint state info for this thread
1693   ThreadSafepointState::create(this);
1694 
1695   debug_only(_java_call_counter = 0);
1696 
1697   // JVMTI PopFrame support
1698   _popframe_condition = popframe_inactive;
1699   _popframe_preserved_args = NULL;
1700   _popframe_preserved_args_size = 0;
1701   _frames_to_pop_failed_realloc = 0;
1702 
1703   if (SafepointMechanism::uses_thread_local_poll()) {
1704     SafepointMechanism::initialize_header(this);
1705   }
1706 
1707   _class_to_be_initialized = NULL;
1708 
1709   pd_initialize();
1710 }
1711 
1712 JavaThread::JavaThread(bool is_attaching_via_jni) :
1713                        Thread() {
1714   initialize();
1715   if (is_attaching_via_jni) {
1716     _jni_attach_state = _attaching_via_jni;
1717   } else {
1718     _jni_attach_state = _not_attaching_via_jni;
1719   }
1720   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1721 }
1722 
1723 
1724 // interrupt support
1725 
1726 void JavaThread::interrupt() {
1727   debug_only(check_for_dangling_thread_pointer(this);)
1728 
1729   // For Windows _interrupt_event
1730   osthread()->set_interrupted(true);
1731 
1732   // For Thread.sleep
1733   _SleepEvent->unpark();
1734 
1735   // For JSR166 LockSupport.park
1736   parker()->unpark();
1737 
1738   // For ObjectMonitor and JvmtiRawMonitor
1739   _ParkEvent->unpark();
1740 }
1741 
1742 
1743 bool JavaThread::is_interrupted(bool clear_interrupted) {
1744   debug_only(check_for_dangling_thread_pointer(this);)
1745 
1746   if (threadObj() == NULL) {
1747     // If there is no j.l.Thread then it is impossible to have
1748     // been interrupted. We can find NULL during VM initialization
1749     // or when a JNI thread is still in the process of attaching.
1750     // In such cases this must be the current thread.
1751     assert(this == Thread::current(), "invariant");
1752     return false;
1753   }
1754 
1755   bool interrupted = java_lang_Thread::interrupted(threadObj());
1756 
1757   // NOTE that since there is no "lock" around the interrupt and
1758   // is_interrupted operations, there is the possibility that the
1759   // interrupted flag will be "false" but that the
1760   // low-level events will be in the signaled state. This is
1761   // intentional. The effect of this is that Object.wait() and
1762   // LockSupport.park() will appear to have a spurious wakeup, which
1763   // is allowed and not harmful, and the possibility is so rare that
1764   // it is not worth the added complexity to add yet another lock.
1765   // For the sleep event an explicit reset is performed on entry
1766   // to JavaThread::sleep, so there is no early return. It has also been
1767   // recommended not to put the interrupted flag into the "event"
1768   // structure because it hides the issue.
1769   // Also, because there is no lock, we must only clear the interrupt
1770   // state if we are going to report that we were interrupted; otherwise
1771   // an interrupt that happens just after we read the field would be lost.
1772   if (interrupted && clear_interrupted) {
1773     assert(this == Thread::current(), "only the current thread can clear");
1774     java_lang_Thread::set_interrupted(threadObj(), false);
1775     osthread()->set_interrupted(false);
1776   }
1777 
1778   return interrupted;
1779 }
1780 
1781 bool JavaThread::reguard_stack(address cur_sp) {
1782   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1783       && _stack_guard_state != stack_guard_reserved_disabled) {
1784     return true; // Stack already guarded or guard pages not needed.
1785   }
1786 
1787   if (register_stack_overflow()) {
1788     // For those architectures which have separate register and
1789     // memory stacks, we must check the register stack to see if
1790     // it has overflowed.
1791     return false;
1792   }
1793 
1794   // Java code never executes within the yellow zone: the latter is only
1795   // there to provoke an exception during stack banging.  If java code
1796   // is executing there, either StackShadowPages should be larger, or
1797   // some exception code in c1, c2 or the interpreter isn't unwinding
1798   // when it should.
1799   guarantee(cur_sp > stack_reserved_zone_base(),
1800             "not enough space to reguard - increase StackShadowPages");
1801   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1802     enable_stack_yellow_reserved_zone();
1803     if (reserved_stack_activation() != stack_base()) {
1804       set_reserved_stack_activation(stack_base());
1805     }
1806   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1807     set_reserved_stack_activation(stack_base());
1808     enable_stack_reserved_zone();
1809   }
1810   return true;
1811 }
1812 
1813 bool JavaThread::reguard_stack(void) {
1814   return reguard_stack(os::current_stack_pointer());
1815 }
1816 
1817 
1818 void JavaThread::block_if_vm_exited() {
1819   if (_terminated == _vm_exited) {
1820     // _vm_exited is set at safepoint, and Threads_lock is never released
1821     // we will block here forever.
1822     // Here we can be doing a jump from a safe state to an unsafe state without
1823     // proper transition, but it happens after the final safepoint has begun.
1824     set_thread_state(_thread_in_vm);
1825     Threads_lock->lock();
1826     ShouldNotReachHere();
1827   }
1828 }
1829 
1830 
1831 // Remove this ifdef when C1 is ported to the compiler interface.
1832 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1833 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1834 
1835 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1836                        Thread() {
1837   initialize();
1838   _jni_attach_state = _not_attaching_via_jni;
1839   set_entry_point(entry_point);
1840   // Create the native thread itself.
1841   // %note runtime_23
1842   os::ThreadType thr_type = os::java_thread;
1843   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1844                                                      os::java_thread;
1845   os::create_thread(this, thr_type, stack_sz);
1846   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1847   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1848   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1849   // the exception consists of creating the exception object & initializing it, initialization
1850   // will leave the VM via a JavaCall and then all locks must be unlocked).
1851   //
1852   // The thread is still suspended when we reach here. Thread must be explicit started
1853   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1854   // by calling Threads:add. The reason why this is not done here, is because the thread
1855   // object must be fully initialized (take a look at JVM_Start)
1856 }
1857 
1858 JavaThread::~JavaThread() {
1859 
1860   // JSR166 -- return the parker to the free list
1861   Parker::Release(_parker);
1862   _parker = NULL;
1863 
1864   // Return the sleep event to the free list
1865   ParkEvent::Release(_SleepEvent);
1866   _SleepEvent = NULL;
1867 
1868   // Free any remaining  previous UnrollBlock
1869   vframeArray* old_array = vframe_array_last();
1870 
1871   if (old_array != NULL) {
1872     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1873     old_array->set_unroll_block(NULL);
1874     delete old_info;
1875     delete old_array;
1876   }
1877 
1878   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1879   if (deferred != NULL) {
1880     // This can only happen if thread is destroyed before deoptimization occurs.
1881     assert(deferred->length() != 0, "empty array!");
1882     do {
1883       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1884       deferred->remove_at(0);
1885       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1886       delete dlv;
1887     } while (deferred->length() != 0);
1888     delete deferred;
1889   }
1890 
1891   // All Java related clean up happens in exit
1892   ThreadSafepointState::destroy(this);
1893   if (_thread_stat != NULL) delete _thread_stat;
1894 
1895 #if INCLUDE_JVMCI
1896   if (JVMCICounterSize > 0) {
1897     if (jvmci_counters_include(this)) {
1898       for (int i = 0; i < JVMCICounterSize; i++) {
1899         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1900       }
1901     }
1902     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1903   }
1904 #endif // INCLUDE_JVMCI
1905 }
1906 
1907 
1908 // First JavaThread specific code executed by a new Java thread.
1909 void JavaThread::pre_run() {
1910   // empty - see comments in run()
1911 }
1912 
1913 // The main routine called by a new Java thread. This isn't overridden
1914 // by subclasses, instead different subclasses define a different "entry_point"
1915 // which defines the actual logic for that kind of thread.
1916 void JavaThread::run() {
1917   // initialize thread-local alloc buffer related fields
1918   this->initialize_tlab();
1919 
1920   // Used to test validity of stack trace backs.
1921   // This can't be moved into pre_run() else we invalidate
1922   // the requirement that thread_main_inner is lower on
1923   // the stack. Consequently all the initialization logic
1924   // stays here in run() rather than pre_run().
1925   this->record_base_of_stack_pointer();
1926 
1927   this->create_stack_guard_pages();
1928 
1929   this->cache_global_variables();
1930 
1931   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1932   // in the VM. Change thread state from _thread_new to _thread_in_vm
1933   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1934   // Before a thread is on the threads list it is always safe, so after leaving the
1935   // _thread_new we should emit a instruction barrier. The distance to modified code
1936   // from here is probably far enough, but this is consistent and safe.
1937   OrderAccess::cross_modify_fence();
1938 
1939   assert(JavaThread::current() == this, "sanity check");
1940   assert(!Thread::current()->owns_locks(), "sanity check");
1941 
1942   DTRACE_THREAD_PROBE(start, this);
1943 
1944   // This operation might block. We call that after all safepoint checks for a new thread has
1945   // been completed.
1946   this->set_active_handles(JNIHandleBlock::allocate_block());
1947 
1948   if (JvmtiExport::should_post_thread_life()) {
1949     JvmtiExport::post_thread_start(this);
1950 
1951   }
1952 
1953   // We call another function to do the rest so we are sure that the stack addresses used
1954   // from there will be lower than the stack base just computed.
1955   thread_main_inner();
1956 }
1957 
1958 void JavaThread::thread_main_inner() {
1959   assert(JavaThread::current() == this, "sanity check");
1960   assert(this->threadObj() != NULL, "just checking");
1961 
1962   // Execute thread entry point unless this thread has a pending exception
1963   // or has been stopped before starting.
1964   // Note: Due to JVM_StopThread we can have pending exceptions already!
1965   if (!this->has_pending_exception() &&
1966       !java_lang_Thread::is_stillborn(this->threadObj())) {
1967     {
1968       ResourceMark rm(this);
1969       this->set_native_thread_name(this->get_thread_name());
1970     }
1971     HandleMark hm(this);
1972     this->entry_point()(this, this);
1973   }
1974 
1975   DTRACE_THREAD_PROBE(stop, this);
1976 
1977   // Cleanup is handled in post_run()
1978 }
1979 
1980 // Shared teardown for all JavaThreads
1981 void JavaThread::post_run() {
1982   this->exit(false);
1983   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1984   // for any shared tear-down.
1985   this->smr_delete();
1986 }
1987 
1988 static void ensure_join(JavaThread* thread) {
1989   // We do not need to grab the Threads_lock, since we are operating on ourself.
1990   Handle threadObj(thread, thread->threadObj());
1991   assert(threadObj.not_null(), "java thread object must exist");
1992   ObjectLocker lock(threadObj, thread);
1993   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1994   thread->clear_pending_exception();
1995   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1996   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1997   // Clear the native thread instance - this makes isAlive return false and allows the join()
1998   // to complete once we've done the notify_all below
1999   java_lang_Thread::set_thread(threadObj(), NULL);
2000   lock.notify_all(thread);
2001   // Ignore pending exception (ThreadDeath), since we are exiting anyway
2002   thread->clear_pending_exception();
2003 }
2004 
2005 static bool is_daemon(oop threadObj) {
2006   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
2007 }
2008 
2009 // For any new cleanup additions, please check to see if they need to be applied to
2010 // cleanup_failed_attach_current_thread as well.
2011 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
2012   assert(this == JavaThread::current(), "thread consistency check");
2013 
2014   elapsedTimer _timer_exit_phase1;
2015   elapsedTimer _timer_exit_phase2;
2016   elapsedTimer _timer_exit_phase3;
2017   elapsedTimer _timer_exit_phase4;
2018 
2019   if (log_is_enabled(Debug, os, thread, timer)) {
2020     _timer_exit_phase1.start();
2021   }
2022 
2023   HandleMark hm(this);
2024   Handle uncaught_exception(this, this->pending_exception());
2025   this->clear_pending_exception();
2026   Handle threadObj(this, this->threadObj());
2027   assert(threadObj.not_null(), "Java thread object should be created");
2028 
2029   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2030   {
2031     EXCEPTION_MARK;
2032 
2033     CLEAR_PENDING_EXCEPTION;
2034   }
2035   if (!destroy_vm) {
2036     if (uncaught_exception.not_null()) {
2037       EXCEPTION_MARK;
2038       // Call method Thread.dispatchUncaughtException().
2039       Klass* thread_klass = SystemDictionary::Thread_klass();
2040       JavaValue result(T_VOID);
2041       JavaCalls::call_virtual(&result,
2042                               threadObj, thread_klass,
2043                               vmSymbols::dispatchUncaughtException_name(),
2044                               vmSymbols::throwable_void_signature(),
2045                               uncaught_exception,
2046                               THREAD);
2047       if (HAS_PENDING_EXCEPTION) {
2048         ResourceMark rm(this);
2049         jio_fprintf(defaultStream::error_stream(),
2050                     "\nException: %s thrown from the UncaughtExceptionHandler"
2051                     " in thread \"%s\"\n",
2052                     pending_exception()->klass()->external_name(),
2053                     get_thread_name());
2054         CLEAR_PENDING_EXCEPTION;
2055       }
2056     }
2057     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2058 
2059     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2060     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2061     // is deprecated anyhow.
2062     if (!is_Compiler_thread()) {
2063       int count = 3;
2064       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2065         EXCEPTION_MARK;
2066         JavaValue result(T_VOID);
2067         Klass* thread_klass = SystemDictionary::Thread_klass();
2068         JavaCalls::call_virtual(&result,
2069                                 threadObj, thread_klass,
2070                                 vmSymbols::exit_method_name(),
2071                                 vmSymbols::void_method_signature(),
2072                                 THREAD);
2073         CLEAR_PENDING_EXCEPTION;
2074       }
2075     }
2076     // notify JVMTI
2077     if (JvmtiExport::should_post_thread_life()) {
2078       JvmtiExport::post_thread_end(this);
2079     }
2080 
2081     // We have notified the agents that we are exiting, before we go on,
2082     // we must check for a pending external suspend request and honor it
2083     // in order to not surprise the thread that made the suspend request.
2084     while (true) {
2085       {
2086         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2087         if (!is_external_suspend()) {
2088           set_terminated(_thread_exiting);
2089           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2090           break;
2091         }
2092         // Implied else:
2093         // Things get a little tricky here. We have a pending external
2094         // suspend request, but we are holding the SR_lock so we
2095         // can't just self-suspend. So we temporarily drop the lock
2096         // and then self-suspend.
2097       }
2098 
2099       ThreadBlockInVM tbivm(this);
2100       java_suspend_self();
2101 
2102       // We're done with this suspend request, but we have to loop around
2103       // and check again. Eventually we will get SR_lock without a pending
2104       // external suspend request and will be able to mark ourselves as
2105       // exiting.
2106     }
2107     // no more external suspends are allowed at this point
2108   } else {
2109     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2110     // before_exit() has already posted JVMTI THREAD_END events
2111   }
2112 
2113   if (log_is_enabled(Debug, os, thread, timer)) {
2114     _timer_exit_phase1.stop();
2115     _timer_exit_phase2.start();
2116   }
2117 
2118   // Capture daemon status before the thread is marked as terminated.
2119   bool daemon = is_daemon(threadObj());
2120 
2121   // Notify waiters on thread object. This has to be done after exit() is called
2122   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2123   // group should have the destroyed bit set before waiters are notified).
2124   ensure_join(this);
2125   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2126 
2127   if (log_is_enabled(Debug, os, thread, timer)) {
2128     _timer_exit_phase2.stop();
2129     _timer_exit_phase3.start();
2130   }
2131   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2132   // held by this thread must be released. The spec does not distinguish
2133   // between JNI-acquired and regular Java monitors. We can only see
2134   // regular Java monitors here if monitor enter-exit matching is broken.
2135   //
2136   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2137   // ObjectSynchronizer::release_monitors_owned_by_thread().
2138   if (exit_type == jni_detach) {
2139     // Sanity check even though JNI DetachCurrentThread() would have
2140     // returned JNI_ERR if there was a Java frame. JavaThread exit
2141     // should be done executing Java code by the time we get here.
2142     assert(!this->has_last_Java_frame(),
2143            "should not have a Java frame when detaching or exiting");
2144     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2145     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2146   }
2147 
2148   // These things needs to be done while we are still a Java Thread. Make sure that thread
2149   // is in a consistent state, in case GC happens
2150   JFR_ONLY(Jfr::on_thread_exit(this);)
2151 
2152   if (active_handles() != NULL) {
2153     JNIHandleBlock* block = active_handles();
2154     set_active_handles(NULL);
2155     JNIHandleBlock::release_block(block);
2156   }
2157 
2158   if (free_handle_block() != NULL) {
2159     JNIHandleBlock* block = free_handle_block();
2160     set_free_handle_block(NULL);
2161     JNIHandleBlock::release_block(block);
2162   }
2163 
2164   // These have to be removed while this is still a valid thread.
2165   remove_stack_guard_pages();
2166 
2167   if (UseTLAB) {
2168     tlab().retire();
2169   }
2170 
2171   if (JvmtiEnv::environments_might_exist()) {
2172     JvmtiExport::cleanup_thread(this);
2173   }
2174 
2175   // We must flush any deferred card marks and other various GC barrier
2176   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2177   // before removing a thread from the list of active threads.
2178   BarrierSet::barrier_set()->on_thread_detach(this);
2179 
2180   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2181     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2182     os::current_thread_id());
2183 
2184   if (log_is_enabled(Debug, os, thread, timer)) {
2185     _timer_exit_phase3.stop();
2186     _timer_exit_phase4.start();
2187   }
2188   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2189   Threads::remove(this, daemon);
2190 
2191   if (log_is_enabled(Debug, os, thread, timer)) {
2192     _timer_exit_phase4.stop();
2193     ResourceMark rm(this);
2194     log_debug(os, thread, timer)("name='%s'"
2195                                  ", exit-phase1=" JLONG_FORMAT
2196                                  ", exit-phase2=" JLONG_FORMAT
2197                                  ", exit-phase3=" JLONG_FORMAT
2198                                  ", exit-phase4=" JLONG_FORMAT,
2199                                  get_thread_name(),
2200                                  _timer_exit_phase1.milliseconds(),
2201                                  _timer_exit_phase2.milliseconds(),
2202                                  _timer_exit_phase3.milliseconds(),
2203                                  _timer_exit_phase4.milliseconds());
2204   }
2205 }
2206 
2207 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2208   if (active_handles() != NULL) {
2209     JNIHandleBlock* block = active_handles();
2210     set_active_handles(NULL);
2211     JNIHandleBlock::release_block(block);
2212   }
2213 
2214   if (free_handle_block() != NULL) {
2215     JNIHandleBlock* block = free_handle_block();
2216     set_free_handle_block(NULL);
2217     JNIHandleBlock::release_block(block);
2218   }
2219 
2220   // These have to be removed while this is still a valid thread.
2221   remove_stack_guard_pages();
2222 
2223   if (UseTLAB) {
2224     tlab().retire();
2225   }
2226 
2227   BarrierSet::barrier_set()->on_thread_detach(this);
2228 
2229   Threads::remove(this, is_daemon);
2230   this->smr_delete();
2231 }
2232 
2233 JavaThread* JavaThread::active() {
2234   Thread* thread = Thread::current();
2235   if (thread->is_Java_thread()) {
2236     return (JavaThread*) thread;
2237   } else {
2238     assert(thread->is_VM_thread(), "this must be a vm thread");
2239     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2240     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2241     assert(ret->is_Java_thread(), "must be a Java thread");
2242     return ret;
2243   }
2244 }
2245 
2246 bool JavaThread::is_lock_owned(address adr) const {
2247   if (Thread::is_lock_owned(adr)) return true;
2248 
2249   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2250     if (chunk->contains(adr)) return true;
2251   }
2252 
2253   return false;
2254 }
2255 
2256 
2257 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2258   chunk->set_next(monitor_chunks());
2259   set_monitor_chunks(chunk);
2260 }
2261 
2262 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2263   guarantee(monitor_chunks() != NULL, "must be non empty");
2264   if (monitor_chunks() == chunk) {
2265     set_monitor_chunks(chunk->next());
2266   } else {
2267     MonitorChunk* prev = monitor_chunks();
2268     while (prev->next() != chunk) prev = prev->next();
2269     prev->set_next(chunk->next());
2270   }
2271 }
2272 
2273 // JVM support.
2274 
2275 // Note: this function shouldn't block if it's called in
2276 // _thread_in_native_trans state (such as from
2277 // check_special_condition_for_native_trans()).
2278 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2279 
2280   if (has_last_Java_frame() && has_async_condition()) {
2281     // If we are at a polling page safepoint (not a poll return)
2282     // then we must defer async exception because live registers
2283     // will be clobbered by the exception path. Poll return is
2284     // ok because the call we a returning from already collides
2285     // with exception handling registers and so there is no issue.
2286     // (The exception handling path kills call result registers but
2287     //  this is ok since the exception kills the result anyway).
2288 
2289     if (is_at_poll_safepoint()) {
2290       // if the code we are returning to has deoptimized we must defer
2291       // the exception otherwise live registers get clobbered on the
2292       // exception path before deoptimization is able to retrieve them.
2293       //
2294       RegisterMap map(this, false);
2295       frame caller_fr = last_frame().sender(&map);
2296       assert(caller_fr.is_compiled_frame(), "what?");
2297       if (caller_fr.is_deoptimized_frame()) {
2298         log_info(exceptions)("deferred async exception at compiled safepoint");
2299         return;
2300       }
2301     }
2302   }
2303 
2304   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2305   if (condition == _no_async_condition) {
2306     // Conditions have changed since has_special_runtime_exit_condition()
2307     // was called:
2308     // - if we were here only because of an external suspend request,
2309     //   then that was taken care of above (or cancelled) so we are done
2310     // - if we were here because of another async request, then it has
2311     //   been cleared between the has_special_runtime_exit_condition()
2312     //   and now so again we are done
2313     return;
2314   }
2315 
2316   // Check for pending async. exception
2317   if (_pending_async_exception != NULL) {
2318     // Only overwrite an already pending exception, if it is not a threadDeath.
2319     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2320 
2321       // We cannot call Exceptions::_throw(...) here because we cannot block
2322       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2323 
2324       LogTarget(Info, exceptions) lt;
2325       if (lt.is_enabled()) {
2326         ResourceMark rm;
2327         LogStream ls(lt);
2328         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2329           if (has_last_Java_frame()) {
2330             frame f = last_frame();
2331            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2332           }
2333         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2334       }
2335       _pending_async_exception = NULL;
2336       clear_has_async_exception();
2337     }
2338   }
2339 
2340   if (check_unsafe_error &&
2341       condition == _async_unsafe_access_error && !has_pending_exception()) {
2342     condition = _no_async_condition;  // done
2343     switch (thread_state()) {
2344     case _thread_in_vm: {
2345       JavaThread* THREAD = this;
2346       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2347     }
2348     case _thread_in_native: {
2349       ThreadInVMfromNative tiv(this);
2350       JavaThread* THREAD = this;
2351       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2352     }
2353     case _thread_in_Java: {
2354       ThreadInVMfromJava tiv(this);
2355       JavaThread* THREAD = this;
2356       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2357     }
2358     default:
2359       ShouldNotReachHere();
2360     }
2361   }
2362 
2363   assert(condition == _no_async_condition || has_pending_exception() ||
2364          (!check_unsafe_error && condition == _async_unsafe_access_error),
2365          "must have handled the async condition, if no exception");
2366 }
2367 
2368 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2369 
2370   // Check for pending external suspend.
2371   if (is_external_suspend_with_lock()) {
2372     frame_anchor()->make_walkable(this);
2373     java_suspend_self_with_safepoint_check();
2374   }
2375 
2376   // We might be here for reasons in addition to the self-suspend request
2377   // so check for other async requests.
2378   if (check_asyncs) {
2379     check_and_handle_async_exceptions();
2380   }
2381 
2382   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2383 }
2384 
2385 void JavaThread::send_thread_stop(oop java_throwable)  {
2386   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2387   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2388   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2389 
2390   // Do not throw asynchronous exceptions against the compiler thread
2391   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2392   if (!can_call_java()) return;
2393 
2394   {
2395     // Actually throw the Throwable against the target Thread - however
2396     // only if there is no thread death exception installed already.
2397     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2398       // If the topmost frame is a runtime stub, then we are calling into
2399       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2400       // must deoptimize the caller before continuing, as the compiled  exception handler table
2401       // may not be valid
2402       if (has_last_Java_frame()) {
2403         frame f = last_frame();
2404         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2405           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2406           RegisterMap reg_map(this, UseBiasedLocking);
2407           frame compiled_frame = f.sender(&reg_map);
2408           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2409             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2410           }
2411         }
2412       }
2413 
2414       // Set async. pending exception in thread.
2415       set_pending_async_exception(java_throwable);
2416 
2417       if (log_is_enabled(Info, exceptions)) {
2418          ResourceMark rm;
2419         log_info(exceptions)("Pending Async. exception installed of type: %s",
2420                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2421       }
2422       // for AbortVMOnException flag
2423       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2424     }
2425   }
2426 
2427 
2428   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2429   java_lang_Thread::set_interrupted(threadObj(), true);
2430   this->interrupt();
2431 }
2432 
2433 // External suspension mechanism.
2434 //
2435 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2436 // to any VM_locks and it is at a transition
2437 // Self-suspension will happen on the transition out of the vm.
2438 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2439 //
2440 // Guarantees on return:
2441 //   + Target thread will not execute any new bytecode (that's why we need to
2442 //     force a safepoint)
2443 //   + Target thread will not enter any new monitors
2444 //
2445 void JavaThread::java_suspend() {
2446   ThreadsListHandle tlh;
2447   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2448     return;
2449   }
2450 
2451   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2452     if (!is_external_suspend()) {
2453       // a racing resume has cancelled us; bail out now
2454       return;
2455     }
2456 
2457     // suspend is done
2458     uint32_t debug_bits = 0;
2459     // Warning: is_ext_suspend_completed() may temporarily drop the
2460     // SR_lock to allow the thread to reach a stable thread state if
2461     // it is currently in a transient thread state.
2462     if (is_ext_suspend_completed(false /* !called_by_wait */,
2463                                  SuspendRetryDelay, &debug_bits)) {
2464       return;
2465     }
2466   }
2467 
2468   if (Thread::current() == this) {
2469     // Safely self-suspend.
2470     // If we don't do this explicitly it will implicitly happen
2471     // before we transition back to Java, and on some other thread-state
2472     // transition paths, but not as we exit a JVM TI SuspendThread call.
2473     // As SuspendThread(current) must not return (until resumed) we must
2474     // self-suspend here.
2475     ThreadBlockInVM tbivm(this);
2476     java_suspend_self();
2477   } else {
2478     VM_ThreadSuspend vm_suspend;
2479     VMThread::execute(&vm_suspend);
2480   }
2481 }
2482 
2483 // Part II of external suspension.
2484 // A JavaThread self suspends when it detects a pending external suspend
2485 // request. This is usually on transitions. It is also done in places
2486 // where continuing to the next transition would surprise the caller,
2487 // e.g., monitor entry.
2488 //
2489 // Returns the number of times that the thread self-suspended.
2490 //
2491 // Note: DO NOT call java_suspend_self() when you just want to block current
2492 //       thread. java_suspend_self() is the second stage of cooperative
2493 //       suspension for external suspend requests and should only be used
2494 //       to complete an external suspend request.
2495 //
2496 int JavaThread::java_suspend_self() {
2497   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2498   int ret = 0;
2499 
2500   // we are in the process of exiting so don't suspend
2501   if (is_exiting()) {
2502     clear_external_suspend();
2503     return ret;
2504   }
2505 
2506   assert(_anchor.walkable() ||
2507          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2508          "must have walkable stack");
2509 
2510   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2511 
2512   assert(!this->is_ext_suspended(),
2513          "a thread trying to self-suspend should not already be suspended");
2514 
2515   if (this->is_suspend_equivalent()) {
2516     // If we are self-suspending as a result of the lifting of a
2517     // suspend equivalent condition, then the suspend_equivalent
2518     // flag is not cleared until we set the ext_suspended flag so
2519     // that wait_for_ext_suspend_completion() returns consistent
2520     // results.
2521     this->clear_suspend_equivalent();
2522   }
2523 
2524   // A racing resume may have cancelled us before we grabbed SR_lock
2525   // above. Or another external suspend request could be waiting for us
2526   // by the time we return from SR_lock()->wait(). The thread
2527   // that requested the suspension may already be trying to walk our
2528   // stack and if we return now, we can change the stack out from under
2529   // it. This would be a "bad thing (TM)" and cause the stack walker
2530   // to crash. We stay self-suspended until there are no more pending
2531   // external suspend requests.
2532   while (is_external_suspend()) {
2533     ret++;
2534     this->set_ext_suspended();
2535 
2536     // _ext_suspended flag is cleared by java_resume()
2537     while (is_ext_suspended()) {
2538       ml.wait();
2539     }
2540   }
2541   return ret;
2542 }
2543 
2544 // Helper routine to set up the correct thread state before calling java_suspend_self.
2545 // This is called when regular thread-state transition helpers can't be used because
2546 // we can be in various states, in particular _thread_in_native_trans.
2547 // Because this thread is external suspended the safepoint code will count it as at
2548 // a safepoint, regardless of what its actual current thread-state is. But
2549 // is_ext_suspend_completed() may be waiting to see a thread transition from
2550 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2551 // to _thread_blocked. The problem with setting thread state directly is that a
2552 // safepoint could happen just after java_suspend_self() returns after being resumed,
2553 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2554 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2555 // However, not all initial-states are allowed when performing a safepoint check, as we
2556 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2557 // only _thread_in_native is possible when executing this code (based on our two callers).
2558 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2559 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2560 // and so we don't need the explicit safepoint check.
2561 
2562 void JavaThread::java_suspend_self_with_safepoint_check() {
2563   assert(this == Thread::current(), "invariant");
2564   JavaThreadState state = thread_state();
2565   set_thread_state(_thread_blocked);
2566   java_suspend_self();
2567   set_thread_state_fence(state);
2568   // Since we are not using a regular thread-state transition helper here,
2569   // we must manually emit the instruction barrier after leaving a safe state.
2570   OrderAccess::cross_modify_fence();
2571   if (state != _thread_in_native) {
2572     SafepointMechanism::block_if_requested(this);
2573   }
2574 }
2575 
2576 #ifdef ASSERT
2577 // Verify the JavaThread has not yet been published in the Threads::list, and
2578 // hence doesn't need protection from concurrent access at this stage.
2579 void JavaThread::verify_not_published() {
2580   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2581   // since an unpublished JavaThread doesn't participate in the
2582   // Thread-SMR protocol for keeping a ThreadsList alive.
2583   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2584 }
2585 #endif
2586 
2587 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2588 // progress or when _suspend_flags is non-zero.
2589 // Current thread needs to self-suspend if there is a suspend request and/or
2590 // block if a safepoint is in progress.
2591 // Async exception ISN'T checked.
2592 // Note only the ThreadInVMfromNative transition can call this function
2593 // directly and when thread state is _thread_in_native_trans
2594 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2595   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2596 
2597   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2598 
2599   if (thread->is_external_suspend()) {
2600     thread->java_suspend_self_with_safepoint_check();
2601   } else {
2602     SafepointMechanism::block_if_requested(thread);
2603   }
2604 
2605   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2606 }
2607 
2608 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2609 // progress or when _suspend_flags is non-zero.
2610 // Current thread needs to self-suspend if there is a suspend request and/or
2611 // block if a safepoint is in progress.
2612 // Also check for pending async exception (not including unsafe access error).
2613 // Note only the native==>VM/Java barriers can call this function and when
2614 // thread state is _thread_in_native_trans.
2615 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2616   check_safepoint_and_suspend_for_native_trans(thread);
2617 
2618   if (thread->has_async_exception()) {
2619     // We are in _thread_in_native_trans state, don't handle unsafe
2620     // access error since that may block.
2621     thread->check_and_handle_async_exceptions(false);
2622   }
2623 }
2624 
2625 // This is a variant of the normal
2626 // check_special_condition_for_native_trans with slightly different
2627 // semantics for use by critical native wrappers.  It does all the
2628 // normal checks but also performs the transition back into
2629 // thread_in_Java state.  This is required so that critical natives
2630 // can potentially block and perform a GC if they are the last thread
2631 // exiting the GCLocker.
2632 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2633   check_special_condition_for_native_trans(thread);
2634 
2635   // Finish the transition
2636   thread->set_thread_state(_thread_in_Java);
2637 
2638   if (thread->do_critical_native_unlock()) {
2639     ThreadInVMfromJavaNoAsyncException tiv(thread);
2640     GCLocker::unlock_critical(thread);
2641     thread->clear_critical_native_unlock();
2642   }
2643 }
2644 
2645 // We need to guarantee the Threads_lock here, since resumes are not
2646 // allowed during safepoint synchronization
2647 // Can only resume from an external suspension
2648 void JavaThread::java_resume() {
2649   assert_locked_or_safepoint(Threads_lock);
2650 
2651   // Sanity check: thread is gone, has started exiting or the thread
2652   // was not externally suspended.
2653   ThreadsListHandle tlh;
2654   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2655     return;
2656   }
2657 
2658   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2659 
2660   clear_external_suspend();
2661 
2662   if (is_ext_suspended()) {
2663     clear_ext_suspended();
2664     SR_lock()->notify_all();
2665   }
2666 }
2667 
2668 size_t JavaThread::_stack_red_zone_size = 0;
2669 size_t JavaThread::_stack_yellow_zone_size = 0;
2670 size_t JavaThread::_stack_reserved_zone_size = 0;
2671 size_t JavaThread::_stack_shadow_zone_size = 0;
2672 
2673 void JavaThread::create_stack_guard_pages() {
2674   if (!os::uses_stack_guard_pages() ||
2675       _stack_guard_state != stack_guard_unused ||
2676       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2677       log_info(os, thread)("Stack guard page creation for thread "
2678                            UINTX_FORMAT " disabled", os::current_thread_id());
2679     return;
2680   }
2681   address low_addr = stack_end();
2682   size_t len = stack_guard_zone_size();
2683 
2684   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2685   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2686 
2687   int must_commit = os::must_commit_stack_guard_pages();
2688   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2689 
2690   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2691     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2692     return;
2693   }
2694 
2695   if (os::guard_memory((char *) low_addr, len)) {
2696     _stack_guard_state = stack_guard_enabled;
2697   } else {
2698     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2699       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2700     if (os::uncommit_memory((char *) low_addr, len)) {
2701       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2702     }
2703     return;
2704   }
2705 
2706   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2707     PTR_FORMAT "-" PTR_FORMAT ".",
2708     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2709 }
2710 
2711 void JavaThread::remove_stack_guard_pages() {
2712   assert(Thread::current() == this, "from different thread");
2713   if (_stack_guard_state == stack_guard_unused) return;
2714   address low_addr = stack_end();
2715   size_t len = stack_guard_zone_size();
2716 
2717   if (os::must_commit_stack_guard_pages()) {
2718     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2719       _stack_guard_state = stack_guard_unused;
2720     } else {
2721       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2722         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2723       return;
2724     }
2725   } else {
2726     if (_stack_guard_state == stack_guard_unused) return;
2727     if (os::unguard_memory((char *) low_addr, len)) {
2728       _stack_guard_state = stack_guard_unused;
2729     } else {
2730       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2731         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2732       return;
2733     }
2734   }
2735 
2736   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2737     PTR_FORMAT "-" PTR_FORMAT ".",
2738     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2739 }
2740 
2741 void JavaThread::enable_stack_reserved_zone() {
2742   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2743 
2744   // The base notation is from the stack's point of view, growing downward.
2745   // We need to adjust it to work correctly with guard_memory()
2746   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2747 
2748   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2749   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2750 
2751   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2752     _stack_guard_state = stack_guard_enabled;
2753   } else {
2754     warning("Attempt to guard stack reserved zone failed.");
2755   }
2756   enable_register_stack_guard();
2757 }
2758 
2759 void JavaThread::disable_stack_reserved_zone() {
2760   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2761 
2762   // Simply return if called for a thread that does not use guard pages.
2763   if (_stack_guard_state != stack_guard_enabled) return;
2764 
2765   // The base notation is from the stack's point of view, growing downward.
2766   // We need to adjust it to work correctly with guard_memory()
2767   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2768 
2769   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2770     _stack_guard_state = stack_guard_reserved_disabled;
2771   } else {
2772     warning("Attempt to unguard stack reserved zone failed.");
2773   }
2774   disable_register_stack_guard();
2775 }
2776 
2777 void JavaThread::enable_stack_yellow_reserved_zone() {
2778   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2779   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2780 
2781   // The base notation is from the stacks point of view, growing downward.
2782   // We need to adjust it to work correctly with guard_memory()
2783   address base = stack_red_zone_base();
2784 
2785   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2786   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2787 
2788   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2789     _stack_guard_state = stack_guard_enabled;
2790   } else {
2791     warning("Attempt to guard stack yellow zone failed.");
2792   }
2793   enable_register_stack_guard();
2794 }
2795 
2796 void JavaThread::disable_stack_yellow_reserved_zone() {
2797   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2798   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2799 
2800   // Simply return if called for a thread that does not use guard pages.
2801   if (_stack_guard_state == stack_guard_unused) return;
2802 
2803   // The base notation is from the stacks point of view, growing downward.
2804   // We need to adjust it to work correctly with guard_memory()
2805   address base = stack_red_zone_base();
2806 
2807   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2808     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2809   } else {
2810     warning("Attempt to unguard stack yellow zone failed.");
2811   }
2812   disable_register_stack_guard();
2813 }
2814 
2815 void JavaThread::enable_stack_red_zone() {
2816   // The base notation is from the stacks point of view, growing downward.
2817   // We need to adjust it to work correctly with guard_memory()
2818   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2819   address base = stack_red_zone_base() - stack_red_zone_size();
2820 
2821   guarantee(base < stack_base(), "Error calculating stack red zone");
2822   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2823 
2824   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2825     warning("Attempt to guard stack red zone failed.");
2826   }
2827 }
2828 
2829 void JavaThread::disable_stack_red_zone() {
2830   // The base notation is from the stacks point of view, growing downward.
2831   // We need to adjust it to work correctly with guard_memory()
2832   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2833   address base = stack_red_zone_base() - stack_red_zone_size();
2834   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2835     warning("Attempt to unguard stack red zone failed.");
2836   }
2837 }
2838 
2839 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2840   // ignore is there is no stack
2841   if (!has_last_Java_frame()) return;
2842   // traverse the stack frames. Starts from top frame.
2843   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2844     frame* fr = fst.current();
2845     f(fr, fst.register_map());
2846   }
2847 }
2848 
2849 
2850 #ifndef PRODUCT
2851 // Deoptimization
2852 // Function for testing deoptimization
2853 void JavaThread::deoptimize() {
2854   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2855   StackFrameStream fst(this, UseBiasedLocking);
2856   bool deopt = false;           // Dump stack only if a deopt actually happens.
2857   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2858   // Iterate over all frames in the thread and deoptimize
2859   for (; !fst.is_done(); fst.next()) {
2860     if (fst.current()->can_be_deoptimized()) {
2861 
2862       if (only_at) {
2863         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2864         // consists of comma or carriage return separated numbers so
2865         // search for the current bci in that string.
2866         address pc = fst.current()->pc();
2867         nmethod* nm =  (nmethod*) fst.current()->cb();
2868         ScopeDesc* sd = nm->scope_desc_at(pc);
2869         char buffer[8];
2870         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2871         size_t len = strlen(buffer);
2872         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2873         while (found != NULL) {
2874           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2875               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2876             // Check that the bci found is bracketed by terminators.
2877             break;
2878           }
2879           found = strstr(found + 1, buffer);
2880         }
2881         if (!found) {
2882           continue;
2883         }
2884       }
2885 
2886       if (DebugDeoptimization && !deopt) {
2887         deopt = true; // One-time only print before deopt
2888         tty->print_cr("[BEFORE Deoptimization]");
2889         trace_frames();
2890         trace_stack();
2891       }
2892       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2893     }
2894   }
2895 
2896   if (DebugDeoptimization && deopt) {
2897     tty->print_cr("[AFTER Deoptimization]");
2898     trace_frames();
2899   }
2900 }
2901 
2902 
2903 // Make zombies
2904 void JavaThread::make_zombies() {
2905   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2906     if (fst.current()->can_be_deoptimized()) {
2907       // it is a Java nmethod
2908       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2909       nm->make_not_entrant();
2910     }
2911   }
2912 }
2913 #endif // PRODUCT
2914 
2915 
2916 void JavaThread::deoptimize_marked_methods() {
2917   if (!has_last_Java_frame()) return;
2918   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2919   StackFrameStream fst(this, UseBiasedLocking);
2920   for (; !fst.is_done(); fst.next()) {
2921     if (fst.current()->should_be_deoptimized()) {
2922       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2923     }
2924   }
2925 }
2926 
2927 // If the caller is a NamedThread, then remember, in the current scope,
2928 // the given JavaThread in its _processed_thread field.
2929 class RememberProcessedThread: public StackObj {
2930   NamedThread* _cur_thr;
2931  public:
2932   RememberProcessedThread(JavaThread* jthr) {
2933     Thread* thread = Thread::current();
2934     if (thread->is_Named_thread()) {
2935       _cur_thr = (NamedThread *)thread;
2936       _cur_thr->set_processed_thread(jthr);
2937     } else {
2938       _cur_thr = NULL;
2939     }
2940   }
2941 
2942   ~RememberProcessedThread() {
2943     if (_cur_thr) {
2944       _cur_thr->set_processed_thread(NULL);
2945     }
2946   }
2947 };
2948 
2949 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2950   // Verify that the deferred card marks have been flushed.
2951   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2952 
2953   // Traverse the GCHandles
2954   Thread::oops_do(f, cf);
2955 
2956   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2957          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2958 
2959   if (has_last_Java_frame()) {
2960     // Record JavaThread to GC thread
2961     RememberProcessedThread rpt(this);
2962 
2963     // traverse the registered growable array
2964     if (_array_for_gc != NULL) {
2965       for (int index = 0; index < _array_for_gc->length(); index++) {
2966         f->do_oop(_array_for_gc->adr_at(index));
2967       }
2968     }
2969 
2970     // Traverse the monitor chunks
2971     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2972       chunk->oops_do(f);
2973     }
2974 
2975     // Traverse the execution stack
2976     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2977       fst.current()->oops_do(f, cf, fst.register_map());
2978     }
2979   }
2980 
2981   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2982   // If we have deferred set_locals there might be oops waiting to be
2983   // written
2984   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2985   if (list != NULL) {
2986     for (int i = 0; i < list->length(); i++) {
2987       list->at(i)->oops_do(f);
2988     }
2989   }
2990 
2991   // Traverse instance variables at the end since the GC may be moving things
2992   // around using this function
2993   f->do_oop((oop*) &_threadObj);
2994   f->do_oop((oop*) &_vm_result);
2995   f->do_oop((oop*) &_exception_oop);
2996   f->do_oop((oop*) &_pending_async_exception);
2997 
2998   if (jvmti_thread_state() != NULL) {
2999     jvmti_thread_state()->oops_do(f);
3000   }
3001 }
3002 
3003 #ifdef ASSERT
3004 void JavaThread::verify_states_for_handshake() {
3005   // This checks that the thread has a correct frame state during a handshake.
3006   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3007          (has_last_Java_frame() && java_call_counter() > 0),
3008          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3009          has_last_Java_frame(), java_call_counter());
3010 }
3011 #endif
3012 
3013 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
3014   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3015          (has_last_Java_frame() && java_call_counter() > 0),
3016          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3017          has_last_Java_frame(), java_call_counter());
3018 
3019   if (has_last_Java_frame()) {
3020     // Traverse the execution stack
3021     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3022       fst.current()->nmethods_do(cf);
3023     }
3024   }
3025 }
3026 
3027 void JavaThread::metadata_do(MetadataClosure* f) {
3028   if (has_last_Java_frame()) {
3029     // Traverse the execution stack to call f() on the methods in the stack
3030     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3031       fst.current()->metadata_do(f);
3032     }
3033   } else if (is_Compiler_thread()) {
3034     // need to walk ciMetadata in current compile tasks to keep alive.
3035     CompilerThread* ct = (CompilerThread*)this;
3036     if (ct->env() != NULL) {
3037       ct->env()->metadata_do(f);
3038     }
3039     CompileTask* task = ct->task();
3040     if (task != NULL) {
3041       task->metadata_do(f);
3042     }
3043   }
3044 }
3045 
3046 // Printing
3047 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3048   switch (_thread_state) {
3049   case _thread_uninitialized:     return "_thread_uninitialized";
3050   case _thread_new:               return "_thread_new";
3051   case _thread_new_trans:         return "_thread_new_trans";
3052   case _thread_in_native:         return "_thread_in_native";
3053   case _thread_in_native_trans:   return "_thread_in_native_trans";
3054   case _thread_in_vm:             return "_thread_in_vm";
3055   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3056   case _thread_in_Java:           return "_thread_in_Java";
3057   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3058   case _thread_blocked:           return "_thread_blocked";
3059   case _thread_blocked_trans:     return "_thread_blocked_trans";
3060   default:                        return "unknown thread state";
3061   }
3062 }
3063 
3064 #ifndef PRODUCT
3065 void JavaThread::print_thread_state_on(outputStream *st) const {
3066   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3067 };
3068 #endif // PRODUCT
3069 
3070 // Called by Threads::print() for VM_PrintThreads operation
3071 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3072   st->print_raw("\"");
3073   st->print_raw(get_thread_name());
3074   st->print_raw("\" ");
3075   oop thread_oop = threadObj();
3076   if (thread_oop != NULL) {
3077     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3078     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3079     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3080   }
3081   Thread::print_on(st, print_extended_info);
3082   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3083   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3084   if (thread_oop != NULL) {
3085     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3086   }
3087 #ifndef PRODUCT
3088   _safepoint_state->print_on(st);
3089 #endif // PRODUCT
3090   if (is_Compiler_thread()) {
3091     CompileTask *task = ((CompilerThread*)this)->task();
3092     if (task != NULL) {
3093       st->print("   Compiling: ");
3094       task->print(st, NULL, true, false);
3095     } else {
3096       st->print("   No compile task");
3097     }
3098     st->cr();
3099   }
3100 }
3101 
3102 void JavaThread::print() const { print_on(tty); }
3103 
3104 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3105   st->print("%s", get_thread_name_string(buf, buflen));
3106 }
3107 
3108 // Called by fatal error handler. The difference between this and
3109 // JavaThread::print() is that we can't grab lock or allocate memory.
3110 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3111   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3112   oop thread_obj = threadObj();
3113   if (thread_obj != NULL) {
3114     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3115   }
3116   st->print(" [");
3117   st->print("%s", _get_thread_state_name(_thread_state));
3118   if (osthread()) {
3119     st->print(", id=%d", osthread()->thread_id());
3120   }
3121   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3122             p2i(stack_end()), p2i(stack_base()));
3123   st->print("]");
3124 
3125   ThreadsSMRSupport::print_info_on(this, st);
3126   return;
3127 }
3128 
3129 // Verification
3130 
3131 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3132 
3133 void JavaThread::verify() {
3134   // Verify oops in the thread.
3135   oops_do(&VerifyOopClosure::verify_oop, NULL);
3136 
3137   // Verify the stack frames.
3138   frames_do(frame_verify);
3139 }
3140 
3141 // CR 6300358 (sub-CR 2137150)
3142 // Most callers of this method assume that it can't return NULL but a
3143 // thread may not have a name whilst it is in the process of attaching to
3144 // the VM - see CR 6412693, and there are places where a JavaThread can be
3145 // seen prior to having it's threadObj set (eg JNI attaching threads and
3146 // if vm exit occurs during initialization). These cases can all be accounted
3147 // for such that this method never returns NULL.
3148 const char* JavaThread::get_thread_name() const {
3149 #ifdef ASSERT
3150   // early safepoints can hit while current thread does not yet have TLS
3151   if (!SafepointSynchronize::is_at_safepoint()) {
3152     Thread *cur = Thread::current();
3153     if (!(cur->is_Java_thread() && cur == this)) {
3154       // Current JavaThreads are allowed to get their own name without
3155       // the Threads_lock.
3156       assert_locked_or_safepoint(Threads_lock);
3157     }
3158   }
3159 #endif // ASSERT
3160   return get_thread_name_string();
3161 }
3162 
3163 // Returns a non-NULL representation of this thread's name, or a suitable
3164 // descriptive string if there is no set name
3165 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3166   const char* name_str;
3167   oop thread_obj = threadObj();
3168   if (thread_obj != NULL) {
3169     oop name = java_lang_Thread::name(thread_obj);
3170     if (name != NULL) {
3171       if (buf == NULL) {
3172         name_str = java_lang_String::as_utf8_string(name);
3173       } else {
3174         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3175       }
3176     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3177       name_str = "<no-name - thread is attaching>";
3178     } else {
3179       name_str = Thread::name();
3180     }
3181   } else {
3182     name_str = Thread::name();
3183   }
3184   assert(name_str != NULL, "unexpected NULL thread name");
3185   return name_str;
3186 }
3187 
3188 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3189 
3190   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3191   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3192   // Link Java Thread object <-> C++ Thread
3193 
3194   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3195   // and put it into a new Handle.  The Handle "thread_oop" can then
3196   // be used to pass the C++ thread object to other methods.
3197 
3198   // Set the Java level thread object (jthread) field of the
3199   // new thread (a JavaThread *) to C++ thread object using the
3200   // "thread_oop" handle.
3201 
3202   // Set the thread field (a JavaThread *) of the
3203   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3204 
3205   Handle thread_oop(Thread::current(),
3206                     JNIHandles::resolve_non_null(jni_thread));
3207   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3208          "must be initialized");
3209   set_threadObj(thread_oop());
3210   java_lang_Thread::set_thread(thread_oop(), this);
3211 
3212   if (prio == NoPriority) {
3213     prio = java_lang_Thread::priority(thread_oop());
3214     assert(prio != NoPriority, "A valid priority should be present");
3215   }
3216 
3217   // Push the Java priority down to the native thread; needs Threads_lock
3218   Thread::set_priority(this, prio);
3219 
3220   // Add the new thread to the Threads list and set it in motion.
3221   // We must have threads lock in order to call Threads::add.
3222   // It is crucial that we do not block before the thread is
3223   // added to the Threads list for if a GC happens, then the java_thread oop
3224   // will not be visited by GC.
3225   Threads::add(this);
3226 }
3227 
3228 oop JavaThread::current_park_blocker() {
3229   // Support for JSR-166 locks
3230   oop thread_oop = threadObj();
3231   if (thread_oop != NULL) {
3232     return java_lang_Thread::park_blocker(thread_oop);
3233   }
3234   return NULL;
3235 }
3236 
3237 
3238 void JavaThread::print_stack_on(outputStream* st) {
3239   if (!has_last_Java_frame()) return;
3240   ResourceMark rm;
3241   HandleMark   hm;
3242 
3243   RegisterMap reg_map(this);
3244   vframe* start_vf = last_java_vframe(&reg_map);
3245   int count = 0;
3246   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3247     if (f->is_java_frame()) {
3248       javaVFrame* jvf = javaVFrame::cast(f);
3249       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3250 
3251       // Print out lock information
3252       if (JavaMonitorsInStackTrace) {
3253         jvf->print_lock_info_on(st, count);
3254       }
3255     } else {
3256       // Ignore non-Java frames
3257     }
3258 
3259     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3260     count++;
3261     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3262   }
3263 }
3264 
3265 
3266 // JVMTI PopFrame support
3267 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3268   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3269   if (in_bytes(size_in_bytes) != 0) {
3270     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3271     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3272     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3273   }
3274 }
3275 
3276 void* JavaThread::popframe_preserved_args() {
3277   return _popframe_preserved_args;
3278 }
3279 
3280 ByteSize JavaThread::popframe_preserved_args_size() {
3281   return in_ByteSize(_popframe_preserved_args_size);
3282 }
3283 
3284 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3285   int sz = in_bytes(popframe_preserved_args_size());
3286   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3287   return in_WordSize(sz / wordSize);
3288 }
3289 
3290 void JavaThread::popframe_free_preserved_args() {
3291   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3292   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3293   _popframe_preserved_args = NULL;
3294   _popframe_preserved_args_size = 0;
3295 }
3296 
3297 #ifndef PRODUCT
3298 
3299 void JavaThread::trace_frames() {
3300   tty->print_cr("[Describe stack]");
3301   int frame_no = 1;
3302   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3303     tty->print("  %d. ", frame_no++);
3304     fst.current()->print_value_on(tty, this);
3305     tty->cr();
3306   }
3307 }
3308 
3309 class PrintAndVerifyOopClosure: public OopClosure {
3310  protected:
3311   template <class T> inline void do_oop_work(T* p) {
3312     oop obj = RawAccess<>::oop_load(p);
3313     if (obj == NULL) return;
3314     tty->print(INTPTR_FORMAT ": ", p2i(p));
3315     if (oopDesc::is_oop_or_null(obj)) {
3316       if (obj->is_objArray()) {
3317         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3318       } else {
3319         obj->print();
3320       }
3321     } else {
3322       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3323     }
3324     tty->cr();
3325   }
3326  public:
3327   virtual void do_oop(oop* p) { do_oop_work(p); }
3328   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3329 };
3330 
3331 #ifdef ASSERT
3332 // Print or validate the layout of stack frames
3333 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3334   ResourceMark rm;
3335   PRESERVE_EXCEPTION_MARK;
3336   FrameValues values;
3337   int frame_no = 0;
3338   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3339     fst.current()->describe(values, ++frame_no);
3340     if (depth == frame_no) break;
3341   }
3342   if (validate_only) {
3343     values.validate();
3344   } else {
3345     tty->print_cr("[Describe stack layout]");
3346     values.print(this);
3347   }
3348 }
3349 #endif
3350 
3351 void JavaThread::trace_stack_from(vframe* start_vf) {
3352   ResourceMark rm;
3353   int vframe_no = 1;
3354   for (vframe* f = start_vf; f; f = f->sender()) {
3355     if (f->is_java_frame()) {
3356       javaVFrame::cast(f)->print_activation(vframe_no++);
3357     } else {
3358       f->print();
3359     }
3360     if (vframe_no > StackPrintLimit) {
3361       tty->print_cr("...<more frames>...");
3362       return;
3363     }
3364   }
3365 }
3366 
3367 
3368 void JavaThread::trace_stack() {
3369   if (!has_last_Java_frame()) return;
3370   ResourceMark rm;
3371   HandleMark   hm;
3372   RegisterMap reg_map(this);
3373   trace_stack_from(last_java_vframe(&reg_map));
3374 }
3375 
3376 
3377 #endif // PRODUCT
3378 
3379 
3380 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3381   assert(reg_map != NULL, "a map must be given");
3382   frame f = last_frame();
3383   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3384     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3385   }
3386   return NULL;
3387 }
3388 
3389 
3390 Klass* JavaThread::security_get_caller_class(int depth) {
3391   vframeStream vfst(this);
3392   vfst.security_get_caller_frame(depth);
3393   if (!vfst.at_end()) {
3394     return vfst.method()->method_holder();
3395   }
3396   return NULL;
3397 }
3398 
3399 // java.lang.Thread.sleep support
3400 // Returns true if sleep time elapsed as expected, and false
3401 // if the thread was interrupted.
3402 bool JavaThread::sleep(jlong millis) {
3403   assert(this == Thread::current(),  "thread consistency check");
3404 
3405   ParkEvent * const slp = this->_SleepEvent;
3406   // Because there can be races with thread interruption sending an unpark()
3407   // to the event, we explicitly reset it here to avoid an immediate return.
3408   // The actual interrupt state will be checked before we park().
3409   slp->reset();
3410   // Thread interruption establishes a happens-before ordering in the
3411   // Java Memory Model, so we need to ensure we synchronize with the
3412   // interrupt state.
3413   OrderAccess::fence();
3414 
3415   jlong prevtime = os::javaTimeNanos();
3416 
3417   for (;;) {
3418     // interruption has precedence over timing out
3419     if (this->is_interrupted(true)) {
3420       return false;
3421     }
3422 
3423     if (millis <= 0) {
3424       return true;
3425     }
3426 
3427     {
3428       ThreadBlockInVM tbivm(this);
3429       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3430 
3431       this->set_suspend_equivalent();
3432       // cleared by handle_special_suspend_equivalent_condition() or
3433       // java_suspend_self() via check_and_wait_while_suspended()
3434 
3435       slp->park(millis);
3436 
3437       // were we externally suspended while we were waiting?
3438       this->check_and_wait_while_suspended();
3439     }
3440 
3441     // Update elapsed time tracking
3442     jlong newtime = os::javaTimeNanos();
3443     if (newtime - prevtime < 0) {
3444       // time moving backwards, should only happen if no monotonic clock
3445       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3446       assert(!os::supports_monotonic_clock(),
3447              "unexpected time moving backwards detected in JavaThread::sleep()");
3448     } else {
3449       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3450     }
3451     prevtime = newtime;
3452   }
3453 }
3454 
3455 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3456   assert(thread->is_Compiler_thread(), "must be compiler thread");
3457   CompileBroker::compiler_thread_loop();
3458 }
3459 
3460 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3461   NMethodSweeper::sweeper_loop();
3462 }
3463 
3464 // Create a CompilerThread
3465 CompilerThread::CompilerThread(CompileQueue* queue,
3466                                CompilerCounters* counters)
3467                                : JavaThread(&compiler_thread_entry) {
3468   _env   = NULL;
3469   _log   = NULL;
3470   _task  = NULL;
3471   _queue = queue;
3472   _counters = counters;
3473   _buffer_blob = NULL;
3474   _compiler = NULL;
3475 
3476   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3477   resource_area()->bias_to(mtCompiler);
3478 
3479 #ifndef PRODUCT
3480   _ideal_graph_printer = NULL;
3481 #endif
3482 }
3483 
3484 CompilerThread::~CompilerThread() {
3485   // Delete objects which were allocated on heap.
3486   delete _counters;
3487 }
3488 
3489 bool CompilerThread::can_call_java() const {
3490   return _compiler != NULL && _compiler->is_jvmci();
3491 }
3492 
3493 // Create sweeper thread
3494 CodeCacheSweeperThread::CodeCacheSweeperThread()
3495 : JavaThread(&sweeper_thread_entry) {
3496   _scanned_compiled_method = NULL;
3497 }
3498 
3499 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3500   JavaThread::oops_do(f, cf);
3501   if (_scanned_compiled_method != NULL && cf != NULL) {
3502     // Safepoints can occur when the sweeper is scanning an nmethod so
3503     // process it here to make sure it isn't unloaded in the middle of
3504     // a scan.
3505     cf->do_code_blob(_scanned_compiled_method);
3506   }
3507 }
3508 
3509 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3510   JavaThread::nmethods_do(cf);
3511   if (_scanned_compiled_method != NULL && cf != NULL) {
3512     // Safepoints can occur when the sweeper is scanning an nmethod so
3513     // process it here to make sure it isn't unloaded in the middle of
3514     // a scan.
3515     cf->do_code_blob(_scanned_compiled_method);
3516   }
3517 }
3518 
3519 
3520 // ======= Threads ========
3521 
3522 // The Threads class links together all active threads, and provides
3523 // operations over all threads. It is protected by the Threads_lock,
3524 // which is also used in other global contexts like safepointing.
3525 // ThreadsListHandles are used to safely perform operations on one
3526 // or more threads without the risk of the thread exiting during the
3527 // operation.
3528 //
3529 // Note: The Threads_lock is currently more widely used than we
3530 // would like. We are actively migrating Threads_lock uses to other
3531 // mechanisms in order to reduce Threads_lock contention.
3532 
3533 int         Threads::_number_of_threads = 0;
3534 int         Threads::_number_of_non_daemon_threads = 0;
3535 int         Threads::_return_code = 0;
3536 uintx       Threads::_thread_claim_token = 1; // Never zero.
3537 size_t      JavaThread::_stack_size_at_create = 0;
3538 
3539 #ifdef ASSERT
3540 bool        Threads::_vm_complete = false;
3541 #endif
3542 
3543 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3544   Prefetch::read((void*)addr, prefetch_interval);
3545   return *addr;
3546 }
3547 
3548 // Possibly the ugliest for loop the world has seen. C++ does not allow
3549 // multiple types in the declaration section of the for loop. In this case
3550 // we are only dealing with pointers and hence can cast them. It looks ugly
3551 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3552 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3553     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3554              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3555              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3556              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3557              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3558          MACRO_current_p != MACRO_end;                                                                                    \
3559          MACRO_current_p++,                                                                                               \
3560              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3561 
3562 // All JavaThreads
3563 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3564 
3565 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3566 void Threads::non_java_threads_do(ThreadClosure* tc) {
3567   NoSafepointVerifier nsv;
3568   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3569     tc->do_thread(njti.current());
3570   }
3571 }
3572 
3573 // All JavaThreads
3574 void Threads::java_threads_do(ThreadClosure* tc) {
3575   assert_locked_or_safepoint(Threads_lock);
3576   // ALL_JAVA_THREADS iterates through all JavaThreads.
3577   ALL_JAVA_THREADS(p) {
3578     tc->do_thread(p);
3579   }
3580 }
3581 
3582 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3583   assert_locked_or_safepoint(Threads_lock);
3584   java_threads_do(tc);
3585   tc->do_thread(VMThread::vm_thread());
3586 }
3587 
3588 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3589 void Threads::threads_do(ThreadClosure* tc) {
3590   assert_locked_or_safepoint(Threads_lock);
3591   java_threads_do(tc);
3592   non_java_threads_do(tc);
3593 }
3594 
3595 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3596   uintx claim_token = Threads::thread_claim_token();
3597   ALL_JAVA_THREADS(p) {
3598     if (p->claim_threads_do(is_par, claim_token)) {
3599       tc->do_thread(p);
3600     }
3601   }
3602   VMThread* vmt = VMThread::vm_thread();
3603   if (vmt->claim_threads_do(is_par, claim_token)) {
3604     tc->do_thread(vmt);
3605   }
3606 }
3607 
3608 // The system initialization in the library has three phases.
3609 //
3610 // Phase 1: java.lang.System class initialization
3611 //     java.lang.System is a primordial class loaded and initialized
3612 //     by the VM early during startup.  java.lang.System.<clinit>
3613 //     only does registerNatives and keeps the rest of the class
3614 //     initialization work later until thread initialization completes.
3615 //
3616 //     System.initPhase1 initializes the system properties, the static
3617 //     fields in, out, and err. Set up java signal handlers, OS-specific
3618 //     system settings, and thread group of the main thread.
3619 static void call_initPhase1(TRAPS) {
3620   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3621   JavaValue result(T_VOID);
3622   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3623                                          vmSymbols::void_method_signature(), CHECK);
3624 }
3625 
3626 // Phase 2. Module system initialization
3627 //     This will initialize the module system.  Only java.base classes
3628 //     can be loaded until phase 2 completes.
3629 //
3630 //     Call System.initPhase2 after the compiler initialization and jsr292
3631 //     classes get initialized because module initialization runs a lot of java
3632 //     code, that for performance reasons, should be compiled.  Also, this will
3633 //     enable the startup code to use lambda and other language features in this
3634 //     phase and onward.
3635 //
3636 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3637 static void call_initPhase2(TRAPS) {
3638   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3639 
3640   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3641 
3642   JavaValue result(T_INT);
3643   JavaCallArguments args;
3644   args.push_int(DisplayVMOutputToStderr);
3645   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3646   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3647                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3648   if (result.get_jint() != JNI_OK) {
3649     vm_exit_during_initialization(); // no message or exception
3650   }
3651 
3652   universe_post_module_init();
3653 }
3654 
3655 // Phase 3. final setup - set security manager, system class loader and TCCL
3656 //
3657 //     This will instantiate and set the security manager, set the system class
3658 //     loader as well as the thread context class loader.  The security manager
3659 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3660 //     other modules or the application's classpath.
3661 static void call_initPhase3(TRAPS) {
3662   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3663   JavaValue result(T_VOID);
3664   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3665                                          vmSymbols::void_method_signature(), CHECK);
3666 }
3667 
3668 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3669   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3670 
3671   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3672     create_vm_init_libraries();
3673   }
3674 
3675   initialize_class(vmSymbols::java_lang_String(), CHECK);
3676 
3677   // Inject CompactStrings value after the static initializers for String ran.
3678   java_lang_String::set_compact_strings(CompactStrings);
3679 
3680   // Initialize java_lang.System (needed before creating the thread)
3681   initialize_class(vmSymbols::java_lang_System(), CHECK);
3682   // The VM creates & returns objects of this class. Make sure it's initialized.
3683   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3684   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3685   Handle thread_group = create_initial_thread_group(CHECK);
3686   Universe::set_main_thread_group(thread_group());
3687   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3688   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3689   main_thread->set_threadObj(thread_object);
3690 
3691   // Set thread status to running since main thread has
3692   // been started and running.
3693   java_lang_Thread::set_thread_status(thread_object,
3694                                       java_lang_Thread::RUNNABLE);
3695 
3696   // The VM creates objects of this class.
3697   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3698 
3699 #ifdef ASSERT
3700   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3701   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3702 #endif
3703 
3704   // initialize the hardware-specific constants needed by Unsafe
3705   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3706   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3707 
3708   // The VM preresolves methods to these classes. Make sure that they get initialized
3709   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3710   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3711 
3712   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3713   call_initPhase1(CHECK);
3714 
3715   // get the Java runtime name, version, and vendor info after java.lang.System is initialized
3716   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3717   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3718   JDK_Version::set_runtime_vendor_version(get_java_runtime_vendor_version(THREAD));
3719   JDK_Version::set_runtime_vendor_vm_bug_url(get_java_runtime_vendor_vm_bug_url(THREAD));
3720 
3721   // an instance of OutOfMemory exception has been allocated earlier
3722   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3723   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3724   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3725   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3726   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3727   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3728   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3729   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3730 
3731   // Eager box cache initialization only if AOT is on and any library is loaded.
3732   AOTLoader::initialize_box_caches(CHECK);
3733 }
3734 
3735 void Threads::initialize_jsr292_core_classes(TRAPS) {
3736   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3737 
3738   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3739   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3740   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3741   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3742 }
3743 
3744 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3745   extern void JDK_Version_init();
3746 
3747   // Preinitialize version info.
3748   VM_Version::early_initialize();
3749 
3750   // Check version
3751   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3752 
3753   // Initialize library-based TLS
3754   ThreadLocalStorage::init();
3755 
3756   // Initialize the output stream module
3757   ostream_init();
3758 
3759   // Process java launcher properties.
3760   Arguments::process_sun_java_launcher_properties(args);
3761 
3762   // Initialize the os module
3763   os::init();
3764 
3765   // Record VM creation timing statistics
3766   TraceVmCreationTime create_vm_timer;
3767   create_vm_timer.start();
3768 
3769   // Initialize system properties.
3770   Arguments::init_system_properties();
3771 
3772   // So that JDK version can be used as a discriminator when parsing arguments
3773   JDK_Version_init();
3774 
3775   // Update/Initialize System properties after JDK version number is known
3776   Arguments::init_version_specific_system_properties();
3777 
3778   // Make sure to initialize log configuration *before* parsing arguments
3779   LogConfiguration::initialize(create_vm_timer.begin_time());
3780 
3781   // Parse arguments
3782   // Note: this internally calls os::init_container_support()
3783   jint parse_result = Arguments::parse(args);
3784   if (parse_result != JNI_OK) return parse_result;
3785 
3786   os::init_before_ergo();
3787 
3788   jint ergo_result = Arguments::apply_ergo();
3789   if (ergo_result != JNI_OK) return ergo_result;
3790 
3791   // Final check of all ranges after ergonomics which may change values.
3792   if (!JVMFlagRangeList::check_ranges()) {
3793     return JNI_EINVAL;
3794   }
3795 
3796   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3797   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3798   if (!constraint_result) {
3799     return JNI_EINVAL;
3800   }
3801 
3802   JVMFlagWriteableList::mark_startup();
3803 
3804   if (PauseAtStartup) {
3805     os::pause();
3806   }
3807 
3808   HOTSPOT_VM_INIT_BEGIN();
3809 
3810   // Timing (must come after argument parsing)
3811   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3812 
3813   // Initialize the os module after parsing the args
3814   jint os_init_2_result = os::init_2();
3815   if (os_init_2_result != JNI_OK) return os_init_2_result;
3816 
3817 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3818   // Initialize assert poison page mechanism.
3819   if (ShowRegistersOnAssert) {
3820     initialize_assert_poison();
3821   }
3822 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3823 
3824   SafepointMechanism::initialize();
3825 
3826   jint adjust_after_os_result = Arguments::adjust_after_os();
3827   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3828 
3829   // Initialize output stream logging
3830   ostream_init_log();
3831 
3832   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3833   // Must be before create_vm_init_agents()
3834   if (Arguments::init_libraries_at_startup()) {
3835     convert_vm_init_libraries_to_agents();
3836   }
3837 
3838   // Launch -agentlib/-agentpath and converted -Xrun agents
3839   if (Arguments::init_agents_at_startup()) {
3840     create_vm_init_agents();
3841   }
3842 
3843   // Initialize Threads state
3844   _number_of_threads = 0;
3845   _number_of_non_daemon_threads = 0;
3846 
3847   // Initialize global data structures and create system classes in heap
3848   vm_init_globals();
3849 
3850 #if INCLUDE_JVMCI
3851   if (JVMCICounterSize > 0) {
3852     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3853     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3854   } else {
3855     JavaThread::_jvmci_old_thread_counters = NULL;
3856   }
3857 #endif // INCLUDE_JVMCI
3858 
3859   // Attach the main thread to this os thread
3860   JavaThread* main_thread = new JavaThread();
3861   main_thread->set_thread_state(_thread_in_vm);
3862   main_thread->initialize_thread_current();
3863   // must do this before set_active_handles
3864   main_thread->record_stack_base_and_size();
3865   main_thread->register_thread_stack_with_NMT();
3866   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3867 
3868   if (!main_thread->set_as_starting_thread()) {
3869     vm_shutdown_during_initialization(
3870                                       "Failed necessary internal allocation. Out of swap space");
3871     main_thread->smr_delete();
3872     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3873     return JNI_ENOMEM;
3874   }
3875 
3876   // Enable guard page *after* os::create_main_thread(), otherwise it would
3877   // crash Linux VM, see notes in os_linux.cpp.
3878   main_thread->create_stack_guard_pages();
3879 
3880   // Initialize Java-Level synchronization subsystem
3881   ObjectMonitor::Initialize();
3882 
3883   // Initialize global modules
3884   jint status = init_globals();
3885   if (status != JNI_OK) {
3886     main_thread->smr_delete();
3887     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3888     return status;
3889   }
3890 
3891   JFR_ONLY(Jfr::on_create_vm_1();)
3892 
3893   // Should be done after the heap is fully created
3894   main_thread->cache_global_variables();
3895 
3896   HandleMark hm;
3897 
3898   { MutexLocker mu(Threads_lock);
3899     Threads::add(main_thread);
3900   }
3901 
3902   // Any JVMTI raw monitors entered in onload will transition into
3903   // real raw monitor. VM is setup enough here for raw monitor enter.
3904   JvmtiExport::transition_pending_onload_raw_monitors();
3905 
3906   // Create the VMThread
3907   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3908 
3909     VMThread::create();
3910     Thread* vmthread = VMThread::vm_thread();
3911 
3912     if (!os::create_thread(vmthread, os::vm_thread)) {
3913       vm_exit_during_initialization("Cannot create VM thread. "
3914                                     "Out of system resources.");
3915     }
3916 
3917     // Wait for the VM thread to become ready, and VMThread::run to initialize
3918     // Monitors can have spurious returns, must always check another state flag
3919     {
3920       MonitorLocker ml(Notify_lock);
3921       os::start_thread(vmthread);
3922       while (vmthread->active_handles() == NULL) {
3923         ml.wait();
3924       }
3925     }
3926   }
3927 
3928   assert(Universe::is_fully_initialized(), "not initialized");
3929   if (VerifyDuringStartup) {
3930     // Make sure we're starting with a clean slate.
3931     VM_Verify verify_op;
3932     VMThread::execute(&verify_op);
3933   }
3934 
3935   // We need this to update the java.vm.info property in case any flags used
3936   // to initially define it have been changed. This is needed for both CDS and
3937   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3938   // is initially computed. See Abstract_VM_Version::vm_info_string().
3939   // This update must happen before we initialize the java classes, but
3940   // after any initialization logic that might modify the flags.
3941   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3942 
3943   Thread* THREAD = Thread::current();
3944 
3945   // Always call even when there are not JVMTI environments yet, since environments
3946   // may be attached late and JVMTI must track phases of VM execution
3947   JvmtiExport::enter_early_start_phase();
3948 
3949   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3950   JvmtiExport::post_early_vm_start();
3951 
3952   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3953 
3954   quicken_jni_functions();
3955 
3956   // No more stub generation allowed after that point.
3957   StubCodeDesc::freeze();
3958 
3959   // Set flag that basic initialization has completed. Used by exceptions and various
3960   // debug stuff, that does not work until all basic classes have been initialized.
3961   set_init_completed();
3962 
3963   LogConfiguration::post_initialize();
3964   Metaspace::post_initialize();
3965 
3966   HOTSPOT_VM_INIT_END();
3967 
3968   // record VM initialization completion time
3969 #if INCLUDE_MANAGEMENT
3970   Management::record_vm_init_completed();
3971 #endif // INCLUDE_MANAGEMENT
3972 
3973   // Signal Dispatcher needs to be started before VMInit event is posted
3974   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3975 
3976   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3977   if (!DisableAttachMechanism) {
3978     AttachListener::vm_start();
3979     if (StartAttachListener || AttachListener::init_at_startup()) {
3980       AttachListener::init();
3981     }
3982   }
3983 
3984   // Launch -Xrun agents
3985   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3986   // back-end can launch with -Xdebug -Xrunjdwp.
3987   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3988     create_vm_init_libraries();
3989   }
3990 
3991   if (CleanChunkPoolAsync) {
3992     Chunk::start_chunk_pool_cleaner_task();
3993   }
3994 
3995 
3996   // initialize compiler(s)
3997 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3998 #if INCLUDE_JVMCI
3999   bool force_JVMCI_intialization = false;
4000   if (EnableJVMCI) {
4001     // Initialize JVMCI eagerly when it is explicitly requested.
4002     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
4003     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
4004 
4005     if (!force_JVMCI_intialization) {
4006       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
4007       // compilations via JVMCI will not actually block until JVMCI is initialized.
4008       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
4009     }
4010   }
4011 #endif
4012   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
4013   // Postpone completion of compiler initialization to after JVMCI
4014   // is initialized to avoid timeouts of blocking compilations.
4015   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
4016     CompileBroker::compilation_init_phase2();
4017   }
4018 #endif
4019 
4020   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
4021   // It is done after compilers are initialized, because otherwise compilations of
4022   // signature polymorphic MH intrinsics can be missed
4023   // (see SystemDictionary::find_method_handle_intrinsic).
4024   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4025 
4026   // This will initialize the module system.  Only java.base classes can be
4027   // loaded until phase 2 completes
4028   call_initPhase2(CHECK_JNI_ERR);
4029 
4030   JFR_ONLY(Jfr::on_create_vm_2();)
4031 
4032   // Always call even when there are not JVMTI environments yet, since environments
4033   // may be attached late and JVMTI must track phases of VM execution
4034   JvmtiExport::enter_start_phase();
4035 
4036   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4037   JvmtiExport::post_vm_start();
4038 
4039   // Final system initialization including security manager and system class loader
4040   call_initPhase3(CHECK_JNI_ERR);
4041 
4042   // cache the system and platform class loaders
4043   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4044 
4045 #if INCLUDE_CDS
4046   // capture the module path info from the ModuleEntryTable
4047   ClassLoader::initialize_module_path(THREAD);
4048 #endif
4049 
4050 #if INCLUDE_JVMCI
4051   if (force_JVMCI_intialization) {
4052     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4053     CompileBroker::compilation_init_phase2();
4054   }
4055 #endif
4056 
4057   // Always call even when there are not JVMTI environments yet, since environments
4058   // may be attached late and JVMTI must track phases of VM execution
4059   JvmtiExport::enter_live_phase();
4060 
4061   // Make perfmemory accessible
4062   PerfMemory::set_accessible(true);
4063 
4064   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4065   JvmtiExport::post_vm_initialized();
4066 
4067   JFR_ONLY(Jfr::on_create_vm_3();)
4068 
4069 #if INCLUDE_MANAGEMENT
4070   Management::initialize(THREAD);
4071 
4072   if (HAS_PENDING_EXCEPTION) {
4073     // management agent fails to start possibly due to
4074     // configuration problem and is responsible for printing
4075     // stack trace if appropriate. Simply exit VM.
4076     vm_exit(1);
4077   }
4078 #endif // INCLUDE_MANAGEMENT
4079 
4080   if (MemProfiling)                   MemProfiler::engage();
4081   StatSampler::engage();
4082   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4083 
4084   BiasedLocking::init();
4085 
4086 #if INCLUDE_RTM_OPT
4087   RTMLockingCounters::init();
4088 #endif
4089 
4090   call_postVMInitHook(THREAD);
4091   // The Java side of PostVMInitHook.run must deal with all
4092   // exceptions and provide means of diagnosis.
4093   if (HAS_PENDING_EXCEPTION) {
4094     CLEAR_PENDING_EXCEPTION;
4095   }
4096 
4097   {
4098     MutexLocker ml(PeriodicTask_lock);
4099     // Make sure the WatcherThread can be started by WatcherThread::start()
4100     // or by dynamic enrollment.
4101     WatcherThread::make_startable();
4102     // Start up the WatcherThread if there are any periodic tasks
4103     // NOTE:  All PeriodicTasks should be registered by now. If they
4104     //   aren't, late joiners might appear to start slowly (we might
4105     //   take a while to process their first tick).
4106     if (PeriodicTask::num_tasks() > 0) {
4107       WatcherThread::start();
4108     }
4109   }
4110 
4111   create_vm_timer.end();
4112 #ifdef ASSERT
4113   _vm_complete = true;
4114 #endif
4115 
4116   if (DumpSharedSpaces) {
4117     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4118     ShouldNotReachHere();
4119   }
4120 
4121   return JNI_OK;
4122 }
4123 
4124 // type for the Agent_OnLoad and JVM_OnLoad entry points
4125 extern "C" {
4126   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4127 }
4128 // Find a command line agent library and return its entry point for
4129 //         -agentlib:  -agentpath:   -Xrun
4130 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4131 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4132                                     const char *on_load_symbols[],
4133                                     size_t num_symbol_entries) {
4134   OnLoadEntry_t on_load_entry = NULL;
4135   void *library = NULL;
4136 
4137   if (!agent->valid()) {
4138     char buffer[JVM_MAXPATHLEN];
4139     char ebuf[1024] = "";
4140     const char *name = agent->name();
4141     const char *msg = "Could not find agent library ";
4142 
4143     // First check to see if agent is statically linked into executable
4144     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4145       library = agent->os_lib();
4146     } else if (agent->is_absolute_path()) {
4147       library = os::dll_load(name, ebuf, sizeof ebuf);
4148       if (library == NULL) {
4149         const char *sub_msg = " in absolute path, with error: ";
4150         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4151         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4152         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4153         // If we can't find the agent, exit.
4154         vm_exit_during_initialization(buf, NULL);
4155         FREE_C_HEAP_ARRAY(char, buf);
4156       }
4157     } else {
4158       // Try to load the agent from the standard dll directory
4159       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4160                              name)) {
4161         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4162       }
4163       if (library == NULL) { // Try the library path directory.
4164         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4165           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4166         }
4167         if (library == NULL) {
4168           const char *sub_msg = " on the library path, with error: ";
4169           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4170 
4171           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4172                        strlen(ebuf) + strlen(sub_msg2) + 1;
4173           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4174           if (!agent->is_instrument_lib()) {
4175             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4176           } else {
4177             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4178           }
4179           // If we can't find the agent, exit.
4180           vm_exit_during_initialization(buf, NULL);
4181           FREE_C_HEAP_ARRAY(char, buf);
4182         }
4183       }
4184     }
4185     agent->set_os_lib(library);
4186     agent->set_valid();
4187   }
4188 
4189   // Find the OnLoad function.
4190   on_load_entry =
4191     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4192                                                           false,
4193                                                           on_load_symbols,
4194                                                           num_symbol_entries));
4195   return on_load_entry;
4196 }
4197 
4198 // Find the JVM_OnLoad entry point
4199 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4200   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4201   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4202 }
4203 
4204 // Find the Agent_OnLoad entry point
4205 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4206   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4207   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4208 }
4209 
4210 // For backwards compatibility with -Xrun
4211 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4212 // treated like -agentpath:
4213 // Must be called before agent libraries are created
4214 void Threads::convert_vm_init_libraries_to_agents() {
4215   AgentLibrary* agent;
4216   AgentLibrary* next;
4217 
4218   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4219     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4220     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4221 
4222     // If there is an JVM_OnLoad function it will get called later,
4223     // otherwise see if there is an Agent_OnLoad
4224     if (on_load_entry == NULL) {
4225       on_load_entry = lookup_agent_on_load(agent);
4226       if (on_load_entry != NULL) {
4227         // switch it to the agent list -- so that Agent_OnLoad will be called,
4228         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4229         Arguments::convert_library_to_agent(agent);
4230       } else {
4231         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4232       }
4233     }
4234   }
4235 }
4236 
4237 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4238 // Invokes Agent_OnLoad
4239 // Called very early -- before JavaThreads exist
4240 void Threads::create_vm_init_agents() {
4241   extern struct JavaVM_ main_vm;
4242   AgentLibrary* agent;
4243 
4244   JvmtiExport::enter_onload_phase();
4245 
4246   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4247     // CDS dumping does not support native JVMTI agent.
4248     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4249     if (Arguments::is_dumping_archive()) {
4250       if(!agent->is_instrument_lib()) {
4251         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4252       } else if (!AllowArchivingWithJavaAgent) {
4253         vm_exit_during_cds_dumping(
4254           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4255       }
4256     }
4257 
4258     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4259 
4260     if (on_load_entry != NULL) {
4261       // Invoke the Agent_OnLoad function
4262       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4263       if (err != JNI_OK) {
4264         vm_exit_during_initialization("agent library failed to init", agent->name());
4265       }
4266     } else {
4267       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4268     }
4269   }
4270 
4271   JvmtiExport::enter_primordial_phase();
4272 }
4273 
4274 extern "C" {
4275   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4276 }
4277 
4278 void Threads::shutdown_vm_agents() {
4279   // Send any Agent_OnUnload notifications
4280   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4281   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4282   extern struct JavaVM_ main_vm;
4283   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4284 
4285     // Find the Agent_OnUnload function.
4286     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4287                                                    os::find_agent_function(agent,
4288                                                    false,
4289                                                    on_unload_symbols,
4290                                                    num_symbol_entries));
4291 
4292     // Invoke the Agent_OnUnload function
4293     if (unload_entry != NULL) {
4294       JavaThread* thread = JavaThread::current();
4295       ThreadToNativeFromVM ttn(thread);
4296       HandleMark hm(thread);
4297       (*unload_entry)(&main_vm);
4298     }
4299   }
4300 }
4301 
4302 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4303 // Invokes JVM_OnLoad
4304 void Threads::create_vm_init_libraries() {
4305   extern struct JavaVM_ main_vm;
4306   AgentLibrary* agent;
4307 
4308   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4309     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4310 
4311     if (on_load_entry != NULL) {
4312       // Invoke the JVM_OnLoad function
4313       JavaThread* thread = JavaThread::current();
4314       ThreadToNativeFromVM ttn(thread);
4315       HandleMark hm(thread);
4316       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4317       if (err != JNI_OK) {
4318         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4319       }
4320     } else {
4321       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4322     }
4323   }
4324 }
4325 
4326 
4327 // Last thread running calls java.lang.Shutdown.shutdown()
4328 void JavaThread::invoke_shutdown_hooks() {
4329   HandleMark hm(this);
4330 
4331   // We could get here with a pending exception, if so clear it now.
4332   if (this->has_pending_exception()) {
4333     this->clear_pending_exception();
4334   }
4335 
4336   EXCEPTION_MARK;
4337   Klass* shutdown_klass =
4338     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4339                                       THREAD);
4340   if (shutdown_klass != NULL) {
4341     // SystemDictionary::resolve_or_null will return null if there was
4342     // an exception.  If we cannot load the Shutdown class, just don't
4343     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4344     // won't be run.  Note that if a shutdown hook was registered,
4345     // the Shutdown class would have already been loaded
4346     // (Runtime.addShutdownHook will load it).
4347     JavaValue result(T_VOID);
4348     JavaCalls::call_static(&result,
4349                            shutdown_klass,
4350                            vmSymbols::shutdown_name(),
4351                            vmSymbols::void_method_signature(),
4352                            THREAD);
4353   }
4354   CLEAR_PENDING_EXCEPTION;
4355 }
4356 
4357 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4358 // the program falls off the end of main(). Another VM exit path is through
4359 // vm_exit() when the program calls System.exit() to return a value or when
4360 // there is a serious error in VM. The two shutdown paths are not exactly
4361 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4362 // and VM_Exit op at VM level.
4363 //
4364 // Shutdown sequence:
4365 //   + Shutdown native memory tracking if it is on
4366 //   + Wait until we are the last non-daemon thread to execute
4367 //     <-- every thing is still working at this moment -->
4368 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4369 //        shutdown hooks
4370 //   + Call before_exit(), prepare for VM exit
4371 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4372 //        currently the only user of this mechanism is File.deleteOnExit())
4373 //      > stop StatSampler, watcher thread,
4374 //        post thread end and vm death events to JVMTI,
4375 //        stop signal thread
4376 //   + Call JavaThread::exit(), it will:
4377 //      > release JNI handle blocks, remove stack guard pages
4378 //      > remove this thread from Threads list
4379 //     <-- no more Java code from this thread after this point -->
4380 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4381 //     the compiler threads at safepoint
4382 //     <-- do not use anything that could get blocked by Safepoint -->
4383 //   + Disable tracing at JNI/JVM barriers
4384 //   + Set _vm_exited flag for threads that are still running native code
4385 //   + Call exit_globals()
4386 //      > deletes tty
4387 //      > deletes PerfMemory resources
4388 //   + Delete this thread
4389 //   + Return to caller
4390 
4391 bool Threads::destroy_vm() {
4392   JavaThread* thread = JavaThread::current();
4393 
4394 #ifdef ASSERT
4395   _vm_complete = false;
4396 #endif
4397   // Wait until we are the last non-daemon thread to execute
4398   { MonitorLocker nu(Threads_lock);
4399     while (Threads::number_of_non_daemon_threads() > 1)
4400       // This wait should make safepoint checks, wait without a timeout,
4401       // and wait as a suspend-equivalent condition.
4402       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4403   }
4404 
4405   EventShutdown e;
4406   if (e.should_commit()) {
4407     e.set_reason("No remaining non-daemon Java threads");
4408     e.commit();
4409   }
4410 
4411   // Hang forever on exit if we are reporting an error.
4412   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4413     os::infinite_sleep();
4414   }
4415   os::wait_for_keypress_at_exit();
4416 
4417   // run Java level shutdown hooks
4418   thread->invoke_shutdown_hooks();
4419 
4420   before_exit(thread);
4421 
4422   thread->exit(true);
4423 
4424   // Stop VM thread.
4425   {
4426     // 4945125 The vm thread comes to a safepoint during exit.
4427     // GC vm_operations can get caught at the safepoint, and the
4428     // heap is unparseable if they are caught. Grab the Heap_lock
4429     // to prevent this. The GC vm_operations will not be able to
4430     // queue until after the vm thread is dead. After this point,
4431     // we'll never emerge out of the safepoint before the VM exits.
4432 
4433     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4434 
4435     VMThread::wait_for_vm_thread_exit();
4436     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4437     VMThread::destroy();
4438   }
4439 
4440   // Now, all Java threads are gone except daemon threads. Daemon threads
4441   // running Java code or in VM are stopped by the Safepoint. However,
4442   // daemon threads executing native code are still running.  But they
4443   // will be stopped at native=>Java/VM barriers. Note that we can't
4444   // simply kill or suspend them, as it is inherently deadlock-prone.
4445 
4446   VM_Exit::set_vm_exited();
4447 
4448   // Clean up ideal graph printers after the VMThread has started
4449   // the final safepoint which will block all the Compiler threads.
4450   // Note that this Thread has already logically exited so the
4451   // clean_up() function's use of a JavaThreadIteratorWithHandle
4452   // would be a problem except set_vm_exited() has remembered the
4453   // shutdown thread which is granted a policy exception.
4454 #if defined(COMPILER2) && !defined(PRODUCT)
4455   IdealGraphPrinter::clean_up();
4456 #endif
4457 
4458   notify_vm_shutdown();
4459 
4460   // exit_globals() will delete tty
4461   exit_globals();
4462 
4463   // We are after VM_Exit::set_vm_exited() so we can't call
4464   // thread->smr_delete() or we will block on the Threads_lock.
4465   // Deleting the shutdown thread here is safe because another
4466   // JavaThread cannot have an active ThreadsListHandle for
4467   // this JavaThread.
4468   delete thread;
4469 
4470 #if INCLUDE_JVMCI
4471   if (JVMCICounterSize > 0) {
4472     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4473   }
4474 #endif
4475 
4476   LogConfiguration::finalize();
4477 
4478   return true;
4479 }
4480 
4481 
4482 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4483   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4484   return is_supported_jni_version(version);
4485 }
4486 
4487 
4488 jboolean Threads::is_supported_jni_version(jint version) {
4489   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4490   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4491   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4492   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4493   if (version == JNI_VERSION_9) return JNI_TRUE;
4494   if (version == JNI_VERSION_10) return JNI_TRUE;
4495   return JNI_FALSE;
4496 }
4497 
4498 
4499 void Threads::add(JavaThread* p, bool force_daemon) {
4500   // The threads lock must be owned at this point
4501   assert(Threads_lock->owned_by_self(), "must have threads lock");
4502 
4503   BarrierSet::barrier_set()->on_thread_attach(p);
4504 
4505   // Once a JavaThread is added to the Threads list, smr_delete() has
4506   // to be used to delete it. Otherwise we can just delete it directly.
4507   p->set_on_thread_list();
4508 
4509   _number_of_threads++;
4510   oop threadObj = p->threadObj();
4511   bool daemon = true;
4512   // Bootstrapping problem: threadObj can be null for initial
4513   // JavaThread (or for threads attached via JNI)
4514   if ((!force_daemon) && !is_daemon((threadObj))) {
4515     _number_of_non_daemon_threads++;
4516     daemon = false;
4517   }
4518 
4519   ThreadService::add_thread(p, daemon);
4520 
4521   // Maintain fast thread list
4522   ThreadsSMRSupport::add_thread(p);
4523 
4524   // Possible GC point.
4525   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4526 }
4527 
4528 void Threads::remove(JavaThread* p, bool is_daemon) {
4529 
4530   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4531   ObjectSynchronizer::om_flush(p);
4532 
4533   // Extra scope needed for Thread_lock, so we can check
4534   // that we do not remove thread without safepoint code notice
4535   { MonitorLocker ml(Threads_lock);
4536 
4537     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4538 
4539     // Maintain fast thread list
4540     ThreadsSMRSupport::remove_thread(p);
4541 
4542     _number_of_threads--;
4543     if (!is_daemon) {
4544       _number_of_non_daemon_threads--;
4545 
4546       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4547       // on destroy_vm will wake up.
4548       if (number_of_non_daemon_threads() == 1) {
4549         ml.notify_all();
4550       }
4551     }
4552     ThreadService::remove_thread(p, is_daemon);
4553 
4554     // Make sure that safepoint code disregard this thread. This is needed since
4555     // the thread might mess around with locks after this point. This can cause it
4556     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4557     // of this thread since it is removed from the queue.
4558     p->set_terminated_value();
4559   } // unlock Threads_lock
4560 
4561   // Since Events::log uses a lock, we grab it outside the Threads_lock
4562   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4563 }
4564 
4565 // Operations on the Threads list for GC.  These are not explicitly locked,
4566 // but the garbage collector must provide a safe context for them to run.
4567 // In particular, these things should never be called when the Threads_lock
4568 // is held by some other thread. (Note: the Safepoint abstraction also
4569 // uses the Threads_lock to guarantee this property. It also makes sure that
4570 // all threads gets blocked when exiting or starting).
4571 
4572 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4573   ALL_JAVA_THREADS(p) {
4574     p->oops_do(f, cf);
4575   }
4576   VMThread::vm_thread()->oops_do(f, cf);
4577 }
4578 
4579 void Threads::change_thread_claim_token() {
4580   if (++_thread_claim_token == 0) {
4581     // On overflow of the token counter, there is a risk of future
4582     // collisions between a new global token value and a stale token
4583     // for a thread, because not all iterations visit all threads.
4584     // (Though it's pretty much a theoretical concern for non-trivial
4585     // token counter sizes.)  To deal with the possibility, reset all
4586     // the thread tokens to zero on global token overflow.
4587     struct ResetClaims : public ThreadClosure {
4588       virtual void do_thread(Thread* t) {
4589         t->claim_threads_do(false, 0);
4590       }
4591     } reset_claims;
4592     Threads::threads_do(&reset_claims);
4593     // On overflow, update the global token to non-zero, to
4594     // avoid the special "never claimed" initial thread value.
4595     _thread_claim_token = 1;
4596   }
4597 }
4598 
4599 #ifdef ASSERT
4600 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4601   const uintx token = t->threads_do_token();
4602   assert(token == expected,
4603          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4604          UINTX_FORMAT, kind, p2i(t), token, expected);
4605 }
4606 
4607 void Threads::assert_all_threads_claimed() {
4608   ALL_JAVA_THREADS(p) {
4609     assert_thread_claimed("Thread", p, _thread_claim_token);
4610   }
4611   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4612 }
4613 #endif // ASSERT
4614 
4615 class ParallelOopsDoThreadClosure : public ThreadClosure {
4616 private:
4617   OopClosure* _f;
4618   CodeBlobClosure* _cf;
4619 public:
4620   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4621   void do_thread(Thread* t) {
4622     t->oops_do(_f, _cf);
4623   }
4624 };
4625 
4626 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4627   ParallelOopsDoThreadClosure tc(f, cf);
4628   possibly_parallel_threads_do(is_par, &tc);
4629 }
4630 
4631 void Threads::nmethods_do(CodeBlobClosure* cf) {
4632   ALL_JAVA_THREADS(p) {
4633     // This is used by the code cache sweeper to mark nmethods that are active
4634     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4635     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4636     if(!p->is_Code_cache_sweeper_thread()) {
4637       p->nmethods_do(cf);
4638     }
4639   }
4640 }
4641 
4642 void Threads::metadata_do(MetadataClosure* f) {
4643   ALL_JAVA_THREADS(p) {
4644     p->metadata_do(f);
4645   }
4646 }
4647 
4648 class ThreadHandlesClosure : public ThreadClosure {
4649   void (*_f)(Metadata*);
4650  public:
4651   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4652   virtual void do_thread(Thread* thread) {
4653     thread->metadata_handles_do(_f);
4654   }
4655 };
4656 
4657 void Threads::metadata_handles_do(void f(Metadata*)) {
4658   // Only walk the Handles in Thread.
4659   ThreadHandlesClosure handles_closure(f);
4660   threads_do(&handles_closure);
4661 }
4662 
4663 // Get count Java threads that are waiting to enter the specified monitor.
4664 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4665                                                          int count,
4666                                                          address monitor) {
4667   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4668 
4669   int i = 0;
4670   DO_JAVA_THREADS(t_list, p) {
4671     if (!p->can_call_java()) continue;
4672 
4673     address pending = (address)p->current_pending_monitor();
4674     if (pending == monitor) {             // found a match
4675       if (i < count) result->append(p);   // save the first count matches
4676       i++;
4677     }
4678   }
4679 
4680   return result;
4681 }
4682 
4683 
4684 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4685                                                       address owner) {
4686   // NULL owner means not locked so we can skip the search
4687   if (owner == NULL) return NULL;
4688 
4689   DO_JAVA_THREADS(t_list, p) {
4690     // first, see if owner is the address of a Java thread
4691     if (owner == (address)p) return p;
4692   }
4693 
4694   // Cannot assert on lack of success here since this function may be
4695   // used by code that is trying to report useful problem information
4696   // like deadlock detection.
4697   if (UseHeavyMonitors) return NULL;
4698 
4699   // If we didn't find a matching Java thread and we didn't force use of
4700   // heavyweight monitors, then the owner is the stack address of the
4701   // Lock Word in the owning Java thread's stack.
4702   //
4703   JavaThread* the_owner = NULL;
4704   DO_JAVA_THREADS(t_list, q) {
4705     if (q->is_lock_owned(owner)) {
4706       the_owner = q;
4707       break;
4708     }
4709   }
4710 
4711   // cannot assert on lack of success here; see above comment
4712   return the_owner;
4713 }
4714 
4715 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4716 void Threads::print_on(outputStream* st, bool print_stacks,
4717                        bool internal_format, bool print_concurrent_locks,
4718                        bool print_extended_info) {
4719   char buf[32];
4720   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4721 
4722   st->print_cr("Full thread dump %s (%s %s):",
4723                VM_Version::vm_name(),
4724                VM_Version::vm_release(),
4725                VM_Version::vm_info_string());
4726   st->cr();
4727 
4728 #if INCLUDE_SERVICES
4729   // Dump concurrent locks
4730   ConcurrentLocksDump concurrent_locks;
4731   if (print_concurrent_locks) {
4732     concurrent_locks.dump_at_safepoint();
4733   }
4734 #endif // INCLUDE_SERVICES
4735 
4736   ThreadsSMRSupport::print_info_on(st);
4737   st->cr();
4738 
4739   ALL_JAVA_THREADS(p) {
4740     ResourceMark rm;
4741     p->print_on(st, print_extended_info);
4742     if (print_stacks) {
4743       if (internal_format) {
4744         p->trace_stack();
4745       } else {
4746         p->print_stack_on(st);
4747       }
4748     }
4749     st->cr();
4750 #if INCLUDE_SERVICES
4751     if (print_concurrent_locks) {
4752       concurrent_locks.print_locks_on(p, st);
4753     }
4754 #endif // INCLUDE_SERVICES
4755   }
4756 
4757   VMThread::vm_thread()->print_on(st);
4758   st->cr();
4759   Universe::heap()->print_gc_threads_on(st);
4760   WatcherThread* wt = WatcherThread::watcher_thread();
4761   if (wt != NULL) {
4762     wt->print_on(st);
4763     st->cr();
4764   }
4765 
4766   st->flush();
4767 }
4768 
4769 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4770                              int buflen, bool* found_current) {
4771   if (this_thread != NULL) {
4772     bool is_current = (current == this_thread);
4773     *found_current = *found_current || is_current;
4774     st->print("%s", is_current ? "=>" : "  ");
4775 
4776     st->print(PTR_FORMAT, p2i(this_thread));
4777     st->print(" ");
4778     this_thread->print_on_error(st, buf, buflen);
4779     st->cr();
4780   }
4781 }
4782 
4783 class PrintOnErrorClosure : public ThreadClosure {
4784   outputStream* _st;
4785   Thread* _current;
4786   char* _buf;
4787   int _buflen;
4788   bool* _found_current;
4789  public:
4790   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4791                       int buflen, bool* found_current) :
4792    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4793 
4794   virtual void do_thread(Thread* thread) {
4795     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4796   }
4797 };
4798 
4799 // Threads::print_on_error() is called by fatal error handler. It's possible
4800 // that VM is not at safepoint and/or current thread is inside signal handler.
4801 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4802 // memory (even in resource area), it might deadlock the error handler.
4803 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4804                              int buflen) {
4805   ThreadsSMRSupport::print_info_on(st);
4806   st->cr();
4807 
4808   bool found_current = false;
4809   st->print_cr("Java Threads: ( => current thread )");
4810   ALL_JAVA_THREADS(thread) {
4811     print_on_error(thread, st, current, buf, buflen, &found_current);
4812   }
4813   st->cr();
4814 
4815   st->print_cr("Other Threads:");
4816   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4817   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4818 
4819   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4820   Universe::heap()->gc_threads_do(&print_closure);
4821 
4822   if (!found_current) {
4823     st->cr();
4824     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4825     current->print_on_error(st, buf, buflen);
4826     st->cr();
4827   }
4828   st->cr();
4829 
4830   st->print_cr("Threads with active compile tasks:");
4831   print_threads_compiling(st, buf, buflen);
4832 }
4833 
4834 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4835   ALL_JAVA_THREADS(thread) {
4836     if (thread->is_Compiler_thread()) {
4837       CompilerThread* ct = (CompilerThread*) thread;
4838 
4839       // Keep task in local variable for NULL check.
4840       // ct->_task might be set to NULL by concurring compiler thread
4841       // because it completed the compilation. The task is never freed,
4842       // though, just returned to a free list.
4843       CompileTask* task = ct->task();
4844       if (task != NULL) {
4845         thread->print_name_on_error(st, buf, buflen);
4846         st->print("  ");
4847         task->print(st, NULL, short_form, true);
4848       }
4849     }
4850   }
4851 }
4852 
4853 
4854 // Internal SpinLock and Mutex
4855 // Based on ParkEvent
4856 
4857 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4858 //
4859 // We employ SpinLocks _only for low-contention, fixed-length
4860 // short-duration critical sections where we're concerned
4861 // about native mutex_t or HotSpot Mutex:: latency.
4862 // The mux construct provides a spin-then-block mutual exclusion
4863 // mechanism.
4864 //
4865 // Testing has shown that contention on the ListLock guarding gFreeList
4866 // is common.  If we implement ListLock as a simple SpinLock it's common
4867 // for the JVM to devolve to yielding with little progress.  This is true
4868 // despite the fact that the critical sections protected by ListLock are
4869 // extremely short.
4870 //
4871 // TODO-FIXME: ListLock should be of type SpinLock.
4872 // We should make this a 1st-class type, integrated into the lock
4873 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4874 // should have sufficient padding to avoid false-sharing and excessive
4875 // cache-coherency traffic.
4876 
4877 
4878 typedef volatile int SpinLockT;
4879 
4880 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4881   if (Atomic::cmpxchg(adr, 0, 1) == 0) {
4882     return;   // normal fast-path return
4883   }
4884 
4885   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4886   int ctr = 0;
4887   int Yields = 0;
4888   for (;;) {
4889     while (*adr != 0) {
4890       ++ctr;
4891       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4892         if (Yields > 5) {
4893           os::naked_short_sleep(1);
4894         } else {
4895           os::naked_yield();
4896           ++Yields;
4897         }
4898       } else {
4899         SpinPause();
4900       }
4901     }
4902     if (Atomic::cmpxchg(adr, 0, 1) == 0) return;
4903   }
4904 }
4905 
4906 void Thread::SpinRelease(volatile int * adr) {
4907   assert(*adr != 0, "invariant");
4908   OrderAccess::fence();      // guarantee at least release consistency.
4909   // Roach-motel semantics.
4910   // It's safe if subsequent LDs and STs float "up" into the critical section,
4911   // but prior LDs and STs within the critical section can't be allowed
4912   // to reorder or float past the ST that releases the lock.
4913   // Loads and stores in the critical section - which appear in program
4914   // order before the store that releases the lock - must also appear
4915   // before the store that releases the lock in memory visibility order.
4916   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4917   // the ST of 0 into the lock-word which releases the lock, so fence
4918   // more than covers this on all platforms.
4919   *adr = 0;
4920 }
4921 
4922 // muxAcquire and muxRelease:
4923 //
4924 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4925 //    The LSB of the word is set IFF the lock is held.
4926 //    The remainder of the word points to the head of a singly-linked list
4927 //    of threads blocked on the lock.
4928 //
4929 // *  The current implementation of muxAcquire-muxRelease uses its own
4930 //    dedicated Thread._MuxEvent instance.  If we're interested in
4931 //    minimizing the peak number of extant ParkEvent instances then
4932 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4933 //    as certain invariants were satisfied.  Specifically, care would need
4934 //    to be taken with regards to consuming unpark() "permits".
4935 //    A safe rule of thumb is that a thread would never call muxAcquire()
4936 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4937 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4938 //    consume an unpark() permit intended for monitorenter, for instance.
4939 //    One way around this would be to widen the restricted-range semaphore
4940 //    implemented in park().  Another alternative would be to provide
4941 //    multiple instances of the PlatformEvent() for each thread.  One
4942 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4943 //
4944 // *  Usage:
4945 //    -- Only as leaf locks
4946 //    -- for short-term locking only as muxAcquire does not perform
4947 //       thread state transitions.
4948 //
4949 // Alternatives:
4950 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4951 //    but with parking or spin-then-park instead of pure spinning.
4952 // *  Use Taura-Oyama-Yonenzawa locks.
4953 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4954 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4955 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4956 //    acquiring threads use timers (ParkTimed) to detect and recover from
4957 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4958 //    boundaries by using placement-new.
4959 // *  Augment MCS with advisory back-link fields maintained with CAS().
4960 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4961 //    The validity of the backlinks must be ratified before we trust the value.
4962 //    If the backlinks are invalid the exiting thread must back-track through the
4963 //    the forward links, which are always trustworthy.
4964 // *  Add a successor indication.  The LockWord is currently encoded as
4965 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4966 //    to provide the usual futile-wakeup optimization.
4967 //    See RTStt for details.
4968 //
4969 
4970 
4971 const intptr_t LOCKBIT = 1;
4972 
4973 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4974   intptr_t w = Atomic::cmpxchg(Lock, (intptr_t)0, LOCKBIT);
4975   if (w == 0) return;
4976   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
4977     return;
4978   }
4979 
4980   ParkEvent * const Self = Thread::current()->_MuxEvent;
4981   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4982   for (;;) {
4983     int its = (os::is_MP() ? 100 : 0) + 1;
4984 
4985     // Optional spin phase: spin-then-park strategy
4986     while (--its >= 0) {
4987       w = *Lock;
4988       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
4989         return;
4990       }
4991     }
4992 
4993     Self->reset();
4994     Self->OnList = intptr_t(Lock);
4995     // The following fence() isn't _strictly necessary as the subsequent
4996     // CAS() both serializes execution and ratifies the fetched *Lock value.
4997     OrderAccess::fence();
4998     for (;;) {
4999       w = *Lock;
5000       if ((w & LOCKBIT) == 0) {
5001         if (Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5002           Self->OnList = 0;   // hygiene - allows stronger asserts
5003           return;
5004         }
5005         continue;      // Interference -- *Lock changed -- Just retry
5006       }
5007       assert(w & LOCKBIT, "invariant");
5008       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5009       if (Atomic::cmpxchg(Lock, w, intptr_t(Self)|LOCKBIT) == w) break;
5010     }
5011 
5012     while (Self->OnList != 0) {
5013       Self->park();
5014     }
5015   }
5016 }
5017 
5018 // Release() must extract a successor from the list and then wake that thread.
5019 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5020 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5021 // Release() would :
5022 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5023 // (B) Extract a successor from the private list "in-hand"
5024 // (C) attempt to CAS() the residual back into *Lock over null.
5025 //     If there were any newly arrived threads and the CAS() would fail.
5026 //     In that case Release() would detach the RATs, re-merge the list in-hand
5027 //     with the RATs and repeat as needed.  Alternately, Release() might
5028 //     detach and extract a successor, but then pass the residual list to the wakee.
5029 //     The wakee would be responsible for reattaching and remerging before it
5030 //     competed for the lock.
5031 //
5032 // Both "pop" and DMR are immune from ABA corruption -- there can be
5033 // multiple concurrent pushers, but only one popper or detacher.
5034 // This implementation pops from the head of the list.  This is unfair,
5035 // but tends to provide excellent throughput as hot threads remain hot.
5036 // (We wake recently run threads first).
5037 //
5038 // All paths through muxRelease() will execute a CAS.
5039 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5040 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5041 // executed within the critical section are complete and globally visible before the
5042 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5043 void Thread::muxRelease(volatile intptr_t * Lock)  {
5044   for (;;) {
5045     const intptr_t w = Atomic::cmpxchg(Lock, LOCKBIT, (intptr_t)0);
5046     assert(w & LOCKBIT, "invariant");
5047     if (w == LOCKBIT) return;
5048     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5049     assert(List != NULL, "invariant");
5050     assert(List->OnList == intptr_t(Lock), "invariant");
5051     ParkEvent * const nxt = List->ListNext;
5052     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5053 
5054     // The following CAS() releases the lock and pops the head element.
5055     // The CAS() also ratifies the previously fetched lock-word value.
5056     if (Atomic::cmpxchg(Lock, w, intptr_t(nxt)) != w) {
5057       continue;
5058     }
5059     List->OnList = 0;
5060     OrderAccess::fence();
5061     List->unpark();
5062     return;
5063   }
5064 }
5065 
5066 
5067 void Threads::verify() {
5068   ALL_JAVA_THREADS(p) {
5069     p->verify();
5070   }
5071   VMThread* thread = VMThread::vm_thread();
5072   if (thread != NULL) thread->verify();
5073 }