1 /* 2 * Copyright (c) 2013, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/g1/g1BarrierSet.hpp" 27 #include "gc/g1/g1CollectedHeap.inline.hpp" 28 #include "gc/g1/g1ConcurrentRefine.hpp" 29 #include "gc/g1/g1ConcurrentRefineThread.hpp" 30 #include "gc/g1/g1DirtyCardQueue.hpp" 31 #include "gc/g1/g1RemSet.hpp" 32 #include "gc/g1/g1RemSetSummary.hpp" 33 #include "gc/g1/g1YoungRemSetSamplingThread.hpp" 34 #include "gc/g1/heapRegion.hpp" 35 #include "gc/g1/heapRegionRemSet.hpp" 36 #include "memory/allocation.inline.hpp" 37 #include "runtime/thread.inline.hpp" 38 39 void G1RemSetSummary::update() { 40 class CollectData : public ThreadClosure { 41 G1RemSetSummary* _summary; 42 uint _counter; 43 public: 44 CollectData(G1RemSetSummary * summary) : _summary(summary), _counter(0) {} 45 virtual void do_thread(Thread* t) { 46 G1ConcurrentRefineThread* crt = static_cast<G1ConcurrentRefineThread*>(t); 47 _summary->set_rs_thread_vtime(_counter, crt->vtime_accum()); 48 _counter++; 49 _summary->_total_concurrent_refined_cards += crt->total_refined_cards(); 50 } 51 } collector(this); 52 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 53 g1h->concurrent_refine()->threads_do(&collector); 54 _total_mutator_refined_cards = G1BarrierSet::dirty_card_queue_set().total_mutator_refined_cards(); 55 _num_coarsenings = HeapRegionRemSet::n_coarsenings(); 56 57 set_sampling_thread_vtime(g1h->sampling_thread()->vtime_accum()); 58 } 59 60 void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) { 61 assert(_rs_threads_vtimes != NULL, "just checking"); 62 assert(thread < _num_vtimes, "just checking"); 63 _rs_threads_vtimes[thread] = value; 64 } 65 66 double G1RemSetSummary::rs_thread_vtime(uint thread) const { 67 assert(_rs_threads_vtimes != NULL, "just checking"); 68 assert(thread < _num_vtimes, "just checking"); 69 return _rs_threads_vtimes[thread]; 70 } 71 72 G1RemSetSummary::G1RemSetSummary(bool should_update) : 73 _total_mutator_refined_cards(0), 74 _total_concurrent_refined_cards(0), 75 _num_coarsenings(0), 76 _num_vtimes(G1ConcurrentRefine::max_num_threads()), 77 _rs_threads_vtimes(NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC)), 78 _sampling_thread_vtime(0.0f) { 79 80 memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes); 81 82 if (should_update) { 83 update(); 84 } 85 } 86 87 G1RemSetSummary::~G1RemSetSummary() { 88 FREE_C_HEAP_ARRAY(double, _rs_threads_vtimes); 89 } 90 91 void G1RemSetSummary::set(G1RemSetSummary* other) { 92 assert(other != NULL, "just checking"); 93 assert(_num_vtimes == other->_num_vtimes, "just checking"); 94 95 _total_mutator_refined_cards = other->total_mutator_refined_cards(); 96 _total_concurrent_refined_cards = other->total_concurrent_refined_cards(); 97 98 _num_coarsenings = other->num_coarsenings(); 99 100 memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes); 101 102 set_sampling_thread_vtime(other->sampling_thread_vtime()); 103 } 104 105 void G1RemSetSummary::subtract_from(G1RemSetSummary* other) { 106 assert(other != NULL, "just checking"); 107 assert(_num_vtimes == other->_num_vtimes, "just checking"); 108 109 _total_mutator_refined_cards = other->total_mutator_refined_cards() - _total_mutator_refined_cards; 110 _total_concurrent_refined_cards = other->total_concurrent_refined_cards() - _total_concurrent_refined_cards; 111 112 _num_coarsenings = other->num_coarsenings() - _num_coarsenings; 113 114 for (uint i = 0; i < _num_vtimes; i++) { 115 set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i)); 116 } 117 118 _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime; 119 } 120 121 class RegionTypeCounter { 122 private: 123 const char* _name; 124 125 size_t _rs_mem_size; 126 size_t _cards_occupied; 127 size_t _amount; 128 129 size_t _code_root_mem_size; 130 size_t _code_root_elems; 131 132 double rs_mem_size_percent_of(size_t total) { 133 return percent_of(_rs_mem_size, total); 134 } 135 136 double cards_occupied_percent_of(size_t total) { 137 return percent_of(_cards_occupied, total); 138 } 139 140 double code_root_mem_size_percent_of(size_t total) { 141 return percent_of(_code_root_mem_size, total); 142 } 143 144 double code_root_elems_percent_of(size_t total) { 145 return percent_of(_code_root_elems, total); 146 } 147 148 size_t amount() const { return _amount; } 149 150 public: 151 152 RegionTypeCounter(const char* name) : _name(name), _rs_mem_size(0), _cards_occupied(0), 153 _amount(0), _code_root_mem_size(0), _code_root_elems(0) { } 154 155 void add(size_t rs_mem_size, size_t cards_occupied, size_t code_root_mem_size, 156 size_t code_root_elems) { 157 _rs_mem_size += rs_mem_size; 158 _cards_occupied += cards_occupied; 159 _code_root_mem_size += code_root_mem_size; 160 _code_root_elems += code_root_elems; 161 _amount++; 162 } 163 164 size_t rs_mem_size() const { return _rs_mem_size; } 165 size_t cards_occupied() const { return _cards_occupied; } 166 167 size_t code_root_mem_size() const { return _code_root_mem_size; } 168 size_t code_root_elems() const { return _code_root_elems; } 169 170 void print_rs_mem_info_on(outputStream * out, size_t total) { 171 out->print_cr(" " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions", 172 byte_size_in_proper_unit(rs_mem_size()), 173 proper_unit_for_byte_size(rs_mem_size()), 174 rs_mem_size_percent_of(total), amount(), _name); 175 } 176 177 void print_cards_occupied_info_on(outputStream * out, size_t total) { 178 out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) entries by " SIZE_FORMAT " %s regions", 179 cards_occupied(), cards_occupied_percent_of(total), amount(), _name); 180 } 181 182 void print_code_root_mem_info_on(outputStream * out, size_t total) { 183 out->print_cr(" " SIZE_FORMAT_W(8) "%s (%5.1f%%) by " SIZE_FORMAT " %s regions", 184 byte_size_in_proper_unit(code_root_mem_size()), 185 proper_unit_for_byte_size(code_root_mem_size()), 186 code_root_mem_size_percent_of(total), amount(), _name); 187 } 188 189 void print_code_root_elems_info_on(outputStream * out, size_t total) { 190 out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) elements by " SIZE_FORMAT " %s regions", 191 code_root_elems(), code_root_elems_percent_of(total), amount(), _name); 192 } 193 }; 194 195 196 class HRRSStatsIter: public HeapRegionClosure { 197 private: 198 RegionTypeCounter _young; 199 RegionTypeCounter _humongous; 200 RegionTypeCounter _free; 201 RegionTypeCounter _old; 202 RegionTypeCounter _archive; 203 RegionTypeCounter _all; 204 205 size_t _max_rs_mem_sz; 206 HeapRegion* _max_rs_mem_sz_region; 207 208 size_t total_rs_mem_sz() const { return _all.rs_mem_size(); } 209 size_t total_cards_occupied() const { return _all.cards_occupied(); } 210 211 size_t max_rs_mem_sz() const { return _max_rs_mem_sz; } 212 HeapRegion* max_rs_mem_sz_region() const { return _max_rs_mem_sz_region; } 213 214 size_t _max_code_root_mem_sz; 215 HeapRegion* _max_code_root_mem_sz_region; 216 217 size_t total_code_root_mem_sz() const { return _all.code_root_mem_size(); } 218 size_t total_code_root_elems() const { return _all.code_root_elems(); } 219 220 size_t max_code_root_mem_sz() const { return _max_code_root_mem_sz; } 221 HeapRegion* max_code_root_mem_sz_region() const { return _max_code_root_mem_sz_region; } 222 223 public: 224 HRRSStatsIter() : _young("Young"), _humongous("Humongous"), 225 _free("Free"), _old("Old"), _archive("Archive"), _all("All"), 226 _max_rs_mem_sz(0), _max_rs_mem_sz_region(NULL), 227 _max_code_root_mem_sz(0), _max_code_root_mem_sz_region(NULL) 228 {} 229 230 bool do_heap_region(HeapRegion* r) { 231 HeapRegionRemSet* hrrs = r->rem_set(); 232 233 // HeapRegionRemSet::mem_size() includes the 234 // size of the strong code roots 235 size_t rs_mem_sz = hrrs->mem_size(); 236 if (rs_mem_sz > _max_rs_mem_sz) { 237 _max_rs_mem_sz = rs_mem_sz; 238 _max_rs_mem_sz_region = r; 239 } 240 size_t occupied_cards = hrrs->occupied(); 241 size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size(); 242 if (code_root_mem_sz > max_code_root_mem_sz()) { 243 _max_code_root_mem_sz = code_root_mem_sz; 244 _max_code_root_mem_sz_region = r; 245 } 246 size_t code_root_elems = hrrs->strong_code_roots_list_length(); 247 248 RegionTypeCounter* current = NULL; 249 if (r->is_free()) { 250 current = &_free; 251 } else if (r->is_young()) { 252 current = &_young; 253 } else if (r->is_humongous()) { 254 current = &_humongous; 255 } else if (r->is_old()) { 256 current = &_old; 257 } else if (r->is_archive()) { 258 current = &_archive; 259 } else { 260 ShouldNotReachHere(); 261 } 262 current->add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems); 263 _all.add(rs_mem_sz, occupied_cards, code_root_mem_sz, code_root_elems); 264 265 return false; 266 } 267 268 void print_summary_on(outputStream* out) { 269 RegionTypeCounter* counters[] = { &_young, &_humongous, &_free, &_old, &_archive, NULL }; 270 271 out->print_cr(" Current rem set statistics"); 272 out->print_cr(" Total per region rem sets sizes = " SIZE_FORMAT "%s." 273 " Max = " SIZE_FORMAT "%s.", 274 byte_size_in_proper_unit(total_rs_mem_sz()), 275 proper_unit_for_byte_size(total_rs_mem_sz()), 276 byte_size_in_proper_unit(max_rs_mem_sz()), 277 proper_unit_for_byte_size(max_rs_mem_sz())); 278 for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { 279 (*current)->print_rs_mem_info_on(out, total_rs_mem_sz()); 280 } 281 282 out->print_cr(" Static structures = " SIZE_FORMAT "%s," 283 " free_lists = " SIZE_FORMAT "%s.", 284 byte_size_in_proper_unit(HeapRegionRemSet::static_mem_size()), 285 proper_unit_for_byte_size(HeapRegionRemSet::static_mem_size()), 286 byte_size_in_proper_unit(HeapRegionRemSet::fl_mem_size()), 287 proper_unit_for_byte_size(HeapRegionRemSet::fl_mem_size())); 288 289 out->print_cr(" " SIZE_FORMAT " occupied cards represented.", 290 total_cards_occupied()); 291 for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { 292 (*current)->print_cards_occupied_info_on(out, total_cards_occupied()); 293 } 294 295 // Largest sized rem set region statistics 296 HeapRegionRemSet* rem_set = max_rs_mem_sz_region()->rem_set(); 297 out->print_cr(" Region with largest rem set = " HR_FORMAT ", " 298 "size = " SIZE_FORMAT "%s, occupied = " SIZE_FORMAT "%s.", 299 HR_FORMAT_PARAMS(max_rs_mem_sz_region()), 300 byte_size_in_proper_unit(rem_set->mem_size()), 301 proper_unit_for_byte_size(rem_set->mem_size()), 302 byte_size_in_proper_unit(rem_set->occupied()), 303 proper_unit_for_byte_size(rem_set->occupied())); 304 // Strong code root statistics 305 HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region()->rem_set(); 306 out->print_cr(" Total heap region code root sets sizes = " SIZE_FORMAT "%s." 307 " Max = " SIZE_FORMAT "%s.", 308 byte_size_in_proper_unit(total_code_root_mem_sz()), 309 proper_unit_for_byte_size(total_code_root_mem_sz()), 310 byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()), 311 proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size())); 312 for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { 313 (*current)->print_code_root_mem_info_on(out, total_code_root_mem_sz()); 314 } 315 316 out->print_cr(" " SIZE_FORMAT " code roots represented.", 317 total_code_root_elems()); 318 for (RegionTypeCounter** current = &counters[0]; *current != NULL; current++) { 319 (*current)->print_code_root_elems_info_on(out, total_code_root_elems()); 320 } 321 322 out->print_cr(" Region with largest amount of code roots = " HR_FORMAT ", " 323 "size = " SIZE_FORMAT "%s, num_elems = " SIZE_FORMAT ".", 324 HR_FORMAT_PARAMS(max_code_root_mem_sz_region()), 325 byte_size_in_proper_unit(max_code_root_rem_set->strong_code_roots_mem_size()), 326 proper_unit_for_byte_size(max_code_root_rem_set->strong_code_roots_mem_size()), 327 max_code_root_rem_set->strong_code_roots_list_length()); 328 } 329 }; 330 331 void G1RemSetSummary::print_on(outputStream* out) { 332 out->print_cr(" Recent concurrent refinement statistics"); 333 out->print_cr(" Of " SIZE_FORMAT " refined cards:", total_refined_cards()); 334 out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) by concurrent refinement threads.", 335 total_concurrent_refined_cards(), 336 percent_of(total_concurrent_refined_cards(), total_refined_cards())); 337 out->print_cr(" " SIZE_FORMAT_W(8) " (%5.1f%%) by mutator threads.", 338 total_mutator_refined_cards(), 339 percent_of(total_mutator_refined_cards(), total_refined_cards())); 340 out->print_cr(" Did " SIZE_FORMAT " coarsenings.", num_coarsenings()); 341 out->print_cr(" Concurrent refinement threads times (s)"); 342 out->print(" "); 343 for (uint i = 0; i < _num_vtimes; i++) { 344 out->print(" %5.2f", rs_thread_vtime(i)); 345 } 346 out->cr(); 347 out->print_cr(" Concurrent sampling threads times (s)"); 348 out->print_cr(" %5.2f", sampling_thread_vtime()); 349 350 HRRSStatsIter blk; 351 G1CollectedHeap::heap()->heap_region_iterate(&blk); 352 blk.print_summary_on(out); 353 }