1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/verifyOopClosure.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvmtiThreadState.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/compilationPolicy.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/signature.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/thread.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "runtime/vframe_hp.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/xmlstream.hpp"
  58 
  59 #if INCLUDE_JVMCI
  60 #include "jvmci/jvmciRuntime.hpp"
  61 #include "jvmci/jvmciJavaClasses.hpp"
  62 #endif
  63 
  64 
  65 bool DeoptimizationMarker::_is_active = false;
  66 
  67 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  68                                          int  caller_adjustment,
  69                                          int  caller_actual_parameters,
  70                                          int  number_of_frames,
  71                                          intptr_t* frame_sizes,
  72                                          address* frame_pcs,
  73                                          BasicType return_type,
  74                                          int exec_mode) {
  75   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  76   _caller_adjustment         = caller_adjustment;
  77   _caller_actual_parameters  = caller_actual_parameters;
  78   _number_of_frames          = number_of_frames;
  79   _frame_sizes               = frame_sizes;
  80   _frame_pcs                 = frame_pcs;
  81   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  82   _return_type               = return_type;
  83   _initial_info              = 0;
  84   // PD (x86 only)
  85   _counter_temp              = 0;
  86   _unpack_kind               = exec_mode;
  87   _sender_sp_temp            = 0;
  88 
  89   _total_frame_sizes         = size_of_frames();
  90   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  91 }
  92 
  93 
  94 Deoptimization::UnrollBlock::~UnrollBlock() {
  95   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  96   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  97   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  98 }
  99 
 100 
 101 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 102   assert(register_number < RegisterMap::reg_count, "checking register number");
 103   return &_register_block[register_number * 2];
 104 }
 105 
 106 
 107 
 108 int Deoptimization::UnrollBlock::size_of_frames() const {
 109   // Acount first for the adjustment of the initial frame
 110   int result = _caller_adjustment;
 111   for (int index = 0; index < number_of_frames(); index++) {
 112     result += frame_sizes()[index];
 113   }
 114   return result;
 115 }
 116 
 117 
 118 void Deoptimization::UnrollBlock::print() {
 119   ttyLocker ttyl;
 120   tty->print_cr("UnrollBlock");
 121   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 122   tty->print(   "  frame_sizes: ");
 123   for (int index = 0; index < number_of_frames(); index++) {
 124     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 125   }
 126   tty->cr();
 127 }
 128 
 129 
 130 // In order to make fetch_unroll_info work properly with escape
 131 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 132 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 133 // of previously eliminated objects occurs in realloc_objects, which is
 134 // called from the method fetch_unroll_info_helper below.
 135 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 136   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 137   // but makes the entry a little slower. There is however a little dance we have to
 138   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 139 
 140   // fetch_unroll_info() is called at the beginning of the deoptimization
 141   // handler. Note this fact before we start generating temporary frames
 142   // that can confuse an asynchronous stack walker. This counter is
 143   // decremented at the end of unpack_frames().
 144   if (TraceDeoptimization) {
 145     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 146   }
 147   thread->inc_in_deopt_handler();
 148 
 149   return fetch_unroll_info_helper(thread, exec_mode);
 150 JRT_END
 151 
 152 
 153 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 154 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 155 
 156   // Note: there is a safepoint safety issue here. No matter whether we enter
 157   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 158   // the vframeArray is created.
 159   //
 160 
 161   // Allocate our special deoptimization ResourceMark
 162   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 163   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 164   thread->set_deopt_mark(dmark);
 165 
 166   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 167   RegisterMap map(thread, true);
 168   RegisterMap dummy_map(thread, false);
 169   // Now get the deoptee with a valid map
 170   frame deoptee = stub_frame.sender(&map);
 171   // Set the deoptee nmethod
 172   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 173   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 174   thread->set_deopt_compiled_method(cm);
 175 
 176   if (VerifyStack) {
 177     thread->validate_frame_layout();
 178   }
 179 
 180   // Create a growable array of VFrames where each VFrame represents an inlined
 181   // Java frame.  This storage is allocated with the usual system arena.
 182   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 183   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 184   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 185   while (!vf->is_top()) {
 186     assert(vf->is_compiled_frame(), "Wrong frame type");
 187     chunk->push(compiledVFrame::cast(vf));
 188     vf = vf->sender();
 189   }
 190   assert(vf->is_compiled_frame(), "Wrong frame type");
 191   chunk->push(compiledVFrame::cast(vf));
 192 
 193   bool realloc_failures = false;
 194 
 195 #if defined(COMPILER2) || INCLUDE_JVMCI
 196   // Reallocate the non-escaping objects and restore their fields. Then
 197   // relock objects if synchronization on them was eliminated.
 198 #ifndef INCLUDE_JVMCI
 199   if (DoEscapeAnalysis || EliminateNestedLocks) {
 200     if (EliminateAllocations) {
 201 #endif // INCLUDE_JVMCI
 202       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 203       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 204 
 205       // The flag return_oop() indicates call sites which return oop
 206       // in compiled code. Such sites include java method calls,
 207       // runtime calls (for example, used to allocate new objects/arrays
 208       // on slow code path) and any other calls generated in compiled code.
 209       // It is not guaranteed that we can get such information here only
 210       // by analyzing bytecode in deoptimized frames. This is why this flag
 211       // is set during method compilation (see Compile::Process_OopMap_Node()).
 212       // If the previous frame was popped or if we are dispatching an exception,
 213       // we don't have an oop result.
 214       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 215       Handle return_value;
 216       if (save_oop_result) {
 217         // Reallocation may trigger GC. If deoptimization happened on return from
 218         // call which returns oop we need to save it since it is not in oopmap.
 219         oop result = deoptee.saved_oop_result(&map);
 220         assert(oopDesc::is_oop_or_null(result), "must be oop");
 221         return_value = Handle(thread, result);
 222         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 223         if (TraceDeoptimization) {
 224           ttyLocker ttyl;
 225           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 226         }
 227       }
 228       if (objects != NULL) {
 229         JRT_BLOCK
 230           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 231         JRT_END
 232         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 233         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 234 #ifndef PRODUCT
 235         if (TraceDeoptimization) {
 236           ttyLocker ttyl;
 237           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 238           print_objects(objects, realloc_failures);
 239         }
 240 #endif
 241       }
 242       if (save_oop_result) {
 243         // Restore result.
 244         deoptee.set_saved_oop_result(&map, return_value());
 245       }
 246 #ifndef INCLUDE_JVMCI
 247     }
 248     if (EliminateLocks) {
 249 #endif // INCLUDE_JVMCI
 250 #ifndef PRODUCT
 251       bool first = true;
 252 #endif
 253       for (int i = 0; i < chunk->length(); i++) {
 254         compiledVFrame* cvf = chunk->at(i);
 255         assert (cvf->scope() != NULL,"expect only compiled java frames");
 256         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 257         if (monitors->is_nonempty()) {
 258           relock_objects(monitors, thread, realloc_failures);
 259 #ifndef PRODUCT
 260           if (PrintDeoptimizationDetails) {
 261             ttyLocker ttyl;
 262             for (int j = 0; j < monitors->length(); j++) {
 263               MonitorInfo* mi = monitors->at(j);
 264               if (mi->eliminated()) {
 265                 if (first) {
 266                   first = false;
 267                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 268                 }
 269                 if (mi->owner_is_scalar_replaced()) {
 270                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 271                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 272                 } else {
 273                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 274                 }
 275               }
 276             }
 277           }
 278 #endif // !PRODUCT
 279         }
 280       }
 281 #ifndef INCLUDE_JVMCI
 282     }
 283   }
 284 #endif // INCLUDE_JVMCI
 285 #endif // COMPILER2 || INCLUDE_JVMCI
 286 
 287   ScopeDesc* trap_scope = chunk->at(0)->scope();
 288   Handle exceptionObject;
 289   if (trap_scope->rethrow_exception()) {
 290     if (PrintDeoptimizationDetails) {
 291       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 292     }
 293     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 294     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 295     ScopeValue* topOfStack = expressions->top();
 296     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 297     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 298   }
 299 
 300   // Ensure that no safepoint is taken after pointers have been stored
 301   // in fields of rematerialized objects.  If a safepoint occurs from here on
 302   // out the java state residing in the vframeArray will be missed.
 303   NoSafepointVerifier no_safepoint;
 304 
 305   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 306 #if defined(COMPILER2) || INCLUDE_JVMCI
 307   if (realloc_failures) {
 308     pop_frames_failed_reallocs(thread, array);
 309   }
 310 #endif
 311 
 312   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 313   thread->set_vframe_array_head(array);
 314 
 315   // Now that the vframeArray has been created if we have any deferred local writes
 316   // added by jvmti then we can free up that structure as the data is now in the
 317   // vframeArray
 318 
 319   if (thread->deferred_locals() != NULL) {
 320     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 321     int i = 0;
 322     do {
 323       // Because of inlining we could have multiple vframes for a single frame
 324       // and several of the vframes could have deferred writes. Find them all.
 325       if (list->at(i)->id() == array->original().id()) {
 326         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 327         list->remove_at(i);
 328         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 329         delete dlv;
 330       } else {
 331         i++;
 332       }
 333     } while ( i < list->length() );
 334     if (list->length() == 0) {
 335       thread->set_deferred_locals(NULL);
 336       // free the list and elements back to C heap.
 337       delete list;
 338     }
 339 
 340   }
 341 
 342   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 343   CodeBlob* cb = stub_frame.cb();
 344   // Verify we have the right vframeArray
 345   assert(cb->frame_size() >= 0, "Unexpected frame size");
 346   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 347 
 348   // If the deopt call site is a MethodHandle invoke call site we have
 349   // to adjust the unpack_sp.
 350   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 351   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 352     unpack_sp = deoptee.unextended_sp();
 353 
 354 #ifdef ASSERT
 355   assert(cb->is_deoptimization_stub() ||
 356          cb->is_uncommon_trap_stub() ||
 357          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 358          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 359          "unexpected code blob: %s", cb->name());
 360 #endif
 361 
 362   // This is a guarantee instead of an assert because if vframe doesn't match
 363   // we will unpack the wrong deoptimized frame and wind up in strange places
 364   // where it will be very difficult to figure out what went wrong. Better
 365   // to die an early death here than some very obscure death later when the
 366   // trail is cold.
 367   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 368   // in that it will fail to detect a problem when there is one. This needs
 369   // more work in tiger timeframe.
 370   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 371 
 372   int number_of_frames = array->frames();
 373 
 374   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 375   // virtual activation, which is the reverse of the elements in the vframes array.
 376   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 377   // +1 because we always have an interpreter return address for the final slot.
 378   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 379   int popframe_extra_args = 0;
 380   // Create an interpreter return address for the stub to use as its return
 381   // address so the skeletal frames are perfectly walkable
 382   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 383 
 384   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 385   // activation be put back on the expression stack of the caller for reexecution
 386   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 387     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 388   }
 389 
 390   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 391   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 392   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 393   //
 394   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 395   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 396 
 397   // It's possible that the number of parameters at the call site is
 398   // different than number of arguments in the callee when method
 399   // handles are used.  If the caller is interpreted get the real
 400   // value so that the proper amount of space can be added to it's
 401   // frame.
 402   bool caller_was_method_handle = false;
 403   if (deopt_sender.is_interpreted_frame()) {
 404     methodHandle method = deopt_sender.interpreter_frame_method();
 405     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 406     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 407       // Method handle invokes may involve fairly arbitrary chains of
 408       // calls so it's impossible to know how much actual space the
 409       // caller has for locals.
 410       caller_was_method_handle = true;
 411     }
 412   }
 413 
 414   //
 415   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 416   // frame_sizes/frame_pcs[1] next oldest frame (int)
 417   // frame_sizes/frame_pcs[n] youngest frame (int)
 418   //
 419   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 420   // owns the space for the return address to it's caller).  Confusing ain't it.
 421   //
 422   // The vframe array can address vframes with indices running from
 423   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 424   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 425   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 426   // so things look a little strange in this loop.
 427   //
 428   int callee_parameters = 0;
 429   int callee_locals = 0;
 430   for (int index = 0; index < array->frames(); index++ ) {
 431     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 432     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 433     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 434     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 435                                                                                                     callee_locals,
 436                                                                                                     index == 0,
 437                                                                                                     popframe_extra_args);
 438     // This pc doesn't have to be perfect just good enough to identify the frame
 439     // as interpreted so the skeleton frame will be walkable
 440     // The correct pc will be set when the skeleton frame is completely filled out
 441     // The final pc we store in the loop is wrong and will be overwritten below
 442     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 443 
 444     callee_parameters = array->element(index)->method()->size_of_parameters();
 445     callee_locals = array->element(index)->method()->max_locals();
 446     popframe_extra_args = 0;
 447   }
 448 
 449   // Compute whether the root vframe returns a float or double value.
 450   BasicType return_type;
 451   {
 452     methodHandle method(thread, array->element(0)->method());
 453     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 454     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 455   }
 456 
 457   // Compute information for handling adapters and adjusting the frame size of the caller.
 458   int caller_adjustment = 0;
 459 
 460   // Compute the amount the oldest interpreter frame will have to adjust
 461   // its caller's stack by. If the caller is a compiled frame then
 462   // we pretend that the callee has no parameters so that the
 463   // extension counts for the full amount of locals and not just
 464   // locals-parms. This is because without a c2i adapter the parm
 465   // area as created by the compiled frame will not be usable by
 466   // the interpreter. (Depending on the calling convention there
 467   // may not even be enough space).
 468 
 469   // QQQ I'd rather see this pushed down into last_frame_adjust
 470   // and have it take the sender (aka caller).
 471 
 472   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 473     caller_adjustment = last_frame_adjust(0, callee_locals);
 474   } else if (callee_locals > callee_parameters) {
 475     // The caller frame may need extending to accommodate
 476     // non-parameter locals of the first unpacked interpreted frame.
 477     // Compute that adjustment.
 478     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 479   }
 480 
 481   // If the sender is deoptimized the we must retrieve the address of the handler
 482   // since the frame will "magically" show the original pc before the deopt
 483   // and we'd undo the deopt.
 484 
 485   frame_pcs[0] = deopt_sender.raw_pc();
 486 
 487   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 488 
 489 #ifdef INCLUDE_JVMCI
 490   if (exceptionObject() != NULL) {
 491     thread->set_exception_oop(exceptionObject());
 492     exec_mode = Unpack_exception;
 493   }
 494 #endif
 495 
 496   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 497     assert(thread->has_pending_exception(), "should have thrown OOME");
 498     thread->set_exception_oop(thread->pending_exception());
 499     thread->clear_pending_exception();
 500     exec_mode = Unpack_exception;
 501   }
 502 
 503 #if INCLUDE_JVMCI
 504   if (thread->frames_to_pop_failed_realloc() > 0) {
 505     thread->set_pending_monitorenter(false);
 506   }
 507 #endif
 508 
 509   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 510                                       caller_adjustment * BytesPerWord,
 511                                       caller_was_method_handle ? 0 : callee_parameters,
 512                                       number_of_frames,
 513                                       frame_sizes,
 514                                       frame_pcs,
 515                                       return_type,
 516                                       exec_mode);
 517   // On some platforms, we need a way to pass some platform dependent
 518   // information to the unpacking code so the skeletal frames come out
 519   // correct (initial fp value, unextended sp, ...)
 520   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 521 
 522   if (array->frames() > 1) {
 523     if (VerifyStack && TraceDeoptimization) {
 524       ttyLocker ttyl;
 525       tty->print_cr("Deoptimizing method containing inlining");
 526     }
 527   }
 528 
 529   array->set_unroll_block(info);
 530   return info;
 531 }
 532 
 533 // Called to cleanup deoptimization data structures in normal case
 534 // after unpacking to stack and when stack overflow error occurs
 535 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 536                                         vframeArray *array) {
 537 
 538   // Get array if coming from exception
 539   if (array == NULL) {
 540     array = thread->vframe_array_head();
 541   }
 542   thread->set_vframe_array_head(NULL);
 543 
 544   // Free the previous UnrollBlock
 545   vframeArray* old_array = thread->vframe_array_last();
 546   thread->set_vframe_array_last(array);
 547 
 548   if (old_array != NULL) {
 549     UnrollBlock* old_info = old_array->unroll_block();
 550     old_array->set_unroll_block(NULL);
 551     delete old_info;
 552     delete old_array;
 553   }
 554 
 555   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 556   // inside the vframeArray (StackValueCollections)
 557 
 558   delete thread->deopt_mark();
 559   thread->set_deopt_mark(NULL);
 560   thread->set_deopt_compiled_method(NULL);
 561 
 562 
 563   if (JvmtiExport::can_pop_frame()) {
 564 #ifndef CC_INTERP
 565     // Regardless of whether we entered this routine with the pending
 566     // popframe condition bit set, we should always clear it now
 567     thread->clear_popframe_condition();
 568 #else
 569     // C++ interpreter will clear has_pending_popframe when it enters
 570     // with method_resume. For deopt_resume2 we clear it now.
 571     if (thread->popframe_forcing_deopt_reexecution())
 572         thread->clear_popframe_condition();
 573 #endif /* CC_INTERP */
 574   }
 575 
 576   // unpack_frames() is called at the end of the deoptimization handler
 577   // and (in C2) at the end of the uncommon trap handler. Note this fact
 578   // so that an asynchronous stack walker can work again. This counter is
 579   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 580   // the beginning of uncommon_trap().
 581   thread->dec_in_deopt_handler();
 582 }
 583 
 584 // Moved from cpu directories because none of the cpus has callee save values.
 585 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 586 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 587 
 588   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 589   // the days we had adapter frames. When we deoptimize a situation where a
 590   // compiled caller calls a compiled caller will have registers it expects
 591   // to survive the call to the callee. If we deoptimize the callee the only
 592   // way we can restore these registers is to have the oldest interpreter
 593   // frame that we create restore these values. That is what this routine
 594   // will accomplish.
 595 
 596   // At the moment we have modified c2 to not have any callee save registers
 597   // so this problem does not exist and this routine is just a place holder.
 598 
 599   assert(f->is_interpreted_frame(), "must be interpreted");
 600 }
 601 
 602 // Return BasicType of value being returned
 603 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 604 
 605   // We are already active int he special DeoptResourceMark any ResourceObj's we
 606   // allocate will be freed at the end of the routine.
 607 
 608   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 609   // but makes the entry a little slower. There is however a little dance we have to
 610   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 611   ResetNoHandleMark rnhm; // No-op in release/product versions
 612   HandleMark hm;
 613 
 614   frame stub_frame = thread->last_frame();
 615 
 616   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 617   // must point to the vframeArray for the unpack frame.
 618   vframeArray* array = thread->vframe_array_head();
 619 
 620 #ifndef PRODUCT
 621   if (TraceDeoptimization) {
 622     ttyLocker ttyl;
 623     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 624                   p2i(thread), p2i(array), exec_mode);
 625   }
 626 #endif
 627   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 628               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 629 
 630   UnrollBlock* info = array->unroll_block();
 631 
 632   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 633   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 634 
 635   BasicType bt = info->return_type();
 636 
 637   // If we have an exception pending, claim that the return type is an oop
 638   // so the deopt_blob does not overwrite the exception_oop.
 639 
 640   if (exec_mode == Unpack_exception)
 641     bt = T_OBJECT;
 642 
 643   // Cleanup thread deopt data
 644   cleanup_deopt_info(thread, array);
 645 
 646 #ifndef PRODUCT
 647   if (VerifyStack) {
 648     ResourceMark res_mark;
 649 
 650     thread->validate_frame_layout();
 651 
 652     // Verify that the just-unpacked frames match the interpreter's
 653     // notions of expression stack and locals
 654     vframeArray* cur_array = thread->vframe_array_last();
 655     RegisterMap rm(thread, false);
 656     rm.set_include_argument_oops(false);
 657     bool is_top_frame = true;
 658     int callee_size_of_parameters = 0;
 659     int callee_max_locals = 0;
 660     for (int i = 0; i < cur_array->frames(); i++) {
 661       vframeArrayElement* el = cur_array->element(i);
 662       frame* iframe = el->iframe();
 663       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 664 
 665       // Get the oop map for this bci
 666       InterpreterOopMap mask;
 667       int cur_invoke_parameter_size = 0;
 668       bool try_next_mask = false;
 669       int next_mask_expression_stack_size = -1;
 670       int top_frame_expression_stack_adjustment = 0;
 671       methodHandle mh(thread, iframe->interpreter_frame_method());
 672       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 673       BytecodeStream str(mh);
 674       str.set_start(iframe->interpreter_frame_bci());
 675       int max_bci = mh->code_size();
 676       // Get to the next bytecode if possible
 677       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 678       // Check to see if we can grab the number of outgoing arguments
 679       // at an uncommon trap for an invoke (where the compiler
 680       // generates debug info before the invoke has executed)
 681       Bytecodes::Code cur_code = str.next();
 682       if (cur_code == Bytecodes::_invokevirtual   ||
 683           cur_code == Bytecodes::_invokespecial   ||
 684           cur_code == Bytecodes::_invokestatic    ||
 685           cur_code == Bytecodes::_invokeinterface ||
 686           cur_code == Bytecodes::_invokedynamic) {
 687         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 688         Symbol* signature = invoke.signature();
 689         ArgumentSizeComputer asc(signature);
 690         cur_invoke_parameter_size = asc.size();
 691         if (invoke.has_receiver()) {
 692           // Add in receiver
 693           ++cur_invoke_parameter_size;
 694         }
 695         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 696           callee_size_of_parameters++;
 697         }
 698       }
 699       if (str.bci() < max_bci) {
 700         Bytecodes::Code bc = str.next();
 701         if (bc >= 0) {
 702           // The interpreter oop map generator reports results before
 703           // the current bytecode has executed except in the case of
 704           // calls. It seems to be hard to tell whether the compiler
 705           // has emitted debug information matching the "state before"
 706           // a given bytecode or the state after, so we try both
 707           switch (cur_code) {
 708             case Bytecodes::_invokevirtual:
 709             case Bytecodes::_invokespecial:
 710             case Bytecodes::_invokestatic:
 711             case Bytecodes::_invokeinterface:
 712             case Bytecodes::_invokedynamic:
 713             case Bytecodes::_athrow:
 714               break;
 715             default: {
 716               InterpreterOopMap next_mask;
 717               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 718               next_mask_expression_stack_size = next_mask.expression_stack_size();
 719               // Need to subtract off the size of the result type of
 720               // the bytecode because this is not described in the
 721               // debug info but returned to the interpreter in the TOS
 722               // caching register
 723               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 724               if (bytecode_result_type != T_ILLEGAL) {
 725                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 726               }
 727               assert(top_frame_expression_stack_adjustment >= 0, "");
 728               try_next_mask = true;
 729               break;
 730             }
 731           }
 732         }
 733       }
 734 
 735       // Verify stack depth and oops in frame
 736       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 737       if (!(
 738             /* SPARC */
 739             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 740             /* x86 */
 741             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 742             (try_next_mask &&
 743              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 744                                                                     top_frame_expression_stack_adjustment))) ||
 745             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 746             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 747              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 748             )) {
 749         ttyLocker ttyl;
 750 
 751         // Print out some information that will help us debug the problem
 752         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 753         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 754         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 755                       iframe->interpreter_frame_expression_stack_size());
 756         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 757         tty->print_cr("  try_next_mask = %d", try_next_mask);
 758         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 759         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 760         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 761         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 762         tty->print_cr("  exec_mode = %d", exec_mode);
 763         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 764         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 765         tty->print_cr("  Interpreted frames:");
 766         for (int k = 0; k < cur_array->frames(); k++) {
 767           vframeArrayElement* el = cur_array->element(k);
 768           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 769         }
 770         cur_array->print_on_2(tty);
 771         guarantee(false, "wrong number of expression stack elements during deopt");
 772       }
 773       VerifyOopClosure verify;
 774       iframe->oops_interpreted_do(&verify, &rm, false);
 775       callee_size_of_parameters = mh->size_of_parameters();
 776       callee_max_locals = mh->max_locals();
 777       is_top_frame = false;
 778     }
 779   }
 780 #endif /* !PRODUCT */
 781 
 782 
 783   return bt;
 784 JRT_END
 785 
 786 
 787 int Deoptimization::deoptimize_dependents() {
 788   Threads::deoptimized_wrt_marked_nmethods();
 789   return 0;
 790 }
 791 
 792 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 793   = Deoptimization::Action_reinterpret;
 794 
 795 #if defined(COMPILER2) || INCLUDE_JVMCI
 796 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 797   Handle pending_exception(THREAD, thread->pending_exception());
 798   const char* exception_file = thread->exception_file();
 799   int exception_line = thread->exception_line();
 800   thread->clear_pending_exception();
 801 
 802   bool failures = false;
 803 
 804   for (int i = 0; i < objects->length(); i++) {
 805     assert(objects->at(i)->is_object(), "invalid debug information");
 806     ObjectValue* sv = (ObjectValue*) objects->at(i);
 807 
 808     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 809     oop obj = NULL;
 810 
 811     if (k->is_instance_klass()) {
 812       InstanceKlass* ik = InstanceKlass::cast(k);
 813       obj = ik->allocate_instance(THREAD);
 814     } else if (k->is_typeArray_klass()) {
 815       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 816       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 817       int len = sv->field_size() / type2size[ak->element_type()];
 818       obj = ak->allocate(len, THREAD);
 819     } else if (k->is_objArray_klass()) {
 820       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 821       obj = ak->allocate(sv->field_size(), THREAD);
 822     }
 823 
 824     if (obj == NULL) {
 825       failures = true;
 826     }
 827 
 828     assert(sv->value().is_null(), "redundant reallocation");
 829     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 830     CLEAR_PENDING_EXCEPTION;
 831     sv->set_value(obj);
 832   }
 833 
 834   if (failures) {
 835     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 836   } else if (pending_exception.not_null()) {
 837     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 838   }
 839 
 840   return failures;
 841 }
 842 
 843 // restore elements of an eliminated type array
 844 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 845   int index = 0;
 846   intptr_t val;
 847 
 848   for (int i = 0; i < sv->field_size(); i++) {
 849     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 850     switch(type) {
 851     case T_LONG: case T_DOUBLE: {
 852       assert(value->type() == T_INT, "Agreement.");
 853       StackValue* low =
 854         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 855 #ifdef _LP64
 856       jlong res = (jlong)low->get_int();
 857 #else
 858 #ifdef SPARC
 859       // For SPARC we have to swap high and low words.
 860       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 861 #else
 862       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 863 #endif //SPARC
 864 #endif
 865       obj->long_at_put(index, res);
 866       break;
 867     }
 868 
 869     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 870     case T_INT: case T_FLOAT: { // 4 bytes.
 871       assert(value->type() == T_INT, "Agreement.");
 872       bool big_value = false;
 873       if (i + 1 < sv->field_size() && type == T_INT) {
 874         if (sv->field_at(i)->is_location()) {
 875           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 876           if (type == Location::dbl || type == Location::lng) {
 877             big_value = true;
 878           }
 879         } else if (sv->field_at(i)->is_constant_int()) {
 880           ScopeValue* next_scope_field = sv->field_at(i + 1);
 881           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 882             big_value = true;
 883           }
 884         }
 885       }
 886 
 887       if (big_value) {
 888         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 889   #ifdef _LP64
 890         jlong res = (jlong)low->get_int();
 891   #else
 892   #ifdef SPARC
 893         // For SPARC we have to swap high and low words.
 894         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 895   #else
 896         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 897   #endif //SPARC
 898   #endif
 899         obj->int_at_put(index, (jint)*((jint*)&res));
 900         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 901       } else {
 902         val = value->get_int();
 903         obj->int_at_put(index, (jint)*((jint*)&val));
 904       }
 905       break;
 906     }
 907 
 908     case T_SHORT:
 909       assert(value->type() == T_INT, "Agreement.");
 910       val = value->get_int();
 911       obj->short_at_put(index, (jshort)*((jint*)&val));
 912       break;
 913 
 914     case T_CHAR:
 915       assert(value->type() == T_INT, "Agreement.");
 916       val = value->get_int();
 917       obj->char_at_put(index, (jchar)*((jint*)&val));
 918       break;
 919 
 920     case T_BYTE:
 921       assert(value->type() == T_INT, "Agreement.");
 922       val = value->get_int();
 923       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 924       break;
 925 
 926     case T_BOOLEAN:
 927       assert(value->type() == T_INT, "Agreement.");
 928       val = value->get_int();
 929       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 930       break;
 931 
 932       default:
 933         ShouldNotReachHere();
 934     }
 935     index++;
 936   }
 937 }
 938 
 939 
 940 // restore fields of an eliminated object array
 941 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 942   for (int i = 0; i < sv->field_size(); i++) {
 943     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 944     assert(value->type() == T_OBJECT, "object element expected");
 945     obj->obj_at_put(i, value->get_obj()());
 946   }
 947 }
 948 
 949 class ReassignedField {
 950 public:
 951   int _offset;
 952   BasicType _type;
 953 public:
 954   ReassignedField() {
 955     _offset = 0;
 956     _type = T_ILLEGAL;
 957   }
 958 };
 959 
 960 int compare(ReassignedField* left, ReassignedField* right) {
 961   return left->_offset - right->_offset;
 962 }
 963 
 964 // Restore fields of an eliminated instance object using the same field order
 965 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 966 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 967   if (klass->superklass() != NULL) {
 968     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 969   }
 970 
 971   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 972   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 973     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 974       ReassignedField field;
 975       field._offset = fs.offset();
 976       field._type = FieldType::basic_type(fs.signature());
 977       fields->append(field);
 978     }
 979   }
 980   fields->sort(compare);
 981   for (int i = 0; i < fields->length(); i++) {
 982     intptr_t val;
 983     ScopeValue* scope_field = sv->field_at(svIndex);
 984     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 985     int offset = fields->at(i)._offset;
 986     BasicType type = fields->at(i)._type;
 987     switch (type) {
 988       case T_OBJECT: case T_ARRAY:
 989         assert(value->type() == T_OBJECT, "Agreement.");
 990         obj->obj_field_put(offset, value->get_obj()());
 991         break;
 992 
 993       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 994       case T_INT: case T_FLOAT: { // 4 bytes.
 995         assert(value->type() == T_INT, "Agreement.");
 996         bool big_value = false;
 997         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
 998           if (scope_field->is_location()) {
 999             Location::Type type = ((LocationValue*) scope_field)->location().type();
1000             if (type == Location::dbl || type == Location::lng) {
1001               big_value = true;
1002             }
1003           }
1004           if (scope_field->is_constant_int()) {
1005             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1006             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1007               big_value = true;
1008             }
1009           }
1010         }
1011 
1012         if (big_value) {
1013           i++;
1014           assert(i < fields->length(), "second T_INT field needed");
1015           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1016         } else {
1017           val = value->get_int();
1018           obj->int_field_put(offset, (jint)*((jint*)&val));
1019           break;
1020         }
1021       }
1022         /* no break */
1023 
1024       case T_LONG: case T_DOUBLE: {
1025         assert(value->type() == T_INT, "Agreement.");
1026         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1027 #ifdef _LP64
1028         jlong res = (jlong)low->get_int();
1029 #else
1030 #ifdef SPARC
1031         // For SPARC we have to swap high and low words.
1032         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1033 #else
1034         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1035 #endif //SPARC
1036 #endif
1037         obj->long_field_put(offset, res);
1038         break;
1039       }
1040 
1041       case T_SHORT:
1042         assert(value->type() == T_INT, "Agreement.");
1043         val = value->get_int();
1044         obj->short_field_put(offset, (jshort)*((jint*)&val));
1045         break;
1046 
1047       case T_CHAR:
1048         assert(value->type() == T_INT, "Agreement.");
1049         val = value->get_int();
1050         obj->char_field_put(offset, (jchar)*((jint*)&val));
1051         break;
1052 
1053       case T_BYTE:
1054         assert(value->type() == T_INT, "Agreement.");
1055         val = value->get_int();
1056         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1057         break;
1058 
1059       case T_BOOLEAN:
1060         assert(value->type() == T_INT, "Agreement.");
1061         val = value->get_int();
1062         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1063         break;
1064 
1065       default:
1066         ShouldNotReachHere();
1067     }
1068     svIndex++;
1069   }
1070   return svIndex;
1071 }
1072 
1073 // restore fields of all eliminated objects and arrays
1074 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1075   for (int i = 0; i < objects->length(); i++) {
1076     ObjectValue* sv = (ObjectValue*) objects->at(i);
1077     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1078     Handle obj = sv->value();
1079     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1080     if (PrintDeoptimizationDetails) {
1081       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1082     }
1083     if (obj.is_null()) {
1084       continue;
1085     }
1086 
1087     if (k->is_instance_klass()) {
1088       InstanceKlass* ik = InstanceKlass::cast(k);
1089       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1090     } else if (k->is_typeArray_klass()) {
1091       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1092       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1093     } else if (k->is_objArray_klass()) {
1094       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1095     }
1096   }
1097 }
1098 
1099 
1100 // relock objects for which synchronization was eliminated
1101 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1102   for (int i = 0; i < monitors->length(); i++) {
1103     MonitorInfo* mon_info = monitors->at(i);
1104     if (mon_info->eliminated()) {
1105       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1106       if (!mon_info->owner_is_scalar_replaced()) {
1107         Handle obj(thread, mon_info->owner());
1108         markOop mark = obj->mark();
1109         if (UseBiasedLocking && mark->has_bias_pattern()) {
1110           // New allocated objects may have the mark set to anonymously biased.
1111           // Also the deoptimized method may called methods with synchronization
1112           // where the thread-local object is bias locked to the current thread.
1113           assert(mark->is_biased_anonymously() ||
1114                  mark->biased_locker() == thread, "should be locked to current thread");
1115           // Reset mark word to unbiased prototype.
1116           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1117           obj->set_mark(unbiased_prototype);
1118         }
1119         BasicLock* lock = mon_info->lock();
1120         ObjectSynchronizer::slow_enter(obj, lock, thread);
1121         assert(mon_info->owner()->is_locked(), "object must be locked now");
1122       }
1123     }
1124   }
1125 }
1126 
1127 
1128 #ifndef PRODUCT
1129 // print information about reallocated objects
1130 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1131   fieldDescriptor fd;
1132 
1133   for (int i = 0; i < objects->length(); i++) {
1134     ObjectValue* sv = (ObjectValue*) objects->at(i);
1135     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1136     Handle obj = sv->value();
1137 
1138     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1139     k->print_value();
1140     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1141     if (obj.is_null()) {
1142       tty->print(" allocation failed");
1143     } else {
1144       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1145     }
1146     tty->cr();
1147 
1148     if (Verbose && !obj.is_null()) {
1149       k->oop_print_on(obj(), tty);
1150     }
1151   }
1152 }
1153 #endif
1154 #endif // COMPILER2 || INCLUDE_JVMCI
1155 
1156 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1157   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1158 
1159 #ifndef PRODUCT
1160   if (PrintDeoptimizationDetails) {
1161     ttyLocker ttyl;
1162     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1163     fr.print_on(tty);
1164     tty->print_cr("     Virtual frames (innermost first):");
1165     for (int index = 0; index < chunk->length(); index++) {
1166       compiledVFrame* vf = chunk->at(index);
1167       tty->print("       %2d - ", index);
1168       vf->print_value();
1169       int bci = chunk->at(index)->raw_bci();
1170       const char* code_name;
1171       if (bci == SynchronizationEntryBCI) {
1172         code_name = "sync entry";
1173       } else {
1174         Bytecodes::Code code = vf->method()->code_at(bci);
1175         code_name = Bytecodes::name(code);
1176       }
1177       tty->print(" - %s", code_name);
1178       tty->print_cr(" @ bci %d ", bci);
1179       if (Verbose) {
1180         vf->print();
1181         tty->cr();
1182       }
1183     }
1184   }
1185 #endif
1186 
1187   // Register map for next frame (used for stack crawl).  We capture
1188   // the state of the deopt'ing frame's caller.  Thus if we need to
1189   // stuff a C2I adapter we can properly fill in the callee-save
1190   // register locations.
1191   frame caller = fr.sender(reg_map);
1192   int frame_size = caller.sp() - fr.sp();
1193 
1194   frame sender = caller;
1195 
1196   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1197   // the vframeArray containing the unpacking information is allocated in the C heap.
1198   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1199   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1200 
1201   // Compare the vframeArray to the collected vframes
1202   assert(array->structural_compare(thread, chunk), "just checking");
1203 
1204 #ifndef PRODUCT
1205   if (PrintDeoptimizationDetails) {
1206     ttyLocker ttyl;
1207     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1208   }
1209 #endif // PRODUCT
1210 
1211   return array;
1212 }
1213 
1214 #if defined(COMPILER2) || INCLUDE_JVMCI
1215 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1216   // Reallocation of some scalar replaced objects failed. Record
1217   // that we need to pop all the interpreter frames for the
1218   // deoptimized compiled frame.
1219   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1220   thread->set_frames_to_pop_failed_realloc(array->frames());
1221   // Unlock all monitors here otherwise the interpreter will see a
1222   // mix of locked and unlocked monitors (because of failed
1223   // reallocations of synchronized objects) and be confused.
1224   for (int i = 0; i < array->frames(); i++) {
1225     MonitorChunk* monitors = array->element(i)->monitors();
1226     if (monitors != NULL) {
1227       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1228         BasicObjectLock* src = monitors->at(j);
1229         if (src->obj() != NULL) {
1230           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1231         }
1232       }
1233       array->element(i)->free_monitors(thread);
1234 #ifdef ASSERT
1235       array->element(i)->set_removed_monitors();
1236 #endif
1237     }
1238   }
1239 }
1240 #endif
1241 
1242 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1243   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1244   Thread* thread = Thread::current();
1245   for (int i = 0; i < monitors->length(); i++) {
1246     MonitorInfo* mon_info = monitors->at(i);
1247     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1248       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1249     }
1250   }
1251 }
1252 
1253 
1254 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1255   if (!UseBiasedLocking) {
1256     return;
1257   }
1258 
1259   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1260 
1261   // Unfortunately we don't have a RegisterMap available in most of
1262   // the places we want to call this routine so we need to walk the
1263   // stack again to update the register map.
1264   if (map == NULL || !map->update_map()) {
1265     StackFrameStream sfs(thread, true);
1266     bool found = false;
1267     while (!found && !sfs.is_done()) {
1268       frame* cur = sfs.current();
1269       sfs.next();
1270       found = cur->id() == fr.id();
1271     }
1272     assert(found, "frame to be deoptimized not found on target thread's stack");
1273     map = sfs.register_map();
1274   }
1275 
1276   vframe* vf = vframe::new_vframe(&fr, map, thread);
1277   compiledVFrame* cvf = compiledVFrame::cast(vf);
1278   // Revoke monitors' biases in all scopes
1279   while (!cvf->is_top()) {
1280     collect_monitors(cvf, objects_to_revoke);
1281     cvf = compiledVFrame::cast(cvf->sender());
1282   }
1283   collect_monitors(cvf, objects_to_revoke);
1284 
1285   if (SafepointSynchronize::is_at_safepoint()) {
1286     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1287   } else {
1288     BiasedLocking::revoke(objects_to_revoke);
1289   }
1290 }
1291 
1292 
1293 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1294   if (!UseBiasedLocking) {
1295     return;
1296   }
1297 
1298   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1299   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1300   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1301     if (jt->has_last_Java_frame()) {
1302       StackFrameStream sfs(jt, true);
1303       while (!sfs.is_done()) {
1304         frame* cur = sfs.current();
1305         if (cb->contains(cur->pc())) {
1306           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1307           compiledVFrame* cvf = compiledVFrame::cast(vf);
1308           // Revoke monitors' biases in all scopes
1309           while (!cvf->is_top()) {
1310             collect_monitors(cvf, objects_to_revoke);
1311             cvf = compiledVFrame::cast(cvf->sender());
1312           }
1313           collect_monitors(cvf, objects_to_revoke);
1314         }
1315         sfs.next();
1316       }
1317     }
1318   }
1319   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1320 }
1321 
1322 
1323 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1324   assert(fr.can_be_deoptimized(), "checking frame type");
1325 
1326   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1327 
1328   if (LogCompilation && xtty != NULL) {
1329     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1330     assert(cm != NULL, "only compiled methods can deopt");
1331 
1332     ttyLocker ttyl;
1333     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1334     cm->log_identity(xtty);
1335     xtty->end_head();
1336     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1337       xtty->begin_elem("jvms bci='%d'", sd->bci());
1338       xtty->method(sd->method());
1339       xtty->end_elem();
1340       if (sd->is_top())  break;
1341     }
1342     xtty->tail("deoptimized");
1343   }
1344 
1345   // Patch the compiled method so that when execution returns to it we will
1346   // deopt the execution state and return to the interpreter.
1347   fr.deoptimize(thread);
1348 }
1349 
1350 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1351   deoptimize(thread, fr, map, Reason_constraint);
1352 }
1353 
1354 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1355   // Deoptimize only if the frame comes from compile code.
1356   // Do not deoptimize the frame which is already patched
1357   // during the execution of the loops below.
1358   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1359     return;
1360   }
1361   ResourceMark rm;
1362   DeoptimizationMarker dm;
1363   if (UseBiasedLocking) {
1364     revoke_biases_of_monitors(thread, fr, map);
1365   }
1366   deoptimize_single_frame(thread, fr, reason);
1367 
1368 }
1369 
1370 #if INCLUDE_JVMCI
1371 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1372   // there is no exception handler for this pc => deoptimize
1373   cm->make_not_entrant();
1374 
1375   // Use Deoptimization::deoptimize for all of its side-effects:
1376   // revoking biases of monitors, gathering traps statistics, logging...
1377   // it also patches the return pc but we do not care about that
1378   // since we return a continuation to the deopt_blob below.
1379   JavaThread* thread = JavaThread::current();
1380   RegisterMap reg_map(thread, UseBiasedLocking);
1381   frame runtime_frame = thread->last_frame();
1382   frame caller_frame = runtime_frame.sender(&reg_map);
1383   assert(caller_frame.cb()->as_nmethod_or_null() == cm, "expect top frame nmethod");
1384   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1385 
1386   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1387   if (trap_mdo != NULL) {
1388     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1389   }
1390 
1391   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1392 }
1393 #endif
1394 
1395 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1396   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1397          "can only deoptimize other thread at a safepoint");
1398   // Compute frame and register map based on thread and sp.
1399   RegisterMap reg_map(thread, UseBiasedLocking);
1400   frame fr = thread->last_frame();
1401   while (fr.id() != id) {
1402     fr = fr.sender(&reg_map);
1403   }
1404   deoptimize(thread, fr, &reg_map, reason);
1405 }
1406 
1407 
1408 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1409   if (thread == Thread::current()) {
1410     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1411   } else {
1412     VM_DeoptimizeFrame deopt(thread, id, reason);
1413     VMThread::execute(&deopt);
1414   }
1415 }
1416 
1417 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1418   deoptimize_frame(thread, id, Reason_constraint);
1419 }
1420 
1421 // JVMTI PopFrame support
1422 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1423 {
1424   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1425 }
1426 JRT_END
1427 
1428 MethodData*
1429 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1430                                 bool create_if_missing) {
1431   Thread* THREAD = thread;
1432   MethodData* mdo = m()->method_data();
1433   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1434     // Build an MDO.  Ignore errors like OutOfMemory;
1435     // that simply means we won't have an MDO to update.
1436     Method::build_interpreter_method_data(m, THREAD);
1437     if (HAS_PENDING_EXCEPTION) {
1438       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1439       CLEAR_PENDING_EXCEPTION;
1440     }
1441     mdo = m()->method_data();
1442   }
1443   return mdo;
1444 }
1445 
1446 #if defined(COMPILER2) || INCLUDE_JVMCI
1447 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1448   // in case of an unresolved klass entry, load the class.
1449   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1450     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1451     return;
1452   }
1453 
1454   if (!constant_pool->tag_at(index).is_symbol()) return;
1455 
1456   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1457   Symbol*  symbol  = constant_pool->symbol_at(index);
1458 
1459   // class name?
1460   if (symbol->byte_at(0) != '(') {
1461     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1462     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1463     return;
1464   }
1465 
1466   // then it must be a signature!
1467   ResourceMark rm(THREAD);
1468   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1469     if (ss.is_object()) {
1470       Symbol* class_name = ss.as_symbol(CHECK);
1471       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1472       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1473     }
1474   }
1475 }
1476 
1477 
1478 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1479   EXCEPTION_MARK;
1480   load_class_by_index(constant_pool, index, THREAD);
1481   if (HAS_PENDING_EXCEPTION) {
1482     // Exception happened during classloading. We ignore the exception here, since it
1483     // is going to be rethrown since the current activation is going to be deoptimized and
1484     // the interpreter will re-execute the bytecode.
1485     CLEAR_PENDING_EXCEPTION;
1486     // Class loading called java code which may have caused a stack
1487     // overflow. If the exception was thrown right before the return
1488     // to the runtime the stack is no longer guarded. Reguard the
1489     // stack otherwise if we return to the uncommon trap blob and the
1490     // stack bang causes a stack overflow we crash.
1491     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1492     JavaThread* thread = (JavaThread*)THREAD;
1493     bool guard_pages_enabled = thread->stack_guards_enabled();
1494     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1495     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1496   }
1497 }
1498 
1499 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1500   HandleMark hm;
1501 
1502   // uncommon_trap() is called at the beginning of the uncommon trap
1503   // handler. Note this fact before we start generating temporary frames
1504   // that can confuse an asynchronous stack walker. This counter is
1505   // decremented at the end of unpack_frames().
1506   thread->inc_in_deopt_handler();
1507 
1508   // We need to update the map if we have biased locking.
1509 #if INCLUDE_JVMCI
1510   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1511   RegisterMap reg_map(thread, true);
1512 #else
1513   RegisterMap reg_map(thread, UseBiasedLocking);
1514 #endif
1515   frame stub_frame = thread->last_frame();
1516   frame fr = stub_frame.sender(&reg_map);
1517   // Make sure the calling nmethod is not getting deoptimized and removed
1518   // before we are done with it.
1519   nmethodLocker nl(fr.pc());
1520 
1521   // Log a message
1522   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1523               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1524 
1525   {
1526     ResourceMark rm;
1527 
1528     // Revoke biases of any monitors in the frame to ensure we can migrate them
1529     revoke_biases_of_monitors(thread, fr, &reg_map);
1530 
1531     DeoptReason reason = trap_request_reason(trap_request);
1532     DeoptAction action = trap_request_action(trap_request);
1533 #if INCLUDE_JVMCI
1534     int debug_id = trap_request_debug_id(trap_request);
1535 #endif
1536     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1537 
1538     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1539     compiledVFrame* cvf = compiledVFrame::cast(vf);
1540 
1541     CompiledMethod* nm = cvf->code();
1542 
1543     ScopeDesc*      trap_scope  = cvf->scope();
1544 
1545     if (TraceDeoptimization) {
1546       ttyLocker ttyl;
1547       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1548 #if INCLUDE_JVMCI
1549           , debug_id
1550 #endif
1551           );
1552     }
1553 
1554     methodHandle    trap_method = trap_scope->method();
1555     int             trap_bci    = trap_scope->bci();
1556 #if INCLUDE_JVMCI
1557     oop speculation = thread->pending_failed_speculation();
1558     if (nm->is_compiled_by_jvmci()) {
1559       if (speculation != NULL) {
1560         oop speculation_log = nm->as_nmethod()->speculation_log();
1561         if (speculation_log != NULL) {
1562           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1563             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1564               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1565             }
1566           }
1567           if (TraceDeoptimization) {
1568             tty->print_cr("Saving speculation to speculation log");
1569           }
1570           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1571         } else {
1572           if (TraceDeoptimization) {
1573             tty->print_cr("Speculation present but no speculation log");
1574           }
1575         }
1576         thread->set_pending_failed_speculation(NULL);
1577       } else {
1578         if (TraceDeoptimization) {
1579           tty->print_cr("No speculation");
1580         }
1581       }
1582     } else {
1583       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1584     }
1585 
1586     if (trap_bci == SynchronizationEntryBCI) {
1587       trap_bci = 0;
1588       thread->set_pending_monitorenter(true);
1589     }
1590 
1591     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1592       thread->set_pending_transfer_to_interpreter(true);
1593     }
1594 #endif
1595 
1596     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1597     // Record this event in the histogram.
1598     gather_statistics(reason, action, trap_bc);
1599 
1600     // Ensure that we can record deopt. history:
1601     // Need MDO to record RTM code generation state.
1602     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1603 
1604     methodHandle profiled_method;
1605 #if INCLUDE_JVMCI
1606     if (nm->is_compiled_by_jvmci()) {
1607       profiled_method = nm->method();
1608     } else {
1609       profiled_method = trap_method;
1610     }
1611 #else
1612     profiled_method = trap_method;
1613 #endif
1614 
1615     MethodData* trap_mdo =
1616       get_method_data(thread, profiled_method, create_if_missing);
1617 
1618     // Log a message
1619     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1620                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1621                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1622 
1623     // Print a bunch of diagnostics, if requested.
1624     if (TraceDeoptimization || LogCompilation) {
1625       ResourceMark rm;
1626       ttyLocker ttyl;
1627       char buf[100];
1628       if (xtty != NULL) {
1629         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1630                          os::current_thread_id(),
1631                          format_trap_request(buf, sizeof(buf), trap_request));
1632         nm->log_identity(xtty);
1633       }
1634       Symbol* class_name = NULL;
1635       bool unresolved = false;
1636       if (unloaded_class_index >= 0) {
1637         constantPoolHandle constants (THREAD, trap_method->constants());
1638         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1639           class_name = constants->klass_name_at(unloaded_class_index);
1640           unresolved = true;
1641           if (xtty != NULL)
1642             xtty->print(" unresolved='1'");
1643         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1644           class_name = constants->symbol_at(unloaded_class_index);
1645         }
1646         if (xtty != NULL)
1647           xtty->name(class_name);
1648       }
1649       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1650         // Dump the relevant MDO state.
1651         // This is the deopt count for the current reason, any previous
1652         // reasons or recompiles seen at this point.
1653         int dcnt = trap_mdo->trap_count(reason);
1654         if (dcnt != 0)
1655           xtty->print(" count='%d'", dcnt);
1656         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1657         int dos = (pdata == NULL)? 0: pdata->trap_state();
1658         if (dos != 0) {
1659           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1660           if (trap_state_is_recompiled(dos)) {
1661             int recnt2 = trap_mdo->overflow_recompile_count();
1662             if (recnt2 != 0)
1663               xtty->print(" recompiles2='%d'", recnt2);
1664           }
1665         }
1666       }
1667       if (xtty != NULL) {
1668         xtty->stamp();
1669         xtty->end_head();
1670       }
1671       if (TraceDeoptimization) {  // make noise on the tty
1672         tty->print("Uncommon trap occurred in");
1673         nm->method()->print_short_name(tty);
1674         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1675 #if INCLUDE_JVMCI
1676         if (nm->is_nmethod()) {
1677           oop installedCode = nm->as_nmethod()->jvmci_installed_code();
1678           if (installedCode != NULL) {
1679             oop installedCodeName = NULL;
1680             if (installedCode->is_a(InstalledCode::klass())) {
1681               installedCodeName = InstalledCode::name(installedCode);
1682             }
1683             if (installedCodeName != NULL) {
1684               tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1685             } else {
1686               tty->print(" (JVMCI: installed code has no name) ");
1687             }
1688           } else if (nm->is_compiled_by_jvmci()) {
1689             tty->print(" (JVMCI: no installed code) ");
1690           }
1691         }
1692 #endif
1693         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1694                    p2i(fr.pc()),
1695                    os::current_thread_id(),
1696                    trap_reason_name(reason),
1697                    trap_action_name(action),
1698                    unloaded_class_index
1699 #if INCLUDE_JVMCI
1700                    , debug_id
1701 #endif
1702                    );
1703         if (class_name != NULL) {
1704           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1705           class_name->print_symbol_on(tty);
1706         }
1707         tty->cr();
1708       }
1709       if (xtty != NULL) {
1710         // Log the precise location of the trap.
1711         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1712           xtty->begin_elem("jvms bci='%d'", sd->bci());
1713           xtty->method(sd->method());
1714           xtty->end_elem();
1715           if (sd->is_top())  break;
1716         }
1717         xtty->tail("uncommon_trap");
1718       }
1719     }
1720     // (End diagnostic printout.)
1721 
1722     // Load class if necessary
1723     if (unloaded_class_index >= 0) {
1724       constantPoolHandle constants(THREAD, trap_method->constants());
1725       load_class_by_index(constants, unloaded_class_index);
1726     }
1727 
1728     // Flush the nmethod if necessary and desirable.
1729     //
1730     // We need to avoid situations where we are re-flushing the nmethod
1731     // because of a hot deoptimization site.  Repeated flushes at the same
1732     // point need to be detected by the compiler and avoided.  If the compiler
1733     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1734     // module must take measures to avoid an infinite cycle of recompilation
1735     // and deoptimization.  There are several such measures:
1736     //
1737     //   1. If a recompilation is ordered a second time at some site X
1738     //   and for the same reason R, the action is adjusted to 'reinterpret',
1739     //   to give the interpreter time to exercise the method more thoroughly.
1740     //   If this happens, the method's overflow_recompile_count is incremented.
1741     //
1742     //   2. If the compiler fails to reduce the deoptimization rate, then
1743     //   the method's overflow_recompile_count will begin to exceed the set
1744     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1745     //   is adjusted to 'make_not_compilable', and the method is abandoned
1746     //   to the interpreter.  This is a performance hit for hot methods,
1747     //   but is better than a disastrous infinite cycle of recompilations.
1748     //   (Actually, only the method containing the site X is abandoned.)
1749     //
1750     //   3. In parallel with the previous measures, if the total number of
1751     //   recompilations of a method exceeds the much larger set limit
1752     //   PerMethodRecompilationCutoff, the method is abandoned.
1753     //   This should only happen if the method is very large and has
1754     //   many "lukewarm" deoptimizations.  The code which enforces this
1755     //   limit is elsewhere (class nmethod, class Method).
1756     //
1757     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1758     // to recompile at each bytecode independently of the per-BCI cutoff.
1759     //
1760     // The decision to update code is up to the compiler, and is encoded
1761     // in the Action_xxx code.  If the compiler requests Action_none
1762     // no trap state is changed, no compiled code is changed, and the
1763     // computation suffers along in the interpreter.
1764     //
1765     // The other action codes specify various tactics for decompilation
1766     // and recompilation.  Action_maybe_recompile is the loosest, and
1767     // allows the compiled code to stay around until enough traps are seen,
1768     // and until the compiler gets around to recompiling the trapping method.
1769     //
1770     // The other actions cause immediate removal of the present code.
1771 
1772     // Traps caused by injected profile shouldn't pollute trap counts.
1773     bool injected_profile_trap = trap_method->has_injected_profile() &&
1774                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1775 
1776     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1777     bool make_not_entrant = false;
1778     bool make_not_compilable = false;
1779     bool reprofile = false;
1780     switch (action) {
1781     case Action_none:
1782       // Keep the old code.
1783       update_trap_state = false;
1784       break;
1785     case Action_maybe_recompile:
1786       // Do not need to invalidate the present code, but we can
1787       // initiate another
1788       // Start compiler without (necessarily) invalidating the nmethod.
1789       // The system will tolerate the old code, but new code should be
1790       // generated when possible.
1791       break;
1792     case Action_reinterpret:
1793       // Go back into the interpreter for a while, and then consider
1794       // recompiling form scratch.
1795       make_not_entrant = true;
1796       // Reset invocation counter for outer most method.
1797       // This will allow the interpreter to exercise the bytecodes
1798       // for a while before recompiling.
1799       // By contrast, Action_make_not_entrant is immediate.
1800       //
1801       // Note that the compiler will track null_check, null_assert,
1802       // range_check, and class_check events and log them as if they
1803       // had been traps taken from compiled code.  This will update
1804       // the MDO trap history so that the next compilation will
1805       // properly detect hot trap sites.
1806       reprofile = true;
1807       break;
1808     case Action_make_not_entrant:
1809       // Request immediate recompilation, and get rid of the old code.
1810       // Make them not entrant, so next time they are called they get
1811       // recompiled.  Unloaded classes are loaded now so recompile before next
1812       // time they are called.  Same for uninitialized.  The interpreter will
1813       // link the missing class, if any.
1814       make_not_entrant = true;
1815       break;
1816     case Action_make_not_compilable:
1817       // Give up on compiling this method at all.
1818       make_not_entrant = true;
1819       make_not_compilable = true;
1820       break;
1821     default:
1822       ShouldNotReachHere();
1823     }
1824 
1825     // Setting +ProfileTraps fixes the following, on all platforms:
1826     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1827     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1828     // recompile relies on a MethodData* to record heroic opt failures.
1829 
1830     // Whether the interpreter is producing MDO data or not, we also need
1831     // to use the MDO to detect hot deoptimization points and control
1832     // aggressive optimization.
1833     bool inc_recompile_count = false;
1834     ProfileData* pdata = NULL;
1835     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1836       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1837       uint this_trap_count = 0;
1838       bool maybe_prior_trap = false;
1839       bool maybe_prior_recompile = false;
1840       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1841 #if INCLUDE_JVMCI
1842                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1843 #endif
1844                                    nm->method(),
1845                                    //outputs:
1846                                    this_trap_count,
1847                                    maybe_prior_trap,
1848                                    maybe_prior_recompile);
1849       // Because the interpreter also counts null, div0, range, and class
1850       // checks, these traps from compiled code are double-counted.
1851       // This is harmless; it just means that the PerXTrapLimit values
1852       // are in effect a little smaller than they look.
1853 
1854       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1855       if (per_bc_reason != Reason_none) {
1856         // Now take action based on the partially known per-BCI history.
1857         if (maybe_prior_trap
1858             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1859           // If there are too many traps at this BCI, force a recompile.
1860           // This will allow the compiler to see the limit overflow, and
1861           // take corrective action, if possible.  The compiler generally
1862           // does not use the exact PerBytecodeTrapLimit value, but instead
1863           // changes its tactics if it sees any traps at all.  This provides
1864           // a little hysteresis, delaying a recompile until a trap happens
1865           // several times.
1866           //
1867           // Actually, since there is only one bit of counter per BCI,
1868           // the possible per-BCI counts are {0,1,(per-method count)}.
1869           // This produces accurate results if in fact there is only
1870           // one hot trap site, but begins to get fuzzy if there are
1871           // many sites.  For example, if there are ten sites each
1872           // trapping two or more times, they each get the blame for
1873           // all of their traps.
1874           make_not_entrant = true;
1875         }
1876 
1877         // Detect repeated recompilation at the same BCI, and enforce a limit.
1878         if (make_not_entrant && maybe_prior_recompile) {
1879           // More than one recompile at this point.
1880           inc_recompile_count = maybe_prior_trap;
1881         }
1882       } else {
1883         // For reasons which are not recorded per-bytecode, we simply
1884         // force recompiles unconditionally.
1885         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1886         make_not_entrant = true;
1887       }
1888 
1889       // Go back to the compiler if there are too many traps in this method.
1890       if (this_trap_count >= per_method_trap_limit(reason)) {
1891         // If there are too many traps in this method, force a recompile.
1892         // This will allow the compiler to see the limit overflow, and
1893         // take corrective action, if possible.
1894         // (This condition is an unlikely backstop only, because the
1895         // PerBytecodeTrapLimit is more likely to take effect first,
1896         // if it is applicable.)
1897         make_not_entrant = true;
1898       }
1899 
1900       // Here's more hysteresis:  If there has been a recompile at
1901       // this trap point already, run the method in the interpreter
1902       // for a while to exercise it more thoroughly.
1903       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1904         reprofile = true;
1905       }
1906     }
1907 
1908     // Take requested actions on the method:
1909 
1910     // Recompile
1911     if (make_not_entrant) {
1912       if (!nm->make_not_entrant()) {
1913         return; // the call did not change nmethod's state
1914       }
1915 
1916       if (pdata != NULL) {
1917         // Record the recompilation event, if any.
1918         int tstate0 = pdata->trap_state();
1919         int tstate1 = trap_state_set_recompiled(tstate0, true);
1920         if (tstate1 != tstate0)
1921           pdata->set_trap_state(tstate1);
1922       }
1923 
1924 #if INCLUDE_RTM_OPT
1925       // Restart collecting RTM locking abort statistic if the method
1926       // is recompiled for a reason other than RTM state change.
1927       // Assume that in new recompiled code the statistic could be different,
1928       // for example, due to different inlining.
1929       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1930           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1931         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1932       }
1933 #endif
1934       // For code aging we count traps separately here, using make_not_entrant()
1935       // as a guard against simultaneous deopts in multiple threads.
1936       if (reason == Reason_tenured && trap_mdo != NULL) {
1937         trap_mdo->inc_tenure_traps();
1938       }
1939     }
1940 
1941     if (inc_recompile_count) {
1942       trap_mdo->inc_overflow_recompile_count();
1943       if ((uint)trap_mdo->overflow_recompile_count() >
1944           (uint)PerBytecodeRecompilationCutoff) {
1945         // Give up on the method containing the bad BCI.
1946         if (trap_method() == nm->method()) {
1947           make_not_compilable = true;
1948         } else {
1949           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1950           // But give grace to the enclosing nm->method().
1951         }
1952       }
1953     }
1954 
1955     // Reprofile
1956     if (reprofile) {
1957       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1958     }
1959 
1960     // Give up compiling
1961     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1962       assert(make_not_entrant, "consistent");
1963       nm->method()->set_not_compilable(CompLevel_full_optimization);
1964     }
1965 
1966   } // Free marked resources
1967 
1968 }
1969 JRT_END
1970 
1971 ProfileData*
1972 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1973                                          int trap_bci,
1974                                          Deoptimization::DeoptReason reason,
1975                                          bool update_total_trap_count,
1976 #if INCLUDE_JVMCI
1977                                          bool is_osr,
1978 #endif
1979                                          Method* compiled_method,
1980                                          //outputs:
1981                                          uint& ret_this_trap_count,
1982                                          bool& ret_maybe_prior_trap,
1983                                          bool& ret_maybe_prior_recompile) {
1984   bool maybe_prior_trap = false;
1985   bool maybe_prior_recompile = false;
1986   uint this_trap_count = 0;
1987   if (update_total_trap_count) {
1988     uint idx = reason;
1989 #if INCLUDE_JVMCI
1990     if (is_osr) {
1991       idx += Reason_LIMIT;
1992     }
1993 #endif
1994     uint prior_trap_count = trap_mdo->trap_count(idx);
1995     this_trap_count  = trap_mdo->inc_trap_count(idx);
1996 
1997     // If the runtime cannot find a place to store trap history,
1998     // it is estimated based on the general condition of the method.
1999     // If the method has ever been recompiled, or has ever incurred
2000     // a trap with the present reason , then this BCI is assumed
2001     // (pessimistically) to be the culprit.
2002     maybe_prior_trap      = (prior_trap_count != 0);
2003     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2004   }
2005   ProfileData* pdata = NULL;
2006 
2007 
2008   // For reasons which are recorded per bytecode, we check per-BCI data.
2009   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2010   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2011   if (per_bc_reason != Reason_none) {
2012     // Find the profile data for this BCI.  If there isn't one,
2013     // try to allocate one from the MDO's set of spares.
2014     // This will let us detect a repeated trap at this point.
2015     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2016 
2017     if (pdata != NULL) {
2018       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2019         if (LogCompilation && xtty != NULL) {
2020           ttyLocker ttyl;
2021           // no more room for speculative traps in this MDO
2022           xtty->elem("speculative_traps_oom");
2023         }
2024       }
2025       // Query the trap state of this profile datum.
2026       int tstate0 = pdata->trap_state();
2027       if (!trap_state_has_reason(tstate0, per_bc_reason))
2028         maybe_prior_trap = false;
2029       if (!trap_state_is_recompiled(tstate0))
2030         maybe_prior_recompile = false;
2031 
2032       // Update the trap state of this profile datum.
2033       int tstate1 = tstate0;
2034       // Record the reason.
2035       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2036       // Store the updated state on the MDO, for next time.
2037       if (tstate1 != tstate0)
2038         pdata->set_trap_state(tstate1);
2039     } else {
2040       if (LogCompilation && xtty != NULL) {
2041         ttyLocker ttyl;
2042         // Missing MDP?  Leave a small complaint in the log.
2043         xtty->elem("missing_mdp bci='%d'", trap_bci);
2044       }
2045     }
2046   }
2047 
2048   // Return results:
2049   ret_this_trap_count = this_trap_count;
2050   ret_maybe_prior_trap = maybe_prior_trap;
2051   ret_maybe_prior_recompile = maybe_prior_recompile;
2052   return pdata;
2053 }
2054 
2055 void
2056 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2057   ResourceMark rm;
2058   // Ignored outputs:
2059   uint ignore_this_trap_count;
2060   bool ignore_maybe_prior_trap;
2061   bool ignore_maybe_prior_recompile;
2062   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2063   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2064   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2065   query_update_method_data(trap_mdo, trap_bci,
2066                            (DeoptReason)reason,
2067                            update_total_counts,
2068 #if INCLUDE_JVMCI
2069                            false,
2070 #endif
2071                            NULL,
2072                            ignore_this_trap_count,
2073                            ignore_maybe_prior_trap,
2074                            ignore_maybe_prior_recompile);
2075 }
2076 
2077 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2078   if (TraceDeoptimization) {
2079     tty->print("Uncommon trap ");
2080   }
2081   // Still in Java no safepoints
2082   {
2083     // This enters VM and may safepoint
2084     uncommon_trap_inner(thread, trap_request);
2085   }
2086   return fetch_unroll_info_helper(thread, exec_mode);
2087 }
2088 
2089 // Local derived constants.
2090 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2091 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2092 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2093 
2094 //---------------------------trap_state_reason---------------------------------
2095 Deoptimization::DeoptReason
2096 Deoptimization::trap_state_reason(int trap_state) {
2097   // This assert provides the link between the width of DataLayout::trap_bits
2098   // and the encoding of "recorded" reasons.  It ensures there are enough
2099   // bits to store all needed reasons in the per-BCI MDO profile.
2100   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2101   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2102   trap_state -= recompile_bit;
2103   if (trap_state == DS_REASON_MASK) {
2104     return Reason_many;
2105   } else {
2106     assert((int)Reason_none == 0, "state=0 => Reason_none");
2107     return (DeoptReason)trap_state;
2108   }
2109 }
2110 //-------------------------trap_state_has_reason-------------------------------
2111 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2112   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2113   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2114   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2115   trap_state -= recompile_bit;
2116   if (trap_state == DS_REASON_MASK) {
2117     return -1;  // true, unspecifically (bottom of state lattice)
2118   } else if (trap_state == reason) {
2119     return 1;   // true, definitely
2120   } else if (trap_state == 0) {
2121     return 0;   // false, definitely (top of state lattice)
2122   } else {
2123     return 0;   // false, definitely
2124   }
2125 }
2126 //-------------------------trap_state_add_reason-------------------------------
2127 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2128   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2129   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2130   trap_state -= recompile_bit;
2131   if (trap_state == DS_REASON_MASK) {
2132     return trap_state + recompile_bit;     // already at state lattice bottom
2133   } else if (trap_state == reason) {
2134     return trap_state + recompile_bit;     // the condition is already true
2135   } else if (trap_state == 0) {
2136     return reason + recompile_bit;          // no condition has yet been true
2137   } else {
2138     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2139   }
2140 }
2141 //-----------------------trap_state_is_recompiled------------------------------
2142 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2143   return (trap_state & DS_RECOMPILE_BIT) != 0;
2144 }
2145 //-----------------------trap_state_set_recompiled-----------------------------
2146 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2147   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2148   else    return trap_state & ~DS_RECOMPILE_BIT;
2149 }
2150 //---------------------------format_trap_state---------------------------------
2151 // This is used for debugging and diagnostics, including LogFile output.
2152 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2153                                               int trap_state) {
2154   assert(buflen > 0, "sanity");
2155   DeoptReason reason      = trap_state_reason(trap_state);
2156   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2157   // Re-encode the state from its decoded components.
2158   int decoded_state = 0;
2159   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2160     decoded_state = trap_state_add_reason(decoded_state, reason);
2161   if (recomp_flag)
2162     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2163   // If the state re-encodes properly, format it symbolically.
2164   // Because this routine is used for debugging and diagnostics,
2165   // be robust even if the state is a strange value.
2166   size_t len;
2167   if (decoded_state != trap_state) {
2168     // Random buggy state that doesn't decode??
2169     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2170   } else {
2171     len = jio_snprintf(buf, buflen, "%s%s",
2172                        trap_reason_name(reason),
2173                        recomp_flag ? " recompiled" : "");
2174   }
2175   return buf;
2176 }
2177 
2178 
2179 //--------------------------------statics--------------------------------------
2180 const char* Deoptimization::_trap_reason_name[] = {
2181   // Note:  Keep this in sync. with enum DeoptReason.
2182   "none",
2183   "null_check",
2184   "null_assert" JVMCI_ONLY("_or_unreached0"),
2185   "range_check",
2186   "class_check",
2187   "array_check",
2188   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2189   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2190   "unloaded",
2191   "uninitialized",
2192   "unreached",
2193   "unhandled",
2194   "constraint",
2195   "div0_check",
2196   "age",
2197   "predicate",
2198   "loop_limit_check",
2199   "speculate_class_check",
2200   "speculate_null_check",
2201   "speculate_null_assert",
2202   "rtm_state_change",
2203   "unstable_if",
2204   "unstable_fused_if",
2205 #if INCLUDE_JVMCI
2206   "aliasing",
2207   "transfer_to_interpreter",
2208   "not_compiled_exception_handler",
2209   "unresolved",
2210   "jsr_mismatch",
2211 #endif
2212   "tenured"
2213 };
2214 const char* Deoptimization::_trap_action_name[] = {
2215   // Note:  Keep this in sync. with enum DeoptAction.
2216   "none",
2217   "maybe_recompile",
2218   "reinterpret",
2219   "make_not_entrant",
2220   "make_not_compilable"
2221 };
2222 
2223 const char* Deoptimization::trap_reason_name(int reason) {
2224   // Check that every reason has a name
2225   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2226 
2227   if (reason == Reason_many)  return "many";
2228   if ((uint)reason < Reason_LIMIT)
2229     return _trap_reason_name[reason];
2230   static char buf[20];
2231   sprintf(buf, "reason%d", reason);
2232   return buf;
2233 }
2234 const char* Deoptimization::trap_action_name(int action) {
2235   // Check that every action has a name
2236   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2237 
2238   if ((uint)action < Action_LIMIT)
2239     return _trap_action_name[action];
2240   static char buf[20];
2241   sprintf(buf, "action%d", action);
2242   return buf;
2243 }
2244 
2245 // This is used for debugging and diagnostics, including LogFile output.
2246 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2247                                                 int trap_request) {
2248   jint unloaded_class_index = trap_request_index(trap_request);
2249   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2250   const char* action = trap_action_name(trap_request_action(trap_request));
2251 #if INCLUDE_JVMCI
2252   int debug_id = trap_request_debug_id(trap_request);
2253 #endif
2254   size_t len;
2255   if (unloaded_class_index < 0) {
2256     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2257                        reason, action
2258 #if INCLUDE_JVMCI
2259                        ,debug_id
2260 #endif
2261                        );
2262   } else {
2263     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2264                        reason, action, unloaded_class_index
2265 #if INCLUDE_JVMCI
2266                        ,debug_id
2267 #endif
2268                        );
2269   }
2270   return buf;
2271 }
2272 
2273 juint Deoptimization::_deoptimization_hist
2274         [Deoptimization::Reason_LIMIT]
2275     [1 + Deoptimization::Action_LIMIT]
2276         [Deoptimization::BC_CASE_LIMIT]
2277   = {0};
2278 
2279 enum {
2280   LSB_BITS = 8,
2281   LSB_MASK = right_n_bits(LSB_BITS)
2282 };
2283 
2284 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2285                                        Bytecodes::Code bc) {
2286   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2287   assert(action >= 0 && action < Action_LIMIT, "oob");
2288   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2289   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2290   juint* cases = _deoptimization_hist[reason][1+action];
2291   juint* bc_counter_addr = NULL;
2292   juint  bc_counter      = 0;
2293   // Look for an unused counter, or an exact match to this BC.
2294   if (bc != Bytecodes::_illegal) {
2295     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2296       juint* counter_addr = &cases[bc_case];
2297       juint  counter = *counter_addr;
2298       if ((counter == 0 && bc_counter_addr == NULL)
2299           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2300         // this counter is either free or is already devoted to this BC
2301         bc_counter_addr = counter_addr;
2302         bc_counter = counter | bc;
2303       }
2304     }
2305   }
2306   if (bc_counter_addr == NULL) {
2307     // Overflow, or no given bytecode.
2308     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2309     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2310   }
2311   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2312 }
2313 
2314 jint Deoptimization::total_deoptimization_count() {
2315   return _deoptimization_hist[Reason_none][0][0];
2316 }
2317 
2318 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2319   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2320   return _deoptimization_hist[reason][0][0];
2321 }
2322 
2323 void Deoptimization::print_statistics() {
2324   juint total = total_deoptimization_count();
2325   juint account = total;
2326   if (total != 0) {
2327     ttyLocker ttyl;
2328     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2329     tty->print_cr("Deoptimization traps recorded:");
2330     #define PRINT_STAT_LINE(name, r) \
2331       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2332     PRINT_STAT_LINE("total", total);
2333     // For each non-zero entry in the histogram, print the reason,
2334     // the action, and (if specifically known) the type of bytecode.
2335     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2336       for (int action = 0; action < Action_LIMIT; action++) {
2337         juint* cases = _deoptimization_hist[reason][1+action];
2338         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2339           juint counter = cases[bc_case];
2340           if (counter != 0) {
2341             char name[1*K];
2342             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2343             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2344               bc = Bytecodes::_illegal;
2345             sprintf(name, "%s/%s/%s",
2346                     trap_reason_name(reason),
2347                     trap_action_name(action),
2348                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2349             juint r = counter >> LSB_BITS;
2350             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2351             account -= r;
2352           }
2353         }
2354       }
2355     }
2356     if (account != 0) {
2357       PRINT_STAT_LINE("unaccounted", account);
2358     }
2359     #undef PRINT_STAT_LINE
2360     if (xtty != NULL)  xtty->tail("statistics");
2361   }
2362 }
2363 #else // COMPILER2 || INCLUDE_JVMCI
2364 
2365 
2366 // Stubs for C1 only system.
2367 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2368   return false;
2369 }
2370 
2371 const char* Deoptimization::trap_reason_name(int reason) {
2372   return "unknown";
2373 }
2374 
2375 void Deoptimization::print_statistics() {
2376   // no output
2377 }
2378 
2379 void
2380 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2381   // no udpate
2382 }
2383 
2384 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2385   return 0;
2386 }
2387 
2388 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2389                                        Bytecodes::Code bc) {
2390   // no update
2391 }
2392 
2393 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2394                                               int trap_state) {
2395   jio_snprintf(buf, buflen, "#%d", trap_state);
2396   return buf;
2397 }
2398 
2399 #endif // COMPILER2 || INCLUDE_JVMCI