1 /*
   2  * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/methodCounters.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/objArrayOop.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/atomic.hpp"
  43 #include "runtime/biasedLocking.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/handles.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/orderAccess.inline.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/threadCritical.hpp"
  50 #include "utilities/exceptions.hpp"
  51 
  52 // no precompiled headers
  53 #ifdef CC_INTERP
  54 
  55 /*
  56  * USELABELS - If using GCC, then use labels for the opcode dispatching
  57  * rather -then a switch statement. This improves performance because it
  58  * gives us the opportunity to have the instructions that calculate the
  59  * next opcode to jump to be intermixed with the rest of the instructions
  60  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  61  */
  62 #undef USELABELS
  63 #ifdef __GNUC__
  64 /*
  65    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  66    don't use the computed goto approach.
  67 */
  68 #ifndef ASSERT
  69 #define USELABELS
  70 #endif
  71 #endif
  72 
  73 #undef CASE
  74 #ifdef USELABELS
  75 #define CASE(opcode) opc ## opcode
  76 #define DEFAULT opc_default
  77 #else
  78 #define CASE(opcode) case Bytecodes:: opcode
  79 #define DEFAULT default
  80 #endif
  81 
  82 /*
  83  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  84  * opcode before going back to the top of the while loop, rather then having
  85  * the top of the while loop handle it. This provides a better opportunity
  86  * for instruction scheduling. Some compilers just do this prefetch
  87  * automatically. Some actually end up with worse performance if you
  88  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  89  */
  90 #undef PREFETCH_OPCCODE
  91 #define PREFETCH_OPCCODE
  92 
  93 /*
  94   Interpreter safepoint: it is expected that the interpreter will have no live
  95   handles of its own creation live at an interpreter safepoint. Therefore we
  96   run a HandleMarkCleaner and trash all handles allocated in the call chain
  97   since the JavaCalls::call_helper invocation that initiated the chain.
  98   There really shouldn't be any handles remaining to trash but this is cheap
  99   in relation to a safepoint.
 100 */
 101 #define SAFEPOINT                                                                 \
 102     if ( SafepointSynchronize::is_synchronizing()) {                              \
 103         {                                                                         \
 104           /* zap freed handles rather than GC'ing them */                         \
 105           HandleMarkCleaner __hmc(THREAD);                                        \
 106         }                                                                         \
 107         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 108     }
 109 
 110 /*
 111  * VM_JAVA_ERROR - Macro for throwing a java exception from
 112  * the interpreter loop. Should really be a CALL_VM but there
 113  * is no entry point to do the transition to vm so we just
 114  * do it by hand here.
 115  */
 116 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 117     DECACHE_STATE();                                                              \
 118     SET_LAST_JAVA_FRAME();                                                        \
 119     {                                                                             \
 120        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 121        ThreadInVMfromJava trans(THREAD);                                          \
 122        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 123     }                                                                             \
 124     RESET_LAST_JAVA_FRAME();                                                      \
 125     CACHE_STATE();
 126 
 127 // Normal throw of a java error.
 128 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 129     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 130     goto handle_exception;
 131 
 132 #ifdef PRODUCT
 133 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 134 #else
 135 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 136 {                                                                                                    \
 137     BytecodeCounter::_counter_value++;                                                               \
 138     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 139     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 140     if (TraceBytecodes) {                                                                            \
 141       CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0,                    \
 142                                         topOfStack[Interpreter::expr_index_at(1)],   \
 143                                         topOfStack[Interpreter::expr_index_at(2)]),  \
 144                                         handle_exception);                           \
 145     }                                                                                \
 146 }
 147 #endif
 148 
 149 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 150 #ifdef VM_JVMTI
 151 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 152    incremented. JvmtiExport::at_single_stepping_point() may cause a
 153    breakpoint opcode to get inserted at the current PC to allow the
 154    debugger to coalesce single-step events.
 155 
 156    As a result if we call at_single_stepping_point() we refetch opcode
 157    to get the current opcode. This will override any other prefetching
 158    that might have occurred.
 159 */
 160 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 161 {                                                                                \
 162       if (_jvmti_interp_events) {                                                \
 163         if (JvmtiExport::should_post_single_step()) {                            \
 164           DECACHE_STATE();                                                       \
 165           SET_LAST_JAVA_FRAME();                                                 \
 166           ThreadInVMfromJava trans(THREAD);                                      \
 167           JvmtiExport::at_single_stepping_point(THREAD,                          \
 168                                           istate->method(),                      \
 169                                           pc);                                   \
 170           RESET_LAST_JAVA_FRAME();                                               \
 171           CACHE_STATE();                                                         \
 172           if (THREAD->pop_frame_pending() &&                                     \
 173               !THREAD->pop_frame_in_process()) {                                 \
 174             goto handle_Pop_Frame;                                               \
 175           }                                                                      \
 176           if (THREAD->jvmti_thread_state() &&                                    \
 177               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 178             goto handle_Early_Return;                                            \
 179           }                                                                      \
 180           opcode = *pc;                                                          \
 181         }                                                                        \
 182       }                                                                          \
 183 }
 184 #else
 185 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 186 #endif
 187 
 188 /*
 189  * CONTINUE - Macro for executing the next opcode.
 190  */
 191 #undef CONTINUE
 192 #ifdef USELABELS
 193 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 194 // initialization (which is is the initialization of the table pointer...)
 195 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 196 #define CONTINUE {                              \
 197         opcode = *pc;                           \
 198         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 199         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 200         DISPATCH(opcode);                       \
 201     }
 202 #else
 203 #ifdef PREFETCH_OPCCODE
 204 #define CONTINUE {                              \
 205         opcode = *pc;                           \
 206         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 207         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 208         continue;                               \
 209     }
 210 #else
 211 #define CONTINUE {                              \
 212         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 213         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 214         continue;                               \
 215     }
 216 #endif
 217 #endif
 218 
 219 
 220 #define UPDATE_PC(opsize) {pc += opsize; }
 221 /*
 222  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 223  */
 224 #undef UPDATE_PC_AND_TOS
 225 #define UPDATE_PC_AND_TOS(opsize, stack) \
 226     {pc += opsize; MORE_STACK(stack); }
 227 
 228 /*
 229  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 230  * and executing the next opcode. It's somewhat similar to the combination
 231  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 232  */
 233 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 234 #ifdef USELABELS
 235 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 236         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 237         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 238         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 239         DISPATCH(opcode);                                       \
 240     }
 241 
 242 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 243         pc += opsize; opcode = *pc;                             \
 244         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 245         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 246         DISPATCH(opcode);                                       \
 247     }
 248 #else
 249 #ifdef PREFETCH_OPCCODE
 250 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 251         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 252         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 253         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 254         goto do_continue;                                       \
 255     }
 256 
 257 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 258         pc += opsize; opcode = *pc;                             \
 259         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 260         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 261         goto do_continue;                                       \
 262     }
 263 #else
 264 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 265         pc += opsize; MORE_STACK(stack);                \
 266         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 267         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 268         goto do_continue;                               \
 269     }
 270 
 271 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 272         pc += opsize;                                   \
 273         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 274         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 275         goto do_continue;                               \
 276     }
 277 #endif /* PREFETCH_OPCCODE */
 278 #endif /* USELABELS */
 279 
 280 // About to call a new method, update the save the adjusted pc and return to frame manager
 281 #define UPDATE_PC_AND_RETURN(opsize)  \
 282    DECACHE_TOS();                     \
 283    istate->set_bcp(pc+opsize);        \
 284    return;
 285 
 286 
 287 #define METHOD istate->method()
 288 #define GET_METHOD_COUNTERS(res)    \
 289   res = METHOD->method_counters();  \
 290   if (res == NULL) {                \
 291     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 292   }
 293 
 294 #define OSR_REQUEST(res, branch_pc) \
 295             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 296 /*
 297  * For those opcodes that need to have a GC point on a backwards branch
 298  */
 299 
 300 // Backedge counting is kind of strange. The asm interpreter will increment
 301 // the backedge counter as a separate counter but it does it's comparisons
 302 // to the sum (scaled) of invocation counter and backedge count to make
 303 // a decision. Seems kind of odd to sum them together like that
 304 
 305 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 306 
 307 
 308 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 309     if ((skip) <= 0) {                                                                              \
 310       MethodCounters* mcs;                                                                          \
 311       GET_METHOD_COUNTERS(mcs);                                                                     \
 312       if (UseLoopCounter) {                                                                         \
 313         bool do_OSR = UseOnStackReplacement;                                                        \
 314         mcs->backedge_counter()->increment();                                                       \
 315         if (ProfileInterpreter) {                                                                   \
 316           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 317           /* Check for overflow against MDO count. */                                               \
 318           do_OSR = do_OSR                                                                           \
 319             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 320             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 321             /* from the methodDataOop, which value does not get reset on   */                       \
 322             /* the call to frequency_counter_overflow(). To avoid          */                       \
 323             /* excessive calls to the overflow routine while the method is */                       \
 324             /* being compiled, add a second test to make sure the overflow */                       \
 325             /* function is called only once every overflow_frequency.      */                       \
 326             && (!(mdo_last_branch_taken_count & 1023));                                             \
 327         } else {                                                                                    \
 328           /* check for overflow of backedge counter */                                              \
 329           do_OSR = do_OSR                                                                           \
 330             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 331         }                                                                                           \
 332         if (do_OSR) {                                                                               \
 333           nmethod* osr_nmethod;                                                                     \
 334           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 335           if (osr_nmethod != NULL && osr_nmethod->is_in_use()) {                                    \
 336             intptr_t* buf;                                                                          \
 337             /* Call OSR migration with last java frame only, no checks. */                          \
 338             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 339             istate->set_msg(do_osr);                                                                \
 340             istate->set_osr_buf((address)buf);                                                      \
 341             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 342             return;                                                                                 \
 343           }                                                                                         \
 344         }                                                                                           \
 345       }  /* UseCompiler ... */                                                                      \
 346       SAFEPOINT;                                                                                    \
 347     }
 348 
 349 /*
 350  * For those opcodes that need to have a GC point on a backwards branch
 351  */
 352 
 353 /*
 354  * Macros for caching and flushing the interpreter state. Some local
 355  * variables need to be flushed out to the frame before we do certain
 356  * things (like pushing frames or becomming gc safe) and some need to
 357  * be recached later (like after popping a frame). We could use one
 358  * macro to cache or decache everything, but this would be less then
 359  * optimal because we don't always need to cache or decache everything
 360  * because some things we know are already cached or decached.
 361  */
 362 #undef DECACHE_TOS
 363 #undef CACHE_TOS
 364 #undef CACHE_PREV_TOS
 365 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 366 
 367 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 368 
 369 #undef DECACHE_PC
 370 #undef CACHE_PC
 371 #define DECACHE_PC()    istate->set_bcp(pc);
 372 #define CACHE_PC()      pc = istate->bcp();
 373 #define CACHE_CP()      cp = istate->constants();
 374 #define CACHE_LOCALS()  locals = istate->locals();
 375 #undef CACHE_FRAME
 376 #define CACHE_FRAME()
 377 
 378 // BCI() returns the current bytecode-index.
 379 #undef  BCI
 380 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 381 
 382 /*
 383  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 384  * passed is a null ref.
 385  * On some architectures/platforms it should be possible to do this implicitly
 386  */
 387 #undef CHECK_NULL
 388 #define CHECK_NULL(obj_)                                                                         \
 389         if ((obj_) == NULL) {                                                                    \
 390           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
 391         }                                                                                        \
 392         VERIFY_OOP(obj_)
 393 
 394 #define VMdoubleConstZero() 0.0
 395 #define VMdoubleConstOne() 1.0
 396 #define VMlongConstZero() (max_jlong-max_jlong)
 397 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 398 
 399 /*
 400  * Alignment
 401  */
 402 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 403 
 404 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 405 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 406 
 407 // Reload interpreter state after calling the VM or a possible GC
 408 #define CACHE_STATE()   \
 409         CACHE_TOS();    \
 410         CACHE_PC();     \
 411         CACHE_CP();     \
 412         CACHE_LOCALS();
 413 
 414 // Call the VM with last java frame only.
 415 #define CALL_VM_NAKED_LJF(func)                                    \
 416         DECACHE_STATE();                                           \
 417         SET_LAST_JAVA_FRAME();                                     \
 418         func;                                                      \
 419         RESET_LAST_JAVA_FRAME();                                   \
 420         CACHE_STATE();
 421 
 422 // Call the VM. Don't check for pending exceptions.
 423 #define CALL_VM_NOCHECK(func)                                      \
 424         CALL_VM_NAKED_LJF(func)                                    \
 425         if (THREAD->pop_frame_pending() &&                         \
 426             !THREAD->pop_frame_in_process()) {                     \
 427           goto handle_Pop_Frame;                                   \
 428         }                                                          \
 429         if (THREAD->jvmti_thread_state() &&                        \
 430             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 431           goto handle_Early_Return;                                \
 432         }
 433 
 434 // Call the VM and check for pending exceptions
 435 #define CALL_VM(func, label) {                                     \
 436           CALL_VM_NOCHECK(func);                                   \
 437           if (THREAD->has_pending_exception()) goto label;         \
 438         }
 439 
 440 /*
 441  * BytecodeInterpreter::run(interpreterState istate)
 442  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 443  *
 444  * The real deal. This is where byte codes actually get interpreted.
 445  * Basically it's a big while loop that iterates until we return from
 446  * the method passed in.
 447  *
 448  * The runWithChecks is used if JVMTI is enabled.
 449  *
 450  */
 451 #if defined(VM_JVMTI)
 452 void
 453 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 454 #else
 455 void
 456 BytecodeInterpreter::run(interpreterState istate) {
 457 #endif
 458 
 459   // In order to simplify some tests based on switches set at runtime
 460   // we invoke the interpreter a single time after switches are enabled
 461   // and set simpler to to test variables rather than method calls or complex
 462   // boolean expressions.
 463 
 464   static int initialized = 0;
 465   static int checkit = 0;
 466   static intptr_t* c_addr = NULL;
 467   static intptr_t  c_value;
 468 
 469   if (checkit && *c_addr != c_value) {
 470     os::breakpoint();
 471   }
 472 #ifdef VM_JVMTI
 473   static bool _jvmti_interp_events = 0;
 474 #endif
 475 
 476   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 477 
 478 #ifdef ASSERT
 479   if (istate->_msg != initialize) {
 480     assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 481 #ifndef SHARK
 482     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 483 #endif // !SHARK
 484   }
 485   // Verify linkages.
 486   interpreterState l = istate;
 487   do {
 488     assert(l == l->_self_link, "bad link");
 489     l = l->_prev_link;
 490   } while (l != NULL);
 491   // Screwups with stack management usually cause us to overwrite istate
 492   // save a copy so we can verify it.
 493   interpreterState orig = istate;
 494 #endif
 495 
 496   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 497   register address          pc = istate->bcp();
 498   register jubyte opcode;
 499   register intptr_t*        locals = istate->locals();
 500   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 501 #ifdef LOTS_OF_REGS
 502   register JavaThread*      THREAD = istate->thread();
 503 #else
 504 #undef THREAD
 505 #define THREAD istate->thread()
 506 #endif
 507 
 508 #ifdef USELABELS
 509   const static void* const opclabels_data[256] = {
 510 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 511 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 512 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 513 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 514 
 515 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 516 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 517 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 518 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 519 
 520 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 521 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 522 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 523 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 524 
 525 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 526 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 527 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 528 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 529 
 530 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 531 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 532 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 533 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 534 
 535 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 536 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 537 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 538 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 539 
 540 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 541 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 542 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 543 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 544 
 545 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 546 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 547 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 548 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 549 
 550 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 551 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 552 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 553 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 554 
 555 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 556 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 557 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 558 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 559 
 560 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 561 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 562 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 563 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 564 
 565 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 566 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 567 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 568 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 569 
 570 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 571 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 572 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 573 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 574 
 575 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 576 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 577 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 578 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 579 
 580 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 581 /* 0xE4 */ &&opc_default,     &&opc_default,        &&opc_fast_aldc,    &&opc_fast_aldc_w,
 582 /* 0xE8 */ &&opc_return_register_finalizer,
 583                               &&opc_invokehandle,   &&opc_default,      &&opc_default,
 584 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 585 
 586 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 587 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 588 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 589 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 590   };
 591   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 592 #endif /* USELABELS */
 593 
 594 #ifdef ASSERT
 595   // this will trigger a VERIFY_OOP on entry
 596   if (istate->msg() != initialize && ! METHOD->is_static()) {
 597     oop rcvr = LOCALS_OBJECT(0);
 598     VERIFY_OOP(rcvr);
 599   }
 600 #endif
 601 // #define HACK
 602 #ifdef HACK
 603   bool interesting = false;
 604 #endif // HACK
 605 
 606   /* QQQ this should be a stack method so we don't know actual direction */
 607   guarantee(istate->msg() == initialize ||
 608          topOfStack >= istate->stack_limit() &&
 609          topOfStack < istate->stack_base(),
 610          "Stack top out of range");
 611 
 612 #ifdef CC_INTERP_PROFILE
 613   // MethodData's last branch taken count.
 614   uint mdo_last_branch_taken_count = 0;
 615 #else
 616   const uint mdo_last_branch_taken_count = 0;
 617 #endif
 618 
 619   switch (istate->msg()) {
 620     case initialize: {
 621       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 622       _compiling = (UseCompiler || CountCompiledCalls);
 623 #ifdef VM_JVMTI
 624       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 625 #endif
 626       return;
 627     }
 628     break;
 629     case method_entry: {
 630       THREAD->set_do_not_unlock();
 631       // count invocations
 632       assert(initialized, "Interpreter not initialized");
 633       if (_compiling) {
 634         MethodCounters* mcs;
 635         GET_METHOD_COUNTERS(mcs);
 636 #if COMPILER2_OR_JVMCI
 637         if (ProfileInterpreter) {
 638           METHOD->increment_interpreter_invocation_count(THREAD);
 639         }
 640 #endif
 641         mcs->invocation_counter()->increment();
 642         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 643           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 644           // We no longer retry on a counter overflow.
 645         }
 646         // Get or create profile data. Check for pending (async) exceptions.
 647         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 648         SAFEPOINT;
 649       }
 650 
 651       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 652         // initialize
 653         os::breakpoint();
 654       }
 655 
 656 #ifdef HACK
 657       {
 658         ResourceMark rm;
 659         char *method_name = istate->method()->name_and_sig_as_C_string();
 660         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 661           tty->print_cr("entering: depth %d bci: %d",
 662                          (istate->_stack_base - istate->_stack),
 663                          istate->_bcp - istate->_method->code_base());
 664           interesting = true;
 665         }
 666       }
 667 #endif // HACK
 668 
 669       // Lock method if synchronized.
 670       if (METHOD->is_synchronized()) {
 671         // oop rcvr = locals[0].j.r;
 672         oop rcvr;
 673         if (METHOD->is_static()) {
 674           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 675         } else {
 676           rcvr = LOCALS_OBJECT(0);
 677           VERIFY_OOP(rcvr);
 678         }
 679         // The initial monitor is ours for the taking.
 680         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 681         BasicObjectLock* mon = &istate->monitor_base()[-1];
 682         mon->set_obj(rcvr);
 683         bool success = false;
 684         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 685         markOop mark = rcvr->mark();
 686         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 687         // Implies UseBiasedLocking.
 688         if (mark->has_bias_pattern()) {
 689           uintptr_t thread_ident;
 690           uintptr_t anticipated_bias_locking_value;
 691           thread_ident = (uintptr_t)istate->thread();
 692           anticipated_bias_locking_value =
 693             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 694             ~((uintptr_t) markOopDesc::age_mask_in_place);
 695 
 696           if (anticipated_bias_locking_value == 0) {
 697             // Already biased towards this thread, nothing to do.
 698             if (PrintBiasedLockingStatistics) {
 699               (* BiasedLocking::biased_lock_entry_count_addr())++;
 700             }
 701             success = true;
 702           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 703             // Try to revoke bias.
 704             markOop header = rcvr->klass()->prototype_header();
 705             if (hash != markOopDesc::no_hash) {
 706               header = header->copy_set_hash(hash);
 707             }
 708             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 709               if (PrintBiasedLockingStatistics)
 710                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 711             }
 712           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 713             // Try to rebias.
 714             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 715             if (hash != markOopDesc::no_hash) {
 716               new_header = new_header->copy_set_hash(hash);
 717             }
 718             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 719               if (PrintBiasedLockingStatistics) {
 720                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 721               }
 722             } else {
 723               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 724             }
 725             success = true;
 726           } else {
 727             // Try to bias towards thread in case object is anonymously biased.
 728             markOop header = (markOop) ((uintptr_t) mark &
 729                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 730                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 731             if (hash != markOopDesc::no_hash) {
 732               header = header->copy_set_hash(hash);
 733             }
 734             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 735             // Debugging hint.
 736             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 737             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 738               if (PrintBiasedLockingStatistics) {
 739                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 740               }
 741             } else {
 742               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 743             }
 744             success = true;
 745           }
 746         }
 747 
 748         // Traditional lightweight locking.
 749         if (!success) {
 750           markOop displaced = rcvr->mark()->set_unlocked();
 751           mon->lock()->set_displaced_header(displaced);
 752           bool call_vm = UseHeavyMonitors;
 753           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 754             // Is it simple recursive case?
 755             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 756               mon->lock()->set_displaced_header(NULL);
 757             } else {
 758               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 759             }
 760           }
 761         }
 762       }
 763       THREAD->clr_do_not_unlock();
 764 
 765       // Notify jvmti
 766 #ifdef VM_JVMTI
 767       if (_jvmti_interp_events) {
 768         // Whenever JVMTI puts a thread in interp_only_mode, method
 769         // entry/exit events are sent for that thread to track stack depth.
 770         if (THREAD->is_interp_only_mode()) {
 771           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 772                   handle_exception);
 773         }
 774       }
 775 #endif /* VM_JVMTI */
 776 
 777       goto run;
 778     }
 779 
 780     case popping_frame: {
 781       // returned from a java call to pop the frame, restart the call
 782       // clear the message so we don't confuse ourselves later
 783       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 784       istate->set_msg(no_request);
 785       if (_compiling) {
 786         // Set MDX back to the ProfileData of the invoke bytecode that will be
 787         // restarted.
 788         SET_MDX(NULL);
 789         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 790       }
 791       THREAD->clr_pop_frame_in_process();
 792       goto run;
 793     }
 794 
 795     case method_resume: {
 796       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 797         // resume
 798         os::breakpoint();
 799       }
 800 #ifdef HACK
 801       {
 802         ResourceMark rm;
 803         char *method_name = istate->method()->name_and_sig_as_C_string();
 804         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 805           tty->print_cr("resume: depth %d bci: %d",
 806                          (istate->_stack_base - istate->_stack) ,
 807                          istate->_bcp - istate->_method->code_base());
 808           interesting = true;
 809         }
 810       }
 811 #endif // HACK
 812       // returned from a java call, continue executing.
 813       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 814         goto handle_Pop_Frame;
 815       }
 816       if (THREAD->jvmti_thread_state() &&
 817           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 818         goto handle_Early_Return;
 819       }
 820 
 821       if (THREAD->has_pending_exception()) goto handle_exception;
 822       // Update the pc by the saved amount of the invoke bytecode size
 823       UPDATE_PC(istate->bcp_advance());
 824 
 825       if (_compiling) {
 826         // Get or create profile data. Check for pending (async) exceptions.
 827         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 828       }
 829       goto run;
 830     }
 831 
 832     case deopt_resume2: {
 833       // Returned from an opcode that will reexecute. Deopt was
 834       // a result of a PopFrame request.
 835       //
 836 
 837       if (_compiling) {
 838         // Get or create profile data. Check for pending (async) exceptions.
 839         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 840       }
 841       goto run;
 842     }
 843 
 844     case deopt_resume: {
 845       // Returned from an opcode that has completed. The stack has
 846       // the result all we need to do is skip across the bytecode
 847       // and continue (assuming there is no exception pending)
 848       //
 849       // compute continuation length
 850       //
 851       // Note: it is possible to deopt at a return_register_finalizer opcode
 852       // because this requires entering the vm to do the registering. While the
 853       // opcode is complete we can't advance because there are no more opcodes
 854       // much like trying to deopt at a poll return. In that has we simply
 855       // get out of here
 856       //
 857       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 858         // this will do the right thing even if an exception is pending.
 859         goto handle_return;
 860       }
 861       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 862       if (THREAD->has_pending_exception()) goto handle_exception;
 863 
 864       if (_compiling) {
 865         // Get or create profile data. Check for pending (async) exceptions.
 866         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 867       }
 868       goto run;
 869     }
 870     case got_monitors: {
 871       // continue locking now that we have a monitor to use
 872       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 873       oop lockee = STACK_OBJECT(-1);
 874       VERIFY_OOP(lockee);
 875       // derefing's lockee ought to provoke implicit null check
 876       // find a free monitor
 877       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 878       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 879       entry->set_obj(lockee);
 880       bool success = false;
 881       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 882 
 883       markOop mark = lockee->mark();
 884       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 885       // implies UseBiasedLocking
 886       if (mark->has_bias_pattern()) {
 887         uintptr_t thread_ident;
 888         uintptr_t anticipated_bias_locking_value;
 889         thread_ident = (uintptr_t)istate->thread();
 890         anticipated_bias_locking_value =
 891           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 892           ~((uintptr_t) markOopDesc::age_mask_in_place);
 893 
 894         if  (anticipated_bias_locking_value == 0) {
 895           // already biased towards this thread, nothing to do
 896           if (PrintBiasedLockingStatistics) {
 897             (* BiasedLocking::biased_lock_entry_count_addr())++;
 898           }
 899           success = true;
 900         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 901           // try revoke bias
 902           markOop header = lockee->klass()->prototype_header();
 903           if (hash != markOopDesc::no_hash) {
 904             header = header->copy_set_hash(hash);
 905           }
 906           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 907             if (PrintBiasedLockingStatistics) {
 908               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 909             }
 910           }
 911         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 912           // try rebias
 913           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 914           if (hash != markOopDesc::no_hash) {
 915                 new_header = new_header->copy_set_hash(hash);
 916           }
 917           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 918             if (PrintBiasedLockingStatistics) {
 919               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 920             }
 921           } else {
 922             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 923           }
 924           success = true;
 925         } else {
 926           // try to bias towards thread in case object is anonymously biased
 927           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 928                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 929           if (hash != markOopDesc::no_hash) {
 930             header = header->copy_set_hash(hash);
 931           }
 932           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 933           // debugging hint
 934           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 935           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 936             if (PrintBiasedLockingStatistics) {
 937               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 938             }
 939           } else {
 940             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 941           }
 942           success = true;
 943         }
 944       }
 945 
 946       // traditional lightweight locking
 947       if (!success) {
 948         markOop displaced = lockee->mark()->set_unlocked();
 949         entry->lock()->set_displaced_header(displaced);
 950         bool call_vm = UseHeavyMonitors;
 951         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 952           // Is it simple recursive case?
 953           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 954             entry->lock()->set_displaced_header(NULL);
 955           } else {
 956             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 957           }
 958         }
 959       }
 960       UPDATE_PC_AND_TOS(1, -1);
 961       goto run;
 962     }
 963     default: {
 964       fatal("Unexpected message from frame manager");
 965     }
 966   }
 967 
 968 run:
 969 
 970   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 971   DEBUGGER_SINGLE_STEP_NOTIFY();
 972 #ifdef PREFETCH_OPCCODE
 973   opcode = *pc;  /* prefetch first opcode */
 974 #endif
 975 
 976 #ifndef USELABELS
 977   while (1)
 978 #endif
 979   {
 980 #ifndef PREFETCH_OPCCODE
 981       opcode = *pc;
 982 #endif
 983       // Seems like this happens twice per opcode. At worst this is only
 984       // need at entry to the loop.
 985       // DEBUGGER_SINGLE_STEP_NOTIFY();
 986       /* Using this labels avoids double breakpoints when quickening and
 987        * when returing from transition frames.
 988        */
 989   opcode_switch:
 990       assert(istate == orig, "Corrupted istate");
 991       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 992       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 993       assert(topOfStack < istate->stack_base(), "Stack underrun");
 994 
 995 #ifdef USELABELS
 996       DISPATCH(opcode);
 997 #else
 998       switch (opcode)
 999 #endif
1000       {
1001       CASE(_nop):
1002           UPDATE_PC_AND_CONTINUE(1);
1003 
1004           /* Push miscellaneous constants onto the stack. */
1005 
1006       CASE(_aconst_null):
1007           SET_STACK_OBJECT(NULL, 0);
1008           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1009 
1010 #undef  OPC_CONST_n
1011 #define OPC_CONST_n(opcode, const_type, value)                          \
1012       CASE(opcode):                                                     \
1013           SET_STACK_ ## const_type(value, 0);                           \
1014           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1015 
1016           OPC_CONST_n(_iconst_m1,   INT,       -1);
1017           OPC_CONST_n(_iconst_0,    INT,        0);
1018           OPC_CONST_n(_iconst_1,    INT,        1);
1019           OPC_CONST_n(_iconst_2,    INT,        2);
1020           OPC_CONST_n(_iconst_3,    INT,        3);
1021           OPC_CONST_n(_iconst_4,    INT,        4);
1022           OPC_CONST_n(_iconst_5,    INT,        5);
1023           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1024           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1025           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1026 
1027 #undef  OPC_CONST2_n
1028 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1029       CASE(_##opcname):                                                 \
1030       {                                                                 \
1031           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1032           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1033       }
1034          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1035          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1036          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1037          OPC_CONST2_n(lconst_1, One,  long, LONG);
1038 
1039          /* Load constant from constant pool: */
1040 
1041           /* Push a 1-byte signed integer value onto the stack. */
1042       CASE(_bipush):
1043           SET_STACK_INT((jbyte)(pc[1]), 0);
1044           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1045 
1046           /* Push a 2-byte signed integer constant onto the stack. */
1047       CASE(_sipush):
1048           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1049           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1050 
1051           /* load from local variable */
1052 
1053       CASE(_aload):
1054           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1055           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1056           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1057 
1058       CASE(_iload):
1059       CASE(_fload):
1060           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1061           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1062 
1063       CASE(_lload):
1064           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1065           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1066 
1067       CASE(_dload):
1068           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1069           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1070 
1071 #undef  OPC_LOAD_n
1072 #define OPC_LOAD_n(num)                                                 \
1073       CASE(_aload_##num):                                               \
1074           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1075           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1076           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1077                                                                         \
1078       CASE(_iload_##num):                                               \
1079       CASE(_fload_##num):                                               \
1080           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1081           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1082                                                                         \
1083       CASE(_lload_##num):                                               \
1084           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1085           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1086       CASE(_dload_##num):                                               \
1087           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1088           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1089 
1090           OPC_LOAD_n(0);
1091           OPC_LOAD_n(1);
1092           OPC_LOAD_n(2);
1093           OPC_LOAD_n(3);
1094 
1095           /* store to a local variable */
1096 
1097       CASE(_astore):
1098           astore(topOfStack, -1, locals, pc[1]);
1099           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1100 
1101       CASE(_istore):
1102       CASE(_fstore):
1103           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1104           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1105 
1106       CASE(_lstore):
1107           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1108           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1109 
1110       CASE(_dstore):
1111           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1112           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1113 
1114       CASE(_wide): {
1115           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1116 
1117           opcode = pc[1];
1118 
1119           // Wide and it's sub-bytecode are counted as separate instructions. If we
1120           // don't account for this here, the bytecode trace skips the next bytecode.
1121           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1122 
1123           switch(opcode) {
1124               case Bytecodes::_aload:
1125                   VERIFY_OOP(LOCALS_OBJECT(reg));
1126                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1127                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1128 
1129               case Bytecodes::_iload:
1130               case Bytecodes::_fload:
1131                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1132                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1133 
1134               case Bytecodes::_lload:
1135                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1136                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1137 
1138               case Bytecodes::_dload:
1139                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1140                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1141 
1142               case Bytecodes::_astore:
1143                   astore(topOfStack, -1, locals, reg);
1144                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1145 
1146               case Bytecodes::_istore:
1147               case Bytecodes::_fstore:
1148                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1149                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1150 
1151               case Bytecodes::_lstore:
1152                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1153                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1154 
1155               case Bytecodes::_dstore:
1156                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1157                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1158 
1159               case Bytecodes::_iinc: {
1160                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1161                   // Be nice to see what this generates.... QQQ
1162                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1163                   UPDATE_PC_AND_CONTINUE(6);
1164               }
1165               case Bytecodes::_ret:
1166                   // Profile ret.
1167                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1168                   // Now, update the pc.
1169                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1170                   UPDATE_PC_AND_CONTINUE(0);
1171               default:
1172                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1173           }
1174       }
1175 
1176 
1177 #undef  OPC_STORE_n
1178 #define OPC_STORE_n(num)                                                \
1179       CASE(_astore_##num):                                              \
1180           astore(topOfStack, -1, locals, num);                          \
1181           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1182       CASE(_istore_##num):                                              \
1183       CASE(_fstore_##num):                                              \
1184           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1185           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1186 
1187           OPC_STORE_n(0);
1188           OPC_STORE_n(1);
1189           OPC_STORE_n(2);
1190           OPC_STORE_n(3);
1191 
1192 #undef  OPC_DSTORE_n
1193 #define OPC_DSTORE_n(num)                                               \
1194       CASE(_dstore_##num):                                              \
1195           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1196           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1197       CASE(_lstore_##num):                                              \
1198           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1199           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1200 
1201           OPC_DSTORE_n(0);
1202           OPC_DSTORE_n(1);
1203           OPC_DSTORE_n(2);
1204           OPC_DSTORE_n(3);
1205 
1206           /* stack pop, dup, and insert opcodes */
1207 
1208 
1209       CASE(_pop):                /* Discard the top item on the stack */
1210           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1211 
1212 
1213       CASE(_pop2):               /* Discard the top 2 items on the stack */
1214           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1215 
1216 
1217       CASE(_dup):               /* Duplicate the top item on the stack */
1218           dup(topOfStack);
1219           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1220 
1221       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1222           dup2(topOfStack);
1223           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1224 
1225       CASE(_dup_x1):    /* insert top word two down */
1226           dup_x1(topOfStack);
1227           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1228 
1229       CASE(_dup_x2):    /* insert top word three down  */
1230           dup_x2(topOfStack);
1231           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1232 
1233       CASE(_dup2_x1):   /* insert top 2 slots three down */
1234           dup2_x1(topOfStack);
1235           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1236 
1237       CASE(_dup2_x2):   /* insert top 2 slots four down */
1238           dup2_x2(topOfStack);
1239           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1240 
1241       CASE(_swap): {        /* swap top two elements on the stack */
1242           swap(topOfStack);
1243           UPDATE_PC_AND_CONTINUE(1);
1244       }
1245 
1246           /* Perform various binary integer operations */
1247 
1248 #undef  OPC_INT_BINARY
1249 #define OPC_INT_BINARY(opcname, opname, test)                           \
1250       CASE(_i##opcname):                                                \
1251           if (test && (STACK_INT(-1) == 0)) {                           \
1252               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1253                             "/ by zero", note_div0Check_trap);          \
1254           }                                                             \
1255           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1256                                       STACK_INT(-1)),                   \
1257                                       -2);                              \
1258           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1259       CASE(_l##opcname):                                                \
1260       {                                                                 \
1261           if (test) {                                                   \
1262             jlong l1 = STACK_LONG(-1);                                  \
1263             if (VMlongEqz(l1)) {                                        \
1264               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1265                             "/ by long zero", note_div0Check_trap);     \
1266             }                                                           \
1267           }                                                             \
1268           /* First long at (-1,-2) next long at (-3,-4) */              \
1269           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1270                                         STACK_LONG(-1)),                \
1271                                         -3);                            \
1272           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1273       }
1274 
1275       OPC_INT_BINARY(add, Add, 0);
1276       OPC_INT_BINARY(sub, Sub, 0);
1277       OPC_INT_BINARY(mul, Mul, 0);
1278       OPC_INT_BINARY(and, And, 0);
1279       OPC_INT_BINARY(or,  Or,  0);
1280       OPC_INT_BINARY(xor, Xor, 0);
1281       OPC_INT_BINARY(div, Div, 1);
1282       OPC_INT_BINARY(rem, Rem, 1);
1283 
1284 
1285       /* Perform various binary floating number operations */
1286       /* On some machine/platforms/compilers div zero check can be implicit */
1287 
1288 #undef  OPC_FLOAT_BINARY
1289 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1290       CASE(_d##opcname): {                                                 \
1291           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1292                                             STACK_DOUBLE(-1)),             \
1293                                             -3);                           \
1294           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1295       }                                                                    \
1296       CASE(_f##opcname):                                                   \
1297           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1298                                           STACK_FLOAT(-1)),                \
1299                                           -2);                             \
1300           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1301 
1302 
1303      OPC_FLOAT_BINARY(add, Add);
1304      OPC_FLOAT_BINARY(sub, Sub);
1305      OPC_FLOAT_BINARY(mul, Mul);
1306      OPC_FLOAT_BINARY(div, Div);
1307      OPC_FLOAT_BINARY(rem, Rem);
1308 
1309       /* Shift operations
1310        * Shift left int and long: ishl, lshl
1311        * Logical shift right int and long w/zero extension: iushr, lushr
1312        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1313        */
1314 
1315 #undef  OPC_SHIFT_BINARY
1316 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1317       CASE(_i##opcname):                                                \
1318          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1319                                      STACK_INT(-1)),                    \
1320                                      -2);                               \
1321          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1322       CASE(_l##opcname):                                                \
1323       {                                                                 \
1324          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1325                                        STACK_INT(-1)),                  \
1326                                        -2);                             \
1327          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1328       }
1329 
1330       OPC_SHIFT_BINARY(shl, Shl);
1331       OPC_SHIFT_BINARY(shr, Shr);
1332       OPC_SHIFT_BINARY(ushr, Ushr);
1333 
1334      /* Increment local variable by constant */
1335       CASE(_iinc):
1336       {
1337           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1338           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1339           UPDATE_PC_AND_CONTINUE(3);
1340       }
1341 
1342      /* negate the value on the top of the stack */
1343 
1344       CASE(_ineg):
1345          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1346          UPDATE_PC_AND_CONTINUE(1);
1347 
1348       CASE(_fneg):
1349          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1350          UPDATE_PC_AND_CONTINUE(1);
1351 
1352       CASE(_lneg):
1353       {
1354          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1355          UPDATE_PC_AND_CONTINUE(1);
1356       }
1357 
1358       CASE(_dneg):
1359       {
1360          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1361          UPDATE_PC_AND_CONTINUE(1);
1362       }
1363 
1364       /* Conversion operations */
1365 
1366       CASE(_i2f):       /* convert top of stack int to float */
1367          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1368          UPDATE_PC_AND_CONTINUE(1);
1369 
1370       CASE(_i2l):       /* convert top of stack int to long */
1371       {
1372           // this is ugly QQQ
1373           jlong r = VMint2Long(STACK_INT(-1));
1374           MORE_STACK(-1); // Pop
1375           SET_STACK_LONG(r, 1);
1376 
1377           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1378       }
1379 
1380       CASE(_i2d):       /* convert top of stack int to double */
1381       {
1382           // this is ugly QQQ (why cast to jlong?? )
1383           jdouble r = (jlong)STACK_INT(-1);
1384           MORE_STACK(-1); // Pop
1385           SET_STACK_DOUBLE(r, 1);
1386 
1387           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1388       }
1389 
1390       CASE(_l2i):       /* convert top of stack long to int */
1391       {
1392           jint r = VMlong2Int(STACK_LONG(-1));
1393           MORE_STACK(-2); // Pop
1394           SET_STACK_INT(r, 0);
1395           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1396       }
1397 
1398       CASE(_l2f):   /* convert top of stack long to float */
1399       {
1400           jlong r = STACK_LONG(-1);
1401           MORE_STACK(-2); // Pop
1402           SET_STACK_FLOAT(VMlong2Float(r), 0);
1403           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1404       }
1405 
1406       CASE(_l2d):       /* convert top of stack long to double */
1407       {
1408           jlong r = STACK_LONG(-1);
1409           MORE_STACK(-2); // Pop
1410           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1411           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1412       }
1413 
1414       CASE(_f2i):  /* Convert top of stack float to int */
1415           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1416           UPDATE_PC_AND_CONTINUE(1);
1417 
1418       CASE(_f2l):  /* convert top of stack float to long */
1419       {
1420           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1421           MORE_STACK(-1); // POP
1422           SET_STACK_LONG(r, 1);
1423           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1424       }
1425 
1426       CASE(_f2d):  /* convert top of stack float to double */
1427       {
1428           jfloat f;
1429           jdouble r;
1430           f = STACK_FLOAT(-1);
1431           r = (jdouble) f;
1432           MORE_STACK(-1); // POP
1433           SET_STACK_DOUBLE(r, 1);
1434           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1435       }
1436 
1437       CASE(_d2i): /* convert top of stack double to int */
1438       {
1439           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1440           MORE_STACK(-2);
1441           SET_STACK_INT(r1, 0);
1442           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1443       }
1444 
1445       CASE(_d2f): /* convert top of stack double to float */
1446       {
1447           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1448           MORE_STACK(-2);
1449           SET_STACK_FLOAT(r1, 0);
1450           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1451       }
1452 
1453       CASE(_d2l): /* convert top of stack double to long */
1454       {
1455           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1456           MORE_STACK(-2);
1457           SET_STACK_LONG(r1, 1);
1458           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1459       }
1460 
1461       CASE(_i2b):
1462           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1463           UPDATE_PC_AND_CONTINUE(1);
1464 
1465       CASE(_i2c):
1466           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1467           UPDATE_PC_AND_CONTINUE(1);
1468 
1469       CASE(_i2s):
1470           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1471           UPDATE_PC_AND_CONTINUE(1);
1472 
1473       /* comparison operators */
1474 
1475 
1476 #define COMPARISON_OP(name, comparison)                                      \
1477       CASE(_if_icmp##name): {                                                \
1478           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1479           int skip = cmp                                                     \
1480                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1481           address branch_pc = pc;                                            \
1482           /* Profile branch. */                                              \
1483           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1484           UPDATE_PC_AND_TOS(skip, -2);                                       \
1485           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1486           CONTINUE;                                                          \
1487       }                                                                      \
1488       CASE(_if##name): {                                                     \
1489           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1490           int skip = cmp                                                     \
1491                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1492           address branch_pc = pc;                                            \
1493           /* Profile branch. */                                              \
1494           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1495           UPDATE_PC_AND_TOS(skip, -1);                                       \
1496           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1497           CONTINUE;                                                          \
1498       }
1499 
1500 #define COMPARISON_OP2(name, comparison)                                     \
1501       COMPARISON_OP(name, comparison)                                        \
1502       CASE(_if_acmp##name): {                                                \
1503           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1504           int skip = cmp                                                     \
1505                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1506           address branch_pc = pc;                                            \
1507           /* Profile branch. */                                              \
1508           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1509           UPDATE_PC_AND_TOS(skip, -2);                                       \
1510           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1511           CONTINUE;                                                          \
1512       }
1513 
1514 #define NULL_COMPARISON_NOT_OP(name)                                         \
1515       CASE(_if##name): {                                                     \
1516           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1517           int skip = cmp                                                     \
1518                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1519           address branch_pc = pc;                                            \
1520           /* Profile branch. */                                              \
1521           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1522           UPDATE_PC_AND_TOS(skip, -1);                                       \
1523           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1524           CONTINUE;                                                          \
1525       }
1526 
1527 #define NULL_COMPARISON_OP(name)                                             \
1528       CASE(_if##name): {                                                     \
1529           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1530           int skip = cmp                                                     \
1531                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1532           address branch_pc = pc;                                            \
1533           /* Profile branch. */                                              \
1534           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1535           UPDATE_PC_AND_TOS(skip, -1);                                       \
1536           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1537           CONTINUE;                                                          \
1538       }
1539       COMPARISON_OP(lt, <);
1540       COMPARISON_OP(gt, >);
1541       COMPARISON_OP(le, <=);
1542       COMPARISON_OP(ge, >=);
1543       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1544       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1545       NULL_COMPARISON_OP(null);
1546       NULL_COMPARISON_NOT_OP(nonnull);
1547 
1548       /* Goto pc at specified offset in switch table. */
1549 
1550       CASE(_tableswitch): {
1551           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1552           int32_t  key  = STACK_INT(-1);
1553           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1554           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1555           int32_t  skip;
1556           key -= low;
1557           if (((uint32_t) key > (uint32_t)(high - low))) {
1558             key = -1;
1559             skip = Bytes::get_Java_u4((address)&lpc[0]);
1560           } else {
1561             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1562           }
1563           // Profile switch.
1564           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1565           // Does this really need a full backedge check (osr)?
1566           address branch_pc = pc;
1567           UPDATE_PC_AND_TOS(skip, -1);
1568           DO_BACKEDGE_CHECKS(skip, branch_pc);
1569           CONTINUE;
1570       }
1571 
1572       /* Goto pc whose table entry matches specified key. */
1573 
1574       CASE(_lookupswitch): {
1575           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1576           int32_t  key  = STACK_INT(-1);
1577           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1578           // Remember index.
1579           int      index = -1;
1580           int      newindex = 0;
1581           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1582           while (--npairs >= 0) {
1583             lpc += 2;
1584             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1585               skip = Bytes::get_Java_u4((address)&lpc[1]);
1586               index = newindex;
1587               break;
1588             }
1589             newindex += 1;
1590           }
1591           // Profile switch.
1592           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1593           address branch_pc = pc;
1594           UPDATE_PC_AND_TOS(skip, -1);
1595           DO_BACKEDGE_CHECKS(skip, branch_pc);
1596           CONTINUE;
1597       }
1598 
1599       CASE(_fcmpl):
1600       CASE(_fcmpg):
1601       {
1602           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1603                                         STACK_FLOAT(-1),
1604                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1605                         -2);
1606           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1607       }
1608 
1609       CASE(_dcmpl):
1610       CASE(_dcmpg):
1611       {
1612           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1613                                   STACK_DOUBLE(-1),
1614                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1615           MORE_STACK(-4); // Pop
1616           SET_STACK_INT(r, 0);
1617           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1618       }
1619 
1620       CASE(_lcmp):
1621       {
1622           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1623           MORE_STACK(-4);
1624           SET_STACK_INT(r, 0);
1625           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1626       }
1627 
1628 
1629       /* Return from a method */
1630 
1631       CASE(_areturn):
1632       CASE(_ireturn):
1633       CASE(_freturn):
1634       {
1635           // Allow a safepoint before returning to frame manager.
1636           SAFEPOINT;
1637 
1638           goto handle_return;
1639       }
1640 
1641       CASE(_lreturn):
1642       CASE(_dreturn):
1643       {
1644           // Allow a safepoint before returning to frame manager.
1645           SAFEPOINT;
1646           goto handle_return;
1647       }
1648 
1649       CASE(_return_register_finalizer): {
1650 
1651           oop rcvr = LOCALS_OBJECT(0);
1652           VERIFY_OOP(rcvr);
1653           if (rcvr->klass()->has_finalizer()) {
1654             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1655           }
1656           goto handle_return;
1657       }
1658       CASE(_return): {
1659 
1660           // Allow a safepoint before returning to frame manager.
1661           SAFEPOINT;
1662           goto handle_return;
1663       }
1664 
1665       /* Array access byte-codes */
1666 
1667       /* Every array access byte-code starts out like this */
1668 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1669 #define ARRAY_INTRO(arrayOff)                                                  \
1670       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1671       jint     index  = STACK_INT(arrayOff + 1);                               \
1672       char message[jintAsStringSize];                                          \
1673       CHECK_NULL(arrObj);                                                      \
1674       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1675           sprintf(message, "%d", index);                                       \
1676           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1677                         message, note_rangeCheck_trap);                        \
1678       }
1679 
1680       /* 32-bit loads. These handle conversion from < 32-bit types */
1681 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1682       {                                                                               \
1683           ARRAY_INTRO(-2);                                                            \
1684           (void)extra;                                                                \
1685           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1686                            -2);                                                       \
1687           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1688       }
1689 
1690       /* 64-bit loads */
1691 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1692       {                                                                                    \
1693           ARRAY_INTRO(-2);                                                                 \
1694           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1695           (void)extra;                                                                     \
1696           UPDATE_PC_AND_CONTINUE(1);                                                       \
1697       }
1698 
1699       CASE(_iaload):
1700           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1701       CASE(_faload):
1702           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1703       CASE(_aaload): {
1704           ARRAY_INTRO(-2);
1705           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1706           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1707       }
1708       CASE(_baload):
1709           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1710       CASE(_caload):
1711           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1712       CASE(_saload):
1713           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1714       CASE(_laload):
1715           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1716       CASE(_daload):
1717           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1718 
1719       /* 32-bit stores. These handle conversion to < 32-bit types */
1720 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1721       {                                                                              \
1722           ARRAY_INTRO(-3);                                                           \
1723           (void)extra;                                                               \
1724           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1725           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1726       }
1727 
1728       /* 64-bit stores */
1729 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1730       {                                                                              \
1731           ARRAY_INTRO(-4);                                                           \
1732           (void)extra;                                                               \
1733           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1734           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1735       }
1736 
1737       CASE(_iastore):
1738           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1739       CASE(_fastore):
1740           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1741       /*
1742        * This one looks different because of the assignability check
1743        */
1744       CASE(_aastore): {
1745           oop rhsObject = STACK_OBJECT(-1);
1746           VERIFY_OOP(rhsObject);
1747           ARRAY_INTRO( -3);
1748           // arrObj, index are set
1749           if (rhsObject != NULL) {
1750             /* Check assignability of rhsObject into arrObj */
1751             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1752             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1753             //
1754             // Check for compatibilty. This check must not GC!!
1755             // Seems way more expensive now that we must dispatch
1756             //
1757             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1758               // Decrement counter if subtype check failed.
1759               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1760               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1761             }
1762             // Profile checkcast with null_seen and receiver.
1763             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1764           } else {
1765             // Profile checkcast with null_seen and receiver.
1766             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1767           }
1768           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1769           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1770       }
1771       CASE(_bastore): {
1772           ARRAY_INTRO(-3);
1773           int item = STACK_INT(-1);
1774           // if it is a T_BOOLEAN array, mask the stored value to 0/1
1775           if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1776             item &= 1;
1777           } else {
1778             assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1779                    "should be byte array otherwise");
1780           }
1781           ((typeArrayOop)arrObj)->byte_at_put(index, item);
1782           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1783       }
1784       CASE(_castore):
1785           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1786       CASE(_sastore):
1787           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1788       CASE(_lastore):
1789           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1790       CASE(_dastore):
1791           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1792 
1793       CASE(_arraylength):
1794       {
1795           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1796           CHECK_NULL(ary);
1797           SET_STACK_INT(ary->length(), -1);
1798           UPDATE_PC_AND_CONTINUE(1);
1799       }
1800 
1801       /* monitorenter and monitorexit for locking/unlocking an object */
1802 
1803       CASE(_monitorenter): {
1804         oop lockee = STACK_OBJECT(-1);
1805         // derefing's lockee ought to provoke implicit null check
1806         CHECK_NULL(lockee);
1807         // find a free monitor or one already allocated for this object
1808         // if we find a matching object then we need a new monitor
1809         // since this is recursive enter
1810         BasicObjectLock* limit = istate->monitor_base();
1811         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1812         BasicObjectLock* entry = NULL;
1813         while (most_recent != limit ) {
1814           if (most_recent->obj() == NULL) entry = most_recent;
1815           else if (most_recent->obj() == lockee) break;
1816           most_recent++;
1817         }
1818         if (entry != NULL) {
1819           entry->set_obj(lockee);
1820           int success = false;
1821           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1822 
1823           markOop mark = lockee->mark();
1824           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1825           // implies UseBiasedLocking
1826           if (mark->has_bias_pattern()) {
1827             uintptr_t thread_ident;
1828             uintptr_t anticipated_bias_locking_value;
1829             thread_ident = (uintptr_t)istate->thread();
1830             anticipated_bias_locking_value =
1831               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1832               ~((uintptr_t) markOopDesc::age_mask_in_place);
1833 
1834             if  (anticipated_bias_locking_value == 0) {
1835               // already biased towards this thread, nothing to do
1836               if (PrintBiasedLockingStatistics) {
1837                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1838               }
1839               success = true;
1840             }
1841             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1842               // try revoke bias
1843               markOop header = lockee->klass()->prototype_header();
1844               if (hash != markOopDesc::no_hash) {
1845                 header = header->copy_set_hash(hash);
1846               }
1847               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1848                 if (PrintBiasedLockingStatistics)
1849                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1850               }
1851             }
1852             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1853               // try rebias
1854               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1855               if (hash != markOopDesc::no_hash) {
1856                 new_header = new_header->copy_set_hash(hash);
1857               }
1858               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1859                 if (PrintBiasedLockingStatistics)
1860                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1861               }
1862               else {
1863                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1864               }
1865               success = true;
1866             }
1867             else {
1868               // try to bias towards thread in case object is anonymously biased
1869               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1870                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1871                                                               epoch_mask_in_place));
1872               if (hash != markOopDesc::no_hash) {
1873                 header = header->copy_set_hash(hash);
1874               }
1875               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1876               // debugging hint
1877               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1878               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1879                 if (PrintBiasedLockingStatistics)
1880                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1881               }
1882               else {
1883                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1884               }
1885               success = true;
1886             }
1887           }
1888 
1889           // traditional lightweight locking
1890           if (!success) {
1891             markOop displaced = lockee->mark()->set_unlocked();
1892             entry->lock()->set_displaced_header(displaced);
1893             bool call_vm = UseHeavyMonitors;
1894             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1895               // Is it simple recursive case?
1896               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1897                 entry->lock()->set_displaced_header(NULL);
1898               } else {
1899                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1900               }
1901             }
1902           }
1903           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1904         } else {
1905           istate->set_msg(more_monitors);
1906           UPDATE_PC_AND_RETURN(0); // Re-execute
1907         }
1908       }
1909 
1910       CASE(_monitorexit): {
1911         oop lockee = STACK_OBJECT(-1);
1912         CHECK_NULL(lockee);
1913         // derefing's lockee ought to provoke implicit null check
1914         // find our monitor slot
1915         BasicObjectLock* limit = istate->monitor_base();
1916         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1917         while (most_recent != limit ) {
1918           if ((most_recent)->obj() == lockee) {
1919             BasicLock* lock = most_recent->lock();
1920             markOop header = lock->displaced_header();
1921             most_recent->set_obj(NULL);
1922             if (!lockee->mark()->has_bias_pattern()) {
1923               bool call_vm = UseHeavyMonitors;
1924               // If it isn't recursive we either must swap old header or call the runtime
1925               if (header != NULL || call_vm) {
1926                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1927                   // restore object for the slow case
1928                   most_recent->set_obj(lockee);
1929                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1930                 }
1931               }
1932             }
1933             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1934           }
1935           most_recent++;
1936         }
1937         // Need to throw illegal monitor state exception
1938         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1939         ShouldNotReachHere();
1940       }
1941 
1942       /* All of the non-quick opcodes. */
1943 
1944       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1945        *  constant pool index in the instruction.
1946        */
1947       CASE(_getfield):
1948       CASE(_getstatic):
1949         {
1950           u2 index;
1951           ConstantPoolCacheEntry* cache;
1952           index = Bytes::get_native_u2(pc+1);
1953 
1954           // QQQ Need to make this as inlined as possible. Probably need to
1955           // split all the bytecode cases out so c++ compiler has a chance
1956           // for constant prop to fold everything possible away.
1957 
1958           cache = cp->entry_at(index);
1959           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1960             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1961                     handle_exception);
1962             cache = cp->entry_at(index);
1963           }
1964 
1965 #ifdef VM_JVMTI
1966           if (_jvmti_interp_events) {
1967             int *count_addr;
1968             oop obj;
1969             // Check to see if a field modification watch has been set
1970             // before we take the time to call into the VM.
1971             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1972             if ( *count_addr > 0 ) {
1973               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1974                 obj = (oop)NULL;
1975               } else {
1976                 obj = (oop) STACK_OBJECT(-1);
1977                 VERIFY_OOP(obj);
1978               }
1979               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1980                                           obj,
1981                                           cache),
1982                                           handle_exception);
1983             }
1984           }
1985 #endif /* VM_JVMTI */
1986 
1987           oop obj;
1988           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1989             Klass* k = cache->f1_as_klass();
1990             obj = k->java_mirror();
1991             MORE_STACK(1);  // Assume single slot push
1992           } else {
1993             obj = (oop) STACK_OBJECT(-1);
1994             CHECK_NULL(obj);
1995           }
1996 
1997           //
1998           // Now store the result on the stack
1999           //
2000           TosState tos_type = cache->flag_state();
2001           int field_offset = cache->f2_as_index();
2002           if (cache->is_volatile()) {
2003             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2004               OrderAccess::fence();
2005             }
2006             if (tos_type == atos) {
2007               VERIFY_OOP(obj->obj_field_acquire(field_offset));
2008               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
2009             } else if (tos_type == itos) {
2010               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
2011             } else if (tos_type == ltos) {
2012               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
2013               MORE_STACK(1);
2014             } else if (tos_type == btos || tos_type == ztos) {
2015               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2016             } else if (tos_type == ctos) {
2017               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2018             } else if (tos_type == stos) {
2019               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2020             } else if (tos_type == ftos) {
2021               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2022             } else {
2023               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2024               MORE_STACK(1);
2025             }
2026           } else {
2027             if (tos_type == atos) {
2028               VERIFY_OOP(obj->obj_field(field_offset));
2029               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2030             } else if (tos_type == itos) {
2031               SET_STACK_INT(obj->int_field(field_offset), -1);
2032             } else if (tos_type == ltos) {
2033               SET_STACK_LONG(obj->long_field(field_offset), 0);
2034               MORE_STACK(1);
2035             } else if (tos_type == btos || tos_type == ztos) {
2036               SET_STACK_INT(obj->byte_field(field_offset), -1);
2037             } else if (tos_type == ctos) {
2038               SET_STACK_INT(obj->char_field(field_offset), -1);
2039             } else if (tos_type == stos) {
2040               SET_STACK_INT(obj->short_field(field_offset), -1);
2041             } else if (tos_type == ftos) {
2042               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2043             } else {
2044               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2045               MORE_STACK(1);
2046             }
2047           }
2048 
2049           UPDATE_PC_AND_CONTINUE(3);
2050          }
2051 
2052       CASE(_putfield):
2053       CASE(_putstatic):
2054         {
2055           u2 index = Bytes::get_native_u2(pc+1);
2056           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2057           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2058             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2059                     handle_exception);
2060             cache = cp->entry_at(index);
2061           }
2062 
2063 #ifdef VM_JVMTI
2064           if (_jvmti_interp_events) {
2065             int *count_addr;
2066             oop obj;
2067             // Check to see if a field modification watch has been set
2068             // before we take the time to call into the VM.
2069             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2070             if ( *count_addr > 0 ) {
2071               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2072                 obj = (oop)NULL;
2073               }
2074               else {
2075                 if (cache->is_long() || cache->is_double()) {
2076                   obj = (oop) STACK_OBJECT(-3);
2077                 } else {
2078                   obj = (oop) STACK_OBJECT(-2);
2079                 }
2080                 VERIFY_OOP(obj);
2081               }
2082 
2083               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2084                                           obj,
2085                                           cache,
2086                                           (jvalue *)STACK_SLOT(-1)),
2087                                           handle_exception);
2088             }
2089           }
2090 #endif /* VM_JVMTI */
2091 
2092           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2093           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2094 
2095           oop obj;
2096           int count;
2097           TosState tos_type = cache->flag_state();
2098 
2099           count = -1;
2100           if (tos_type == ltos || tos_type == dtos) {
2101             --count;
2102           }
2103           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2104             Klass* k = cache->f1_as_klass();
2105             obj = k->java_mirror();
2106           } else {
2107             --count;
2108             obj = (oop) STACK_OBJECT(count);
2109             CHECK_NULL(obj);
2110           }
2111 
2112           //
2113           // Now store the result
2114           //
2115           int field_offset = cache->f2_as_index();
2116           if (cache->is_volatile()) {
2117             if (tos_type == itos) {
2118               obj->release_int_field_put(field_offset, STACK_INT(-1));
2119             } else if (tos_type == atos) {
2120               VERIFY_OOP(STACK_OBJECT(-1));
2121               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2122             } else if (tos_type == btos) {
2123               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2124             } else if (tos_type == ztos) {
2125               int bool_field = STACK_INT(-1);  // only store LSB
2126               obj->release_byte_field_put(field_offset, (bool_field & 1));
2127             } else if (tos_type == ltos) {
2128               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2129             } else if (tos_type == ctos) {
2130               obj->release_char_field_put(field_offset, STACK_INT(-1));
2131             } else if (tos_type == stos) {
2132               obj->release_short_field_put(field_offset, STACK_INT(-1));
2133             } else if (tos_type == ftos) {
2134               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2135             } else {
2136               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2137             }
2138             OrderAccess::storeload();
2139           } else {
2140             if (tos_type == itos) {
2141               obj->int_field_put(field_offset, STACK_INT(-1));
2142             } else if (tos_type == atos) {
2143               VERIFY_OOP(STACK_OBJECT(-1));
2144               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2145             } else if (tos_type == btos) {
2146               obj->byte_field_put(field_offset, STACK_INT(-1));
2147             } else if (tos_type == ztos) {
2148               int bool_field = STACK_INT(-1);  // only store LSB
2149               obj->byte_field_put(field_offset, (bool_field & 1));
2150             } else if (tos_type == ltos) {
2151               obj->long_field_put(field_offset, STACK_LONG(-1));
2152             } else if (tos_type == ctos) {
2153               obj->char_field_put(field_offset, STACK_INT(-1));
2154             } else if (tos_type == stos) {
2155               obj->short_field_put(field_offset, STACK_INT(-1));
2156             } else if (tos_type == ftos) {
2157               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2158             } else {
2159               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2160             }
2161           }
2162 
2163           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2164         }
2165 
2166       CASE(_new): {
2167         u2 index = Bytes::get_Java_u2(pc+1);
2168         ConstantPool* constants = istate->method()->constants();
2169         if (!constants->tag_at(index).is_unresolved_klass()) {
2170           // Make sure klass is initialized and doesn't have a finalizer
2171           Klass* entry = constants->resolved_klass_at(index);
2172           InstanceKlass* ik = InstanceKlass::cast(entry);
2173           if (ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2174             size_t obj_size = ik->size_helper();
2175             oop result = NULL;
2176             // If the TLAB isn't pre-zeroed then we'll have to do it
2177             bool need_zero = !ZeroTLAB;
2178             if (UseTLAB) {
2179               result = (oop) THREAD->tlab().allocate(obj_size);
2180             }
2181             // Disable non-TLAB-based fast-path, because profiling requires that all
2182             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2183             // returns NULL.
2184 #ifndef CC_INTERP_PROFILE
2185             if (result == NULL) {
2186               need_zero = true;
2187               // Try allocate in shared eden
2188             retry:
2189               HeapWord* compare_to = *Universe::heap()->top_addr();
2190               HeapWord* new_top = compare_to + obj_size;
2191               if (new_top <= *Universe::heap()->end_addr()) {
2192                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2193                   goto retry;
2194                 }
2195                 result = (oop) compare_to;
2196               }
2197             }
2198 #endif
2199             if (result != NULL) {
2200               // Initialize object (if nonzero size and need) and then the header
2201               if (need_zero ) {
2202                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2203                 obj_size -= sizeof(oopDesc) / oopSize;
2204                 if (obj_size > 0 ) {
2205                   memset(to_zero, 0, obj_size * HeapWordSize);
2206                 }
2207               }
2208               if (UseBiasedLocking) {
2209                 result->set_mark(ik->prototype_header());
2210               } else {
2211                 result->set_mark(markOopDesc::prototype());
2212               }
2213               result->set_klass_gap(0);
2214               result->set_klass(ik);
2215               // Must prevent reordering of stores for object initialization
2216               // with stores that publish the new object.
2217               OrderAccess::storestore();
2218               SET_STACK_OBJECT(result, 0);
2219               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2220             }
2221           }
2222         }
2223         // Slow case allocation
2224         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2225                 handle_exception);
2226         // Must prevent reordering of stores for object initialization
2227         // with stores that publish the new object.
2228         OrderAccess::storestore();
2229         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2230         THREAD->set_vm_result(NULL);
2231         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2232       }
2233       CASE(_anewarray): {
2234         u2 index = Bytes::get_Java_u2(pc+1);
2235         jint size = STACK_INT(-1);
2236         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2237                 handle_exception);
2238         // Must prevent reordering of stores for object initialization
2239         // with stores that publish the new object.
2240         OrderAccess::storestore();
2241         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2242         THREAD->set_vm_result(NULL);
2243         UPDATE_PC_AND_CONTINUE(3);
2244       }
2245       CASE(_multianewarray): {
2246         jint dims = *(pc+3);
2247         jint size = STACK_INT(-1);
2248         // stack grows down, dimensions are up!
2249         jint *dimarray =
2250                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2251                                       Interpreter::stackElementWords-1];
2252         //adjust pointer to start of stack element
2253         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2254                 handle_exception);
2255         // Must prevent reordering of stores for object initialization
2256         // with stores that publish the new object.
2257         OrderAccess::storestore();
2258         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2259         THREAD->set_vm_result(NULL);
2260         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2261       }
2262       CASE(_checkcast):
2263           if (STACK_OBJECT(-1) != NULL) {
2264             VERIFY_OOP(STACK_OBJECT(-1));
2265             u2 index = Bytes::get_Java_u2(pc+1);
2266             // Constant pool may have actual klass or unresolved klass. If it is
2267             // unresolved we must resolve it.
2268             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2269               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2270             }
2271             Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2272             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2273             //
2274             // Check for compatibilty. This check must not GC!!
2275             // Seems way more expensive now that we must dispatch.
2276             //
2277             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2278               // Decrement counter at checkcast.
2279               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2280               ResourceMark rm(THREAD);
2281               char* message = SharedRuntime::generate_class_cast_message(
2282                 objKlass, klassOf);
2283               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2284             }
2285             // Profile checkcast with null_seen and receiver.
2286             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2287           } else {
2288             // Profile checkcast with null_seen and receiver.
2289             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2290           }
2291           UPDATE_PC_AND_CONTINUE(3);
2292 
2293       CASE(_instanceof):
2294           if (STACK_OBJECT(-1) == NULL) {
2295             SET_STACK_INT(0, -1);
2296             // Profile instanceof with null_seen and receiver.
2297             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2298           } else {
2299             VERIFY_OOP(STACK_OBJECT(-1));
2300             u2 index = Bytes::get_Java_u2(pc+1);
2301             // Constant pool may have actual klass or unresolved klass. If it is
2302             // unresolved we must resolve it.
2303             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2304               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2305             }
2306             Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2307             Klass* objKlass = STACK_OBJECT(-1)->klass();
2308             //
2309             // Check for compatibilty. This check must not GC!!
2310             // Seems way more expensive now that we must dispatch.
2311             //
2312             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2313               SET_STACK_INT(1, -1);
2314             } else {
2315               SET_STACK_INT(0, -1);
2316               // Decrement counter at checkcast.
2317               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2318             }
2319             // Profile instanceof with null_seen and receiver.
2320             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2321           }
2322           UPDATE_PC_AND_CONTINUE(3);
2323 
2324       CASE(_ldc_w):
2325       CASE(_ldc):
2326         {
2327           u2 index;
2328           bool wide = false;
2329           int incr = 2; // frequent case
2330           if (opcode == Bytecodes::_ldc) {
2331             index = pc[1];
2332           } else {
2333             index = Bytes::get_Java_u2(pc+1);
2334             incr = 3;
2335             wide = true;
2336           }
2337 
2338           ConstantPool* constants = METHOD->constants();
2339           switch (constants->tag_at(index).value()) {
2340           case JVM_CONSTANT_Integer:
2341             SET_STACK_INT(constants->int_at(index), 0);
2342             break;
2343 
2344           case JVM_CONSTANT_Float:
2345             SET_STACK_FLOAT(constants->float_at(index), 0);
2346             break;
2347 
2348           case JVM_CONSTANT_String:
2349             {
2350               oop result = constants->resolved_references()->obj_at(index);
2351               if (result == NULL) {
2352                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2353                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2354                 THREAD->set_vm_result(NULL);
2355               } else {
2356                 VERIFY_OOP(result);
2357                 SET_STACK_OBJECT(result, 0);
2358               }
2359             break;
2360             }
2361 
2362           case JVM_CONSTANT_Class:
2363             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2364             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2365             break;
2366 
2367           case JVM_CONSTANT_UnresolvedClass:
2368           case JVM_CONSTANT_UnresolvedClassInError:
2369             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2370             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2371             THREAD->set_vm_result(NULL);
2372             break;
2373 
2374           default:  ShouldNotReachHere();
2375           }
2376           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2377         }
2378 
2379       CASE(_ldc2_w):
2380         {
2381           u2 index = Bytes::get_Java_u2(pc+1);
2382 
2383           ConstantPool* constants = METHOD->constants();
2384           switch (constants->tag_at(index).value()) {
2385 
2386           case JVM_CONSTANT_Long:
2387              SET_STACK_LONG(constants->long_at(index), 1);
2388             break;
2389 
2390           case JVM_CONSTANT_Double:
2391              SET_STACK_DOUBLE(constants->double_at(index), 1);
2392             break;
2393           default:  ShouldNotReachHere();
2394           }
2395           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2396         }
2397 
2398       CASE(_fast_aldc_w):
2399       CASE(_fast_aldc): {
2400         u2 index;
2401         int incr;
2402         if (opcode == Bytecodes::_fast_aldc) {
2403           index = pc[1];
2404           incr = 2;
2405         } else {
2406           index = Bytes::get_native_u2(pc+1);
2407           incr = 3;
2408         }
2409 
2410         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2411         // This kind of CP cache entry does not need to match the flags byte, because
2412         // there is a 1-1 relation between bytecode type and CP entry type.
2413         ConstantPool* constants = METHOD->constants();
2414         oop result = constants->resolved_references()->obj_at(index);
2415         if (result == NULL) {
2416           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2417                   handle_exception);
2418           result = THREAD->vm_result();
2419         }
2420 
2421         VERIFY_OOP(result);
2422         SET_STACK_OBJECT(result, 0);
2423         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2424       }
2425 
2426       CASE(_invokedynamic): {
2427 
2428         u4 index = Bytes::get_native_u4(pc+1);
2429         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2430 
2431         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2432         // This kind of CP cache entry does not need to match the flags byte, because
2433         // there is a 1-1 relation between bytecode type and CP entry type.
2434         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2435           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2436                   handle_exception);
2437           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2438         }
2439 
2440         Method* method = cache->f1_as_method();
2441         if (VerifyOops) method->verify();
2442 
2443         if (cache->has_appendix()) {
2444           ConstantPool* constants = METHOD->constants();
2445           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2446           MORE_STACK(1);
2447         }
2448 
2449         istate->set_msg(call_method);
2450         istate->set_callee(method);
2451         istate->set_callee_entry_point(method->from_interpreted_entry());
2452         istate->set_bcp_advance(5);
2453 
2454         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2455         BI_PROFILE_UPDATE_CALL();
2456 
2457         UPDATE_PC_AND_RETURN(0); // I'll be back...
2458       }
2459 
2460       CASE(_invokehandle): {
2461 
2462         u2 index = Bytes::get_native_u2(pc+1);
2463         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2464 
2465         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2466           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2467                   handle_exception);
2468           cache = cp->entry_at(index);
2469         }
2470 
2471         Method* method = cache->f1_as_method();
2472         if (VerifyOops) method->verify();
2473 
2474         if (cache->has_appendix()) {
2475           ConstantPool* constants = METHOD->constants();
2476           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2477           MORE_STACK(1);
2478         }
2479 
2480         istate->set_msg(call_method);
2481         istate->set_callee(method);
2482         istate->set_callee_entry_point(method->from_interpreted_entry());
2483         istate->set_bcp_advance(3);
2484 
2485         // Invokehandle has got a call counter, just like a final call -> increment!
2486         BI_PROFILE_UPDATE_FINALCALL();
2487 
2488         UPDATE_PC_AND_RETURN(0); // I'll be back...
2489       }
2490 
2491       CASE(_invokeinterface): {
2492         u2 index = Bytes::get_native_u2(pc+1);
2493 
2494         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2495         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2496 
2497         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2498         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2499           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2500                   handle_exception);
2501           cache = cp->entry_at(index);
2502         }
2503 
2504         istate->set_msg(call_method);
2505 
2506         // Special case of invokeinterface called for virtual method of
2507         // java.lang.Object.  See cpCacheOop.cpp for details.
2508         // This code isn't produced by javac, but could be produced by
2509         // another compliant java compiler.
2510         if (cache->is_forced_virtual()) {
2511           Method* callee;
2512           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2513           if (cache->is_vfinal()) {
2514             callee = cache->f2_as_vfinal_method();
2515             // Profile 'special case of invokeinterface' final call.
2516             BI_PROFILE_UPDATE_FINALCALL();
2517           } else {
2518             // Get receiver.
2519             int parms = cache->parameter_size();
2520             // Same comments as invokevirtual apply here.
2521             oop rcvr = STACK_OBJECT(-parms);
2522             VERIFY_OOP(rcvr);
2523             Klass* rcvrKlass = rcvr->klass();
2524             callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2525             // Profile 'special case of invokeinterface' virtual call.
2526             BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2527           }
2528           istate->set_callee(callee);
2529           istate->set_callee_entry_point(callee->from_interpreted_entry());
2530 #ifdef VM_JVMTI
2531           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2532             istate->set_callee_entry_point(callee->interpreter_entry());
2533           }
2534 #endif /* VM_JVMTI */
2535           istate->set_bcp_advance(5);
2536           UPDATE_PC_AND_RETURN(0); // I'll be back...
2537         }
2538 
2539         // this could definitely be cleaned up QQQ
2540         Method* callee;
2541         Klass* iclass = cache->f1_as_klass();
2542         // InstanceKlass* interface = (InstanceKlass*) iclass;
2543         // get receiver
2544         int parms = cache->parameter_size();
2545         oop rcvr = STACK_OBJECT(-parms);
2546         CHECK_NULL(rcvr);
2547         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2548         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2549         int i;
2550         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2551           if (ki->interface_klass() == iclass) break;
2552         }
2553         // If the interface isn't found, this class doesn't implement this
2554         // interface.  The link resolver checks this but only for the first
2555         // time this interface is called.
2556         if (i == int2->itable_length()) {
2557           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2558         }
2559         int mindex = cache->f2_as_index();
2560         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2561         callee = im[mindex].method();
2562         if (callee == NULL) {
2563           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2564         }
2565 
2566         // Profile virtual call.
2567         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2568 
2569         istate->set_callee(callee);
2570         istate->set_callee_entry_point(callee->from_interpreted_entry());
2571 #ifdef VM_JVMTI
2572         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2573           istate->set_callee_entry_point(callee->interpreter_entry());
2574         }
2575 #endif /* VM_JVMTI */
2576         istate->set_bcp_advance(5);
2577         UPDATE_PC_AND_RETURN(0); // I'll be back...
2578       }
2579 
2580       CASE(_invokevirtual):
2581       CASE(_invokespecial):
2582       CASE(_invokestatic): {
2583         u2 index = Bytes::get_native_u2(pc+1);
2584 
2585         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2586         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2587         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2588 
2589         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2590           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2591                   handle_exception);
2592           cache = cp->entry_at(index);
2593         }
2594 
2595         istate->set_msg(call_method);
2596         {
2597           Method* callee;
2598           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2599             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2600             if (cache->is_vfinal()) {
2601               callee = cache->f2_as_vfinal_method();
2602               // Profile final call.
2603               BI_PROFILE_UPDATE_FINALCALL();
2604             } else {
2605               // get receiver
2606               int parms = cache->parameter_size();
2607               // this works but needs a resourcemark and seems to create a vtable on every call:
2608               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2609               //
2610               // this fails with an assert
2611               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2612               // but this works
2613               oop rcvr = STACK_OBJECT(-parms);
2614               VERIFY_OOP(rcvr);
2615               Klass* rcvrKlass = rcvr->klass();
2616               /*
2617                 Executing this code in java.lang.String:
2618                     public String(char value[]) {
2619                           this.count = value.length;
2620                           this.value = (char[])value.clone();
2621                      }
2622 
2623                  a find on rcvr->klass() reports:
2624                  {type array char}{type array class}
2625                   - klass: {other class}
2626 
2627                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2628                   because rcvr->klass()->is_instance_klass() == 0
2629                   However it seems to have a vtable in the right location. Huh?
2630                   Because vtables have the same offset for ArrayKlass and InstanceKlass.
2631               */
2632               callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2633               // Profile virtual call.
2634               BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2635             }
2636           } else {
2637             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2638               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2639             }
2640             callee = cache->f1_as_method();
2641 
2642             // Profile call.
2643             BI_PROFILE_UPDATE_CALL();
2644           }
2645 
2646           istate->set_callee(callee);
2647           istate->set_callee_entry_point(callee->from_interpreted_entry());
2648 #ifdef VM_JVMTI
2649           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2650             istate->set_callee_entry_point(callee->interpreter_entry());
2651           }
2652 #endif /* VM_JVMTI */
2653           istate->set_bcp_advance(3);
2654           UPDATE_PC_AND_RETURN(0); // I'll be back...
2655         }
2656       }
2657 
2658       /* Allocate memory for a new java object. */
2659 
2660       CASE(_newarray): {
2661         BasicType atype = (BasicType) *(pc+1);
2662         jint size = STACK_INT(-1);
2663         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2664                 handle_exception);
2665         // Must prevent reordering of stores for object initialization
2666         // with stores that publish the new object.
2667         OrderAccess::storestore();
2668         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2669         THREAD->set_vm_result(NULL);
2670 
2671         UPDATE_PC_AND_CONTINUE(2);
2672       }
2673 
2674       /* Throw an exception. */
2675 
2676       CASE(_athrow): {
2677           oop except_oop = STACK_OBJECT(-1);
2678           CHECK_NULL(except_oop);
2679           // set pending_exception so we use common code
2680           THREAD->set_pending_exception(except_oop, NULL, 0);
2681           goto handle_exception;
2682       }
2683 
2684       /* goto and jsr. They are exactly the same except jsr pushes
2685        * the address of the next instruction first.
2686        */
2687 
2688       CASE(_jsr): {
2689           /* push bytecode index on stack */
2690           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2691           MORE_STACK(1);
2692           /* FALL THROUGH */
2693       }
2694 
2695       CASE(_goto):
2696       {
2697           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2698           // Profile jump.
2699           BI_PROFILE_UPDATE_JUMP();
2700           address branch_pc = pc;
2701           UPDATE_PC(offset);
2702           DO_BACKEDGE_CHECKS(offset, branch_pc);
2703           CONTINUE;
2704       }
2705 
2706       CASE(_jsr_w): {
2707           /* push return address on the stack */
2708           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2709           MORE_STACK(1);
2710           /* FALL THROUGH */
2711       }
2712 
2713       CASE(_goto_w):
2714       {
2715           int32_t offset = Bytes::get_Java_u4(pc + 1);
2716           // Profile jump.
2717           BI_PROFILE_UPDATE_JUMP();
2718           address branch_pc = pc;
2719           UPDATE_PC(offset);
2720           DO_BACKEDGE_CHECKS(offset, branch_pc);
2721           CONTINUE;
2722       }
2723 
2724       /* return from a jsr or jsr_w */
2725 
2726       CASE(_ret): {
2727           // Profile ret.
2728           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2729           // Now, update the pc.
2730           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2731           UPDATE_PC_AND_CONTINUE(0);
2732       }
2733 
2734       /* debugger breakpoint */
2735 
2736       CASE(_breakpoint): {
2737           Bytecodes::Code original_bytecode;
2738           DECACHE_STATE();
2739           SET_LAST_JAVA_FRAME();
2740           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2741                               METHOD, pc);
2742           RESET_LAST_JAVA_FRAME();
2743           CACHE_STATE();
2744           if (THREAD->has_pending_exception()) goto handle_exception;
2745             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2746                                                     handle_exception);
2747 
2748           opcode = (jubyte)original_bytecode;
2749           goto opcode_switch;
2750       }
2751 
2752       DEFAULT:
2753           fatal("Unimplemented opcode %d = %s", opcode,
2754                 Bytecodes::name((Bytecodes::Code)opcode));
2755           goto finish;
2756 
2757       } /* switch(opc) */
2758 
2759 
2760 #ifdef USELABELS
2761     check_for_exception:
2762 #endif
2763     {
2764       if (!THREAD->has_pending_exception()) {
2765         CONTINUE;
2766       }
2767       /* We will be gcsafe soon, so flush our state. */
2768       DECACHE_PC();
2769       goto handle_exception;
2770     }
2771   do_continue: ;
2772 
2773   } /* while (1) interpreter loop */
2774 
2775 
2776   // An exception exists in the thread state see whether this activation can handle it
2777   handle_exception: {
2778 
2779     HandleMarkCleaner __hmc(THREAD);
2780     Handle except_oop(THREAD, THREAD->pending_exception());
2781     // Prevent any subsequent HandleMarkCleaner in the VM
2782     // from freeing the except_oop handle.
2783     HandleMark __hm(THREAD);
2784 
2785     THREAD->clear_pending_exception();
2786     assert(except_oop(), "No exception to process");
2787     intptr_t continuation_bci;
2788     // expression stack is emptied
2789     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2790     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2791             handle_exception);
2792 
2793     except_oop = Handle(THREAD, THREAD->vm_result());
2794     THREAD->set_vm_result(NULL);
2795     if (continuation_bci >= 0) {
2796       // Place exception on top of stack
2797       SET_STACK_OBJECT(except_oop(), 0);
2798       MORE_STACK(1);
2799       pc = METHOD->code_base() + continuation_bci;
2800       if (log_is_enabled(Info, exceptions)) {
2801         ResourceMark rm(THREAD);
2802         stringStream tempst;
2803         tempst.print("interpreter method <%s>\n"
2804                      " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2805                      METHOD->print_value_string(),
2806                      (int)(istate->bcp() - METHOD->code_base()),
2807                      (int)continuation_bci, p2i(THREAD));
2808         Exceptions::log_exception(except_oop, tempst);
2809       }
2810       // for AbortVMOnException flag
2811       Exceptions::debug_check_abort(except_oop);
2812 
2813       // Update profiling data.
2814       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2815       goto run;
2816     }
2817     if (log_is_enabled(Info, exceptions)) {
2818       ResourceMark rm;
2819       stringStream tempst;
2820       tempst.print("interpreter method <%s>\n"
2821              " at bci %d, unwinding for thread " INTPTR_FORMAT,
2822              METHOD->print_value_string(),
2823              (int)(istate->bcp() - METHOD->code_base()),
2824              p2i(THREAD));
2825       Exceptions::log_exception(except_oop, tempst);
2826     }
2827     // for AbortVMOnException flag
2828     Exceptions::debug_check_abort(except_oop);
2829 
2830     // No handler in this activation, unwind and try again
2831     THREAD->set_pending_exception(except_oop(), NULL, 0);
2832     goto handle_return;
2833   }  // handle_exception:
2834 
2835   // Return from an interpreter invocation with the result of the interpretation
2836   // on the top of the Java Stack (or a pending exception)
2837 
2838   handle_Pop_Frame: {
2839 
2840     // We don't really do anything special here except we must be aware
2841     // that we can get here without ever locking the method (if sync).
2842     // Also we skip the notification of the exit.
2843 
2844     istate->set_msg(popping_frame);
2845     // Clear pending so while the pop is in process
2846     // we don't start another one if a call_vm is done.
2847     THREAD->clr_pop_frame_pending();
2848     // Let interpreter (only) see the we're in the process of popping a frame
2849     THREAD->set_pop_frame_in_process();
2850 
2851     goto handle_return;
2852 
2853   } // handle_Pop_Frame
2854 
2855   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2856   // given by the invoker of the early return.
2857   handle_Early_Return: {
2858 
2859     istate->set_msg(early_return);
2860 
2861     // Clear expression stack.
2862     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2863 
2864     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2865 
2866     // Push the value to be returned.
2867     switch (istate->method()->result_type()) {
2868       case T_BOOLEAN:
2869       case T_SHORT:
2870       case T_BYTE:
2871       case T_CHAR:
2872       case T_INT:
2873         SET_STACK_INT(ts->earlyret_value().i, 0);
2874         MORE_STACK(1);
2875         break;
2876       case T_LONG:
2877         SET_STACK_LONG(ts->earlyret_value().j, 1);
2878         MORE_STACK(2);
2879         break;
2880       case T_FLOAT:
2881         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2882         MORE_STACK(1);
2883         break;
2884       case T_DOUBLE:
2885         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2886         MORE_STACK(2);
2887         break;
2888       case T_ARRAY:
2889       case T_OBJECT:
2890         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2891         MORE_STACK(1);
2892         break;
2893     }
2894 
2895     ts->clr_earlyret_value();
2896     ts->set_earlyret_oop(NULL);
2897     ts->clr_earlyret_pending();
2898 
2899     // Fall through to handle_return.
2900 
2901   } // handle_Early_Return
2902 
2903   handle_return: {
2904     // A storestore barrier is required to order initialization of
2905     // final fields with publishing the reference to the object that
2906     // holds the field. Without the barrier the value of final fields
2907     // can be observed to change.
2908     OrderAccess::storestore();
2909 
2910     DECACHE_STATE();
2911 
2912     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2913     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2914     Handle original_exception(THREAD, THREAD->pending_exception());
2915     Handle illegal_state_oop(THREAD, NULL);
2916 
2917     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2918     // in any following VM entries from freeing our live handles, but illegal_state_oop
2919     // isn't really allocated yet and so doesn't become live until later and
2920     // in unpredicatable places. Instead we must protect the places where we enter the
2921     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2922     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2923     // unfortunately isn't possible.
2924 
2925     THREAD->clear_pending_exception();
2926 
2927     //
2928     // As far as we are concerned we have returned. If we have a pending exception
2929     // that will be returned as this invocation's result. However if we get any
2930     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2931     // will be our final result (i.e. monitor exception trumps a pending exception).
2932     //
2933 
2934     // If we never locked the method (or really passed the point where we would have),
2935     // there is no need to unlock it (or look for other monitors), since that
2936     // could not have happened.
2937 
2938     if (THREAD->do_not_unlock()) {
2939 
2940       // Never locked, reset the flag now because obviously any caller must
2941       // have passed their point of locking for us to have gotten here.
2942 
2943       THREAD->clr_do_not_unlock();
2944     } else {
2945       // At this point we consider that we have returned. We now check that the
2946       // locks were properly block structured. If we find that they were not
2947       // used properly we will return with an illegal monitor exception.
2948       // The exception is checked by the caller not the callee since this
2949       // checking is considered to be part of the invocation and therefore
2950       // in the callers scope (JVM spec 8.13).
2951       //
2952       // Another weird thing to watch for is if the method was locked
2953       // recursively and then not exited properly. This means we must
2954       // examine all the entries in reverse time(and stack) order and
2955       // unlock as we find them. If we find the method monitor before
2956       // we are at the initial entry then we should throw an exception.
2957       // It is not clear the template based interpreter does this
2958       // correctly
2959 
2960       BasicObjectLock* base = istate->monitor_base();
2961       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2962       bool method_unlock_needed = METHOD->is_synchronized();
2963       // We know the initial monitor was used for the method don't check that
2964       // slot in the loop
2965       if (method_unlock_needed) base--;
2966 
2967       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2968       while (end < base) {
2969         oop lockee = end->obj();
2970         if (lockee != NULL) {
2971           BasicLock* lock = end->lock();
2972           markOop header = lock->displaced_header();
2973           end->set_obj(NULL);
2974 
2975           if (!lockee->mark()->has_bias_pattern()) {
2976             // If it isn't recursive we either must swap old header or call the runtime
2977             if (header != NULL) {
2978               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2979                 // restore object for the slow case
2980                 end->set_obj(lockee);
2981                 {
2982                   // Prevent any HandleMarkCleaner from freeing our live handles
2983                   HandleMark __hm(THREAD);
2984                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2985                 }
2986               }
2987             }
2988           }
2989           // One error is plenty
2990           if (illegal_state_oop() == NULL && !suppress_error) {
2991             {
2992               // Prevent any HandleMarkCleaner from freeing our live handles
2993               HandleMark __hm(THREAD);
2994               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2995             }
2996             assert(THREAD->has_pending_exception(), "Lost our exception!");
2997             illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
2998             THREAD->clear_pending_exception();
2999           }
3000         }
3001         end++;
3002       }
3003       // Unlock the method if needed
3004       if (method_unlock_needed) {
3005         if (base->obj() == NULL) {
3006           // The method is already unlocked this is not good.
3007           if (illegal_state_oop() == NULL && !suppress_error) {
3008             {
3009               // Prevent any HandleMarkCleaner from freeing our live handles
3010               HandleMark __hm(THREAD);
3011               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3012             }
3013             assert(THREAD->has_pending_exception(), "Lost our exception!");
3014             illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3015             THREAD->clear_pending_exception();
3016           }
3017         } else {
3018           //
3019           // The initial monitor is always used for the method
3020           // However if that slot is no longer the oop for the method it was unlocked
3021           // and reused by something that wasn't unlocked!
3022           //
3023           // deopt can come in with rcvr dead because c2 knows
3024           // its value is preserved in the monitor. So we can't use locals[0] at all
3025           // and must use first monitor slot.
3026           //
3027           oop rcvr = base->obj();
3028           if (rcvr == NULL) {
3029             if (!suppress_error) {
3030               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3031               illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3032               THREAD->clear_pending_exception();
3033             }
3034           } else if (UseHeavyMonitors) {
3035             {
3036               // Prevent any HandleMarkCleaner from freeing our live handles.
3037               HandleMark __hm(THREAD);
3038               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3039             }
3040             if (THREAD->has_pending_exception()) {
3041               if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3042               THREAD->clear_pending_exception();
3043             }
3044           } else {
3045             BasicLock* lock = base->lock();
3046             markOop header = lock->displaced_header();
3047             base->set_obj(NULL);
3048 
3049             if (!rcvr->mark()->has_bias_pattern()) {
3050               base->set_obj(NULL);
3051               // If it isn't recursive we either must swap old header or call the runtime
3052               if (header != NULL) {
3053                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3054                   // restore object for the slow case
3055                   base->set_obj(rcvr);
3056                   {
3057                     // Prevent any HandleMarkCleaner from freeing our live handles
3058                     HandleMark __hm(THREAD);
3059                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3060                   }
3061                   if (THREAD->has_pending_exception()) {
3062                     if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3063                     THREAD->clear_pending_exception();
3064                   }
3065                 }
3066               }
3067             }
3068           }
3069         }
3070       }
3071     }
3072     // Clear the do_not_unlock flag now.
3073     THREAD->clr_do_not_unlock();
3074 
3075     //
3076     // Notify jvmti/jvmdi
3077     //
3078     // NOTE: we do not notify a method_exit if we have a pending exception,
3079     // including an exception we generate for unlocking checks.  In the former
3080     // case, JVMDI has already been notified by our call for the exception handler
3081     // and in both cases as far as JVMDI is concerned we have already returned.
3082     // If we notify it again JVMDI will be all confused about how many frames
3083     // are still on the stack (4340444).
3084     //
3085     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3086     // method_exit events whenever we leave an activation unless it was done
3087     // for popframe. This is nothing like jvmdi. However we are passing the
3088     // tests at the moment (apparently because they are jvmdi based) so rather
3089     // than change this code and possibly fail tests we will leave it alone
3090     // (with this note) in anticipation of changing the vm and the tests
3091     // simultaneously.
3092 
3093 
3094     //
3095     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3096 
3097 
3098 
3099 #ifdef VM_JVMTI
3100       if (_jvmti_interp_events) {
3101         // Whenever JVMTI puts a thread in interp_only_mode, method
3102         // entry/exit events are sent for that thread to track stack depth.
3103         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3104           {
3105             // Prevent any HandleMarkCleaner from freeing our live handles
3106             HandleMark __hm(THREAD);
3107             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3108           }
3109         }
3110       }
3111 #endif /* VM_JVMTI */
3112 
3113     //
3114     // See if we are returning any exception
3115     // A pending exception that was pending prior to a possible popping frame
3116     // overrides the popping frame.
3117     //
3118     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3119     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3120       // Inform the frame manager we have no result.
3121       istate->set_msg(throwing_exception);
3122       if (illegal_state_oop() != NULL)
3123         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3124       else
3125         THREAD->set_pending_exception(original_exception(), NULL, 0);
3126       UPDATE_PC_AND_RETURN(0);
3127     }
3128 
3129     if (istate->msg() == popping_frame) {
3130       // Make it simpler on the assembly code and set the message for the frame pop.
3131       // returns
3132       if (istate->prev() == NULL) {
3133         // We must be returning to a deoptimized frame (because popframe only happens between
3134         // two interpreted frames). We need to save the current arguments in C heap so that
3135         // the deoptimized frame when it restarts can copy the arguments to its expression
3136         // stack and re-execute the call. We also have to notify deoptimization that this
3137         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3138         // java expression stack. Yuck.
3139         //
3140         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3141                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3142         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3143       }
3144     } else {
3145       istate->set_msg(return_from_method);
3146     }
3147 
3148     // Normal return
3149     // Advance the pc and return to frame manager
3150     UPDATE_PC_AND_RETURN(1);
3151   } /* handle_return: */
3152 
3153 // This is really a fatal error return
3154 
3155 finish:
3156   DECACHE_TOS();
3157   DECACHE_PC();
3158 
3159   return;
3160 }
3161 
3162 /*
3163  * All the code following this point is only produced once and is not present
3164  * in the JVMTI version of the interpreter
3165 */
3166 
3167 #ifndef VM_JVMTI
3168 
3169 // This constructor should only be used to contruct the object to signal
3170 // interpreter initialization. All other instances should be created by
3171 // the frame manager.
3172 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3173   if (msg != initialize) ShouldNotReachHere();
3174   _msg = msg;
3175   _self_link = this;
3176   _prev_link = NULL;
3177 }
3178 
3179 // Inline static functions for Java Stack and Local manipulation
3180 
3181 // The implementations are platform dependent. We have to worry about alignment
3182 // issues on some machines which can change on the same platform depending on
3183 // whether it is an LP64 machine also.
3184 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3185   return (address) tos[Interpreter::expr_index_at(-offset)];
3186 }
3187 
3188 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3189   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3190 }
3191 
3192 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3193   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3194 }
3195 
3196 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3197   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3198 }
3199 
3200 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3201   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3202 }
3203 
3204 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3205   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3206 }
3207 
3208 // only used for value types
3209 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3210                                                         int offset) {
3211   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3212 }
3213 
3214 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3215                                                        int offset) {
3216   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3217 }
3218 
3219 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3220                                                          int offset) {
3221   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3222 }
3223 
3224 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3225                                                           int offset) {
3226   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3227 }
3228 
3229 // needs to be platform dep for the 32 bit platforms.
3230 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3231                                                           int offset) {
3232   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3233 }
3234 
3235 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3236                                               address addr, int offset) {
3237   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3238                         ((VMJavaVal64*)addr)->d);
3239 }
3240 
3241 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3242                                                         int offset) {
3243   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3244   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3245 }
3246 
3247 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3248                                             address addr, int offset) {
3249   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3250   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3251                         ((VMJavaVal64*)addr)->l;
3252 }
3253 
3254 // Locals
3255 
3256 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3257   return (address)locals[Interpreter::local_index_at(-offset)];
3258 }
3259 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3260   return (jint)locals[Interpreter::local_index_at(-offset)];
3261 }
3262 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3263   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3264 }
3265 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3266   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3267 }
3268 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3269   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3270 }
3271 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3272   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3273 }
3274 
3275 // Returns the address of locals value.
3276 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3277   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3278 }
3279 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3280   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3281 }
3282 
3283 // Used for local value or returnAddress
3284 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3285                                    address value, int offset) {
3286   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3287 }
3288 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3289                                    jint value, int offset) {
3290   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3291 }
3292 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3293                                    jfloat value, int offset) {
3294   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3295 }
3296 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3297                                    oop value, int offset) {
3298   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3299 }
3300 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3301                                    jdouble value, int offset) {
3302   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3303 }
3304 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3305                                    jlong value, int offset) {
3306   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3307 }
3308 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3309                                    address addr, int offset) {
3310   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3311 }
3312 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3313                                    address addr, int offset) {
3314   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3315 }
3316 
3317 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3318                           intptr_t* locals, int locals_offset) {
3319   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3320   locals[Interpreter::local_index_at(-locals_offset)] = value;
3321 }
3322 
3323 
3324 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3325                                    int to_offset) {
3326   tos[Interpreter::expr_index_at(-to_offset)] =
3327                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3328 }
3329 
3330 void BytecodeInterpreter::dup(intptr_t *tos) {
3331   copy_stack_slot(tos, -1, 0);
3332 }
3333 void BytecodeInterpreter::dup2(intptr_t *tos) {
3334   copy_stack_slot(tos, -2, 0);
3335   copy_stack_slot(tos, -1, 1);
3336 }
3337 
3338 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3339   /* insert top word two down */
3340   copy_stack_slot(tos, -1, 0);
3341   copy_stack_slot(tos, -2, -1);
3342   copy_stack_slot(tos, 0, -2);
3343 }
3344 
3345 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3346   /* insert top word three down  */
3347   copy_stack_slot(tos, -1, 0);
3348   copy_stack_slot(tos, -2, -1);
3349   copy_stack_slot(tos, -3, -2);
3350   copy_stack_slot(tos, 0, -3);
3351 }
3352 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3353   /* insert top 2 slots three down */
3354   copy_stack_slot(tos, -1, 1);
3355   copy_stack_slot(tos, -2, 0);
3356   copy_stack_slot(tos, -3, -1);
3357   copy_stack_slot(tos, 1, -2);
3358   copy_stack_slot(tos, 0, -3);
3359 }
3360 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3361   /* insert top 2 slots four down */
3362   copy_stack_slot(tos, -1, 1);
3363   copy_stack_slot(tos, -2, 0);
3364   copy_stack_slot(tos, -3, -1);
3365   copy_stack_slot(tos, -4, -2);
3366   copy_stack_slot(tos, 1, -3);
3367   copy_stack_slot(tos, 0, -4);
3368 }
3369 
3370 
3371 void BytecodeInterpreter::swap(intptr_t *tos) {
3372   // swap top two elements
3373   intptr_t val = tos[Interpreter::expr_index_at(1)];
3374   // Copy -2 entry to -1
3375   copy_stack_slot(tos, -2, -1);
3376   // Store saved -1 entry into -2
3377   tos[Interpreter::expr_index_at(2)] = val;
3378 }
3379 // --------------------------------------------------------------------------------
3380 // Non-product code
3381 #ifndef PRODUCT
3382 
3383 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3384   switch (msg) {
3385      case BytecodeInterpreter::no_request:  return("no_request");
3386      case BytecodeInterpreter::initialize:  return("initialize");
3387      // status message to C++ interpreter
3388      case BytecodeInterpreter::method_entry:  return("method_entry");
3389      case BytecodeInterpreter::method_resume:  return("method_resume");
3390      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3391      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3392      // requests to frame manager from C++ interpreter
3393      case BytecodeInterpreter::call_method:  return("call_method");
3394      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3395      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3396      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3397      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3398      case BytecodeInterpreter::do_osr:  return("do_osr");
3399      // deopt
3400      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3401      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3402      default: return("BAD MSG");
3403   }
3404 }
3405 void
3406 BytecodeInterpreter::print() {
3407   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3408   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3409   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3410   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3411   {
3412     ResourceMark rm;
3413     char *method_name = _method->name_and_sig_as_C_string();
3414     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3415   }
3416   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3417   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3418   tty->print_cr("msg: %s", C_msg(this->_msg));
3419   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3420   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3421   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3422   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3423   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3424   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3425   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3426   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3427   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3428   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3429 #ifdef SPARC
3430   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3431   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3432   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3433   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3434 #endif
3435 #if !defined(ZERO) && defined(PPC)
3436   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3437 #endif // !ZERO
3438   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3439 }
3440 
3441 extern "C" {
3442   void PI(uintptr_t arg) {
3443     ((BytecodeInterpreter*)arg)->print();
3444   }
3445 }
3446 #endif // PRODUCT
3447 
3448 #endif // JVMTI
3449 #endif // CC_INTERP