1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1Allocator.inline.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1FullGCScope.hpp"
  43 #include "gc/g1/g1GCPhaseTimes.hpp"
  44 #include "gc/g1/g1GCServicabilitySupport.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1OopClosures.inline.hpp"
  50 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  51 #include "gc/g1/g1Policy.hpp"
  52 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  53 #include "gc/g1/g1RemSet.hpp"
  54 #include "gc/g1/g1RootClosures.hpp"
  55 #include "gc/g1/g1RootProcessor.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1YCTypes.hpp"
  58 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  59 #include "gc/g1/heapRegion.inline.hpp"
  60 #include "gc/g1/heapRegionRemSet.hpp"
  61 #include "gc/g1/heapRegionSet.inline.hpp"
  62 #include "gc/g1/vm_operations_g1.hpp"
  63 #include "gc/shared/gcHeapSummary.hpp"
  64 #include "gc/shared/gcId.hpp"
  65 #include "gc/shared/gcLocker.inline.hpp"
  66 #include "gc/shared/gcTimer.hpp"
  67 #include "gc/shared/gcTrace.hpp"
  68 #include "gc/shared/gcTraceTime.inline.hpp"
  69 #include "gc/shared/generationSpec.hpp"
  70 #include "gc/shared/isGCActiveMark.hpp"
  71 #include "gc/shared/preservedMarks.inline.hpp"
  72 #include "gc/shared/suspendibleThreadSet.hpp"
  73 #include "gc/shared/referenceProcessor.inline.hpp"
  74 #include "gc/shared/taskqueue.inline.hpp"
  75 #include "gc/shared/weakProcessor.hpp"
  76 #include "logging/log.hpp"
  77 #include "memory/allocation.hpp"
  78 #include "memory/iterator.hpp"
  79 #include "memory/resourceArea.hpp"
  80 #include "oops/oop.inline.hpp"
  81 #include "prims/resolvedMethodTable.hpp"
  82 #include "runtime/atomic.hpp"
  83 #include "runtime/init.hpp"
  84 #include "runtime/orderAccess.inline.hpp"
  85 #include "runtime/vmThread.hpp"
  86 #include "utilities/align.hpp"
  87 #include "utilities/globalDefinitions.hpp"
  88 #include "utilities/stack.inline.hpp"
  89 
  90 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  91 
  92 // INVARIANTS/NOTES
  93 //
  94 // All allocation activity covered by the G1CollectedHeap interface is
  95 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  96 // and allocate_new_tlab, which are the "entry" points to the
  97 // allocation code from the rest of the JVM.  (Note that this does not
  98 // apply to TLAB allocation, which is not part of this interface: it
  99 // is done by clients of this interface.)
 100 
 101 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 102  private:
 103   size_t _num_dirtied;
 104   G1CollectedHeap* _g1h;
 105   G1SATBCardTableLoggingModRefBS* _g1_bs;
 106 
 107   HeapRegion* region_for_card(jbyte* card_ptr) const {
 108     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 109   }
 110 
 111   bool will_become_free(HeapRegion* hr) const {
 112     // A region will be freed by free_collection_set if the region is in the
 113     // collection set and has not had an evacuation failure.
 114     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 115   }
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 119     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 120 
 121   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 122     HeapRegion* hr = region_for_card(card_ptr);
 123 
 124     // Should only dirty cards in regions that won't be freed.
 125     if (!will_become_free(hr)) {
 126       *card_ptr = CardTableModRefBS::dirty_card_val();
 127       _num_dirtied++;
 128     }
 129 
 130     return true;
 131   }
 132 
 133   size_t num_dirtied()   const { return _num_dirtied; }
 134 };
 135 
 136 
 137 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 138   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 139 }
 140 
 141 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 142   // The from card cache is not the memory that is actually committed. So we cannot
 143   // take advantage of the zero_filled parameter.
 144   reset_from_card_cache(start_idx, num_regions);
 145 }
 146 
 147 
 148 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 149                                              MemRegion mr) {
 150   return new HeapRegion(hrs_index, bot(), mr);
 151 }
 152 
 153 // Private methods.
 154 
 155 HeapRegion*
 156 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 157   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 158   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 159     if (!_secondary_free_list.is_empty()) {
 160       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 161                                       "secondary_free_list has %u entries",
 162                                       _secondary_free_list.length());
 163       // It looks as if there are free regions available on the
 164       // secondary_free_list. Let's move them to the free_list and try
 165       // again to allocate from it.
 166       append_secondary_free_list();
 167 
 168       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 169              "empty we should have moved at least one entry to the free_list");
 170       HeapRegion* res = _hrm.allocate_free_region(is_old);
 171       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 172                                       "allocated " HR_FORMAT " from secondary_free_list",
 173                                       HR_FORMAT_PARAMS(res));
 174       return res;
 175     }
 176 
 177     // Wait here until we get notified either when (a) there are no
 178     // more free regions coming or (b) some regions have been moved on
 179     // the secondary_free_list.
 180     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 181   }
 182 
 183   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 184                                   "could not allocate from secondary_free_list");
 185   return NULL;
 186 }
 187 
 188 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 189   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 190          "the only time we use this to allocate a humongous region is "
 191          "when we are allocating a single humongous region");
 192 
 193   HeapRegion* res;
 194   if (G1StressConcRegionFreeing) {
 195     if (!_secondary_free_list.is_empty()) {
 196       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 197                                       "forced to look at the secondary_free_list");
 198       res = new_region_try_secondary_free_list(is_old);
 199       if (res != NULL) {
 200         return res;
 201       }
 202     }
 203   }
 204 
 205   res = _hrm.allocate_free_region(is_old);
 206 
 207   if (res == NULL) {
 208     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 209                                     "res == NULL, trying the secondary_free_list");
 210     res = new_region_try_secondary_free_list(is_old);
 211   }
 212   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 213     // Currently, only attempts to allocate GC alloc regions set
 214     // do_expand to true. So, we should only reach here during a
 215     // safepoint. If this assumption changes we might have to
 216     // reconsider the use of _expand_heap_after_alloc_failure.
 217     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 218 
 219     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 220                               word_size * HeapWordSize);
 221 
 222     if (expand(word_size * HeapWordSize)) {
 223       // Given that expand() succeeded in expanding the heap, and we
 224       // always expand the heap by an amount aligned to the heap
 225       // region size, the free list should in theory not be empty.
 226       // In either case allocate_free_region() will check for NULL.
 227       res = _hrm.allocate_free_region(is_old);
 228     } else {
 229       _expand_heap_after_alloc_failure = false;
 230     }
 231   }
 232   return res;
 233 }
 234 
 235 HeapWord*
 236 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 237                                                            uint num_regions,
 238                                                            size_t word_size,
 239                                                            AllocationContext_t context) {
 240   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 241   assert(is_humongous(word_size), "word_size should be humongous");
 242   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 243 
 244   // Index of last region in the series.
 245   uint last = first + num_regions - 1;
 246 
 247   // We need to initialize the region(s) we just discovered. This is
 248   // a bit tricky given that it can happen concurrently with
 249   // refinement threads refining cards on these regions and
 250   // potentially wanting to refine the BOT as they are scanning
 251   // those cards (this can happen shortly after a cleanup; see CR
 252   // 6991377). So we have to set up the region(s) carefully and in
 253   // a specific order.
 254 
 255   // The word size sum of all the regions we will allocate.
 256   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 257   assert(word_size <= word_size_sum, "sanity");
 258 
 259   // This will be the "starts humongous" region.
 260   HeapRegion* first_hr = region_at(first);
 261   // The header of the new object will be placed at the bottom of
 262   // the first region.
 263   HeapWord* new_obj = first_hr->bottom();
 264   // This will be the new top of the new object.
 265   HeapWord* obj_top = new_obj + word_size;
 266 
 267   // First, we need to zero the header of the space that we will be
 268   // allocating. When we update top further down, some refinement
 269   // threads might try to scan the region. By zeroing the header we
 270   // ensure that any thread that will try to scan the region will
 271   // come across the zero klass word and bail out.
 272   //
 273   // NOTE: It would not have been correct to have used
 274   // CollectedHeap::fill_with_object() and make the space look like
 275   // an int array. The thread that is doing the allocation will
 276   // later update the object header to a potentially different array
 277   // type and, for a very short period of time, the klass and length
 278   // fields will be inconsistent. This could cause a refinement
 279   // thread to calculate the object size incorrectly.
 280   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 281 
 282   // Next, pad out the unused tail of the last region with filler
 283   // objects, for improved usage accounting.
 284   // How many words we use for filler objects.
 285   size_t word_fill_size = word_size_sum - word_size;
 286 
 287   // How many words memory we "waste" which cannot hold a filler object.
 288   size_t words_not_fillable = 0;
 289 
 290   if (word_fill_size >= min_fill_size()) {
 291     fill_with_objects(obj_top, word_fill_size);
 292   } else if (word_fill_size > 0) {
 293     // We have space to fill, but we cannot fit an object there.
 294     words_not_fillable = word_fill_size;
 295     word_fill_size = 0;
 296   }
 297 
 298   // We will set up the first region as "starts humongous". This
 299   // will also update the BOT covering all the regions to reflect
 300   // that there is a single object that starts at the bottom of the
 301   // first region.
 302   first_hr->set_starts_humongous(obj_top, word_fill_size);
 303   first_hr->set_allocation_context(context);
 304   // Then, if there are any, we will set up the "continues
 305   // humongous" regions.
 306   HeapRegion* hr = NULL;
 307   for (uint i = first + 1; i <= last; ++i) {
 308     hr = region_at(i);
 309     hr->set_continues_humongous(first_hr);
 310     hr->set_allocation_context(context);
 311   }
 312 
 313   // Up to this point no concurrent thread would have been able to
 314   // do any scanning on any region in this series. All the top
 315   // fields still point to bottom, so the intersection between
 316   // [bottom,top] and [card_start,card_end] will be empty. Before we
 317   // update the top fields, we'll do a storestore to make sure that
 318   // no thread sees the update to top before the zeroing of the
 319   // object header and the BOT initialization.
 320   OrderAccess::storestore();
 321 
 322   // Now, we will update the top fields of the "continues humongous"
 323   // regions except the last one.
 324   for (uint i = first; i < last; ++i) {
 325     hr = region_at(i);
 326     hr->set_top(hr->end());
 327   }
 328 
 329   hr = region_at(last);
 330   // If we cannot fit a filler object, we must set top to the end
 331   // of the humongous object, otherwise we cannot iterate the heap
 332   // and the BOT will not be complete.
 333   hr->set_top(hr->end() - words_not_fillable);
 334 
 335   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 336          "obj_top should be in last region");
 337 
 338   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 339 
 340   assert(words_not_fillable == 0 ||
 341          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 342          "Miscalculation in humongous allocation");
 343 
 344   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 345 
 346   for (uint i = first; i <= last; ++i) {
 347     hr = region_at(i);
 348     _humongous_set.add(hr);
 349     _hr_printer.alloc(hr);
 350   }
 351 
 352   return new_obj;
 353 }
 354 
 355 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 356   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 357   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 358 }
 359 
 360 // If could fit into free regions w/o expansion, try.
 361 // Otherwise, if can expand, do so.
 362 // Otherwise, if using ex regions might help, try with ex given back.
 363 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 364   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 365 
 366   _verifier->verify_region_sets_optional();
 367 
 368   uint first = G1_NO_HRM_INDEX;
 369   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 370 
 371   if (obj_regions == 1) {
 372     // Only one region to allocate, try to use a fast path by directly allocating
 373     // from the free lists. Do not try to expand here, we will potentially do that
 374     // later.
 375     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 376     if (hr != NULL) {
 377       first = hr->hrm_index();
 378     }
 379   } else {
 380     // We can't allocate humongous regions spanning more than one region while
 381     // cleanupComplete() is running, since some of the regions we find to be
 382     // empty might not yet be added to the free list. It is not straightforward
 383     // to know in which list they are on so that we can remove them. We only
 384     // need to do this if we need to allocate more than one region to satisfy the
 385     // current humongous allocation request. If we are only allocating one region
 386     // we use the one-region region allocation code (see above), that already
 387     // potentially waits for regions from the secondary free list.
 388     wait_while_free_regions_coming();
 389     append_secondary_free_list_if_not_empty_with_lock();
 390 
 391     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 392     // are lucky enough to find some.
 393     first = _hrm.find_contiguous_only_empty(obj_regions);
 394     if (first != G1_NO_HRM_INDEX) {
 395       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 396     }
 397   }
 398 
 399   if (first == G1_NO_HRM_INDEX) {
 400     // Policy: We could not find enough regions for the humongous object in the
 401     // free list. Look through the heap to find a mix of free and uncommitted regions.
 402     // If so, try expansion.
 403     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 404     if (first != G1_NO_HRM_INDEX) {
 405       // We found something. Make sure these regions are committed, i.e. expand
 406       // the heap. Alternatively we could do a defragmentation GC.
 407       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 408                                     word_size * HeapWordSize);
 409 
 410       _hrm.expand_at(first, obj_regions, workers());
 411       g1_policy()->record_new_heap_size(num_regions());
 412 
 413 #ifdef ASSERT
 414       for (uint i = first; i < first + obj_regions; ++i) {
 415         HeapRegion* hr = region_at(i);
 416         assert(hr->is_free(), "sanity");
 417         assert(hr->is_empty(), "sanity");
 418         assert(is_on_master_free_list(hr), "sanity");
 419       }
 420 #endif
 421       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 422     } else {
 423       // Policy: Potentially trigger a defragmentation GC.
 424     }
 425   }
 426 
 427   HeapWord* result = NULL;
 428   if (first != G1_NO_HRM_INDEX) {
 429     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 430                                                        word_size, context);
 431     assert(result != NULL, "it should always return a valid result");
 432 
 433     // A successful humongous object allocation changes the used space
 434     // information of the old generation so we need to recalculate the
 435     // sizes and update the jstat counters here.
 436     g1mm()->update_sizes();
 437   }
 438 
 439   _verifier->verify_region_sets_optional();
 440 
 441   return result;
 442 }
 443 
 444 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 445   assert_heap_not_locked_and_not_at_safepoint();
 446   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 447 
 448   uint dummy_gc_count_before;
 449   uint dummy_gclocker_retry_count = 0;
 450   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 451 }
 452 
 453 HeapWord*
 454 G1CollectedHeap::mem_allocate(size_t word_size,
 455                               bool*  gc_overhead_limit_was_exceeded) {
 456   assert_heap_not_locked_and_not_at_safepoint();
 457 
 458   // Loop until the allocation is satisfied, or unsatisfied after GC.
 459   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 460     uint gc_count_before;
 461 
 462     HeapWord* result = NULL;
 463     if (!is_humongous(word_size)) {
 464       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 465     } else {
 466       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 467     }
 468     if (result != NULL) {
 469       return result;
 470     }
 471 
 472     // Create the garbage collection operation...
 473     VM_G1CollectForAllocation op(gc_count_before, word_size);
 474     op.set_allocation_context(AllocationContext::current());
 475 
 476     // ...and get the VM thread to execute it.
 477     VMThread::execute(&op);
 478 
 479     if (op.prologue_succeeded() && op.pause_succeeded()) {
 480       // If the operation was successful we'll return the result even
 481       // if it is NULL. If the allocation attempt failed immediately
 482       // after a Full GC, it's unlikely we'll be able to allocate now.
 483       HeapWord* result = op.result();
 484       if (result != NULL && !is_humongous(word_size)) {
 485         // Allocations that take place on VM operations do not do any
 486         // card dirtying and we have to do it here. We only have to do
 487         // this for non-humongous allocations, though.
 488         dirty_young_block(result, word_size);
 489       }
 490       return result;
 491     } else {
 492       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 493         return NULL;
 494       }
 495       assert(op.result() == NULL,
 496              "the result should be NULL if the VM op did not succeed");
 497     }
 498 
 499     // Give a warning if we seem to be looping forever.
 500     if ((QueuedAllocationWarningCount > 0) &&
 501         (try_count % QueuedAllocationWarningCount == 0)) {
 502       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 503     }
 504   }
 505 
 506   ShouldNotReachHere();
 507   return NULL;
 508 }
 509 
 510 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 511                                                    AllocationContext_t context,
 512                                                    uint* gc_count_before_ret,
 513                                                    uint* gclocker_retry_count_ret) {
 514   // Make sure you read the note in attempt_allocation_humongous().
 515 
 516   assert_heap_not_locked_and_not_at_safepoint();
 517   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 518          "be called for humongous allocation requests");
 519 
 520   // We should only get here after the first-level allocation attempt
 521   // (attempt_allocation()) failed to allocate.
 522 
 523   // We will loop until a) we manage to successfully perform the
 524   // allocation or b) we successfully schedule a collection which
 525   // fails to perform the allocation. b) is the only case when we'll
 526   // return NULL.
 527   HeapWord* result = NULL;
 528   for (int try_count = 1; /* we'll return */; try_count += 1) {
 529     bool should_try_gc;
 530     uint gc_count_before;
 531 
 532     {
 533       MutexLockerEx x(Heap_lock);
 534       result = _allocator->attempt_allocation_locked(word_size, context);
 535       if (result != NULL) {
 536         return result;
 537       }
 538 
 539       if (GCLocker::is_active_and_needs_gc()) {
 540         if (g1_policy()->can_expand_young_list()) {
 541           // No need for an ergo verbose message here,
 542           // can_expand_young_list() does this when it returns true.
 543           result = _allocator->attempt_allocation_force(word_size, context);
 544           if (result != NULL) {
 545             return result;
 546           }
 547         }
 548         should_try_gc = false;
 549       } else {
 550         // The GCLocker may not be active but the GCLocker initiated
 551         // GC may not yet have been performed (GCLocker::needs_gc()
 552         // returns true). In this case we do not try this GC and
 553         // wait until the GCLocker initiated GC is performed, and
 554         // then retry the allocation.
 555         if (GCLocker::needs_gc()) {
 556           should_try_gc = false;
 557         } else {
 558           // Read the GC count while still holding the Heap_lock.
 559           gc_count_before = total_collections();
 560           should_try_gc = true;
 561         }
 562       }
 563     }
 564 
 565     if (should_try_gc) {
 566       bool succeeded;
 567       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 568                                    GCCause::_g1_inc_collection_pause);
 569       if (result != NULL) {
 570         assert(succeeded, "only way to get back a non-NULL result");
 571         return result;
 572       }
 573 
 574       if (succeeded) {
 575         // If we get here we successfully scheduled a collection which
 576         // failed to allocate. No point in trying to allocate
 577         // further. We'll just return NULL.
 578         MutexLockerEx x(Heap_lock);
 579         *gc_count_before_ret = total_collections();
 580         return NULL;
 581       }
 582     } else {
 583       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 584         MutexLockerEx x(Heap_lock);
 585         *gc_count_before_ret = total_collections();
 586         return NULL;
 587       }
 588       // The GCLocker is either active or the GCLocker initiated
 589       // GC has not yet been performed. Stall until it is and
 590       // then retry the allocation.
 591       GCLocker::stall_until_clear();
 592       (*gclocker_retry_count_ret) += 1;
 593     }
 594 
 595     // We can reach here if we were unsuccessful in scheduling a
 596     // collection (because another thread beat us to it) or if we were
 597     // stalled due to the GC locker. In either can we should retry the
 598     // allocation attempt in case another thread successfully
 599     // performed a collection and reclaimed enough space. We do the
 600     // first attempt (without holding the Heap_lock) here and the
 601     // follow-on attempt will be at the start of the next loop
 602     // iteration (after taking the Heap_lock).
 603     result = _allocator->attempt_allocation(word_size, context);
 604     if (result != NULL) {
 605       return result;
 606     }
 607 
 608     // Give a warning if we seem to be looping forever.
 609     if ((QueuedAllocationWarningCount > 0) &&
 610         (try_count % QueuedAllocationWarningCount == 0)) {
 611       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 612                       "retries %d times", try_count);
 613     }
 614   }
 615 
 616   ShouldNotReachHere();
 617   return NULL;
 618 }
 619 
 620 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 621   assert_at_safepoint(true /* should_be_vm_thread */);
 622   if (_archive_allocator == NULL) {
 623     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 624   }
 625 }
 626 
 627 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 628   // Allocations in archive regions cannot be of a size that would be considered
 629   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 630   // may be different at archive-restore time.
 631   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 632 }
 633 
 634 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 635   assert_at_safepoint(true /* should_be_vm_thread */);
 636   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 637   if (is_archive_alloc_too_large(word_size)) {
 638     return NULL;
 639   }
 640   return _archive_allocator->archive_mem_allocate(word_size);
 641 }
 642 
 643 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 644                                               size_t end_alignment_in_bytes) {
 645   assert_at_safepoint(true /* should_be_vm_thread */);
 646   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 647 
 648   // Call complete_archive to do the real work, filling in the MemRegion
 649   // array with the archive regions.
 650   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 651   delete _archive_allocator;
 652   _archive_allocator = NULL;
 653 }
 654 
 655 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 656   assert(ranges != NULL, "MemRegion array NULL");
 657   assert(count != 0, "No MemRegions provided");
 658   MemRegion reserved = _hrm.reserved();
 659   for (size_t i = 0; i < count; i++) {
 660     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 661       return false;
 662     }
 663   }
 664   return true;
 665 }
 666 
 667 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 668                                             size_t count,
 669                                             bool open) {
 670   assert(!is_init_completed(), "Expect to be called at JVM init time");
 671   assert(ranges != NULL, "MemRegion array NULL");
 672   assert(count != 0, "No MemRegions provided");
 673   MutexLockerEx x(Heap_lock);
 674 
 675   MemRegion reserved = _hrm.reserved();
 676   HeapWord* prev_last_addr = NULL;
 677   HeapRegion* prev_last_region = NULL;
 678 
 679   // Temporarily disable pretouching of heap pages. This interface is used
 680   // when mmap'ing archived heap data in, so pre-touching is wasted.
 681   FlagSetting fs(AlwaysPreTouch, false);
 682 
 683   // Enable archive object checking used by G1MarkSweep. We have to let it know
 684   // about each archive range, so that objects in those ranges aren't marked.
 685   G1ArchiveAllocator::enable_archive_object_check();
 686 
 687   // For each specified MemRegion range, allocate the corresponding G1
 688   // regions and mark them as archive regions. We expect the ranges
 689   // in ascending starting address order, without overlap.
 690   for (size_t i = 0; i < count; i++) {
 691     MemRegion curr_range = ranges[i];
 692     HeapWord* start_address = curr_range.start();
 693     size_t word_size = curr_range.word_size();
 694     HeapWord* last_address = curr_range.last();
 695     size_t commits = 0;
 696 
 697     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 698               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 699               p2i(start_address), p2i(last_address));
 700     guarantee(start_address > prev_last_addr,
 701               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 702               p2i(start_address), p2i(prev_last_addr));
 703     prev_last_addr = last_address;
 704 
 705     // Check for ranges that start in the same G1 region in which the previous
 706     // range ended, and adjust the start address so we don't try to allocate
 707     // the same region again. If the current range is entirely within that
 708     // region, skip it, just adjusting the recorded top.
 709     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 710     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 711       start_address = start_region->end();
 712       if (start_address > last_address) {
 713         increase_used(word_size * HeapWordSize);
 714         start_region->set_top(last_address + 1);
 715         continue;
 716       }
 717       start_region->set_top(start_address);
 718       curr_range = MemRegion(start_address, last_address + 1);
 719       start_region = _hrm.addr_to_region(start_address);
 720     }
 721 
 722     // Perform the actual region allocation, exiting if it fails.
 723     // Then note how much new space we have allocated.
 724     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 725       return false;
 726     }
 727     increase_used(word_size * HeapWordSize);
 728     if (commits != 0) {
 729       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 730                                 HeapRegion::GrainWords * HeapWordSize * commits);
 731 
 732     }
 733 
 734     // Mark each G1 region touched by the range as archive, add it to
 735     // the old set, and set the allocation context and top.
 736     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 737     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 738     prev_last_region = last_region;
 739 
 740     while (curr_region != NULL) {
 741       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 742              "Region already in use (index %u)", curr_region->hrm_index());
 743       curr_region->set_allocation_context(AllocationContext::system());
 744       if (open) {
 745         curr_region->set_open_archive();
 746       } else {
 747         curr_region->set_closed_archive();
 748       }
 749       _hr_printer.alloc(curr_region);
 750       _old_set.add(curr_region);
 751       HeapWord* top;
 752       HeapRegion* next_region;
 753       if (curr_region != last_region) {
 754         top = curr_region->end();
 755         next_region = _hrm.next_region_in_heap(curr_region);
 756       } else {
 757         top = last_address + 1;
 758         next_region = NULL;
 759       }
 760       curr_region->set_top(top);
 761       curr_region->set_first_dead(top);
 762       curr_region->set_end_of_live(top);
 763       curr_region = next_region;
 764     }
 765 
 766     // Notify mark-sweep of the archive
 767     G1ArchiveAllocator::set_range_archive(curr_range, open);
 768   }
 769   return true;
 770 }
 771 
 772 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 773   assert(!is_init_completed(), "Expect to be called at JVM init time");
 774   assert(ranges != NULL, "MemRegion array NULL");
 775   assert(count != 0, "No MemRegions provided");
 776   MemRegion reserved = _hrm.reserved();
 777   HeapWord *prev_last_addr = NULL;
 778   HeapRegion* prev_last_region = NULL;
 779 
 780   // For each MemRegion, create filler objects, if needed, in the G1 regions
 781   // that contain the address range. The address range actually within the
 782   // MemRegion will not be modified. That is assumed to have been initialized
 783   // elsewhere, probably via an mmap of archived heap data.
 784   MutexLockerEx x(Heap_lock);
 785   for (size_t i = 0; i < count; i++) {
 786     HeapWord* start_address = ranges[i].start();
 787     HeapWord* last_address = ranges[i].last();
 788 
 789     assert(reserved.contains(start_address) && reserved.contains(last_address),
 790            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 791            p2i(start_address), p2i(last_address));
 792     assert(start_address > prev_last_addr,
 793            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 794            p2i(start_address), p2i(prev_last_addr));
 795 
 796     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 797     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 798     HeapWord* bottom_address = start_region->bottom();
 799 
 800     // Check for a range beginning in the same region in which the
 801     // previous one ended.
 802     if (start_region == prev_last_region) {
 803       bottom_address = prev_last_addr + 1;
 804     }
 805 
 806     // Verify that the regions were all marked as archive regions by
 807     // alloc_archive_regions.
 808     HeapRegion* curr_region = start_region;
 809     while (curr_region != NULL) {
 810       guarantee(curr_region->is_archive(),
 811                 "Expected archive region at index %u", curr_region->hrm_index());
 812       if (curr_region != last_region) {
 813         curr_region = _hrm.next_region_in_heap(curr_region);
 814       } else {
 815         curr_region = NULL;
 816       }
 817     }
 818 
 819     prev_last_addr = last_address;
 820     prev_last_region = last_region;
 821 
 822     // Fill the memory below the allocated range with dummy object(s),
 823     // if the region bottom does not match the range start, or if the previous
 824     // range ended within the same G1 region, and there is a gap.
 825     if (start_address != bottom_address) {
 826       size_t fill_size = pointer_delta(start_address, bottom_address);
 827       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 828       increase_used(fill_size * HeapWordSize);
 829     }
 830   }
 831 }
 832 
 833 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 834                                                      uint* gc_count_before_ret,
 835                                                      uint* gclocker_retry_count_ret) {
 836   assert_heap_not_locked_and_not_at_safepoint();
 837   assert(!is_humongous(word_size), "attempt_allocation() should not "
 838          "be called for humongous allocation requests");
 839 
 840   AllocationContext_t context = AllocationContext::current();
 841   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 842 
 843   if (result == NULL) {
 844     result = attempt_allocation_slow(word_size,
 845                                      context,
 846                                      gc_count_before_ret,
 847                                      gclocker_retry_count_ret);
 848   }
 849   assert_heap_not_locked();
 850   if (result != NULL) {
 851     dirty_young_block(result, word_size);
 852   }
 853   return result;
 854 }
 855 
 856 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 857   assert(!is_init_completed(), "Expect to be called at JVM init time");
 858   assert(ranges != NULL, "MemRegion array NULL");
 859   assert(count != 0, "No MemRegions provided");
 860   MemRegion reserved = _hrm.reserved();
 861   HeapWord* prev_last_addr = NULL;
 862   HeapRegion* prev_last_region = NULL;
 863   size_t size_used = 0;
 864   size_t uncommitted_regions = 0;
 865 
 866   // For each Memregion, free the G1 regions that constitute it, and
 867   // notify mark-sweep that the range is no longer to be considered 'archive.'
 868   MutexLockerEx x(Heap_lock);
 869   for (size_t i = 0; i < count; i++) {
 870     HeapWord* start_address = ranges[i].start();
 871     HeapWord* last_address = ranges[i].last();
 872 
 873     assert(reserved.contains(start_address) && reserved.contains(last_address),
 874            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 875            p2i(start_address), p2i(last_address));
 876     assert(start_address > prev_last_addr,
 877            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 878            p2i(start_address), p2i(prev_last_addr));
 879     size_used += ranges[i].byte_size();
 880     prev_last_addr = last_address;
 881 
 882     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 883     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 884 
 885     // Check for ranges that start in the same G1 region in which the previous
 886     // range ended, and adjust the start address so we don't try to free
 887     // the same region again. If the current range is entirely within that
 888     // region, skip it.
 889     if (start_region == prev_last_region) {
 890       start_address = start_region->end();
 891       if (start_address > last_address) {
 892         continue;
 893       }
 894       start_region = _hrm.addr_to_region(start_address);
 895     }
 896     prev_last_region = last_region;
 897 
 898     // After verifying that each region was marked as an archive region by
 899     // alloc_archive_regions, set it free and empty and uncommit it.
 900     HeapRegion* curr_region = start_region;
 901     while (curr_region != NULL) {
 902       guarantee(curr_region->is_archive(),
 903                 "Expected archive region at index %u", curr_region->hrm_index());
 904       uint curr_index = curr_region->hrm_index();
 905       _old_set.remove(curr_region);
 906       curr_region->set_free();
 907       curr_region->set_top(curr_region->bottom());
 908       if (curr_region != last_region) {
 909         curr_region = _hrm.next_region_in_heap(curr_region);
 910       } else {
 911         curr_region = NULL;
 912       }
 913       _hrm.shrink_at(curr_index, 1);
 914       uncommitted_regions++;
 915     }
 916 
 917     // Notify mark-sweep that this is no longer an archive range.
 918     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 919   }
 920 
 921   if (uncommitted_regions != 0) {
 922     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 923                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 924   }
 925   decrease_used(size_used);
 926 }
 927 
 928 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 929                                                         uint* gc_count_before_ret,
 930                                                         uint* gclocker_retry_count_ret) {
 931   // The structure of this method has a lot of similarities to
 932   // attempt_allocation_slow(). The reason these two were not merged
 933   // into a single one is that such a method would require several "if
 934   // allocation is not humongous do this, otherwise do that"
 935   // conditional paths which would obscure its flow. In fact, an early
 936   // version of this code did use a unified method which was harder to
 937   // follow and, as a result, it had subtle bugs that were hard to
 938   // track down. So keeping these two methods separate allows each to
 939   // be more readable. It will be good to keep these two in sync as
 940   // much as possible.
 941 
 942   assert_heap_not_locked_and_not_at_safepoint();
 943   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 944          "should only be called for humongous allocations");
 945 
 946   // Humongous objects can exhaust the heap quickly, so we should check if we
 947   // need to start a marking cycle at each humongous object allocation. We do
 948   // the check before we do the actual allocation. The reason for doing it
 949   // before the allocation is that we avoid having to keep track of the newly
 950   // allocated memory while we do a GC.
 951   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 952                                            word_size)) {
 953     collect(GCCause::_g1_humongous_allocation);
 954   }
 955 
 956   // We will loop until a) we manage to successfully perform the
 957   // allocation or b) we successfully schedule a collection which
 958   // fails to perform the allocation. b) is the only case when we'll
 959   // return NULL.
 960   HeapWord* result = NULL;
 961   for (int try_count = 1; /* we'll return */; try_count += 1) {
 962     bool should_try_gc;
 963     uint gc_count_before;
 964 
 965     {
 966       MutexLockerEx x(Heap_lock);
 967 
 968       // Given that humongous objects are not allocated in young
 969       // regions, we'll first try to do the allocation without doing a
 970       // collection hoping that there's enough space in the heap.
 971       result = humongous_obj_allocate(word_size, AllocationContext::current());
 972       if (result != NULL) {
 973         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 974         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 975         return result;
 976       }
 977 
 978       if (GCLocker::is_active_and_needs_gc()) {
 979         should_try_gc = false;
 980       } else {
 981          // The GCLocker may not be active but the GCLocker initiated
 982         // GC may not yet have been performed (GCLocker::needs_gc()
 983         // returns true). In this case we do not try this GC and
 984         // wait until the GCLocker initiated GC is performed, and
 985         // then retry the allocation.
 986         if (GCLocker::needs_gc()) {
 987           should_try_gc = false;
 988         } else {
 989           // Read the GC count while still holding the Heap_lock.
 990           gc_count_before = total_collections();
 991           should_try_gc = true;
 992         }
 993       }
 994     }
 995 
 996     if (should_try_gc) {
 997       // If we failed to allocate the humongous object, we should try to
 998       // do a collection pause (if we're allowed) in case it reclaims
 999       // enough space for the allocation to succeed after the pause.
1000 
1001       bool succeeded;
1002       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1003                                    GCCause::_g1_humongous_allocation);
1004       if (result != NULL) {
1005         assert(succeeded, "only way to get back a non-NULL result");
1006         return result;
1007       }
1008 
1009       if (succeeded) {
1010         // If we get here we successfully scheduled a collection which
1011         // failed to allocate. No point in trying to allocate
1012         // further. We'll just return NULL.
1013         MutexLockerEx x(Heap_lock);
1014         *gc_count_before_ret = total_collections();
1015         return NULL;
1016       }
1017     } else {
1018       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1019         MutexLockerEx x(Heap_lock);
1020         *gc_count_before_ret = total_collections();
1021         return NULL;
1022       }
1023       // The GCLocker is either active or the GCLocker initiated
1024       // GC has not yet been performed. Stall until it is and
1025       // then retry the allocation.
1026       GCLocker::stall_until_clear();
1027       (*gclocker_retry_count_ret) += 1;
1028     }
1029 
1030     // We can reach here if we were unsuccessful in scheduling a
1031     // collection (because another thread beat us to it) or if we were
1032     // stalled due to the GC locker. In either can we should retry the
1033     // allocation attempt in case another thread successfully
1034     // performed a collection and reclaimed enough space.  Give a
1035     // warning if we seem to be looping forever.
1036 
1037     if ((QueuedAllocationWarningCount > 0) &&
1038         (try_count % QueuedAllocationWarningCount == 0)) {
1039       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1040                       "retries %d times", try_count);
1041     }
1042   }
1043 
1044   ShouldNotReachHere();
1045   return NULL;
1046 }
1047 
1048 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1049                                                            AllocationContext_t context,
1050                                                            bool expect_null_mutator_alloc_region) {
1051   assert_at_safepoint(true /* should_be_vm_thread */);
1052   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1053          "the current alloc region was unexpectedly found to be non-NULL");
1054 
1055   if (!is_humongous(word_size)) {
1056     return _allocator->attempt_allocation_locked(word_size, context);
1057   } else {
1058     HeapWord* result = humongous_obj_allocate(word_size, context);
1059     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1060       collector_state()->set_initiate_conc_mark_if_possible(true);
1061     }
1062     return result;
1063   }
1064 
1065   ShouldNotReachHere();
1066 }
1067 
1068 class PostCompactionPrinterClosure: public HeapRegionClosure {
1069 private:
1070   G1HRPrinter* _hr_printer;
1071 public:
1072   bool doHeapRegion(HeapRegion* hr) {
1073     assert(!hr->is_young(), "not expecting to find young regions");
1074     _hr_printer->post_compaction(hr);
1075     return false;
1076   }
1077 
1078   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1079     : _hr_printer(hr_printer) { }
1080 };
1081 
1082 void G1CollectedHeap::print_hrm_post_compaction() {
1083   if (_hr_printer.is_active()) {
1084     PostCompactionPrinterClosure cl(hr_printer());
1085     heap_region_iterate(&cl);
1086   }
1087 
1088 }
1089 
1090 void G1CollectedHeap::abort_concurrent_cycle() {
1091   // Note: When we have a more flexible GC logging framework that
1092   // allows us to add optional attributes to a GC log record we
1093   // could consider timing and reporting how long we wait in the
1094   // following two methods.
1095   wait_while_free_regions_coming();
1096   // If we start the compaction before the CM threads finish
1097   // scanning the root regions we might trip them over as we'll
1098   // be moving objects / updating references. So let's wait until
1099   // they are done. By telling them to abort, they should complete
1100   // early.
1101   _cm->root_regions()->abort();
1102   _cm->root_regions()->wait_until_scan_finished();
1103   append_secondary_free_list_if_not_empty_with_lock();
1104 
1105   // Disable discovery and empty the discovered lists
1106   // for the CM ref processor.
1107   ref_processor_cm()->disable_discovery();
1108   ref_processor_cm()->abandon_partial_discovery();
1109   ref_processor_cm()->verify_no_references_recorded();
1110 
1111   // Abandon current iterations of concurrent marking and concurrent
1112   // refinement, if any are in progress.
1113   concurrent_mark()->abort();
1114 }
1115 
1116 void G1CollectedHeap::prepare_heap_for_full_collection() {
1117   // Make sure we'll choose a new allocation region afterwards.
1118   _allocator->release_mutator_alloc_region();
1119   _allocator->abandon_gc_alloc_regions();
1120   g1_rem_set()->cleanupHRRS();
1121 
1122   // We may have added regions to the current incremental collection
1123   // set between the last GC or pause and now. We need to clear the
1124   // incremental collection set and then start rebuilding it afresh
1125   // after this full GC.
1126   abandon_collection_set(collection_set());
1127 
1128   tear_down_region_sets(false /* free_list_only */);
1129   collector_state()->set_gcs_are_young(true);
1130 }
1131 
1132 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1133   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1134   assert(used() == recalculate_used(), "Should be equal");
1135   _verifier->verify_region_sets_optional();
1136   _verifier->verify_before_gc();
1137   _verifier->check_bitmaps("Full GC Start");
1138 }
1139 
1140 void G1CollectedHeap::prepare_heap_for_mutators() {
1141   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1142   ClassLoaderDataGraph::purge();
1143   MetaspaceAux::verify_metrics();
1144 
1145   // Prepare heap for normal collections.
1146   assert(num_free_regions() == 0, "we should not have added any free regions");
1147   rebuild_region_sets(false /* free_list_only */);
1148   abort_refinement();
1149   resize_if_necessary_after_full_collection();
1150 
1151   // Rebuild the strong code root lists for each region
1152   rebuild_strong_code_roots();
1153 
1154   // Start a new incremental collection set for the next pause
1155   start_new_collection_set();
1156 
1157   _allocator->init_mutator_alloc_region();
1158 
1159   // Post collection state updates.
1160   MetaspaceGC::compute_new_size();
1161 }
1162 
1163 void G1CollectedHeap::abort_refinement() {
1164   if (_hot_card_cache->use_cache()) {
1165     _hot_card_cache->reset_hot_cache();
1166   }
1167 
1168   // Discard all remembered set updates.
1169   JavaThread::dirty_card_queue_set().abandon_logs();
1170   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1171 }
1172 
1173 void G1CollectedHeap::verify_after_full_collection() {
1174   check_gc_time_stamps();
1175   _hrm.verify_optional();
1176   _verifier->verify_region_sets_optional();
1177   _verifier->verify_after_gc();
1178   // Clear the previous marking bitmap, if needed for bitmap verification.
1179   // Note we cannot do this when we clear the next marking bitmap in
1180   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1181   // objects marked during a full GC against the previous bitmap.
1182   // But we need to clear it before calling check_bitmaps below since
1183   // the full GC has compacted objects and updated TAMS but not updated
1184   // the prev bitmap.
1185   if (G1VerifyBitmaps) {
1186     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1187     _cm->clear_prev_bitmap(workers());
1188   }
1189   _verifier->check_bitmaps("Full GC End");
1190 
1191   // At this point there should be no regions in the
1192   // entire heap tagged as young.
1193   assert(check_young_list_empty(), "young list should be empty at this point");
1194 
1195   // Note: since we've just done a full GC, concurrent
1196   // marking is no longer active. Therefore we need not
1197   // re-enable reference discovery for the CM ref processor.
1198   // That will be done at the start of the next marking cycle.
1199   // We also know that the STW processor should no longer
1200   // discover any new references.
1201   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1202   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1203   ref_processor_stw()->verify_no_references_recorded();
1204   ref_processor_cm()->verify_no_references_recorded();
1205 }
1206 
1207 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1208   // Post collection logging.
1209   // We should do this after we potentially resize the heap so
1210   // that all the COMMIT / UNCOMMIT events are generated before
1211   // the compaction events.
1212   print_hrm_post_compaction();
1213   heap_transition->print();
1214   print_heap_after_gc();
1215   print_heap_regions();
1216 #ifdef TRACESPINNING
1217   ParallelTaskTerminator::print_termination_counts();
1218 #endif
1219 }
1220 
1221 void G1CollectedHeap::do_full_collection_inner(G1FullGCScope* scope) {
1222   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1223   g1_policy()->record_full_collection_start();
1224 
1225   print_heap_before_gc();
1226   print_heap_regions();
1227 
1228   abort_concurrent_cycle();
1229   verify_before_full_collection(scope->is_explicit_gc());
1230 
1231   gc_prologue(true);
1232   prepare_heap_for_full_collection();
1233 
1234   G1FullCollector collector(scope, ref_processor_stw(), concurrent_mark()->next_mark_bitmap(), workers()->active_workers());
1235   collector.prepare_collection();
1236   collector.collect();
1237   collector.complete_collection();
1238 
1239   prepare_heap_for_mutators();
1240 
1241   g1_policy()->record_full_collection_end();
1242   gc_epilogue(true);
1243 
1244   verify_after_full_collection();
1245 
1246   print_heap_after_full_collection(scope->heap_transition());
1247 }
1248 
1249 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1250                                          bool clear_all_soft_refs) {
1251   assert_at_safepoint(true /* should_be_vm_thread */);
1252 
1253   if (GCLocker::check_active_before_gc()) {
1254     // Full GC was not completed.
1255     return false;
1256   }
1257 
1258   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1259       collector_policy()->should_clear_all_soft_refs();
1260 
1261   G1FullGCScope scope(explicit_gc, do_clear_all_soft_refs);
1262   do_full_collection_inner(&scope);
1263 
1264   // Full collection was successfully completed.
1265   return true;
1266 }
1267 
1268 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1269   // Currently, there is no facility in the do_full_collection(bool) API to notify
1270   // the caller that the collection did not succeed (e.g., because it was locked
1271   // out by the GC locker). So, right now, we'll ignore the return value.
1272   bool dummy = do_full_collection(true,                /* explicit_gc */
1273                                   clear_all_soft_refs);
1274 }
1275 
1276 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1277   // Capacity, free and used after the GC counted as full regions to
1278   // include the waste in the following calculations.
1279   const size_t capacity_after_gc = capacity();
1280   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1281 
1282   // This is enforced in arguments.cpp.
1283   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1284          "otherwise the code below doesn't make sense");
1285 
1286   // We don't have floating point command-line arguments
1287   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1288   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1289   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1290   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1291 
1292   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1293   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1294 
1295   // We have to be careful here as these two calculations can overflow
1296   // 32-bit size_t's.
1297   double used_after_gc_d = (double) used_after_gc;
1298   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1299   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1300 
1301   // Let's make sure that they are both under the max heap size, which
1302   // by default will make them fit into a size_t.
1303   double desired_capacity_upper_bound = (double) max_heap_size;
1304   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1305                                     desired_capacity_upper_bound);
1306   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1307                                     desired_capacity_upper_bound);
1308 
1309   // We can now safely turn them into size_t's.
1310   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1311   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1312 
1313   // This assert only makes sense here, before we adjust them
1314   // with respect to the min and max heap size.
1315   assert(minimum_desired_capacity <= maximum_desired_capacity,
1316          "minimum_desired_capacity = " SIZE_FORMAT ", "
1317          "maximum_desired_capacity = " SIZE_FORMAT,
1318          minimum_desired_capacity, maximum_desired_capacity);
1319 
1320   // Should not be greater than the heap max size. No need to adjust
1321   // it with respect to the heap min size as it's a lower bound (i.e.,
1322   // we'll try to make the capacity larger than it, not smaller).
1323   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1324   // Should not be less than the heap min size. No need to adjust it
1325   // with respect to the heap max size as it's an upper bound (i.e.,
1326   // we'll try to make the capacity smaller than it, not greater).
1327   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1328 
1329   if (capacity_after_gc < minimum_desired_capacity) {
1330     // Don't expand unless it's significant
1331     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1332 
1333     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1334                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1335                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1336                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1337 
1338     expand(expand_bytes, _workers);
1339 
1340     // No expansion, now see if we want to shrink
1341   } else if (capacity_after_gc > maximum_desired_capacity) {
1342     // Capacity too large, compute shrinking size
1343     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1344 
1345     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1346                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1347                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1348                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1349 
1350     shrink(shrink_bytes);
1351   }
1352 }
1353 
1354 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1355                                                             AllocationContext_t context,
1356                                                             bool do_gc,
1357                                                             bool clear_all_soft_refs,
1358                                                             bool expect_null_mutator_alloc_region,
1359                                                             bool* gc_succeeded) {
1360   *gc_succeeded = true;
1361   // Let's attempt the allocation first.
1362   HeapWord* result =
1363     attempt_allocation_at_safepoint(word_size,
1364                                     context,
1365                                     expect_null_mutator_alloc_region);
1366   if (result != NULL) {
1367     assert(*gc_succeeded, "sanity");
1368     return result;
1369   }
1370 
1371   // In a G1 heap, we're supposed to keep allocation from failing by
1372   // incremental pauses.  Therefore, at least for now, we'll favor
1373   // expansion over collection.  (This might change in the future if we can
1374   // do something smarter than full collection to satisfy a failed alloc.)
1375   result = expand_and_allocate(word_size, context);
1376   if (result != NULL) {
1377     assert(*gc_succeeded, "sanity");
1378     return result;
1379   }
1380 
1381   if (do_gc) {
1382     // Expansion didn't work, we'll try to do a Full GC.
1383     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1384                                        clear_all_soft_refs);
1385   }
1386 
1387   return NULL;
1388 }
1389 
1390 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1391                                                      AllocationContext_t context,
1392                                                      bool* succeeded) {
1393   assert_at_safepoint(true /* should_be_vm_thread */);
1394 
1395   // Attempts to allocate followed by Full GC.
1396   HeapWord* result =
1397     satisfy_failed_allocation_helper(word_size,
1398                                      context,
1399                                      true,  /* do_gc */
1400                                      false, /* clear_all_soft_refs */
1401                                      false, /* expect_null_mutator_alloc_region */
1402                                      succeeded);
1403 
1404   if (result != NULL || !*succeeded) {
1405     return result;
1406   }
1407 
1408   // Attempts to allocate followed by Full GC that will collect all soft references.
1409   result = satisfy_failed_allocation_helper(word_size,
1410                                             context,
1411                                             true, /* do_gc */
1412                                             true, /* clear_all_soft_refs */
1413                                             true, /* expect_null_mutator_alloc_region */
1414                                             succeeded);
1415 
1416   if (result != NULL || !*succeeded) {
1417     return result;
1418   }
1419 
1420   // Attempts to allocate, no GC
1421   result = satisfy_failed_allocation_helper(word_size,
1422                                             context,
1423                                             false, /* do_gc */
1424                                             false, /* clear_all_soft_refs */
1425                                             true,  /* expect_null_mutator_alloc_region */
1426                                             succeeded);
1427 
1428   if (result != NULL) {
1429     assert(*succeeded, "sanity");
1430     return result;
1431   }
1432 
1433   assert(!collector_policy()->should_clear_all_soft_refs(),
1434          "Flag should have been handled and cleared prior to this point");
1435 
1436   // What else?  We might try synchronous finalization later.  If the total
1437   // space available is large enough for the allocation, then a more
1438   // complete compaction phase than we've tried so far might be
1439   // appropriate.
1440   assert(*succeeded, "sanity");
1441   return NULL;
1442 }
1443 
1444 // Attempting to expand the heap sufficiently
1445 // to support an allocation of the given "word_size".  If
1446 // successful, perform the allocation and return the address of the
1447 // allocated block, or else "NULL".
1448 
1449 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1450   assert_at_safepoint(true /* should_be_vm_thread */);
1451 
1452   _verifier->verify_region_sets_optional();
1453 
1454   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1455   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1456                             word_size * HeapWordSize);
1457 
1458 
1459   if (expand(expand_bytes, _workers)) {
1460     _hrm.verify_optional();
1461     _verifier->verify_region_sets_optional();
1462     return attempt_allocation_at_safepoint(word_size,
1463                                            context,
1464                                            false /* expect_null_mutator_alloc_region */);
1465   }
1466   return NULL;
1467 }
1468 
1469 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1470   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1471   aligned_expand_bytes = align_up(aligned_expand_bytes,
1472                                        HeapRegion::GrainBytes);
1473 
1474   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1475                             expand_bytes, aligned_expand_bytes);
1476 
1477   if (is_maximal_no_gc()) {
1478     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1479     return false;
1480   }
1481 
1482   double expand_heap_start_time_sec = os::elapsedTime();
1483   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1484   assert(regions_to_expand > 0, "Must expand by at least one region");
1485 
1486   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1487   if (expand_time_ms != NULL) {
1488     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1489   }
1490 
1491   if (expanded_by > 0) {
1492     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1493     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1494     g1_policy()->record_new_heap_size(num_regions());
1495   } else {
1496     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1497 
1498     // The expansion of the virtual storage space was unsuccessful.
1499     // Let's see if it was because we ran out of swap.
1500     if (G1ExitOnExpansionFailure &&
1501         _hrm.available() >= regions_to_expand) {
1502       // We had head room...
1503       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1504     }
1505   }
1506   return regions_to_expand > 0;
1507 }
1508 
1509 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1510   size_t aligned_shrink_bytes =
1511     ReservedSpace::page_align_size_down(shrink_bytes);
1512   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1513                                          HeapRegion::GrainBytes);
1514   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1515 
1516   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1517   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1518 
1519 
1520   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1521                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1522   if (num_regions_removed > 0) {
1523     g1_policy()->record_new_heap_size(num_regions());
1524   } else {
1525     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1526   }
1527 }
1528 
1529 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1530   _verifier->verify_region_sets_optional();
1531 
1532   // We should only reach here at the end of a Full GC which means we
1533   // should not not be holding to any GC alloc regions. The method
1534   // below will make sure of that and do any remaining clean up.
1535   _allocator->abandon_gc_alloc_regions();
1536 
1537   // Instead of tearing down / rebuilding the free lists here, we
1538   // could instead use the remove_all_pending() method on free_list to
1539   // remove only the ones that we need to remove.
1540   tear_down_region_sets(true /* free_list_only */);
1541   shrink_helper(shrink_bytes);
1542   rebuild_region_sets(true /* free_list_only */);
1543 
1544   _hrm.verify_optional();
1545   _verifier->verify_region_sets_optional();
1546 }
1547 
1548 // Public methods.
1549 
1550 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1551   CollectedHeap(),
1552   _young_gen_sampling_thread(NULL),
1553   _collector_policy(collector_policy),
1554   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1555   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1556   _g1_policy(create_g1_policy(_gc_timer_stw)),
1557   _collection_set(this, _g1_policy),
1558   _dirty_card_queue_set(false),
1559   _is_alive_closure_cm(this),
1560   _is_alive_closure_stw(this),
1561   _ref_processor_cm(NULL),
1562   _ref_processor_stw(NULL),
1563   _bot(NULL),
1564   _hot_card_cache(NULL),
1565   _g1_rem_set(NULL),
1566   _cr(NULL),
1567   _g1mm(NULL),
1568   _preserved_marks_set(true /* in_c_heap */),
1569   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1570   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1571   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1572   _humongous_reclaim_candidates(),
1573   _has_humongous_reclaim_candidates(false),
1574   _archive_allocator(NULL),
1575   _free_regions_coming(false),
1576   _gc_time_stamp(0),
1577   _summary_bytes_used(0),
1578   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1579   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1580   _expand_heap_after_alloc_failure(true),
1581   _old_marking_cycles_started(0),
1582   _old_marking_cycles_completed(0),
1583   _in_cset_fast_test() {
1584 
1585   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1586                           /* are_GC_task_threads */true,
1587                           /* are_ConcurrentGC_threads */false);
1588   _workers->initialize_workers();
1589   _verifier = new G1HeapVerifier(this);
1590 
1591   _allocator = G1Allocator::create_allocator(this);
1592 
1593   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1594 
1595   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1596 
1597   // Override the default _filler_array_max_size so that no humongous filler
1598   // objects are created.
1599   _filler_array_max_size = _humongous_object_threshold_in_words;
1600 
1601   uint n_queues = ParallelGCThreads;
1602   _task_queues = new RefToScanQueueSet(n_queues);
1603 
1604   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1605 
1606   for (uint i = 0; i < n_queues; i++) {
1607     RefToScanQueue* q = new RefToScanQueue();
1608     q->initialize();
1609     _task_queues->register_queue(i, q);
1610     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1611   }
1612 
1613   // Initialize the G1EvacuationFailureALot counters and flags.
1614   NOT_PRODUCT(reset_evacuation_should_fail();)
1615 
1616   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1617 }
1618 
1619 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1620                                                                  size_t size,
1621                                                                  size_t translation_factor) {
1622   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1623   // Allocate a new reserved space, preferring to use large pages.
1624   ReservedSpace rs(size, preferred_page_size);
1625   G1RegionToSpaceMapper* result  =
1626     G1RegionToSpaceMapper::create_mapper(rs,
1627                                          size,
1628                                          rs.alignment(),
1629                                          HeapRegion::GrainBytes,
1630                                          translation_factor,
1631                                          mtGC);
1632 
1633   os::trace_page_sizes_for_requested_size(description,
1634                                           size,
1635                                           preferred_page_size,
1636                                           rs.alignment(),
1637                                           rs.base(),
1638                                           rs.size());
1639 
1640   return result;
1641 }
1642 
1643 jint G1CollectedHeap::initialize_concurrent_refinement() {
1644   jint ecode = JNI_OK;
1645   _cr = G1ConcurrentRefine::create(&ecode);
1646   return ecode;
1647 }
1648 
1649 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1650   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1651   if (_young_gen_sampling_thread->osthread() == NULL) {
1652     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1653     return JNI_ENOMEM;
1654   }
1655   return JNI_OK;
1656 }
1657 
1658 jint G1CollectedHeap::initialize() {
1659   CollectedHeap::pre_initialize();
1660   os::enable_vtime();
1661 
1662   // Necessary to satisfy locking discipline assertions.
1663 
1664   MutexLocker x(Heap_lock);
1665 
1666   // While there are no constraints in the GC code that HeapWordSize
1667   // be any particular value, there are multiple other areas in the
1668   // system which believe this to be true (e.g. oop->object_size in some
1669   // cases incorrectly returns the size in wordSize units rather than
1670   // HeapWordSize).
1671   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1672 
1673   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1674   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1675   size_t heap_alignment = collector_policy()->heap_alignment();
1676 
1677   // Ensure that the sizes are properly aligned.
1678   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1679   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1680   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1681 
1682   // Reserve the maximum.
1683 
1684   // When compressed oops are enabled, the preferred heap base
1685   // is calculated by subtracting the requested size from the
1686   // 32Gb boundary and using the result as the base address for
1687   // heap reservation. If the requested size is not aligned to
1688   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1689   // into the ReservedHeapSpace constructor) then the actual
1690   // base of the reserved heap may end up differing from the
1691   // address that was requested (i.e. the preferred heap base).
1692   // If this happens then we could end up using a non-optimal
1693   // compressed oops mode.
1694 
1695   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1696                                                  heap_alignment);
1697 
1698   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1699 
1700   // Create the barrier set for the entire reserved region.
1701   G1SATBCardTableLoggingModRefBS* bs
1702     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1703   bs->initialize();
1704   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1705   set_barrier_set(bs);
1706 
1707   // Create the hot card cache.
1708   _hot_card_cache = new G1HotCardCache(this);
1709 
1710   // Carve out the G1 part of the heap.
1711   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1712   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1713   G1RegionToSpaceMapper* heap_storage =
1714     G1RegionToSpaceMapper::create_mapper(g1_rs,
1715                                          g1_rs.size(),
1716                                          page_size,
1717                                          HeapRegion::GrainBytes,
1718                                          1,
1719                                          mtJavaHeap);
1720   os::trace_page_sizes("Heap",
1721                        collector_policy()->min_heap_byte_size(),
1722                        max_byte_size,
1723                        page_size,
1724                        heap_rs.base(),
1725                        heap_rs.size());
1726   heap_storage->set_mapping_changed_listener(&_listener);
1727 
1728   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1729   G1RegionToSpaceMapper* bot_storage =
1730     create_aux_memory_mapper("Block Offset Table",
1731                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1732                              G1BlockOffsetTable::heap_map_factor());
1733 
1734   G1RegionToSpaceMapper* cardtable_storage =
1735     create_aux_memory_mapper("Card Table",
1736                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1737                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1738 
1739   G1RegionToSpaceMapper* card_counts_storage =
1740     create_aux_memory_mapper("Card Counts Table",
1741                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1742                              G1CardCounts::heap_map_factor());
1743 
1744   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1745   G1RegionToSpaceMapper* prev_bitmap_storage =
1746     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1747   G1RegionToSpaceMapper* next_bitmap_storage =
1748     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1749 
1750   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1751   g1_barrier_set()->initialize(cardtable_storage);
1752   // Do later initialization work for concurrent refinement.
1753   _hot_card_cache->initialize(card_counts_storage);
1754 
1755   // 6843694 - ensure that the maximum region index can fit
1756   // in the remembered set structures.
1757   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1758   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1759 
1760   // Also create a G1 rem set.
1761   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1762   _g1_rem_set->initialize(max_capacity(), max_regions());
1763 
1764   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1765   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1766   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1767             "too many cards per region");
1768 
1769   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1770 
1771   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1772 
1773   {
1774     HeapWord* start = _hrm.reserved().start();
1775     HeapWord* end = _hrm.reserved().end();
1776     size_t granularity = HeapRegion::GrainBytes;
1777 
1778     _in_cset_fast_test.initialize(start, end, granularity);
1779     _humongous_reclaim_candidates.initialize(start, end, granularity);
1780   }
1781 
1782   // Create the G1ConcurrentMark data structure and thread.
1783   // (Must do this late, so that "max_regions" is defined.)
1784   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1785   if (_cm == NULL || !_cm->completed_initialization()) {
1786     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1787     return JNI_ENOMEM;
1788   }
1789   _cmThread = _cm->cm_thread();
1790 
1791   // Now expand into the initial heap size.
1792   if (!expand(init_byte_size, _workers)) {
1793     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1794     return JNI_ENOMEM;
1795   }
1796 
1797   // Perform any initialization actions delegated to the policy.
1798   g1_policy()->init(this, &_collection_set);
1799 
1800   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1801                                                SATB_Q_FL_lock,
1802                                                G1SATBProcessCompletedThreshold,
1803                                                Shared_SATB_Q_lock);
1804 
1805   jint ecode = initialize_concurrent_refinement();
1806   if (ecode != JNI_OK) {
1807     return ecode;
1808   }
1809 
1810   ecode = initialize_young_gen_sampling_thread();
1811   if (ecode != JNI_OK) {
1812     return ecode;
1813   }
1814 
1815   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1816                                                 DirtyCardQ_FL_lock,
1817                                                 (int)concurrent_refine()->yellow_zone(),
1818                                                 (int)concurrent_refine()->red_zone(),
1819                                                 Shared_DirtyCardQ_lock,
1820                                                 NULL,  // fl_owner
1821                                                 true); // init_free_ids
1822 
1823   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1824                                     DirtyCardQ_FL_lock,
1825                                     -1, // never trigger processing
1826                                     -1, // no limit on length
1827                                     Shared_DirtyCardQ_lock,
1828                                     &JavaThread::dirty_card_queue_set());
1829 
1830   // Here we allocate the dummy HeapRegion that is required by the
1831   // G1AllocRegion class.
1832   HeapRegion* dummy_region = _hrm.get_dummy_region();
1833 
1834   // We'll re-use the same region whether the alloc region will
1835   // require BOT updates or not and, if it doesn't, then a non-young
1836   // region will complain that it cannot support allocations without
1837   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1838   dummy_region->set_eden();
1839   // Make sure it's full.
1840   dummy_region->set_top(dummy_region->end());
1841   G1AllocRegion::setup(this, dummy_region);
1842 
1843   _allocator->init_mutator_alloc_region();
1844 
1845   // Do create of the monitoring and management support so that
1846   // values in the heap have been properly initialized.
1847   _g1mm = new G1MonitoringSupport(this);
1848 
1849   G1StringDedup::initialize();
1850 
1851   _preserved_marks_set.init(ParallelGCThreads);
1852 
1853   _collection_set.initialize(max_regions());
1854 
1855   return JNI_OK;
1856 }
1857 
1858 void G1CollectedHeap::stop() {
1859   // Stop all concurrent threads. We do this to make sure these threads
1860   // do not continue to execute and access resources (e.g. logging)
1861   // that are destroyed during shutdown.
1862   _cr->stop();
1863   _young_gen_sampling_thread->stop();
1864   _cmThread->stop();
1865   if (G1StringDedup::is_enabled()) {
1866     G1StringDedup::stop();
1867   }
1868 }
1869 
1870 void G1CollectedHeap::safepoint_synchronize_begin() {
1871   SuspendibleThreadSet::synchronize();
1872 }
1873 
1874 void G1CollectedHeap::safepoint_synchronize_end() {
1875   SuspendibleThreadSet::desynchronize();
1876 }
1877 
1878 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1879   return HeapRegion::max_region_size();
1880 }
1881 
1882 void G1CollectedHeap::post_initialize() {
1883   ref_processing_init();
1884 }
1885 
1886 void G1CollectedHeap::ref_processing_init() {
1887   // Reference processing in G1 currently works as follows:
1888   //
1889   // * There are two reference processor instances. One is
1890   //   used to record and process discovered references
1891   //   during concurrent marking; the other is used to
1892   //   record and process references during STW pauses
1893   //   (both full and incremental).
1894   // * Both ref processors need to 'span' the entire heap as
1895   //   the regions in the collection set may be dotted around.
1896   //
1897   // * For the concurrent marking ref processor:
1898   //   * Reference discovery is enabled at initial marking.
1899   //   * Reference discovery is disabled and the discovered
1900   //     references processed etc during remarking.
1901   //   * Reference discovery is MT (see below).
1902   //   * Reference discovery requires a barrier (see below).
1903   //   * Reference processing may or may not be MT
1904   //     (depending on the value of ParallelRefProcEnabled
1905   //     and ParallelGCThreads).
1906   //   * A full GC disables reference discovery by the CM
1907   //     ref processor and abandons any entries on it's
1908   //     discovered lists.
1909   //
1910   // * For the STW processor:
1911   //   * Non MT discovery is enabled at the start of a full GC.
1912   //   * Processing and enqueueing during a full GC is non-MT.
1913   //   * During a full GC, references are processed after marking.
1914   //
1915   //   * Discovery (may or may not be MT) is enabled at the start
1916   //     of an incremental evacuation pause.
1917   //   * References are processed near the end of a STW evacuation pause.
1918   //   * For both types of GC:
1919   //     * Discovery is atomic - i.e. not concurrent.
1920   //     * Reference discovery will not need a barrier.
1921 
1922   MemRegion mr = reserved_region();
1923 
1924   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1925 
1926   // Concurrent Mark ref processor
1927   _ref_processor_cm =
1928     new ReferenceProcessor(mr,    // span
1929                            mt_processing,
1930                                 // mt processing
1931                            ParallelGCThreads,
1932                                 // degree of mt processing
1933                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1934                                 // mt discovery
1935                            MAX2(ParallelGCThreads, ConcGCThreads),
1936                                 // degree of mt discovery
1937                            false,
1938                                 // Reference discovery is not atomic
1939                            &_is_alive_closure_cm);
1940                                 // is alive closure
1941                                 // (for efficiency/performance)
1942 
1943   // STW ref processor
1944   _ref_processor_stw =
1945     new ReferenceProcessor(mr,    // span
1946                            mt_processing,
1947                                 // mt processing
1948                            ParallelGCThreads,
1949                                 // degree of mt processing
1950                            (ParallelGCThreads > 1),
1951                                 // mt discovery
1952                            ParallelGCThreads,
1953                                 // degree of mt discovery
1954                            true,
1955                                 // Reference discovery is atomic
1956                            &_is_alive_closure_stw);
1957                                 // is alive closure
1958                                 // (for efficiency/performance)
1959 }
1960 
1961 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1962   return _collector_policy;
1963 }
1964 
1965 size_t G1CollectedHeap::capacity() const {
1966   return _hrm.length() * HeapRegion::GrainBytes;
1967 }
1968 
1969 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1970   return _hrm.total_free_bytes();
1971 }
1972 
1973 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1974   hr->reset_gc_time_stamp();
1975 }
1976 
1977 #ifndef PRODUCT
1978 
1979 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1980 private:
1981   unsigned _gc_time_stamp;
1982   bool _failures;
1983 
1984 public:
1985   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1986     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1987 
1988   virtual bool doHeapRegion(HeapRegion* hr) {
1989     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1990     if (_gc_time_stamp != region_gc_time_stamp) {
1991       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1992                             region_gc_time_stamp, _gc_time_stamp);
1993       _failures = true;
1994     }
1995     return false;
1996   }
1997 
1998   bool failures() { return _failures; }
1999 };
2000 
2001 void G1CollectedHeap::check_gc_time_stamps() {
2002   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2003   heap_region_iterate(&cl);
2004   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2005 }
2006 #endif // PRODUCT
2007 
2008 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2009   _hot_card_cache->drain(cl, worker_i);
2010 }
2011 
2012 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2013   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2014   size_t n_completed_buffers = 0;
2015   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
2016     n_completed_buffers++;
2017   }
2018   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2019   dcqs.clear_n_completed_buffers();
2020   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2021 }
2022 
2023 // Computes the sum of the storage used by the various regions.
2024 size_t G1CollectedHeap::used() const {
2025   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2026   if (_archive_allocator != NULL) {
2027     result += _archive_allocator->used();
2028   }
2029   return result;
2030 }
2031 
2032 size_t G1CollectedHeap::used_unlocked() const {
2033   return _summary_bytes_used;
2034 }
2035 
2036 class SumUsedClosure: public HeapRegionClosure {
2037   size_t _used;
2038 public:
2039   SumUsedClosure() : _used(0) {}
2040   bool doHeapRegion(HeapRegion* r) {
2041     _used += r->used();
2042     return false;
2043   }
2044   size_t result() { return _used; }
2045 };
2046 
2047 size_t G1CollectedHeap::recalculate_used() const {
2048   double recalculate_used_start = os::elapsedTime();
2049 
2050   SumUsedClosure blk;
2051   heap_region_iterate(&blk);
2052 
2053   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2054   return blk.result();
2055 }
2056 
2057 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2058   switch (cause) {
2059     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2060     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2061     case GCCause::_update_allocation_context_stats_inc: return true;
2062     case GCCause::_wb_conc_mark:                        return true;
2063     default :                                           return false;
2064   }
2065 }
2066 
2067 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2068   switch (cause) {
2069     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2070     case GCCause::_g1_humongous_allocation: return true;
2071     default:                                return is_user_requested_concurrent_full_gc(cause);
2072   }
2073 }
2074 
2075 #ifndef PRODUCT
2076 void G1CollectedHeap::allocate_dummy_regions() {
2077   // Let's fill up most of the region
2078   size_t word_size = HeapRegion::GrainWords - 1024;
2079   // And as a result the region we'll allocate will be humongous.
2080   guarantee(is_humongous(word_size), "sanity");
2081 
2082   // _filler_array_max_size is set to humongous object threshold
2083   // but temporarily change it to use CollectedHeap::fill_with_object().
2084   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2085 
2086   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2087     // Let's use the existing mechanism for the allocation
2088     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2089                                                  AllocationContext::system());
2090     if (dummy_obj != NULL) {
2091       MemRegion mr(dummy_obj, word_size);
2092       CollectedHeap::fill_with_object(mr);
2093     } else {
2094       // If we can't allocate once, we probably cannot allocate
2095       // again. Let's get out of the loop.
2096       break;
2097     }
2098   }
2099 }
2100 #endif // !PRODUCT
2101 
2102 void G1CollectedHeap::increment_old_marking_cycles_started() {
2103   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2104          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2105          "Wrong marking cycle count (started: %d, completed: %d)",
2106          _old_marking_cycles_started, _old_marking_cycles_completed);
2107 
2108   _old_marking_cycles_started++;
2109 }
2110 
2111 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2112   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2113 
2114   // We assume that if concurrent == true, then the caller is a
2115   // concurrent thread that was joined the Suspendible Thread
2116   // Set. If there's ever a cheap way to check this, we should add an
2117   // assert here.
2118 
2119   // Given that this method is called at the end of a Full GC or of a
2120   // concurrent cycle, and those can be nested (i.e., a Full GC can
2121   // interrupt a concurrent cycle), the number of full collections
2122   // completed should be either one (in the case where there was no
2123   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2124   // behind the number of full collections started.
2125 
2126   // This is the case for the inner caller, i.e. a Full GC.
2127   assert(concurrent ||
2128          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2129          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2130          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2131          "is inconsistent with _old_marking_cycles_completed = %u",
2132          _old_marking_cycles_started, _old_marking_cycles_completed);
2133 
2134   // This is the case for the outer caller, i.e. the concurrent cycle.
2135   assert(!concurrent ||
2136          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2137          "for outer caller (concurrent cycle): "
2138          "_old_marking_cycles_started = %u "
2139          "is inconsistent with _old_marking_cycles_completed = %u",
2140          _old_marking_cycles_started, _old_marking_cycles_completed);
2141 
2142   _old_marking_cycles_completed += 1;
2143 
2144   // We need to clear the "in_progress" flag in the CM thread before
2145   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2146   // is set) so that if a waiter requests another System.gc() it doesn't
2147   // incorrectly see that a marking cycle is still in progress.
2148   if (concurrent) {
2149     _cmThread->set_idle();
2150   }
2151 
2152   // This notify_all() will ensure that a thread that called
2153   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2154   // and it's waiting for a full GC to finish will be woken up. It is
2155   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2156   FullGCCount_lock->notify_all();
2157 }
2158 
2159 void G1CollectedHeap::collect(GCCause::Cause cause) {
2160   assert_heap_not_locked();
2161 
2162   uint gc_count_before;
2163   uint old_marking_count_before;
2164   uint full_gc_count_before;
2165   bool retry_gc;
2166 
2167   do {
2168     retry_gc = false;
2169 
2170     {
2171       MutexLocker ml(Heap_lock);
2172 
2173       // Read the GC count while holding the Heap_lock
2174       gc_count_before = total_collections();
2175       full_gc_count_before = total_full_collections();
2176       old_marking_count_before = _old_marking_cycles_started;
2177     }
2178 
2179     if (should_do_concurrent_full_gc(cause)) {
2180       // Schedule an initial-mark evacuation pause that will start a
2181       // concurrent cycle. We're setting word_size to 0 which means that
2182       // we are not requesting a post-GC allocation.
2183       VM_G1IncCollectionPause op(gc_count_before,
2184                                  0,     /* word_size */
2185                                  true,  /* should_initiate_conc_mark */
2186                                  g1_policy()->max_pause_time_ms(),
2187                                  cause);
2188       op.set_allocation_context(AllocationContext::current());
2189 
2190       VMThread::execute(&op);
2191       if (!op.pause_succeeded()) {
2192         if (old_marking_count_before == _old_marking_cycles_started) {
2193           retry_gc = op.should_retry_gc();
2194         } else {
2195           // A Full GC happened while we were trying to schedule the
2196           // initial-mark GC. No point in starting a new cycle given
2197           // that the whole heap was collected anyway.
2198         }
2199 
2200         if (retry_gc) {
2201           if (GCLocker::is_active_and_needs_gc()) {
2202             GCLocker::stall_until_clear();
2203           }
2204         }
2205       }
2206     } else {
2207       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2208           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2209 
2210         // Schedule a standard evacuation pause. We're setting word_size
2211         // to 0 which means that we are not requesting a post-GC allocation.
2212         VM_G1IncCollectionPause op(gc_count_before,
2213                                    0,     /* word_size */
2214                                    false, /* should_initiate_conc_mark */
2215                                    g1_policy()->max_pause_time_ms(),
2216                                    cause);
2217         VMThread::execute(&op);
2218       } else {
2219         // Schedule a Full GC.
2220         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2221         VMThread::execute(&op);
2222       }
2223     }
2224   } while (retry_gc);
2225 }
2226 
2227 bool G1CollectedHeap::is_in(const void* p) const {
2228   if (_hrm.reserved().contains(p)) {
2229     // Given that we know that p is in the reserved space,
2230     // heap_region_containing() should successfully
2231     // return the containing region.
2232     HeapRegion* hr = heap_region_containing(p);
2233     return hr->is_in(p);
2234   } else {
2235     return false;
2236   }
2237 }
2238 
2239 #ifdef ASSERT
2240 bool G1CollectedHeap::is_in_exact(const void* p) const {
2241   bool contains = reserved_region().contains(p);
2242   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2243   if (contains && available) {
2244     return true;
2245   } else {
2246     return false;
2247   }
2248 }
2249 #endif
2250 
2251 // Iteration functions.
2252 
2253 // Iterates an ObjectClosure over all objects within a HeapRegion.
2254 
2255 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2256   ObjectClosure* _cl;
2257 public:
2258   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2259   bool doHeapRegion(HeapRegion* r) {
2260     if (!r->is_continues_humongous()) {
2261       r->object_iterate(_cl);
2262     }
2263     return false;
2264   }
2265 };
2266 
2267 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2268   IterateObjectClosureRegionClosure blk(cl);
2269   heap_region_iterate(&blk);
2270 }
2271 
2272 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2273   _hrm.iterate(cl);
2274 }
2275 
2276 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2277                                                                  HeapRegionClaimer *hrclaimer,
2278                                                                  uint worker_id) const {
2279   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2280 }
2281 
2282 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2283                                                          HeapRegionClaimer *hrclaimer) const {
2284   _hrm.par_iterate(cl, hrclaimer, 0);
2285 }
2286 
2287 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2288   _collection_set.iterate(cl);
2289 }
2290 
2291 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2292   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2293 }
2294 
2295 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2296   HeapRegion* hr = heap_region_containing(addr);
2297   return hr->block_start(addr);
2298 }
2299 
2300 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2301   HeapRegion* hr = heap_region_containing(addr);
2302   return hr->block_size(addr);
2303 }
2304 
2305 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2306   HeapRegion* hr = heap_region_containing(addr);
2307   return hr->block_is_obj(addr);
2308 }
2309 
2310 bool G1CollectedHeap::supports_tlab_allocation() const {
2311   return true;
2312 }
2313 
2314 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2315   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2316 }
2317 
2318 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2319   return _eden.length() * HeapRegion::GrainBytes;
2320 }
2321 
2322 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2323 // must be equal to the humongous object limit.
2324 size_t G1CollectedHeap::max_tlab_size() const {
2325   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2326 }
2327 
2328 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2329   AllocationContext_t context = AllocationContext::current();
2330   return _allocator->unsafe_max_tlab_alloc(context);
2331 }
2332 
2333 size_t G1CollectedHeap::max_capacity() const {
2334   return _hrm.reserved().byte_size();
2335 }
2336 
2337 jlong G1CollectedHeap::millis_since_last_gc() {
2338   // See the notes in GenCollectedHeap::millis_since_last_gc()
2339   // for more information about the implementation.
2340   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2341     _g1_policy->collection_pause_end_millis();
2342   if (ret_val < 0) {
2343     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2344       ". returning zero instead.", ret_val);
2345     return 0;
2346   }
2347   return ret_val;
2348 }
2349 
2350 void G1CollectedHeap::prepare_for_verify() {
2351   _verifier->prepare_for_verify();
2352 }
2353 
2354 void G1CollectedHeap::verify(VerifyOption vo) {
2355   _verifier->verify(vo);
2356 }
2357 
2358 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2359   return true;
2360 }
2361 
2362 const char* const* G1CollectedHeap::concurrent_phases() const {
2363   return _cmThread->concurrent_phases();
2364 }
2365 
2366 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2367   return _cmThread->request_concurrent_phase(phase);
2368 }
2369 
2370 class PrintRegionClosure: public HeapRegionClosure {
2371   outputStream* _st;
2372 public:
2373   PrintRegionClosure(outputStream* st) : _st(st) {}
2374   bool doHeapRegion(HeapRegion* r) {
2375     r->print_on(_st);
2376     return false;
2377   }
2378 };
2379 
2380 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2381                                        const HeapRegion* hr,
2382                                        const VerifyOption vo) const {
2383   switch (vo) {
2384   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2385   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2386   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2387   default:                            ShouldNotReachHere();
2388   }
2389   return false; // keep some compilers happy
2390 }
2391 
2392 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2393                                        const VerifyOption vo) const {
2394   switch (vo) {
2395   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2396   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2397   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2398   default:                            ShouldNotReachHere();
2399   }
2400   return false; // keep some compilers happy
2401 }
2402 
2403 void G1CollectedHeap::print_heap_regions() const {
2404   LogTarget(Trace, gc, heap, region) lt;
2405   if (lt.is_enabled()) {
2406     LogStream ls(lt);
2407     print_regions_on(&ls);
2408   }
2409 }
2410 
2411 void G1CollectedHeap::print_on(outputStream* st) const {
2412   st->print(" %-20s", "garbage-first heap");
2413   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2414             capacity()/K, used_unlocked()/K);
2415   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2416             p2i(_hrm.reserved().start()),
2417             p2i(_hrm.reserved().end()));
2418   st->cr();
2419   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2420   uint young_regions = young_regions_count();
2421   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2422             (size_t) young_regions * HeapRegion::GrainBytes / K);
2423   uint survivor_regions = survivor_regions_count();
2424   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2425             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2426   st->cr();
2427   MetaspaceAux::print_on(st);
2428 }
2429 
2430 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2431   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2432                "HS=humongous(starts), HC=humongous(continues), "
2433                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2434                "AC=allocation context, "
2435                "TAMS=top-at-mark-start (previous, next)");
2436   PrintRegionClosure blk(st);
2437   heap_region_iterate(&blk);
2438 }
2439 
2440 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2441   print_on(st);
2442 
2443   // Print the per-region information.
2444   print_regions_on(st);
2445 }
2446 
2447 void G1CollectedHeap::print_on_error(outputStream* st) const {
2448   this->CollectedHeap::print_on_error(st);
2449 
2450   if (_cm != NULL) {
2451     st->cr();
2452     _cm->print_on_error(st);
2453   }
2454 }
2455 
2456 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2457   workers()->print_worker_threads_on(st);
2458   _cmThread->print_on(st);
2459   st->cr();
2460   _cm->print_worker_threads_on(st);
2461   _cr->print_threads_on(st);
2462   _young_gen_sampling_thread->print_on(st);
2463   if (G1StringDedup::is_enabled()) {
2464     G1StringDedup::print_worker_threads_on(st);
2465   }
2466 }
2467 
2468 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2469   workers()->threads_do(tc);
2470   tc->do_thread(_cmThread);
2471   _cm->threads_do(tc);
2472   _cr->threads_do(tc);
2473   tc->do_thread(_young_gen_sampling_thread);
2474   if (G1StringDedup::is_enabled()) {
2475     G1StringDedup::threads_do(tc);
2476   }
2477 }
2478 
2479 void G1CollectedHeap::print_tracing_info() const {
2480   g1_rem_set()->print_summary_info();
2481   concurrent_mark()->print_summary_info();
2482 }
2483 
2484 #ifndef PRODUCT
2485 // Helpful for debugging RSet issues.
2486 
2487 class PrintRSetsClosure : public HeapRegionClosure {
2488 private:
2489   const char* _msg;
2490   size_t _occupied_sum;
2491 
2492 public:
2493   bool doHeapRegion(HeapRegion* r) {
2494     HeapRegionRemSet* hrrs = r->rem_set();
2495     size_t occupied = hrrs->occupied();
2496     _occupied_sum += occupied;
2497 
2498     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2499     if (occupied == 0) {
2500       tty->print_cr("  RSet is empty");
2501     } else {
2502       hrrs->print();
2503     }
2504     tty->print_cr("----------");
2505     return false;
2506   }
2507 
2508   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2509     tty->cr();
2510     tty->print_cr("========================================");
2511     tty->print_cr("%s", msg);
2512     tty->cr();
2513   }
2514 
2515   ~PrintRSetsClosure() {
2516     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2517     tty->print_cr("========================================");
2518     tty->cr();
2519   }
2520 };
2521 
2522 void G1CollectedHeap::print_cset_rsets() {
2523   PrintRSetsClosure cl("Printing CSet RSets");
2524   collection_set_iterate(&cl);
2525 }
2526 
2527 void G1CollectedHeap::print_all_rsets() {
2528   PrintRSetsClosure cl("Printing All RSets");;
2529   heap_region_iterate(&cl);
2530 }
2531 #endif // PRODUCT
2532 
2533 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2534 
2535   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2536   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2537   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2538 
2539   size_t eden_capacity_bytes =
2540     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2541 
2542   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2543   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2544                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2545 }
2546 
2547 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2548   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2549                        stats->unused(), stats->used(), stats->region_end_waste(),
2550                        stats->regions_filled(), stats->direct_allocated(),
2551                        stats->failure_used(), stats->failure_waste());
2552 }
2553 
2554 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2555   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2556   gc_tracer->report_gc_heap_summary(when, heap_summary);
2557 
2558   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2559   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2560 }
2561 
2562 G1CollectedHeap* G1CollectedHeap::heap() {
2563   CollectedHeap* heap = Universe::heap();
2564   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2565   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2566   return (G1CollectedHeap*)heap;
2567 }
2568 
2569 void G1CollectedHeap::gc_prologue(bool full) {
2570   // always_do_update_barrier = false;
2571   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2572 
2573   // This summary needs to be printed before incrementing total collections.
2574   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2575 
2576   // Update common counters.
2577   increment_total_collections(full /* full gc */);
2578   if (full) {
2579     increment_old_marking_cycles_started();
2580     reset_gc_time_stamp();
2581   } else {
2582     increment_gc_time_stamp();
2583   }
2584 
2585   // Fill TLAB's and such
2586   double start = os::elapsedTime();
2587   accumulate_statistics_all_tlabs();
2588   ensure_parsability(true);
2589   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2590 }
2591 
2592 void G1CollectedHeap::gc_epilogue(bool full) {
2593   // Update common counters.
2594   if (full) {
2595     // Update the number of full collections that have been completed.
2596     increment_old_marking_cycles_completed(false /* concurrent */);
2597   }
2598 
2599   // We are at the end of the GC. Total collections has already been increased.
2600   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2601 
2602   // FIXME: what is this about?
2603   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2604   // is set.
2605 #if COMPILER2_OR_JVMCI
2606   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2607 #endif
2608   // always_do_update_barrier = true;
2609 
2610   double start = os::elapsedTime();
2611   resize_all_tlabs();
2612   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2613 
2614   allocation_context_stats().update(full);
2615 
2616   MemoryService::track_memory_usage();
2617   // We have just completed a GC. Update the soft reference
2618   // policy with the new heap occupancy
2619   Universe::update_heap_info_at_gc();
2620 }
2621 
2622 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2623                                                uint gc_count_before,
2624                                                bool* succeeded,
2625                                                GCCause::Cause gc_cause) {
2626   assert_heap_not_locked_and_not_at_safepoint();
2627   VM_G1IncCollectionPause op(gc_count_before,
2628                              word_size,
2629                              false, /* should_initiate_conc_mark */
2630                              g1_policy()->max_pause_time_ms(),
2631                              gc_cause);
2632 
2633   op.set_allocation_context(AllocationContext::current());
2634   VMThread::execute(&op);
2635 
2636   HeapWord* result = op.result();
2637   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2638   assert(result == NULL || ret_succeeded,
2639          "the result should be NULL if the VM did not succeed");
2640   *succeeded = ret_succeeded;
2641 
2642   assert_heap_not_locked();
2643   return result;
2644 }
2645 
2646 void
2647 G1CollectedHeap::doConcurrentMark() {
2648   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2649   if (!_cmThread->in_progress()) {
2650     _cmThread->set_started();
2651     CGC_lock->notify();
2652   }
2653 }
2654 
2655 size_t G1CollectedHeap::pending_card_num() {
2656   size_t extra_cards = 0;
2657   JavaThread *curr = Threads::first();
2658   while (curr != NULL) {
2659     DirtyCardQueue& dcq = curr->dirty_card_queue();
2660     extra_cards += dcq.size();
2661     curr = curr->next();
2662   }
2663   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2664   size_t buffer_size = dcqs.buffer_size();
2665   size_t buffer_num = dcqs.completed_buffers_num();
2666 
2667   return buffer_size * buffer_num + extra_cards;
2668 }
2669 
2670 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2671  private:
2672   size_t _total_humongous;
2673   size_t _candidate_humongous;
2674 
2675   DirtyCardQueue _dcq;
2676 
2677   // We don't nominate objects with many remembered set entries, on
2678   // the assumption that such objects are likely still live.
2679   bool is_remset_small(HeapRegion* region) const {
2680     HeapRegionRemSet* const rset = region->rem_set();
2681     return G1EagerReclaimHumongousObjectsWithStaleRefs
2682       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2683       : rset->is_empty();
2684   }
2685 
2686   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2687     assert(region->is_starts_humongous(), "Must start a humongous object");
2688 
2689     oop obj = oop(region->bottom());
2690 
2691     // Dead objects cannot be eager reclaim candidates. Due to class
2692     // unloading it is unsafe to query their classes so we return early.
2693     if (heap->is_obj_dead(obj, region)) {
2694       return false;
2695     }
2696 
2697     // Candidate selection must satisfy the following constraints
2698     // while concurrent marking is in progress:
2699     //
2700     // * In order to maintain SATB invariants, an object must not be
2701     // reclaimed if it was allocated before the start of marking and
2702     // has not had its references scanned.  Such an object must have
2703     // its references (including type metadata) scanned to ensure no
2704     // live objects are missed by the marking process.  Objects
2705     // allocated after the start of concurrent marking don't need to
2706     // be scanned.
2707     //
2708     // * An object must not be reclaimed if it is on the concurrent
2709     // mark stack.  Objects allocated after the start of concurrent
2710     // marking are never pushed on the mark stack.
2711     //
2712     // Nominating only objects allocated after the start of concurrent
2713     // marking is sufficient to meet both constraints.  This may miss
2714     // some objects that satisfy the constraints, but the marking data
2715     // structures don't support efficiently performing the needed
2716     // additional tests or scrubbing of the mark stack.
2717     //
2718     // However, we presently only nominate is_typeArray() objects.
2719     // A humongous object containing references induces remembered
2720     // set entries on other regions.  In order to reclaim such an
2721     // object, those remembered sets would need to be cleaned up.
2722     //
2723     // We also treat is_typeArray() objects specially, allowing them
2724     // to be reclaimed even if allocated before the start of
2725     // concurrent mark.  For this we rely on mark stack insertion to
2726     // exclude is_typeArray() objects, preventing reclaiming an object
2727     // that is in the mark stack.  We also rely on the metadata for
2728     // such objects to be built-in and so ensured to be kept live.
2729     // Frequent allocation and drop of large binary blobs is an
2730     // important use case for eager reclaim, and this special handling
2731     // may reduce needed headroom.
2732 
2733     return obj->is_typeArray() && is_remset_small(region);
2734   }
2735 
2736  public:
2737   RegisterHumongousWithInCSetFastTestClosure()
2738   : _total_humongous(0),
2739     _candidate_humongous(0),
2740     _dcq(&JavaThread::dirty_card_queue_set()) {
2741   }
2742 
2743   virtual bool doHeapRegion(HeapRegion* r) {
2744     if (!r->is_starts_humongous()) {
2745       return false;
2746     }
2747     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2748 
2749     bool is_candidate = humongous_region_is_candidate(g1h, r);
2750     uint rindex = r->hrm_index();
2751     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2752     if (is_candidate) {
2753       _candidate_humongous++;
2754       g1h->register_humongous_region_with_cset(rindex);
2755       // Is_candidate already filters out humongous object with large remembered sets.
2756       // If we have a humongous object with a few remembered sets, we simply flush these
2757       // remembered set entries into the DCQS. That will result in automatic
2758       // re-evaluation of their remembered set entries during the following evacuation
2759       // phase.
2760       if (!r->rem_set()->is_empty()) {
2761         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2762                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2763         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2764         HeapRegionRemSetIterator hrrs(r->rem_set());
2765         size_t card_index;
2766         while (hrrs.has_next(card_index)) {
2767           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2768           // The remembered set might contain references to already freed
2769           // regions. Filter out such entries to avoid failing card table
2770           // verification.
2771           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2772             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2773               *card_ptr = CardTableModRefBS::dirty_card_val();
2774               _dcq.enqueue(card_ptr);
2775             }
2776           }
2777         }
2778         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2779                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2780                hrrs.n_yielded(), r->rem_set()->occupied());
2781         r->rem_set()->clear_locked();
2782       }
2783       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2784     }
2785     _total_humongous++;
2786 
2787     return false;
2788   }
2789 
2790   size_t total_humongous() const { return _total_humongous; }
2791   size_t candidate_humongous() const { return _candidate_humongous; }
2792 
2793   void flush_rem_set_entries() { _dcq.flush(); }
2794 };
2795 
2796 void G1CollectedHeap::register_humongous_regions_with_cset() {
2797   if (!G1EagerReclaimHumongousObjects) {
2798     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2799     return;
2800   }
2801   double time = os::elapsed_counter();
2802 
2803   // Collect reclaim candidate information and register candidates with cset.
2804   RegisterHumongousWithInCSetFastTestClosure cl;
2805   heap_region_iterate(&cl);
2806 
2807   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2808   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2809                                                                   cl.total_humongous(),
2810                                                                   cl.candidate_humongous());
2811   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2812 
2813   // Finally flush all remembered set entries to re-check into the global DCQS.
2814   cl.flush_rem_set_entries();
2815 }
2816 
2817 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2818   public:
2819     bool doHeapRegion(HeapRegion* hr) {
2820       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2821         hr->verify_rem_set();
2822       }
2823       return false;
2824     }
2825 };
2826 
2827 uint G1CollectedHeap::num_task_queues() const {
2828   return _task_queues->size();
2829 }
2830 
2831 #if TASKQUEUE_STATS
2832 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2833   st->print_raw_cr("GC Task Stats");
2834   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2835   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2836 }
2837 
2838 void G1CollectedHeap::print_taskqueue_stats() const {
2839   if (!log_is_enabled(Trace, gc, task, stats)) {
2840     return;
2841   }
2842   Log(gc, task, stats) log;
2843   ResourceMark rm;
2844   LogStream ls(log.trace());
2845   outputStream* st = &ls;
2846 
2847   print_taskqueue_stats_hdr(st);
2848 
2849   TaskQueueStats totals;
2850   const uint n = num_task_queues();
2851   for (uint i = 0; i < n; ++i) {
2852     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2853     totals += task_queue(i)->stats;
2854   }
2855   st->print_raw("tot "); totals.print(st); st->cr();
2856 
2857   DEBUG_ONLY(totals.verify());
2858 }
2859 
2860 void G1CollectedHeap::reset_taskqueue_stats() {
2861   const uint n = num_task_queues();
2862   for (uint i = 0; i < n; ++i) {
2863     task_queue(i)->stats.reset();
2864   }
2865 }
2866 #endif // TASKQUEUE_STATS
2867 
2868 void G1CollectedHeap::wait_for_root_region_scanning() {
2869   double scan_wait_start = os::elapsedTime();
2870   // We have to wait until the CM threads finish scanning the
2871   // root regions as it's the only way to ensure that all the
2872   // objects on them have been correctly scanned before we start
2873   // moving them during the GC.
2874   bool waited = _cm->root_regions()->wait_until_scan_finished();
2875   double wait_time_ms = 0.0;
2876   if (waited) {
2877     double scan_wait_end = os::elapsedTime();
2878     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2879   }
2880   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2881 }
2882 
2883 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2884 private:
2885   G1HRPrinter* _hr_printer;
2886 public:
2887   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2888 
2889   virtual bool doHeapRegion(HeapRegion* r) {
2890     _hr_printer->cset(r);
2891     return false;
2892   }
2893 };
2894 
2895 void G1CollectedHeap::start_new_collection_set() {
2896   collection_set()->start_incremental_building();
2897 
2898   clear_cset_fast_test();
2899 
2900   guarantee(_eden.length() == 0, "eden should have been cleared");
2901   g1_policy()->transfer_survivors_to_cset(survivor());
2902 }
2903 
2904 bool
2905 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2906   assert_at_safepoint(true /* should_be_vm_thread */);
2907   guarantee(!is_gc_active(), "collection is not reentrant");
2908 
2909   if (GCLocker::check_active_before_gc()) {
2910     return false;
2911   }
2912 
2913   _gc_timer_stw->register_gc_start();
2914 
2915   GCIdMark gc_id_mark;
2916   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2917 
2918   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2919   ResourceMark rm;
2920 
2921   g1_policy()->note_gc_start();
2922 
2923   wait_for_root_region_scanning();
2924 
2925   print_heap_before_gc();
2926   print_heap_regions();
2927   trace_heap_before_gc(_gc_tracer_stw);
2928 
2929   _verifier->verify_region_sets_optional();
2930   _verifier->verify_dirty_young_regions();
2931 
2932   // We should not be doing initial mark unless the conc mark thread is running
2933   if (!_cmThread->should_terminate()) {
2934     // This call will decide whether this pause is an initial-mark
2935     // pause. If it is, during_initial_mark_pause() will return true
2936     // for the duration of this pause.
2937     g1_policy()->decide_on_conc_mark_initiation();
2938   }
2939 
2940   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2941   assert(!collector_state()->during_initial_mark_pause() ||
2942           collector_state()->gcs_are_young(), "sanity");
2943 
2944   // We also do not allow mixed GCs during marking.
2945   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2946 
2947   // Record whether this pause is an initial mark. When the current
2948   // thread has completed its logging output and it's safe to signal
2949   // the CM thread, the flag's value in the policy has been reset.
2950   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2951 
2952   // Inner scope for scope based logging, timers, and stats collection
2953   {
2954     EvacuationInfo evacuation_info;
2955 
2956     if (collector_state()->during_initial_mark_pause()) {
2957       // We are about to start a marking cycle, so we increment the
2958       // full collection counter.
2959       increment_old_marking_cycles_started();
2960       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2961     }
2962 
2963     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2964 
2965     GCTraceCPUTime tcpu;
2966 
2967     FormatBuffer<> gc_string("Pause ");
2968     if (collector_state()->during_initial_mark_pause()) {
2969       gc_string.append("Initial Mark");
2970     } else if (collector_state()->gcs_are_young()) {
2971       gc_string.append("Young");
2972     } else {
2973       gc_string.append("Mixed");
2974     }
2975     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2976 
2977     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2978                                                                   workers()->active_workers(),
2979                                                                   Threads::number_of_non_daemon_threads());
2980     workers()->update_active_workers(active_workers);
2981     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2982 
2983     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2984     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
2985 
2986     // If the secondary_free_list is not empty, append it to the
2987     // free_list. No need to wait for the cleanup operation to finish;
2988     // the region allocation code will check the secondary_free_list
2989     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2990     // set, skip this step so that the region allocation code has to
2991     // get entries from the secondary_free_list.
2992     if (!G1StressConcRegionFreeing) {
2993       append_secondary_free_list_if_not_empty_with_lock();
2994     }
2995 
2996     G1HeapTransition heap_transition(this);
2997     size_t heap_used_bytes_before_gc = used();
2998 
2999     // Don't dynamically change the number of GC threads this early.  A value of
3000     // 0 is used to indicate serial work.  When parallel work is done,
3001     // it will be set.
3002 
3003     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3004       IsGCActiveMark x;
3005 
3006       gc_prologue(false);
3007 
3008       if (VerifyRememberedSets) {
3009         log_info(gc, verify)("[Verifying RemSets before GC]");
3010         VerifyRegionRemSetClosure v_cl;
3011         heap_region_iterate(&v_cl);
3012       }
3013 
3014       _verifier->verify_before_gc();
3015 
3016       _verifier->check_bitmaps("GC Start");
3017 
3018 #if COMPILER2_OR_JVMCI
3019       DerivedPointerTable::clear();
3020 #endif
3021 
3022       // Please see comment in g1CollectedHeap.hpp and
3023       // G1CollectedHeap::ref_processing_init() to see how
3024       // reference processing currently works in G1.
3025 
3026       // Enable discovery in the STW reference processor
3027       if (g1_policy()->should_process_references()) {
3028         ref_processor_stw()->enable_discovery();
3029       } else {
3030         ref_processor_stw()->disable_discovery();
3031       }
3032 
3033       {
3034         // We want to temporarily turn off discovery by the
3035         // CM ref processor, if necessary, and turn it back on
3036         // on again later if we do. Using a scoped
3037         // NoRefDiscovery object will do this.
3038         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3039 
3040         // Forget the current alloc region (we might even choose it to be part
3041         // of the collection set!).
3042         _allocator->release_mutator_alloc_region();
3043 
3044         // This timing is only used by the ergonomics to handle our pause target.
3045         // It is unclear why this should not include the full pause. We will
3046         // investigate this in CR 7178365.
3047         //
3048         // Preserving the old comment here if that helps the investigation:
3049         //
3050         // The elapsed time induced by the start time below deliberately elides
3051         // the possible verification above.
3052         double sample_start_time_sec = os::elapsedTime();
3053 
3054         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3055 
3056         if (collector_state()->during_initial_mark_pause()) {
3057           concurrent_mark()->checkpoint_roots_initial_pre();
3058         }
3059 
3060         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3061 
3062         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3063 
3064         // Make sure the remembered sets are up to date. This needs to be
3065         // done before register_humongous_regions_with_cset(), because the
3066         // remembered sets are used there to choose eager reclaim candidates.
3067         // If the remembered sets are not up to date we might miss some
3068         // entries that need to be handled.
3069         g1_rem_set()->cleanupHRRS();
3070 
3071         register_humongous_regions_with_cset();
3072 
3073         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3074 
3075         // We call this after finalize_cset() to
3076         // ensure that the CSet has been finalized.
3077         _cm->verify_no_cset_oops();
3078 
3079         if (_hr_printer.is_active()) {
3080           G1PrintCollectionSetClosure cl(&_hr_printer);
3081           _collection_set.iterate(&cl);
3082         }
3083 
3084         // Initialize the GC alloc regions.
3085         _allocator->init_gc_alloc_regions(evacuation_info);
3086 
3087         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3088         pre_evacuate_collection_set();
3089 
3090         // Actually do the work...
3091         evacuate_collection_set(evacuation_info, &per_thread_states);
3092 
3093         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3094 
3095         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3096         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3097 
3098         eagerly_reclaim_humongous_regions();
3099 
3100         record_obj_copy_mem_stats();
3101         _survivor_evac_stats.adjust_desired_plab_sz();
3102         _old_evac_stats.adjust_desired_plab_sz();
3103 
3104         double start = os::elapsedTime();
3105         start_new_collection_set();
3106         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3107 
3108         if (evacuation_failed()) {
3109           set_used(recalculate_used());
3110           if (_archive_allocator != NULL) {
3111             _archive_allocator->clear_used();
3112           }
3113           for (uint i = 0; i < ParallelGCThreads; i++) {
3114             if (_evacuation_failed_info_array[i].has_failed()) {
3115               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3116             }
3117           }
3118         } else {
3119           // The "used" of the the collection set have already been subtracted
3120           // when they were freed.  Add in the bytes evacuated.
3121           increase_used(g1_policy()->bytes_copied_during_gc());
3122         }
3123 
3124         if (collector_state()->during_initial_mark_pause()) {
3125           // We have to do this before we notify the CM threads that
3126           // they can start working to make sure that all the
3127           // appropriate initialization is done on the CM object.
3128           concurrent_mark()->checkpoint_roots_initial_post();
3129           collector_state()->set_mark_in_progress(true);
3130           // Note that we don't actually trigger the CM thread at
3131           // this point. We do that later when we're sure that
3132           // the current thread has completed its logging output.
3133         }
3134 
3135         allocate_dummy_regions();
3136 
3137         _allocator->init_mutator_alloc_region();
3138 
3139         {
3140           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3141           if (expand_bytes > 0) {
3142             size_t bytes_before = capacity();
3143             // No need for an ergo logging here,
3144             // expansion_amount() does this when it returns a value > 0.
3145             double expand_ms;
3146             if (!expand(expand_bytes, _workers, &expand_ms)) {
3147               // We failed to expand the heap. Cannot do anything about it.
3148             }
3149             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3150           }
3151         }
3152 
3153         // We redo the verification but now wrt to the new CSet which
3154         // has just got initialized after the previous CSet was freed.
3155         _cm->verify_no_cset_oops();
3156 
3157         // This timing is only used by the ergonomics to handle our pause target.
3158         // It is unclear why this should not include the full pause. We will
3159         // investigate this in CR 7178365.
3160         double sample_end_time_sec = os::elapsedTime();
3161         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3162         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3163         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3164 
3165         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3166         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3167 
3168         if (VerifyRememberedSets) {
3169           log_info(gc, verify)("[Verifying RemSets after GC]");
3170           VerifyRegionRemSetClosure v_cl;
3171           heap_region_iterate(&v_cl);
3172         }
3173 
3174         _verifier->verify_after_gc();
3175         _verifier->check_bitmaps("GC End");
3176 
3177         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3178         ref_processor_stw()->verify_no_references_recorded();
3179 
3180         // CM reference discovery will be re-enabled if necessary.
3181       }
3182 
3183 #ifdef TRACESPINNING
3184       ParallelTaskTerminator::print_termination_counts();
3185 #endif
3186 
3187       gc_epilogue(false);
3188     }
3189 
3190     // Print the remainder of the GC log output.
3191     if (evacuation_failed()) {
3192       log_info(gc)("To-space exhausted");
3193     }
3194 
3195     g1_policy()->print_phases();
3196     heap_transition.print();
3197 
3198     // It is not yet to safe to tell the concurrent mark to
3199     // start as we have some optional output below. We don't want the
3200     // output from the concurrent mark thread interfering with this
3201     // logging output either.
3202 
3203     _hrm.verify_optional();
3204     _verifier->verify_region_sets_optional();
3205 
3206     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3207     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3208 
3209     print_heap_after_gc();
3210     print_heap_regions();
3211     trace_heap_after_gc(_gc_tracer_stw);
3212 
3213     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3214     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3215     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3216     // before any GC notifications are raised.
3217     g1mm()->update_sizes();
3218 
3219     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3220     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3221     _gc_timer_stw->register_gc_end();
3222     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3223   }
3224   // It should now be safe to tell the concurrent mark thread to start
3225   // without its logging output interfering with the logging output
3226   // that came from the pause.
3227 
3228   if (should_start_conc_mark) {
3229     // CAUTION: after the doConcurrentMark() call below,
3230     // the concurrent marking thread(s) could be running
3231     // concurrently with us. Make sure that anything after
3232     // this point does not assume that we are the only GC thread
3233     // running. Note: of course, the actual marking work will
3234     // not start until the safepoint itself is released in
3235     // SuspendibleThreadSet::desynchronize().
3236     doConcurrentMark();
3237   }
3238 
3239   return true;
3240 }
3241 
3242 void G1CollectedHeap::remove_self_forwarding_pointers() {
3243   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3244   workers()->run_task(&rsfp_task);
3245 }
3246 
3247 void G1CollectedHeap::restore_after_evac_failure() {
3248   double remove_self_forwards_start = os::elapsedTime();
3249 
3250   remove_self_forwarding_pointers();
3251   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3252   _preserved_marks_set.restore(&task_executor);
3253 
3254   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3255 }
3256 
3257 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3258   if (!_evacuation_failed) {
3259     _evacuation_failed = true;
3260   }
3261 
3262   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3263   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3264 }
3265 
3266 bool G1ParEvacuateFollowersClosure::offer_termination() {
3267   G1ParScanThreadState* const pss = par_scan_state();
3268   start_term_time();
3269   const bool res = terminator()->offer_termination();
3270   end_term_time();
3271   return res;
3272 }
3273 
3274 void G1ParEvacuateFollowersClosure::do_void() {
3275   G1ParScanThreadState* const pss = par_scan_state();
3276   pss->trim_queue();
3277   do {
3278     pss->steal_and_trim_queue(queues());
3279   } while (!offer_termination());
3280 }
3281 
3282 class G1ParTask : public AbstractGangTask {
3283 protected:
3284   G1CollectedHeap*         _g1h;
3285   G1ParScanThreadStateSet* _pss;
3286   RefToScanQueueSet*       _queues;
3287   G1RootProcessor*         _root_processor;
3288   ParallelTaskTerminator   _terminator;
3289   uint                     _n_workers;
3290 
3291 public:
3292   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3293     : AbstractGangTask("G1 collection"),
3294       _g1h(g1h),
3295       _pss(per_thread_states),
3296       _queues(task_queues),
3297       _root_processor(root_processor),
3298       _terminator(n_workers, _queues),
3299       _n_workers(n_workers)
3300   {}
3301 
3302   void work(uint worker_id) {
3303     if (worker_id >= _n_workers) return;  // no work needed this round
3304 
3305     double start_sec = os::elapsedTime();
3306     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3307 
3308     {
3309       ResourceMark rm;
3310       HandleMark   hm;
3311 
3312       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3313 
3314       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3315       pss->set_ref_processor(rp);
3316 
3317       double start_strong_roots_sec = os::elapsedTime();
3318 
3319       _root_processor->evacuate_roots(pss->closures(), worker_id);
3320 
3321       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3322       // treating the nmethods visited to act as roots for concurrent marking.
3323       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3324       // objects copied by the current evacuation.
3325       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3326                                                       pss->closures()->weak_codeblobs(),
3327                                                       worker_id);
3328 
3329       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3330 
3331       double term_sec = 0.0;
3332       size_t evac_term_attempts = 0;
3333       {
3334         double start = os::elapsedTime();
3335         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3336         evac.do_void();
3337 
3338         evac_term_attempts = evac.term_attempts();
3339         term_sec = evac.term_time();
3340         double elapsed_sec = os::elapsedTime() - start;
3341         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3342         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3343         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3344       }
3345 
3346       assert(pss->queue_is_empty(), "should be empty");
3347 
3348       if (log_is_enabled(Debug, gc, task, stats)) {
3349         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3350         size_t lab_waste;
3351         size_t lab_undo_waste;
3352         pss->waste(lab_waste, lab_undo_waste);
3353         _g1h->print_termination_stats(worker_id,
3354                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3355                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3356                                       term_sec * 1000.0,                          /* evac term time */
3357                                       evac_term_attempts,                         /* evac term attempts */
3358                                       lab_waste,                                  /* alloc buffer waste */
3359                                       lab_undo_waste                              /* undo waste */
3360                                       );
3361       }
3362 
3363       // Close the inner scope so that the ResourceMark and HandleMark
3364       // destructors are executed here and are included as part of the
3365       // "GC Worker Time".
3366     }
3367     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3368   }
3369 };
3370 
3371 void G1CollectedHeap::print_termination_stats_hdr() {
3372   log_debug(gc, task, stats)("GC Termination Stats");
3373   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3374   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3375   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3376 }
3377 
3378 void G1CollectedHeap::print_termination_stats(uint worker_id,
3379                                               double elapsed_ms,
3380                                               double strong_roots_ms,
3381                                               double term_ms,
3382                                               size_t term_attempts,
3383                                               size_t alloc_buffer_waste,
3384                                               size_t undo_waste) const {
3385   log_debug(gc, task, stats)
3386               ("%3d %9.2f %9.2f %6.2f "
3387                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3388                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3389                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3390                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3391                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3392                alloc_buffer_waste * HeapWordSize / K,
3393                undo_waste * HeapWordSize / K);
3394 }
3395 
3396 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3397 private:
3398   BoolObjectClosure* _is_alive;
3399   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3400 
3401   int _initial_string_table_size;
3402   int _initial_symbol_table_size;
3403 
3404   bool  _process_strings;
3405   int _strings_processed;
3406   int _strings_removed;
3407 
3408   bool  _process_symbols;
3409   int _symbols_processed;
3410   int _symbols_removed;
3411 
3412   bool _process_string_dedup;
3413 
3414 public:
3415   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3416     AbstractGangTask("String/Symbol Unlinking"),
3417     _is_alive(is_alive),
3418     _dedup_closure(is_alive, NULL, false),
3419     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3420     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3421     _process_string_dedup(process_string_dedup) {
3422 
3423     _initial_string_table_size = StringTable::the_table()->table_size();
3424     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3425     if (process_strings) {
3426       StringTable::clear_parallel_claimed_index();
3427     }
3428     if (process_symbols) {
3429       SymbolTable::clear_parallel_claimed_index();
3430     }
3431   }
3432 
3433   ~G1StringAndSymbolCleaningTask() {
3434     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3435               "claim value %d after unlink less than initial string table size %d",
3436               StringTable::parallel_claimed_index(), _initial_string_table_size);
3437     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3438               "claim value %d after unlink less than initial symbol table size %d",
3439               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3440 
3441     log_info(gc, stringtable)(
3442         "Cleaned string and symbol table, "
3443         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3444         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3445         strings_processed(), strings_removed(),
3446         symbols_processed(), symbols_removed());
3447   }
3448 
3449   void work(uint worker_id) {
3450     int strings_processed = 0;
3451     int strings_removed = 0;
3452     int symbols_processed = 0;
3453     int symbols_removed = 0;
3454     if (_process_strings) {
3455       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3456       Atomic::add(strings_processed, &_strings_processed);
3457       Atomic::add(strings_removed, &_strings_removed);
3458     }
3459     if (_process_symbols) {
3460       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3461       Atomic::add(symbols_processed, &_symbols_processed);
3462       Atomic::add(symbols_removed, &_symbols_removed);
3463     }
3464     if (_process_string_dedup) {
3465       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3466     }
3467   }
3468 
3469   size_t strings_processed() const { return (size_t)_strings_processed; }
3470   size_t strings_removed()   const { return (size_t)_strings_removed; }
3471 
3472   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3473   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3474 };
3475 
3476 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3477 private:
3478   static Monitor* _lock;
3479 
3480   BoolObjectClosure* const _is_alive;
3481   const bool               _unloading_occurred;
3482   const uint               _num_workers;
3483 
3484   // Variables used to claim nmethods.
3485   CompiledMethod* _first_nmethod;
3486   CompiledMethod* volatile _claimed_nmethod;
3487 
3488   // The list of nmethods that need to be processed by the second pass.
3489   CompiledMethod* volatile _postponed_list;
3490   volatile uint            _num_entered_barrier;
3491 
3492  public:
3493   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3494       _is_alive(is_alive),
3495       _unloading_occurred(unloading_occurred),
3496       _num_workers(num_workers),
3497       _first_nmethod(NULL),
3498       _claimed_nmethod(NULL),
3499       _postponed_list(NULL),
3500       _num_entered_barrier(0)
3501   {
3502     CompiledMethod::increase_unloading_clock();
3503     // Get first alive nmethod
3504     CompiledMethodIterator iter = CompiledMethodIterator();
3505     if(iter.next_alive()) {
3506       _first_nmethod = iter.method();
3507     }
3508     _claimed_nmethod = _first_nmethod;
3509   }
3510 
3511   ~G1CodeCacheUnloadingTask() {
3512     CodeCache::verify_clean_inline_caches();
3513 
3514     CodeCache::set_needs_cache_clean(false);
3515     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3516 
3517     CodeCache::verify_icholder_relocations();
3518   }
3519 
3520  private:
3521   void add_to_postponed_list(CompiledMethod* nm) {
3522       CompiledMethod* old;
3523       do {
3524         old = _postponed_list;
3525         nm->set_unloading_next(old);
3526       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3527   }
3528 
3529   void clean_nmethod(CompiledMethod* nm) {
3530     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3531 
3532     if (postponed) {
3533       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3534       add_to_postponed_list(nm);
3535     }
3536 
3537     // Mark that this thread has been cleaned/unloaded.
3538     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3539     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3540   }
3541 
3542   void clean_nmethod_postponed(CompiledMethod* nm) {
3543     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3544   }
3545 
3546   static const int MaxClaimNmethods = 16;
3547 
3548   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3549     CompiledMethod* first;
3550     CompiledMethodIterator last;
3551 
3552     do {
3553       *num_claimed_nmethods = 0;
3554 
3555       first = _claimed_nmethod;
3556       last = CompiledMethodIterator(first);
3557 
3558       if (first != NULL) {
3559 
3560         for (int i = 0; i < MaxClaimNmethods; i++) {
3561           if (!last.next_alive()) {
3562             break;
3563           }
3564           claimed_nmethods[i] = last.method();
3565           (*num_claimed_nmethods)++;
3566         }
3567       }
3568 
3569     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3570   }
3571 
3572   CompiledMethod* claim_postponed_nmethod() {
3573     CompiledMethod* claim;
3574     CompiledMethod* next;
3575 
3576     do {
3577       claim = _postponed_list;
3578       if (claim == NULL) {
3579         return NULL;
3580       }
3581 
3582       next = claim->unloading_next();
3583 
3584     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3585 
3586     return claim;
3587   }
3588 
3589  public:
3590   // Mark that we're done with the first pass of nmethod cleaning.
3591   void barrier_mark(uint worker_id) {
3592     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3593     _num_entered_barrier++;
3594     if (_num_entered_barrier == _num_workers) {
3595       ml.notify_all();
3596     }
3597   }
3598 
3599   // See if we have to wait for the other workers to
3600   // finish their first-pass nmethod cleaning work.
3601   void barrier_wait(uint worker_id) {
3602     if (_num_entered_barrier < _num_workers) {
3603       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3604       while (_num_entered_barrier < _num_workers) {
3605           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3606       }
3607     }
3608   }
3609 
3610   // Cleaning and unloading of nmethods. Some work has to be postponed
3611   // to the second pass, when we know which nmethods survive.
3612   void work_first_pass(uint worker_id) {
3613     // The first nmethods is claimed by the first worker.
3614     if (worker_id == 0 && _first_nmethod != NULL) {
3615       clean_nmethod(_first_nmethod);
3616       _first_nmethod = NULL;
3617     }
3618 
3619     int num_claimed_nmethods;
3620     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3621 
3622     while (true) {
3623       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3624 
3625       if (num_claimed_nmethods == 0) {
3626         break;
3627       }
3628 
3629       for (int i = 0; i < num_claimed_nmethods; i++) {
3630         clean_nmethod(claimed_nmethods[i]);
3631       }
3632     }
3633   }
3634 
3635   void work_second_pass(uint worker_id) {
3636     CompiledMethod* nm;
3637     // Take care of postponed nmethods.
3638     while ((nm = claim_postponed_nmethod()) != NULL) {
3639       clean_nmethod_postponed(nm);
3640     }
3641   }
3642 };
3643 
3644 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3645 
3646 class G1KlassCleaningTask : public StackObj {
3647   BoolObjectClosure*                      _is_alive;
3648   volatile int                            _clean_klass_tree_claimed;
3649   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3650 
3651  public:
3652   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3653       _is_alive(is_alive),
3654       _clean_klass_tree_claimed(0),
3655       _klass_iterator() {
3656   }
3657 
3658  private:
3659   bool claim_clean_klass_tree_task() {
3660     if (_clean_klass_tree_claimed) {
3661       return false;
3662     }
3663 
3664     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3665   }
3666 
3667   InstanceKlass* claim_next_klass() {
3668     Klass* klass;
3669     do {
3670       klass =_klass_iterator.next_klass();
3671     } while (klass != NULL && !klass->is_instance_klass());
3672 
3673     // this can be null so don't call InstanceKlass::cast
3674     return static_cast<InstanceKlass*>(klass);
3675   }
3676 
3677 public:
3678 
3679   void clean_klass(InstanceKlass* ik) {
3680     ik->clean_weak_instanceklass_links(_is_alive);
3681   }
3682 
3683   void work() {
3684     ResourceMark rm;
3685 
3686     // One worker will clean the subklass/sibling klass tree.
3687     if (claim_clean_klass_tree_task()) {
3688       Klass::clean_subklass_tree(_is_alive);
3689     }
3690 
3691     // All workers will help cleaning the classes,
3692     InstanceKlass* klass;
3693     while ((klass = claim_next_klass()) != NULL) {
3694       clean_klass(klass);
3695     }
3696   }
3697 };
3698 
3699 class G1ResolvedMethodCleaningTask : public StackObj {
3700   BoolObjectClosure* _is_alive;
3701   volatile int       _resolved_method_task_claimed;
3702 public:
3703   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3704       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3705 
3706   bool claim_resolved_method_task() {
3707     if (_resolved_method_task_claimed) {
3708       return false;
3709     }
3710     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3711   }
3712 
3713   // These aren't big, one thread can do it all.
3714   void work() {
3715     if (claim_resolved_method_task()) {
3716       ResolvedMethodTable::unlink(_is_alive);
3717     }
3718   }
3719 };
3720 
3721 
3722 // To minimize the remark pause times, the tasks below are done in parallel.
3723 class G1ParallelCleaningTask : public AbstractGangTask {
3724 private:
3725   G1StringAndSymbolCleaningTask _string_symbol_task;
3726   G1CodeCacheUnloadingTask      _code_cache_task;
3727   G1KlassCleaningTask           _klass_cleaning_task;
3728   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3729 
3730 public:
3731   // The constructor is run in the VMThread.
3732   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3733       AbstractGangTask("Parallel Cleaning"),
3734       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3735       _code_cache_task(num_workers, is_alive, unloading_occurred),
3736       _klass_cleaning_task(is_alive),
3737       _resolved_method_cleaning_task(is_alive) {
3738   }
3739 
3740   // The parallel work done by all worker threads.
3741   void work(uint worker_id) {
3742     // Do first pass of code cache cleaning.
3743     _code_cache_task.work_first_pass(worker_id);
3744 
3745     // Let the threads mark that the first pass is done.
3746     _code_cache_task.barrier_mark(worker_id);
3747 
3748     // Clean the Strings and Symbols.
3749     _string_symbol_task.work(worker_id);
3750 
3751     // Clean unreferenced things in the ResolvedMethodTable
3752     _resolved_method_cleaning_task.work();
3753 
3754     // Wait for all workers to finish the first code cache cleaning pass.
3755     _code_cache_task.barrier_wait(worker_id);
3756 
3757     // Do the second code cache cleaning work, which realize on
3758     // the liveness information gathered during the first pass.
3759     _code_cache_task.work_second_pass(worker_id);
3760 
3761     // Clean all klasses that were not unloaded.
3762     _klass_cleaning_task.work();
3763   }
3764 };
3765 
3766 
3767 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3768                                         bool class_unloading_occurred) {
3769   uint n_workers = workers()->active_workers();
3770 
3771   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3772   workers()->run_task(&g1_unlink_task);
3773 }
3774 
3775 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3776                                        bool process_strings,
3777                                        bool process_symbols,
3778                                        bool process_string_dedup) {
3779   if (!process_strings && !process_symbols && !process_string_dedup) {
3780     // Nothing to clean.
3781     return;
3782   }
3783 
3784   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3785   workers()->run_task(&g1_unlink_task);
3786 
3787 }
3788 
3789 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3790  private:
3791   DirtyCardQueueSet* _queue;
3792   G1CollectedHeap* _g1h;
3793  public:
3794   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3795     _queue(queue), _g1h(g1h) { }
3796 
3797   virtual void work(uint worker_id) {
3798     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3799     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3800 
3801     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3802     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3803 
3804     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3805   }
3806 };
3807 
3808 void G1CollectedHeap::redirty_logged_cards() {
3809   double redirty_logged_cards_start = os::elapsedTime();
3810 
3811   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3812   dirty_card_queue_set().reset_for_par_iteration();
3813   workers()->run_task(&redirty_task);
3814 
3815   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3816   dcq.merge_bufferlists(&dirty_card_queue_set());
3817   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3818 
3819   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3820 }
3821 
3822 // Weak Reference Processing support
3823 
3824 // An always "is_alive" closure that is used to preserve referents.
3825 // If the object is non-null then it's alive.  Used in the preservation
3826 // of referent objects that are pointed to by reference objects
3827 // discovered by the CM ref processor.
3828 class G1AlwaysAliveClosure: public BoolObjectClosure {
3829   G1CollectedHeap* _g1;
3830 public:
3831   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3832   bool do_object_b(oop p) {
3833     if (p != NULL) {
3834       return true;
3835     }
3836     return false;
3837   }
3838 };
3839 
3840 bool G1STWIsAliveClosure::do_object_b(oop p) {
3841   // An object is reachable if it is outside the collection set,
3842   // or is inside and copied.
3843   return !_g1->is_in_cset(p) || p->is_forwarded();
3844 }
3845 
3846 // Non Copying Keep Alive closure
3847 class G1KeepAliveClosure: public OopClosure {
3848   G1CollectedHeap* _g1;
3849 public:
3850   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3851   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3852   void do_oop(oop* p) {
3853     oop obj = *p;
3854     assert(obj != NULL, "the caller should have filtered out NULL values");
3855 
3856     const InCSetState cset_state = _g1->in_cset_state(obj);
3857     if (!cset_state.is_in_cset_or_humongous()) {
3858       return;
3859     }
3860     if (cset_state.is_in_cset()) {
3861       assert( obj->is_forwarded(), "invariant" );
3862       *p = obj->forwardee();
3863     } else {
3864       assert(!obj->is_forwarded(), "invariant" );
3865       assert(cset_state.is_humongous(),
3866              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3867       _g1->set_humongous_is_live(obj);
3868     }
3869   }
3870 };
3871 
3872 // Copying Keep Alive closure - can be called from both
3873 // serial and parallel code as long as different worker
3874 // threads utilize different G1ParScanThreadState instances
3875 // and different queues.
3876 
3877 class G1CopyingKeepAliveClosure: public OopClosure {
3878   G1CollectedHeap*         _g1h;
3879   OopClosure*              _copy_non_heap_obj_cl;
3880   G1ParScanThreadState*    _par_scan_state;
3881 
3882 public:
3883   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3884                             OopClosure* non_heap_obj_cl,
3885                             G1ParScanThreadState* pss):
3886     _g1h(g1h),
3887     _copy_non_heap_obj_cl(non_heap_obj_cl),
3888     _par_scan_state(pss)
3889   {}
3890 
3891   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3892   virtual void do_oop(      oop* p) { do_oop_work(p); }
3893 
3894   template <class T> void do_oop_work(T* p) {
3895     oop obj = oopDesc::load_decode_heap_oop(p);
3896 
3897     if (_g1h->is_in_cset_or_humongous(obj)) {
3898       // If the referent object has been forwarded (either copied
3899       // to a new location or to itself in the event of an
3900       // evacuation failure) then we need to update the reference
3901       // field and, if both reference and referent are in the G1
3902       // heap, update the RSet for the referent.
3903       //
3904       // If the referent has not been forwarded then we have to keep
3905       // it alive by policy. Therefore we have copy the referent.
3906       //
3907       // If the reference field is in the G1 heap then we can push
3908       // on the PSS queue. When the queue is drained (after each
3909       // phase of reference processing) the object and it's followers
3910       // will be copied, the reference field set to point to the
3911       // new location, and the RSet updated. Otherwise we need to
3912       // use the the non-heap or metadata closures directly to copy
3913       // the referent object and update the pointer, while avoiding
3914       // updating the RSet.
3915 
3916       if (_g1h->is_in_g1_reserved(p)) {
3917         _par_scan_state->push_on_queue(p);
3918       } else {
3919         assert(!Metaspace::contains((const void*)p),
3920                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3921         _copy_non_heap_obj_cl->do_oop(p);
3922       }
3923     }
3924   }
3925 };
3926 
3927 // Serial drain queue closure. Called as the 'complete_gc'
3928 // closure for each discovered list in some of the
3929 // reference processing phases.
3930 
3931 class G1STWDrainQueueClosure: public VoidClosure {
3932 protected:
3933   G1CollectedHeap* _g1h;
3934   G1ParScanThreadState* _par_scan_state;
3935 
3936   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3937 
3938 public:
3939   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3940     _g1h(g1h),
3941     _par_scan_state(pss)
3942   { }
3943 
3944   void do_void() {
3945     G1ParScanThreadState* const pss = par_scan_state();
3946     pss->trim_queue();
3947   }
3948 };
3949 
3950 // Parallel Reference Processing closures
3951 
3952 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3953 // processing during G1 evacuation pauses.
3954 
3955 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3956 private:
3957   G1CollectedHeap*          _g1h;
3958   G1ParScanThreadStateSet*  _pss;
3959   RefToScanQueueSet*        _queues;
3960   WorkGang*                 _workers;
3961   uint                      _active_workers;
3962 
3963 public:
3964   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3965                            G1ParScanThreadStateSet* per_thread_states,
3966                            WorkGang* workers,
3967                            RefToScanQueueSet *task_queues,
3968                            uint n_workers) :
3969     _g1h(g1h),
3970     _pss(per_thread_states),
3971     _queues(task_queues),
3972     _workers(workers),
3973     _active_workers(n_workers)
3974   {
3975     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3976   }
3977 
3978   // Executes the given task using concurrent marking worker threads.
3979   virtual void execute(ProcessTask& task);
3980   virtual void execute(EnqueueTask& task);
3981 };
3982 
3983 // Gang task for possibly parallel reference processing
3984 
3985 class G1STWRefProcTaskProxy: public AbstractGangTask {
3986   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3987   ProcessTask&     _proc_task;
3988   G1CollectedHeap* _g1h;
3989   G1ParScanThreadStateSet* _pss;
3990   RefToScanQueueSet* _task_queues;
3991   ParallelTaskTerminator* _terminator;
3992 
3993 public:
3994   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3995                         G1CollectedHeap* g1h,
3996                         G1ParScanThreadStateSet* per_thread_states,
3997                         RefToScanQueueSet *task_queues,
3998                         ParallelTaskTerminator* terminator) :
3999     AbstractGangTask("Process reference objects in parallel"),
4000     _proc_task(proc_task),
4001     _g1h(g1h),
4002     _pss(per_thread_states),
4003     _task_queues(task_queues),
4004     _terminator(terminator)
4005   {}
4006 
4007   virtual void work(uint worker_id) {
4008     // The reference processing task executed by a single worker.
4009     ResourceMark rm;
4010     HandleMark   hm;
4011 
4012     G1STWIsAliveClosure is_alive(_g1h);
4013 
4014     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4015     pss->set_ref_processor(NULL);
4016 
4017     // Keep alive closure.
4018     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4019 
4020     // Complete GC closure
4021     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4022 
4023     // Call the reference processing task's work routine.
4024     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4025 
4026     // Note we cannot assert that the refs array is empty here as not all
4027     // of the processing tasks (specifically phase2 - pp2_work) execute
4028     // the complete_gc closure (which ordinarily would drain the queue) so
4029     // the queue may not be empty.
4030   }
4031 };
4032 
4033 // Driver routine for parallel reference processing.
4034 // Creates an instance of the ref processing gang
4035 // task and has the worker threads execute it.
4036 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4037   assert(_workers != NULL, "Need parallel worker threads.");
4038 
4039   ParallelTaskTerminator terminator(_active_workers, _queues);
4040   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4041 
4042   _workers->run_task(&proc_task_proxy);
4043 }
4044 
4045 // Gang task for parallel reference enqueueing.
4046 
4047 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4048   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4049   EnqueueTask& _enq_task;
4050 
4051 public:
4052   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4053     AbstractGangTask("Enqueue reference objects in parallel"),
4054     _enq_task(enq_task)
4055   { }
4056 
4057   virtual void work(uint worker_id) {
4058     _enq_task.work(worker_id);
4059   }
4060 };
4061 
4062 // Driver routine for parallel reference enqueueing.
4063 // Creates an instance of the ref enqueueing gang
4064 // task and has the worker threads execute it.
4065 
4066 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4067   assert(_workers != NULL, "Need parallel worker threads.");
4068 
4069   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4070 
4071   _workers->run_task(&enq_task_proxy);
4072 }
4073 
4074 // End of weak reference support closures
4075 
4076 // Abstract task used to preserve (i.e. copy) any referent objects
4077 // that are in the collection set and are pointed to by reference
4078 // objects discovered by the CM ref processor.
4079 
4080 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4081 protected:
4082   G1CollectedHeap*         _g1h;
4083   G1ParScanThreadStateSet* _pss;
4084   RefToScanQueueSet*       _queues;
4085   ParallelTaskTerminator   _terminator;
4086   uint                     _n_workers;
4087 
4088 public:
4089   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4090     AbstractGangTask("ParPreserveCMReferents"),
4091     _g1h(g1h),
4092     _pss(per_thread_states),
4093     _queues(task_queues),
4094     _terminator(workers, _queues),
4095     _n_workers(workers)
4096   {
4097     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4098   }
4099 
4100   void work(uint worker_id) {
4101     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4102 
4103     ResourceMark rm;
4104     HandleMark   hm;
4105 
4106     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4107     pss->set_ref_processor(NULL);
4108     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4109 
4110     // Is alive closure
4111     G1AlwaysAliveClosure always_alive(_g1h);
4112 
4113     // Copying keep alive closure. Applied to referent objects that need
4114     // to be copied.
4115     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4116 
4117     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4118 
4119     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4120     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4121 
4122     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4123     // So this must be true - but assert just in case someone decides to
4124     // change the worker ids.
4125     assert(worker_id < limit, "sanity");
4126     assert(!rp->discovery_is_atomic(), "check this code");
4127 
4128     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4129     for (uint idx = worker_id; idx < limit; idx += stride) {
4130       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4131 
4132       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4133       while (iter.has_next()) {
4134         // Since discovery is not atomic for the CM ref processor, we
4135         // can see some null referent objects.
4136         iter.load_ptrs(DEBUG_ONLY(true));
4137         oop ref = iter.obj();
4138 
4139         // This will filter nulls.
4140         if (iter.is_referent_alive()) {
4141           iter.make_referent_alive();
4142         }
4143         iter.move_to_next();
4144       }
4145     }
4146 
4147     // Drain the queue - which may cause stealing
4148     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4149     drain_queue.do_void();
4150     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4151     assert(pss->queue_is_empty(), "should be");
4152   }
4153 };
4154 
4155 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4156   // Any reference objects, in the collection set, that were 'discovered'
4157   // by the CM ref processor should have already been copied (either by
4158   // applying the external root copy closure to the discovered lists, or
4159   // by following an RSet entry).
4160   //
4161   // But some of the referents, that are in the collection set, that these
4162   // reference objects point to may not have been copied: the STW ref
4163   // processor would have seen that the reference object had already
4164   // been 'discovered' and would have skipped discovering the reference,
4165   // but would not have treated the reference object as a regular oop.
4166   // As a result the copy closure would not have been applied to the
4167   // referent object.
4168   //
4169   // We need to explicitly copy these referent objects - the references
4170   // will be processed at the end of remarking.
4171   //
4172   // We also need to do this copying before we process the reference
4173   // objects discovered by the STW ref processor in case one of these
4174   // referents points to another object which is also referenced by an
4175   // object discovered by the STW ref processor.
4176   double preserve_cm_referents_time = 0.0;
4177 
4178   // To avoid spawning task when there is no work to do, check that
4179   // a concurrent cycle is active and that some references have been
4180   // discovered.
4181   if (concurrent_mark()->cm_thread()->during_cycle() &&
4182       ref_processor_cm()->has_discovered_references()) {
4183     double preserve_cm_referents_start = os::elapsedTime();
4184     uint no_of_gc_workers = workers()->active_workers();
4185     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4186                                                    per_thread_states,
4187                                                    no_of_gc_workers,
4188                                                    _task_queues);
4189     workers()->run_task(&keep_cm_referents);
4190     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4191   }
4192 
4193   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4194 }
4195 
4196 // Weak Reference processing during an evacuation pause (part 1).
4197 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4198   double ref_proc_start = os::elapsedTime();
4199 
4200   ReferenceProcessor* rp = _ref_processor_stw;
4201   assert(rp->discovery_enabled(), "should have been enabled");
4202 
4203   // Closure to test whether a referent is alive.
4204   G1STWIsAliveClosure is_alive(this);
4205 
4206   // Even when parallel reference processing is enabled, the processing
4207   // of JNI refs is serial and performed serially by the current thread
4208   // rather than by a worker. The following PSS will be used for processing
4209   // JNI refs.
4210 
4211   // Use only a single queue for this PSS.
4212   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4213   pss->set_ref_processor(NULL);
4214   assert(pss->queue_is_empty(), "pre-condition");
4215 
4216   // Keep alive closure.
4217   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4218 
4219   // Serial Complete GC closure
4220   G1STWDrainQueueClosure drain_queue(this, pss);
4221 
4222   // Setup the soft refs policy...
4223   rp->setup_policy(false);
4224 
4225   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4226 
4227   ReferenceProcessorStats stats;
4228   if (!rp->processing_is_mt()) {
4229     // Serial reference processing...
4230     stats = rp->process_discovered_references(&is_alive,
4231                                               &keep_alive,
4232                                               &drain_queue,
4233                                               NULL,
4234                                               pt);
4235   } else {
4236     uint no_of_gc_workers = workers()->active_workers();
4237 
4238     // Parallel reference processing
4239     assert(no_of_gc_workers <= rp->max_num_q(),
4240            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4241            no_of_gc_workers,  rp->max_num_q());
4242 
4243     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4244     stats = rp->process_discovered_references(&is_alive,
4245                                               &keep_alive,
4246                                               &drain_queue,
4247                                               &par_task_executor,
4248                                               pt);
4249   }
4250 
4251   _gc_tracer_stw->report_gc_reference_stats(stats);
4252 
4253   // We have completed copying any necessary live referent objects.
4254   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4255 
4256   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4257   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4258 }
4259 
4260 // Weak Reference processing during an evacuation pause (part 2).
4261 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4262   double ref_enq_start = os::elapsedTime();
4263 
4264   ReferenceProcessor* rp = _ref_processor_stw;
4265   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4266 
4267   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4268 
4269   // Now enqueue any remaining on the discovered lists on to
4270   // the pending list.
4271   if (!rp->processing_is_mt()) {
4272     // Serial reference processing...
4273     rp->enqueue_discovered_references(NULL, pt);
4274   } else {
4275     // Parallel reference enqueueing
4276 
4277     uint n_workers = workers()->active_workers();
4278 
4279     assert(n_workers <= rp->max_num_q(),
4280            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4281            n_workers,  rp->max_num_q());
4282 
4283     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4284     rp->enqueue_discovered_references(&par_task_executor, pt);
4285   }
4286 
4287   rp->verify_no_references_recorded();
4288   assert(!rp->discovery_enabled(), "should have been disabled");
4289 
4290   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4291   // ensure that it is marked in the bitmap for concurrent marking to discover.
4292   if (collector_state()->during_initial_mark_pause()) {
4293     oop pll_head = Universe::reference_pending_list();
4294     if (pll_head != NULL) {
4295       _cm->mark_in_next_bitmap(pll_head);
4296     }
4297   }
4298 
4299   // FIXME
4300   // CM's reference processing also cleans up the string and symbol tables.
4301   // Should we do that here also? We could, but it is a serial operation
4302   // and could significantly increase the pause time.
4303 
4304   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4305   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4306 }
4307 
4308 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4309   double merge_pss_time_start = os::elapsedTime();
4310   per_thread_states->flush();
4311   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4312 }
4313 
4314 void G1CollectedHeap::pre_evacuate_collection_set() {
4315   _expand_heap_after_alloc_failure = true;
4316   _evacuation_failed = false;
4317 
4318   // Disable the hot card cache.
4319   _hot_card_cache->reset_hot_cache_claimed_index();
4320   _hot_card_cache->set_use_cache(false);
4321 
4322   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4323   _preserved_marks_set.assert_empty();
4324 
4325   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4326 
4327   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4328   if (collector_state()->during_initial_mark_pause()) {
4329     double start_clear_claimed_marks = os::elapsedTime();
4330 
4331     ClassLoaderDataGraph::clear_claimed_marks();
4332 
4333     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4334     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4335   }
4336 }
4337 
4338 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4339   // Should G1EvacuationFailureALot be in effect for this GC?
4340   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4341 
4342   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4343 
4344   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4345 
4346   double start_par_time_sec = os::elapsedTime();
4347   double end_par_time_sec;
4348 
4349   {
4350     const uint n_workers = workers()->active_workers();
4351     G1RootProcessor root_processor(this, n_workers);
4352     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4353 
4354     print_termination_stats_hdr();
4355 
4356     workers()->run_task(&g1_par_task);
4357     end_par_time_sec = os::elapsedTime();
4358 
4359     // Closing the inner scope will execute the destructor
4360     // for the G1RootProcessor object. We record the current
4361     // elapsed time before closing the scope so that time
4362     // taken for the destructor is NOT included in the
4363     // reported parallel time.
4364   }
4365 
4366   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4367   phase_times->record_par_time(par_time_ms);
4368 
4369   double code_root_fixup_time_ms =
4370         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4371   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4372 }
4373 
4374 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4375   // Process any discovered reference objects - we have
4376   // to do this _before_ we retire the GC alloc regions
4377   // as we may have to copy some 'reachable' referent
4378   // objects (and their reachable sub-graphs) that were
4379   // not copied during the pause.
4380   if (g1_policy()->should_process_references()) {
4381     preserve_cm_referents(per_thread_states);
4382     process_discovered_references(per_thread_states);
4383   } else {
4384     ref_processor_stw()->verify_no_references_recorded();
4385   }
4386 
4387   G1STWIsAliveClosure is_alive(this);
4388   G1KeepAliveClosure keep_alive(this);
4389 
4390   {
4391     double start = os::elapsedTime();
4392 
4393     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4394 
4395     double time_ms = (os::elapsedTime() - start) * 1000.0;
4396     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4397   }
4398 
4399   if (G1StringDedup::is_enabled()) {
4400     double fixup_start = os::elapsedTime();
4401 
4402     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4403 
4404     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4405     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4406   }
4407 
4408   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4409 
4410   if (evacuation_failed()) {
4411     restore_after_evac_failure();
4412 
4413     // Reset the G1EvacuationFailureALot counters and flags
4414     // Note: the values are reset only when an actual
4415     // evacuation failure occurs.
4416     NOT_PRODUCT(reset_evacuation_should_fail();)
4417   }
4418 
4419   _preserved_marks_set.assert_empty();
4420 
4421   // Enqueue any remaining references remaining on the STW
4422   // reference processor's discovered lists. We need to do
4423   // this after the card table is cleaned (and verified) as
4424   // the act of enqueueing entries on to the pending list
4425   // will log these updates (and dirty their associated
4426   // cards). We need these updates logged to update any
4427   // RSets.
4428   if (g1_policy()->should_process_references()) {
4429     enqueue_discovered_references(per_thread_states);
4430   } else {
4431     g1_policy()->phase_times()->record_ref_enq_time(0);
4432   }
4433 
4434   _allocator->release_gc_alloc_regions(evacuation_info);
4435 
4436   merge_per_thread_state_info(per_thread_states);
4437 
4438   // Reset and re-enable the hot card cache.
4439   // Note the counts for the cards in the regions in the
4440   // collection set are reset when the collection set is freed.
4441   _hot_card_cache->reset_hot_cache();
4442   _hot_card_cache->set_use_cache(true);
4443 
4444   purge_code_root_memory();
4445 
4446   redirty_logged_cards();
4447 #if COMPILER2_OR_JVMCI
4448   double start = os::elapsedTime();
4449   DerivedPointerTable::update_pointers();
4450   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4451 #endif
4452   g1_policy()->print_age_table();
4453 }
4454 
4455 void G1CollectedHeap::record_obj_copy_mem_stats() {
4456   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4457 
4458   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4459                                                create_g1_evac_summary(&_old_evac_stats));
4460 }
4461 
4462 void G1CollectedHeap::free_region(HeapRegion* hr,
4463                                   FreeRegionList* free_list,
4464                                   bool skip_remset,
4465                                   bool skip_hot_card_cache,
4466                                   bool locked) {
4467   assert(!hr->is_free(), "the region should not be free");
4468   assert(!hr->is_empty(), "the region should not be empty");
4469   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4470   assert(free_list != NULL, "pre-condition");
4471 
4472   if (G1VerifyBitmaps) {
4473     MemRegion mr(hr->bottom(), hr->end());
4474     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4475   }
4476 
4477   // Clear the card counts for this region.
4478   // Note: we only need to do this if the region is not young
4479   // (since we don't refine cards in young regions).
4480   if (!skip_hot_card_cache && !hr->is_young()) {
4481     _hot_card_cache->reset_card_counts(hr);
4482   }
4483   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4484   free_list->add_ordered(hr);
4485 }
4486 
4487 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4488                                             FreeRegionList* free_list,
4489                                             bool skip_remset) {
4490   assert(hr->is_humongous(), "this is only for humongous regions");
4491   assert(free_list != NULL, "pre-condition");
4492   hr->clear_humongous();
4493   free_region(hr, free_list, skip_remset);
4494 }
4495 
4496 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4497                                            const uint humongous_regions_removed) {
4498   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4499     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4500     _old_set.bulk_remove(old_regions_removed);
4501     _humongous_set.bulk_remove(humongous_regions_removed);
4502   }
4503 
4504 }
4505 
4506 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4507   assert(list != NULL, "list can't be null");
4508   if (!list->is_empty()) {
4509     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4510     _hrm.insert_list_into_free_list(list);
4511   }
4512 }
4513 
4514 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4515   decrease_used(bytes);
4516 }
4517 
4518 class G1ParScrubRemSetTask: public AbstractGangTask {
4519 protected:
4520   G1RemSet* _g1rs;
4521   HeapRegionClaimer _hrclaimer;
4522 
4523 public:
4524   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4525     AbstractGangTask("G1 ScrubRS"),
4526     _g1rs(g1_rs),
4527     _hrclaimer(num_workers) {
4528   }
4529 
4530   void work(uint worker_id) {
4531     _g1rs->scrub(worker_id, &_hrclaimer);
4532   }
4533 };
4534 
4535 void G1CollectedHeap::scrub_rem_set() {
4536   uint num_workers = workers()->active_workers();
4537   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4538   workers()->run_task(&g1_par_scrub_rs_task);
4539 }
4540 
4541 class G1FreeCollectionSetTask : public AbstractGangTask {
4542 private:
4543 
4544   // Closure applied to all regions in the collection set to do work that needs to
4545   // be done serially in a single thread.
4546   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4547   private:
4548     EvacuationInfo* _evacuation_info;
4549     const size_t* _surviving_young_words;
4550 
4551     // Bytes used in successfully evacuated regions before the evacuation.
4552     size_t _before_used_bytes;
4553     // Bytes used in unsucessfully evacuated regions before the evacuation
4554     size_t _after_used_bytes;
4555 
4556     size_t _bytes_allocated_in_old_since_last_gc;
4557 
4558     size_t _failure_used_words;
4559     size_t _failure_waste_words;
4560 
4561     FreeRegionList _local_free_list;
4562   public:
4563     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4564       HeapRegionClosure(),
4565       _evacuation_info(evacuation_info),
4566       _surviving_young_words(surviving_young_words),
4567       _before_used_bytes(0),
4568       _after_used_bytes(0),
4569       _bytes_allocated_in_old_since_last_gc(0),
4570       _failure_used_words(0),
4571       _failure_waste_words(0),
4572       _local_free_list("Local Region List for CSet Freeing") {
4573     }
4574 
4575     virtual bool doHeapRegion(HeapRegion* r) {
4576       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4577 
4578       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4579       g1h->clear_in_cset(r);
4580 
4581       if (r->is_young()) {
4582         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4583                "Young index %d is wrong for region %u of type %s with %u young regions",
4584                r->young_index_in_cset(),
4585                r->hrm_index(),
4586                r->get_type_str(),
4587                g1h->collection_set()->young_region_length());
4588         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4589         r->record_surv_words_in_group(words_survived);
4590       }
4591 
4592       if (!r->evacuation_failed()) {
4593         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4594         _before_used_bytes += r->used();
4595         g1h->free_region(r,
4596                          &_local_free_list,
4597                          true, /* skip_remset */
4598                          true, /* skip_hot_card_cache */
4599                          true  /* locked */);
4600       } else {
4601         r->uninstall_surv_rate_group();
4602         r->set_young_index_in_cset(-1);
4603         r->set_evacuation_failed(false);
4604         // When moving a young gen region to old gen, we "allocate" that whole region
4605         // there. This is in addition to any already evacuated objects. Notify the
4606         // policy about that.
4607         // Old gen regions do not cause an additional allocation: both the objects
4608         // still in the region and the ones already moved are accounted for elsewhere.
4609         if (r->is_young()) {
4610           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4611         }
4612         // The region is now considered to be old.
4613         r->set_old();
4614         // Do some allocation statistics accounting. Regions that failed evacuation
4615         // are always made old, so there is no need to update anything in the young
4616         // gen statistics, but we need to update old gen statistics.
4617         size_t used_words = r->marked_bytes() / HeapWordSize;
4618 
4619         _failure_used_words += used_words;
4620         _failure_waste_words += HeapRegion::GrainWords - used_words;
4621 
4622         g1h->old_set_add(r);
4623         _after_used_bytes += r->used();
4624       }
4625       return false;
4626     }
4627 
4628     void complete_work() {
4629       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4630 
4631       _evacuation_info->set_regions_freed(_local_free_list.length());
4632       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4633 
4634       g1h->prepend_to_freelist(&_local_free_list);
4635       g1h->decrement_summary_bytes(_before_used_bytes);
4636 
4637       G1Policy* policy = g1h->g1_policy();
4638       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4639 
4640       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4641     }
4642   };
4643 
4644   G1CollectionSet* _collection_set;
4645   G1SerialFreeCollectionSetClosure _cl;
4646   const size_t* _surviving_young_words;
4647 
4648   size_t _rs_lengths;
4649 
4650   volatile jint _serial_work_claim;
4651 
4652   struct WorkItem {
4653     uint region_idx;
4654     bool is_young;
4655     bool evacuation_failed;
4656 
4657     WorkItem(HeapRegion* r) {
4658       region_idx = r->hrm_index();
4659       is_young = r->is_young();
4660       evacuation_failed = r->evacuation_failed();
4661     }
4662   };
4663 
4664   volatile size_t _parallel_work_claim;
4665   size_t _num_work_items;
4666   WorkItem* _work_items;
4667 
4668   void do_serial_work() {
4669     // Need to grab the lock to be allowed to modify the old region list.
4670     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4671     _collection_set->iterate(&_cl);
4672   }
4673 
4674   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4675     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4676 
4677     HeapRegion* r = g1h->region_at(region_idx);
4678     assert(!g1h->is_on_master_free_list(r), "sanity");
4679 
4680     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4681 
4682     if (!is_young) {
4683       g1h->_hot_card_cache->reset_card_counts(r);
4684     }
4685 
4686     if (!evacuation_failed) {
4687       r->rem_set()->clear_locked();
4688     }
4689   }
4690 
4691   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4692   private:
4693     size_t _cur_idx;
4694     WorkItem* _work_items;
4695   public:
4696     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4697 
4698     virtual bool doHeapRegion(HeapRegion* r) {
4699       _work_items[_cur_idx++] = WorkItem(r);
4700       return false;
4701     }
4702   };
4703 
4704   void prepare_work() {
4705     G1PrepareFreeCollectionSetClosure cl(_work_items);
4706     _collection_set->iterate(&cl);
4707   }
4708 
4709   void complete_work() {
4710     _cl.complete_work();
4711 
4712     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4713     policy->record_max_rs_lengths(_rs_lengths);
4714     policy->cset_regions_freed();
4715   }
4716 public:
4717   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4718     AbstractGangTask("G1 Free Collection Set"),
4719     _cl(evacuation_info, surviving_young_words),
4720     _collection_set(collection_set),
4721     _surviving_young_words(surviving_young_words),
4722     _serial_work_claim(0),
4723     _rs_lengths(0),
4724     _parallel_work_claim(0),
4725     _num_work_items(collection_set->region_length()),
4726     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4727     prepare_work();
4728   }
4729 
4730   ~G1FreeCollectionSetTask() {
4731     complete_work();
4732     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4733   }
4734 
4735   // Chunk size for work distribution. The chosen value has been determined experimentally
4736   // to be a good tradeoff between overhead and achievable parallelism.
4737   static uint chunk_size() { return 32; }
4738 
4739   virtual void work(uint worker_id) {
4740     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4741 
4742     // Claim serial work.
4743     if (_serial_work_claim == 0) {
4744       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4745       if (value == 0) {
4746         double serial_time = os::elapsedTime();
4747         do_serial_work();
4748         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4749       }
4750     }
4751 
4752     // Start parallel work.
4753     double young_time = 0.0;
4754     bool has_young_time = false;
4755     double non_young_time = 0.0;
4756     bool has_non_young_time = false;
4757 
4758     while (true) {
4759       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4760       size_t cur = end - chunk_size();
4761 
4762       if (cur >= _num_work_items) {
4763         break;
4764       }
4765 
4766       double start_time = os::elapsedTime();
4767 
4768       end = MIN2(end, _num_work_items);
4769 
4770       for (; cur < end; cur++) {
4771         bool is_young = _work_items[cur].is_young;
4772 
4773         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4774 
4775         double end_time = os::elapsedTime();
4776         double time_taken = end_time - start_time;
4777         if (is_young) {
4778           young_time += time_taken;
4779           has_young_time = true;
4780         } else {
4781           non_young_time += time_taken;
4782           has_non_young_time = true;
4783         }
4784         start_time = end_time;
4785       }
4786     }
4787 
4788     if (has_young_time) {
4789       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4790     }
4791     if (has_non_young_time) {
4792       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4793     }
4794   }
4795 };
4796 
4797 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4798   _eden.clear();
4799 
4800   double free_cset_start_time = os::elapsedTime();
4801 
4802   {
4803     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4804     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4805 
4806     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4807 
4808     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4809                         cl.name(),
4810                         num_workers,
4811                         _collection_set.region_length());
4812     workers()->run_task(&cl, num_workers);
4813   }
4814   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4815 
4816   collection_set->clear();
4817 }
4818 
4819 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4820  private:
4821   FreeRegionList* _free_region_list;
4822   HeapRegionSet* _proxy_set;
4823   uint _humongous_objects_reclaimed;
4824   uint _humongous_regions_reclaimed;
4825   size_t _freed_bytes;
4826  public:
4827 
4828   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4829     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4830   }
4831 
4832   virtual bool doHeapRegion(HeapRegion* r) {
4833     if (!r->is_starts_humongous()) {
4834       return false;
4835     }
4836 
4837     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4838 
4839     oop obj = (oop)r->bottom();
4840     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4841 
4842     // The following checks whether the humongous object is live are sufficient.
4843     // The main additional check (in addition to having a reference from the roots
4844     // or the young gen) is whether the humongous object has a remembered set entry.
4845     //
4846     // A humongous object cannot be live if there is no remembered set for it
4847     // because:
4848     // - there can be no references from within humongous starts regions referencing
4849     // the object because we never allocate other objects into them.
4850     // (I.e. there are no intra-region references that may be missed by the
4851     // remembered set)
4852     // - as soon there is a remembered set entry to the humongous starts region
4853     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4854     // until the end of a concurrent mark.
4855     //
4856     // It is not required to check whether the object has been found dead by marking
4857     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4858     // all objects allocated during that time are considered live.
4859     // SATB marking is even more conservative than the remembered set.
4860     // So if at this point in the collection there is no remembered set entry,
4861     // nobody has a reference to it.
4862     // At the start of collection we flush all refinement logs, and remembered sets
4863     // are completely up-to-date wrt to references to the humongous object.
4864     //
4865     // Other implementation considerations:
4866     // - never consider object arrays at this time because they would pose
4867     // considerable effort for cleaning up the the remembered sets. This is
4868     // required because stale remembered sets might reference locations that
4869     // are currently allocated into.
4870     uint region_idx = r->hrm_index();
4871     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4872         !r->rem_set()->is_empty()) {
4873       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4874                                region_idx,
4875                                (size_t)obj->size() * HeapWordSize,
4876                                p2i(r->bottom()),
4877                                r->rem_set()->occupied(),
4878                                r->rem_set()->strong_code_roots_list_length(),
4879                                next_bitmap->is_marked(r->bottom()),
4880                                g1h->is_humongous_reclaim_candidate(region_idx),
4881                                obj->is_typeArray()
4882                               );
4883       return false;
4884     }
4885 
4886     guarantee(obj->is_typeArray(),
4887               "Only eagerly reclaiming type arrays is supported, but the object "
4888               PTR_FORMAT " is not.", p2i(r->bottom()));
4889 
4890     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4891                              region_idx,
4892                              (size_t)obj->size() * HeapWordSize,
4893                              p2i(r->bottom()),
4894                              r->rem_set()->occupied(),
4895                              r->rem_set()->strong_code_roots_list_length(),
4896                              next_bitmap->is_marked(r->bottom()),
4897                              g1h->is_humongous_reclaim_candidate(region_idx),
4898                              obj->is_typeArray()
4899                             );
4900 
4901     // Need to clear mark bit of the humongous object if already set.
4902     if (next_bitmap->is_marked(r->bottom())) {
4903       next_bitmap->clear(r->bottom());
4904     }
4905     _humongous_objects_reclaimed++;
4906     do {
4907       HeapRegion* next = g1h->next_region_in_humongous(r);
4908       _freed_bytes += r->used();
4909       r->set_containing_set(NULL);
4910       _humongous_regions_reclaimed++;
4911       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4912       r = next;
4913     } while (r != NULL);
4914 
4915     return false;
4916   }
4917 
4918   uint humongous_objects_reclaimed() {
4919     return _humongous_objects_reclaimed;
4920   }
4921 
4922   uint humongous_regions_reclaimed() {
4923     return _humongous_regions_reclaimed;
4924   }
4925 
4926   size_t bytes_freed() const {
4927     return _freed_bytes;
4928   }
4929 };
4930 
4931 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4932   assert_at_safepoint(true);
4933 
4934   if (!G1EagerReclaimHumongousObjects ||
4935       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4936     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4937     return;
4938   }
4939 
4940   double start_time = os::elapsedTime();
4941 
4942   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4943 
4944   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4945   heap_region_iterate(&cl);
4946 
4947   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4948 
4949   G1HRPrinter* hrp = hr_printer();
4950   if (hrp->is_active()) {
4951     FreeRegionListIterator iter(&local_cleanup_list);
4952     while (iter.more_available()) {
4953       HeapRegion* hr = iter.get_next();
4954       hrp->cleanup(hr);
4955     }
4956   }
4957 
4958   prepend_to_freelist(&local_cleanup_list);
4959   decrement_summary_bytes(cl.bytes_freed());
4960 
4961   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4962                                                                     cl.humongous_objects_reclaimed());
4963 }
4964 
4965 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4966 public:
4967   virtual bool doHeapRegion(HeapRegion* r) {
4968     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4969     G1CollectedHeap::heap()->clear_in_cset(r);
4970     r->set_young_index_in_cset(-1);
4971     return false;
4972   }
4973 };
4974 
4975 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4976   G1AbandonCollectionSetClosure cl;
4977   collection_set->iterate(&cl);
4978 
4979   collection_set->clear();
4980   collection_set->stop_incremental_building();
4981 }
4982 
4983 void G1CollectedHeap::set_free_regions_coming() {
4984   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4985 
4986   assert(!free_regions_coming(), "pre-condition");
4987   _free_regions_coming = true;
4988 }
4989 
4990 void G1CollectedHeap::reset_free_regions_coming() {
4991   assert(free_regions_coming(), "pre-condition");
4992 
4993   {
4994     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4995     _free_regions_coming = false;
4996     SecondaryFreeList_lock->notify_all();
4997   }
4998 
4999   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5000 }
5001 
5002 void G1CollectedHeap::wait_while_free_regions_coming() {
5003   // Most of the time we won't have to wait, so let's do a quick test
5004   // first before we take the lock.
5005   if (!free_regions_coming()) {
5006     return;
5007   }
5008 
5009   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5010 
5011   {
5012     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5013     while (free_regions_coming()) {
5014       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5015     }
5016   }
5017 
5018   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5019 }
5020 
5021 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5022   return _allocator->is_retained_old_region(hr);
5023 }
5024 
5025 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5026   _eden.add(hr);
5027   _g1_policy->set_region_eden(hr);
5028 }
5029 
5030 #ifdef ASSERT
5031 
5032 class NoYoungRegionsClosure: public HeapRegionClosure {
5033 private:
5034   bool _success;
5035 public:
5036   NoYoungRegionsClosure() : _success(true) { }
5037   bool doHeapRegion(HeapRegion* r) {
5038     if (r->is_young()) {
5039       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5040                             p2i(r->bottom()), p2i(r->end()));
5041       _success = false;
5042     }
5043     return false;
5044   }
5045   bool success() { return _success; }
5046 };
5047 
5048 bool G1CollectedHeap::check_young_list_empty() {
5049   bool ret = (young_regions_count() == 0);
5050 
5051   NoYoungRegionsClosure closure;
5052   heap_region_iterate(&closure);
5053   ret = ret && closure.success();
5054 
5055   return ret;
5056 }
5057 
5058 #endif // ASSERT
5059 
5060 class TearDownRegionSetsClosure : public HeapRegionClosure {
5061 private:
5062   HeapRegionSet *_old_set;
5063 
5064 public:
5065   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5066 
5067   bool doHeapRegion(HeapRegion* r) {
5068     if (r->is_old()) {
5069       _old_set->remove(r);
5070     } else if(r->is_young()) {
5071       r->uninstall_surv_rate_group();
5072     } else {
5073       // We ignore free regions, we'll empty the free list afterwards.
5074       // We ignore humongous regions, we're not tearing down the
5075       // humongous regions set.
5076       assert(r->is_free() || r->is_humongous(),
5077              "it cannot be another type");
5078     }
5079     return false;
5080   }
5081 
5082   ~TearDownRegionSetsClosure() {
5083     assert(_old_set->is_empty(), "post-condition");
5084   }
5085 };
5086 
5087 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5088   assert_at_safepoint(true /* should_be_vm_thread */);
5089 
5090   if (!free_list_only) {
5091     TearDownRegionSetsClosure cl(&_old_set);
5092     heap_region_iterate(&cl);
5093 
5094     // Note that emptying the _young_list is postponed and instead done as
5095     // the first step when rebuilding the regions sets again. The reason for
5096     // this is that during a full GC string deduplication needs to know if
5097     // a collected region was young or old when the full GC was initiated.
5098   }
5099   _hrm.remove_all_free_regions();
5100 }
5101 
5102 void G1CollectedHeap::increase_used(size_t bytes) {
5103   _summary_bytes_used += bytes;
5104 }
5105 
5106 void G1CollectedHeap::decrease_used(size_t bytes) {
5107   assert(_summary_bytes_used >= bytes,
5108          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5109          _summary_bytes_used, bytes);
5110   _summary_bytes_used -= bytes;
5111 }
5112 
5113 void G1CollectedHeap::set_used(size_t bytes) {
5114   _summary_bytes_used = bytes;
5115 }
5116 
5117 class RebuildRegionSetsClosure : public HeapRegionClosure {
5118 private:
5119   bool            _free_list_only;
5120   HeapRegionSet*   _old_set;
5121   HeapRegionManager*   _hrm;
5122   size_t          _total_used;
5123 
5124 public:
5125   RebuildRegionSetsClosure(bool free_list_only,
5126                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5127     _free_list_only(free_list_only),
5128     _old_set(old_set), _hrm(hrm), _total_used(0) {
5129     assert(_hrm->num_free_regions() == 0, "pre-condition");
5130     if (!free_list_only) {
5131       assert(_old_set->is_empty(), "pre-condition");
5132     }
5133   }
5134 
5135   bool doHeapRegion(HeapRegion* r) {
5136     if (r->is_empty()) {
5137       // Add free regions to the free list
5138       r->set_free();
5139       r->set_allocation_context(AllocationContext::system());
5140       _hrm->insert_into_free_list(r);
5141     } else if (!_free_list_only) {
5142 
5143       if (r->is_humongous()) {
5144         // We ignore humongous regions. We left the humongous set unchanged.
5145       } else {
5146         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5147         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5148         r->move_to_old();
5149         _old_set->add(r);
5150       }
5151       _total_used += r->used();
5152     }
5153 
5154     return false;
5155   }
5156 
5157   size_t total_used() {
5158     return _total_used;
5159   }
5160 };
5161 
5162 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5163   assert_at_safepoint(true /* should_be_vm_thread */);
5164 
5165   if (!free_list_only) {
5166     _eden.clear();
5167     _survivor.clear();
5168   }
5169 
5170   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5171   heap_region_iterate(&cl);
5172 
5173   if (!free_list_only) {
5174     set_used(cl.total_used());
5175     if (_archive_allocator != NULL) {
5176       _archive_allocator->clear_used();
5177     }
5178   }
5179   assert(used_unlocked() == recalculate_used(),
5180          "inconsistent used_unlocked(), "
5181          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5182          used_unlocked(), recalculate_used());
5183 }
5184 
5185 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5186   HeapRegion* hr = heap_region_containing(p);
5187   return hr->is_in(p);
5188 }
5189 
5190 // Methods for the mutator alloc region
5191 
5192 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5193                                                       bool force) {
5194   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5195   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5196   if (force || should_allocate) {
5197     HeapRegion* new_alloc_region = new_region(word_size,
5198                                               false /* is_old */,
5199                                               false /* do_expand */);
5200     if (new_alloc_region != NULL) {
5201       set_region_short_lived_locked(new_alloc_region);
5202       _hr_printer.alloc(new_alloc_region, !should_allocate);
5203       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5204       return new_alloc_region;
5205     }
5206   }
5207   return NULL;
5208 }
5209 
5210 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5211                                                   size_t allocated_bytes) {
5212   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5213   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5214 
5215   collection_set()->add_eden_region(alloc_region);
5216   increase_used(allocated_bytes);
5217   _hr_printer.retire(alloc_region);
5218   // We update the eden sizes here, when the region is retired,
5219   // instead of when it's allocated, since this is the point that its
5220   // used space has been recored in _summary_bytes_used.
5221   g1mm()->update_eden_size();
5222 }
5223 
5224 // Methods for the GC alloc regions
5225 
5226 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5227   if (dest.is_old()) {
5228     return true;
5229   } else {
5230     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5231   }
5232 }
5233 
5234 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5235   assert(FreeList_lock->owned_by_self(), "pre-condition");
5236 
5237   if (!has_more_regions(dest)) {
5238     return NULL;
5239   }
5240 
5241   const bool is_survivor = dest.is_young();
5242 
5243   HeapRegion* new_alloc_region = new_region(word_size,
5244                                             !is_survivor,
5245                                             true /* do_expand */);
5246   if (new_alloc_region != NULL) {
5247     // We really only need to do this for old regions given that we
5248     // should never scan survivors. But it doesn't hurt to do it
5249     // for survivors too.
5250     new_alloc_region->record_timestamp();
5251     if (is_survivor) {
5252       new_alloc_region->set_survivor();
5253       _survivor.add(new_alloc_region);
5254       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5255     } else {
5256       new_alloc_region->set_old();
5257       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5258     }
5259     _hr_printer.alloc(new_alloc_region);
5260     bool during_im = collector_state()->during_initial_mark_pause();
5261     new_alloc_region->note_start_of_copying(during_im);
5262     return new_alloc_region;
5263   }
5264   return NULL;
5265 }
5266 
5267 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5268                                              size_t allocated_bytes,
5269                                              InCSetState dest) {
5270   bool during_im = collector_state()->during_initial_mark_pause();
5271   alloc_region->note_end_of_copying(during_im);
5272   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5273   if (dest.is_old()) {
5274     _old_set.add(alloc_region);
5275   }
5276   _hr_printer.retire(alloc_region);
5277 }
5278 
5279 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5280   bool expanded = false;
5281   uint index = _hrm.find_highest_free(&expanded);
5282 
5283   if (index != G1_NO_HRM_INDEX) {
5284     if (expanded) {
5285       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5286                                 HeapRegion::GrainWords * HeapWordSize);
5287     }
5288     _hrm.allocate_free_regions_starting_at(index, 1);
5289     return region_at(index);
5290   }
5291   return NULL;
5292 }
5293 
5294 // Optimized nmethod scanning
5295 
5296 class RegisterNMethodOopClosure: public OopClosure {
5297   G1CollectedHeap* _g1h;
5298   nmethod* _nm;
5299 
5300   template <class T> void do_oop_work(T* p) {
5301     T heap_oop = oopDesc::load_heap_oop(p);
5302     if (!oopDesc::is_null(heap_oop)) {
5303       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5304       HeapRegion* hr = _g1h->heap_region_containing(obj);
5305       assert(!hr->is_continues_humongous(),
5306              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5307              " starting at " HR_FORMAT,
5308              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5309 
5310       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5311       hr->add_strong_code_root_locked(_nm);
5312     }
5313   }
5314 
5315 public:
5316   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5317     _g1h(g1h), _nm(nm) {}
5318 
5319   void do_oop(oop* p)       { do_oop_work(p); }
5320   void do_oop(narrowOop* p) { do_oop_work(p); }
5321 };
5322 
5323 class UnregisterNMethodOopClosure: public OopClosure {
5324   G1CollectedHeap* _g1h;
5325   nmethod* _nm;
5326 
5327   template <class T> void do_oop_work(T* p) {
5328     T heap_oop = oopDesc::load_heap_oop(p);
5329     if (!oopDesc::is_null(heap_oop)) {
5330       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5331       HeapRegion* hr = _g1h->heap_region_containing(obj);
5332       assert(!hr->is_continues_humongous(),
5333              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5334              " starting at " HR_FORMAT,
5335              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5336 
5337       hr->remove_strong_code_root(_nm);
5338     }
5339   }
5340 
5341 public:
5342   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5343     _g1h(g1h), _nm(nm) {}
5344 
5345   void do_oop(oop* p)       { do_oop_work(p); }
5346   void do_oop(narrowOop* p) { do_oop_work(p); }
5347 };
5348 
5349 // Returns true if the reference points to an object that
5350 // can move in an incremental collection.
5351 bool G1CollectedHeap::is_scavengable(oop obj) {
5352   HeapRegion* hr = heap_region_containing(obj);
5353   return !hr->is_pinned();
5354 }
5355 
5356 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5357   guarantee(nm != NULL, "sanity");
5358   RegisterNMethodOopClosure reg_cl(this, nm);
5359   nm->oops_do(&reg_cl);
5360 }
5361 
5362 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5363   guarantee(nm != NULL, "sanity");
5364   UnregisterNMethodOopClosure reg_cl(this, nm);
5365   nm->oops_do(&reg_cl, true);
5366 }
5367 
5368 void G1CollectedHeap::purge_code_root_memory() {
5369   double purge_start = os::elapsedTime();
5370   G1CodeRootSet::purge();
5371   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5372   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5373 }
5374 
5375 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5376   G1CollectedHeap* _g1h;
5377 
5378 public:
5379   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5380     _g1h(g1h) {}
5381 
5382   void do_code_blob(CodeBlob* cb) {
5383     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5384     if (nm == NULL) {
5385       return;
5386     }
5387 
5388     if (ScavengeRootsInCode) {
5389       _g1h->register_nmethod(nm);
5390     }
5391   }
5392 };
5393 
5394 void G1CollectedHeap::rebuild_strong_code_roots() {
5395   RebuildStrongCodeRootClosure blob_cl(this);
5396   CodeCache::blobs_do(&blob_cl);
5397 }
5398 
5399 GCServicabilitySupport* G1CollectedHeap::create_servicability_support() {
5400   return new G1GCServicabilitySupport();
5401 }