rev 57156 : imported patch 8234796-v3

   1 /*
   2  * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1BarrierSet.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1ConcurrentRefine.hpp"
  29 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  30 #include "gc/g1/g1DirtyCardQueue.hpp"
  31 #include "gc/g1/g1RemSet.hpp"
  32 #include "gc/g1/g1RemSetSummary.hpp"
  33 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  34 #include "gc/g1/heapRegion.hpp"
  35 #include "gc/g1/heapRegionRemSet.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/iterator.hpp"
  38 #include "runtime/thread.inline.hpp"
  39 
  40 void G1RemSetSummary::update() {
  41   class CollectData : public ThreadClosure {
  42     G1RemSetSummary* _summary;
  43     uint _counter;
  44   public:
  45     CollectData(G1RemSetSummary * summary) : _summary(summary),  _counter(0) {}
  46     virtual void do_thread(Thread* t) {
  47       G1ConcurrentRefineThread* crt = static_cast<G1ConcurrentRefineThread*>(t);
  48       _summary->set_rs_thread_vtime(_counter, crt->vtime_accum());
  49       _counter++;
  50       _summary->_total_concurrent_refined_cards += crt->total_refined_cards();
  51     }
  52   } collector(this);
  53   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  54   g1h->concurrent_refine()->threads_do(&collector);
  55   _total_mutator_refined_cards = G1BarrierSet::dirty_card_queue_set().total_mutator_refined_cards();
  56   _num_coarsenings = HeapRegionRemSet::n_coarsenings();
  57 
  58   set_sampling_thread_vtime(g1h->sampling_thread()->vtime_accum());
  59 }
  60 
  61 void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) {
  62   assert(_rs_threads_vtimes != NULL, "just checking");
  63   assert(thread < _num_vtimes, "just checking");
  64   _rs_threads_vtimes[thread] = value;
  65 }
  66 
  67 double G1RemSetSummary::rs_thread_vtime(uint thread) const {
  68   assert(_rs_threads_vtimes != NULL, "just checking");
  69   assert(thread < _num_vtimes, "just checking");
  70   return _rs_threads_vtimes[thread];
  71 }
  72 
  73 G1RemSetSummary::G1RemSetSummary(bool should_update) :
  74   _total_mutator_refined_cards(0),
  75   _total_concurrent_refined_cards(0),
  76   _num_coarsenings(0),
  77   _num_vtimes(G1ConcurrentRefine::max_num_threads()),
  78   _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)),
  79   _sampling_thread_vtime(0.0f) {
  80 
  81   memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes);
  82 
  83   if (should_update) {
  84     update();
  85   }
  86 }
  87 
  88 G1RemSetSummary::~G1RemSetSummary() {
  89   FREE_C_HEAP_ARRAY(double, _rs_threads_vtimes);
  90 }
  91 
  92 void G1RemSetSummary::set(G1RemSetSummary* other) {
  93   assert(other != NULL, "just checking");
  94   assert(_num_vtimes == other->_num_vtimes, "just checking");
  95 
  96   _total_mutator_refined_cards = other->total_mutator_refined_cards();
  97   _total_concurrent_refined_cards = other->total_concurrent_refined_cards();
  98 
  99   _num_coarsenings = other->num_coarsenings();
 100 
 101   memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes);
 102 
 103   set_sampling_thread_vtime(other->sampling_thread_vtime());
 104 }
 105 
 106 void G1RemSetSummary::subtract_from(G1RemSetSummary* other) {
 107   assert(other != NULL, "just checking");
 108   assert(_num_vtimes == other->_num_vtimes, "just checking");
 109 
 110   _total_mutator_refined_cards = other->total_mutator_refined_cards() - _total_mutator_refined_cards;
 111   _total_concurrent_refined_cards = other->total_concurrent_refined_cards() - _total_concurrent_refined_cards;
 112 
 113   _num_coarsenings = other->num_coarsenings() - _num_coarsenings;
 114 
 115   for (uint i = 0; i < _num_vtimes; i++) {
 116     set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i));
 117   }
 118 
 119   _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime;
 120 }
 121 
 122 class RegionTypeCounter {
 123 private:
 124   const char* _name;
 125 
 126   size_t _rs_mem_size;
 127   size_t _cards_occupied;
 128   size_t _amount;
 129 
 130   size_t _code_root_mem_size;
 131   size_t _code_root_elems;
 132 
 133   double rs_mem_size_percent_of(size_t total) {
 134     return percent_of(_rs_mem_size, total);
 135   }
 136 
 137   double cards_occupied_percent_of(size_t total) {
 138     return percent_of(_cards_occupied, total);
 139   }
 140 
 141   double code_root_mem_size_percent_of(size_t total) {
 142     return percent_of(_code_root_mem_size, total);
 143   }
 144 
 145   double code_root_elems_percent_of(size_t total) {
 146     return percent_of(_code_root_elems, total);
 147   }
 148 
 149   size_t amount() const { return _amount; }
 150 
 151 public:
 152 
 153   RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0),
 154     _amount(0), _code_root_mem_size(0), _code_root_elems(0) { }
 155 
 156   void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size,
 157     size_t code_root_elems) {
 158     _rs_mem_size += rs_mem_size;
 159     _cards_occupied += cards_occupied;
 160     _code_root_mem_size += code_root_mem_size;
 161     _code_root_elems += code_root_elems;
 162     _amount++;
 163   }
 164 
 165   size_t rs_mem_size() const { return _rs_mem_size; }
 166   size_t cards_occupied() const { return _cards_occupied; }
 167 
 168   size_t code_root_mem_size() const { return _code_root_mem_size; }
 169   size_t code_root_elems() const { return _code_root_elems; }
 170 
 171   void print_rs_mem_info_on(outputStream * out, size_t total) {
 172     out->print_cr("    " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions",
 173         byte_size_in_proper_unit(rs_mem_size()),
 174         proper_unit_for_byte_size(rs_mem_size()),
 175         rs_mem_size_percent_of(total), amount(), _name);
 176   }
 177 
 178   void print_cards_occupied_info_on(outputStream * out, size_t total) {
 179     out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) entries by " SIZE_FORMAT " %s regions",
 180         cards_occupied(), cards_occupied_percent_of(total), amount(), _name);
 181   }
 182 
 183   void print_code_root_mem_info_on(outputStream * out, size_t total) {
 184     out->print_cr("    " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions",
 185         byte_size_in_proper_unit(code_root_mem_size()),
 186         proper_unit_for_byte_size(code_root_mem_size()),
 187         code_root_mem_size_percent_of(total), amount(), _name);
 188   }
 189 
 190   void print_code_root_elems_info_on(outputStream * out, size_t total) {
 191     out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) elements by " SIZE_FORMAT " %s regions",
 192         code_root_elems(), code_root_elems_percent_of(total), amount(), _name);
 193   }
 194 };
 195 
 196 
 197 class HRRSStatsIter: public HeapRegionClosure {
 198 private:
 199   RegionTypeCounter _young;
 200   RegionTypeCounter _humongous;
 201   RegionTypeCounter _free;
 202   RegionTypeCounter _old;
 203   RegionTypeCounter _archive;
 204   RegionTypeCounter _all;
 205 
 206   size_t _max_rs_mem_sz;
 207   HeapRegion* _max_rs_mem_sz_region;
 208 
 209   size_t total_rs_mem_sz() const            { return _all.rs_mem_size(); }
 210   size_t total_cards_occupied() const       { return _all.cards_occupied(); }
 211 
 212   size_t max_rs_mem_sz() const              { return _max_rs_mem_sz; }
 213   HeapRegion* max_rs_mem_sz_region() const  { return _max_rs_mem_sz_region; }
 214 
 215   size_t _max_code_root_mem_sz;
 216   HeapRegion* _max_code_root_mem_sz_region;
 217 
 218   size_t total_code_root_mem_sz() const     { return _all.code_root_mem_size(); }
 219   size_t total_code_root_elems() const      { return _all.code_root_elems(); }
 220 
 221   size_t max_code_root_mem_sz() const       { return _max_code_root_mem_sz; }
 222   HeapRegion* max_code_root_mem_sz_region() const { return _max_code_root_mem_sz_region; }
 223 
 224 public:
 225   HRRSStatsIter() : _young("Young"), _humongous("Humongous"),
 226     _free("Free"), _old("Old"), _archive("Archive"), _all("All"),
 227     _max_rs_mem_sz(0), _max_rs_mem_sz_region(NULL),
 228     _max_code_root_mem_sz(0), _max_code_root_mem_sz_region(NULL)
 229   {}
 230 
 231   bool do_heap_region(HeapRegion* r) {
 232     HeapRegionRemSet* hrrs = r->rem_set();
 233 
 234     // HeapRegionRemSet::mem_size() includes the
 235     // size of the strong code roots
 236     size_t rs_mem_sz = hrrs->mem_size();
 237     if (rs_mem_sz > _max_rs_mem_sz) {
 238       _max_rs_mem_sz = rs_mem_sz;
 239       _max_rs_mem_sz_region = r;
 240     }
 241     size_t occupied_cards = hrrs->occupied();
 242     size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size();
 243     if (code_root_mem_sz > max_code_root_mem_sz()) {
 244       _max_code_root_mem_sz = code_root_mem_sz;
 245       _max_code_root_mem_sz_region = r;
 246     }
 247     size_t code_root_elems = hrrs->strong_code_roots_list_length();
 248 
 249     RegionTypeCounter* current = NULL;
 250     if (r->is_free()) {
 251       current = &_free;
 252     } else if (r->is_young()) {
 253       current = &_young;
 254     } else if (r->is_humongous()) {
 255       current = &_humongous;
 256     } else if (r->is_old()) {
 257       current = &_old;
 258     } else if (r->is_archive()) {
 259       current = &_archive;
 260     } else {
 261       ShouldNotReachHere();
 262     }
 263     current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
 264     _all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems);
 265 
 266     return false;
 267   }
 268 
 269   void print_summary_on(outputStream* out) {
 270     RegionTypeCounter* counters[] = { &_young, &_humongous, &_free, &_old, &_archive, NULL };
 271 
 272     out->print_cr(" Current rem set statistics");
 273     out->print_cr("  Total per region rem sets sizes = " SIZE_FORMAT "%s."
 274                   " Max = " SIZE_FORMAT "%s.",
 275                   byte_size_in_proper_unit(total_rs_mem_sz()),
 276                   proper_unit_for_byte_size(total_rs_mem_sz()),
 277                   byte_size_in_proper_unit(max_rs_mem_sz()),
 278                   proper_unit_for_byte_size(max_rs_mem_sz()));
 279     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 280       (*current)->print_rs_mem_info_on(out, total_rs_mem_sz());
 281     }
 282 
 283     out->print_cr("   Static structures = " SIZE_FORMAT "%s,"
 284                   " free_lists = " SIZE_FORMAT "%s.",
 285                   byte_size_in_proper_unit(HeapRegionRemSet::static_mem_size()),
 286                   proper_unit_for_byte_size(HeapRegionRemSet::static_mem_size()),
 287                   byte_size_in_proper_unit(HeapRegionRemSet::fl_mem_size()),
 288                   proper_unit_for_byte_size(HeapRegionRemSet::fl_mem_size()));
 289 
 290     out->print_cr("    " SIZE_FORMAT " occupied cards represented.",
 291                   total_cards_occupied());
 292     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 293       (*current)->print_cards_occupied_info_on(out, total_cards_occupied());
 294     }
 295 
 296     // Largest sized rem set region statistics
 297     HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set();
 298     out->print_cr("    Region with largest rem set = " HR_FORMAT ", "
 299                   "size = " SIZE_FORMAT "%s, occupied = " SIZE_FORMAT "%s.",
 300                   HR_FORMAT_PARAMS(max_rs_mem_sz_region()),
 301                   byte_size_in_proper_unit(rem_set->mem_size()),
 302                   proper_unit_for_byte_size(rem_set->mem_size()),
 303                   byte_size_in_proper_unit(rem_set->occupied()),
 304                   proper_unit_for_byte_size(rem_set->occupied()));
 305     // Strong code root statistics
 306     HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set();
 307     out->print_cr("  Total heap region code root sets sizes = " SIZE_FORMAT "%s."
 308                   "  Max = " SIZE_FORMAT "%s.",
 309                   byte_size_in_proper_unit(total_code_root_mem_sz()),
 310                   proper_unit_for_byte_size(total_code_root_mem_sz()),
 311                   byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()),
 312                   proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()));
 313     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 314       (*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz());
 315     }
 316 
 317     out->print_cr("    " SIZE_FORMAT " code roots represented.",
 318                   total_code_root_elems());
 319     for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) {
 320       (*current)->print_code_root_elems_info_on(out, total_code_root_elems());
 321     }
 322 
 323     out->print_cr("    Region with largest amount of code roots = " HR_FORMAT ", "
 324                   "size = " SIZE_FORMAT "%s, num_elems = " SIZE_FORMAT ".",
 325                   HR_FORMAT_PARAMS(max_code_root_mem_sz_region()),
 326                   byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()),
 327                   proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()),
 328                   max_code_root_rem_set->strong_code_roots_list_length());
 329   }
 330 };
 331 
 332 void G1RemSetSummary::print_on(outputStream* out) {
 333   out->print_cr(" Recent concurrent refinement statistics");
 334   out->print_cr("  Of " SIZE_FORMAT " refined cards:", total_refined_cards());
 335   out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) by concurrent refinement threads.",
 336                 total_concurrent_refined_cards(),
 337                 percent_of(total_concurrent_refined_cards(), total_refined_cards()));
 338   out->print_cr("     " SIZE_FORMAT_W(8) " (%5.1f%%) by mutator threads.",
 339                 total_mutator_refined_cards(),
 340                 percent_of(total_mutator_refined_cards(), total_refined_cards()));
 341   out->print_cr("  Did " SIZE_FORMAT " coarsenings.", num_coarsenings());
 342   out->print_cr("  Concurrent refinement threads times (s)");
 343   out->print("     ");
 344   for (uint i = 0; i < _num_vtimes; i++) {
 345     out->print("    %5.2f", rs_thread_vtime(i));
 346   }
 347   out->cr();
 348   out->print_cr("  Concurrent sampling threads times (s)");
 349   out->print_cr("         %5.2f", sampling_thread_vtime());
 350 
 351   HRRSStatsIter blk;
 352   G1CollectedHeap::heap()->heap_region_iterate(&blk);
 353   blk.print_summary_on(out);
 354 }
--- EOF ---