1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/evacuationInfo.hpp"
  29 #include "gc/g1/g1AllocationContext.hpp"
  30 #include "gc/g1/g1BiasedArray.hpp"
  31 #include "gc/g1/g1CollectionSet.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.hpp"
  34 #include "gc/g1/g1EdenRegions.hpp"
  35 #include "gc/g1/g1EvacFailure.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1HeapTransition.hpp"
  38 #include "gc/g1/g1HeapVerifier.hpp"
  39 #include "gc/g1/g1HRPrinter.hpp"
  40 #include "gc/g1/g1InCSetState.hpp"
  41 #include "gc/g1/g1MonitoringSupport.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/g1SurvivorRegions.hpp"
  44 #include "gc/g1/g1YCTypes.hpp"
  45 #include "gc/g1/hSpaceCounters.hpp"
  46 #include "gc/g1/heapRegionManager.hpp"
  47 #include "gc/g1/heapRegionSet.hpp"
  48 #include "gc/shared/barrierSet.hpp"
  49 #include "gc/shared/collectedHeap.hpp"
  50 #include "gc/shared/plab.hpp"
  51 #include "gc/shared/preservedMarks.hpp"
  52 #include "memory/memRegion.hpp"
  53 #include "utilities/stack.hpp"
  54 
  55 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  56 // It uses the "Garbage First" heap organization and algorithm, which
  57 // may combine concurrent marking with parallel, incremental compaction of
  58 // heap subsets that will yield large amounts of garbage.
  59 
  60 // Forward declarations
  61 class HeapRegion;
  62 class HRRSCleanupTask;
  63 class GenerationSpec;
  64 class G1ParScanThreadState;
  65 class G1ParScanThreadStateSet;
  66 class G1ParScanThreadState;
  67 class ObjectClosure;
  68 class SpaceClosure;
  69 class CompactibleSpaceClosure;
  70 class Space;
  71 class G1CollectionSet;
  72 class G1CollectorPolicy;
  73 class G1Policy;
  74 class G1HotCardCache;
  75 class G1RemSet;
  76 class G1YoungRemSetSamplingThread;
  77 class HeapRegionRemSetIterator;
  78 class G1ConcurrentMark;
  79 class ConcurrentMarkThread;
  80 class G1ConcurrentRefine;
  81 class GenerationCounters;
  82 class STWGCTimer;
  83 class G1NewTracer;
  84 class EvacuationFailedInfo;
  85 class nmethod;
  86 class Ticks;
  87 class WorkGang;
  88 class G1Allocator;
  89 class G1ArchiveAllocator;
  90 class G1FullGCScope;
  91 class G1HeapVerifier;
  92 class G1HeapSizingPolicy;
  93 class G1HeapSummary;
  94 class G1EvacSummary;
  95 
  96 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  97 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  98 
  99 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
 100 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
 101 
 102 // The G1 STW is alive closure.
 103 // An instance is embedded into the G1CH and used as the
 104 // (optional) _is_alive_non_header closure in the STW
 105 // reference processor. It is also extensively used during
 106 // reference processing during STW evacuation pauses.
 107 class G1STWIsAliveClosure: public BoolObjectClosure {
 108   G1CollectedHeap* _g1;
 109 public:
 110   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 111   bool do_object_b(oop p);
 112 };
 113 
 114 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 115  private:
 116   void reset_from_card_cache(uint start_idx, size_t num_regions);
 117  public:
 118   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 119 };
 120 
 121 class G1CollectedHeap : public CollectedHeap {
 122   friend class G1FreeCollectionSetTask;
 123   friend class VM_CollectForMetadataAllocation;
 124   friend class VM_G1CollectForAllocation;
 125   friend class VM_G1CollectFull;
 126   friend class VM_G1IncCollectionPause;
 127   friend class VMStructs;
 128   friend class MutatorAllocRegion;
 129   friend class G1GCAllocRegion;
 130   friend class G1HeapVerifier;
 131 
 132   // Closures used in implementation.
 133   friend class G1ParScanThreadState;
 134   friend class G1ParScanThreadStateSet;
 135   friend class G1ParTask;
 136   friend class G1PLABAllocator;
 137   friend class G1PrepareCompactClosure;
 138 
 139   // Other related classes.
 140   friend class HeapRegionClaimer;
 141 
 142   // Testing classes.
 143   friend class G1CheckCSetFastTableClosure;
 144 
 145 private:
 146   G1YoungRemSetSamplingThread* _young_gen_sampling_thread;
 147 
 148   WorkGang* _workers;
 149   G1CollectorPolicy* _collector_policy;
 150 
 151   static size_t _humongous_object_threshold_in_words;
 152 
 153   // The secondary free list which contains regions that have been
 154   // freed up during the cleanup process. This will be appended to
 155   // the master free list when appropriate.
 156   FreeRegionList _secondary_free_list;
 157 
 158   // It keeps track of the old regions.
 159   HeapRegionSet _old_set;
 160 
 161   // It keeps track of the humongous regions.
 162   HeapRegionSet _humongous_set;
 163 
 164   void eagerly_reclaim_humongous_regions();
 165   // Start a new incremental collection set for the next pause.
 166   void start_new_collection_set();
 167 
 168   // The number of regions we could create by expansion.
 169   uint _expansion_regions;
 170 
 171   // The block offset table for the G1 heap.
 172   G1BlockOffsetTable* _bot;
 173 
 174   // Tears down the region sets / lists so that they are empty and the
 175   // regions on the heap do not belong to a region set / list. The
 176   // only exception is the humongous set which we leave unaltered. If
 177   // free_list_only is true, it will only tear down the master free
 178   // list. It is called before a Full GC (free_list_only == false) or
 179   // before heap shrinking (free_list_only == true).
 180   void tear_down_region_sets(bool free_list_only);
 181 
 182   // Rebuilds the region sets / lists so that they are repopulated to
 183   // reflect the contents of the heap. The only exception is the
 184   // humongous set which was not torn down in the first place. If
 185   // free_list_only is true, it will only rebuild the master free
 186   // list. It is called after a Full GC (free_list_only == false) or
 187   // after heap shrinking (free_list_only == true).
 188   void rebuild_region_sets(bool free_list_only);
 189 
 190   // Callback for region mapping changed events.
 191   G1RegionMappingChangedListener _listener;
 192 
 193   // The sequence of all heap regions in the heap.
 194   HeapRegionManager _hrm;
 195 
 196   // Manages all allocations with regions except humongous object allocations.
 197   G1Allocator* _allocator;
 198 
 199   // Manages all heap verification.
 200   G1HeapVerifier* _verifier;
 201 
 202   // Outside of GC pauses, the number of bytes used in all regions other
 203   // than the current allocation region(s).
 204   size_t _summary_bytes_used;
 205 
 206   virtual GCServicabilitySupport* create_servicability_support();
 207 
 208   void increase_used(size_t bytes);
 209   void decrease_used(size_t bytes);
 210 
 211   void set_used(size_t bytes);
 212 
 213   // Class that handles archive allocation ranges.
 214   G1ArchiveAllocator* _archive_allocator;
 215 
 216   // Statistics for each allocation context
 217   AllocationContextStats _allocation_context_stats;
 218 
 219   // GC allocation statistics policy for survivors.
 220   G1EvacStats _survivor_evac_stats;
 221 
 222   // GC allocation statistics policy for tenured objects.
 223   G1EvacStats _old_evac_stats;
 224 
 225   // It specifies whether we should attempt to expand the heap after a
 226   // region allocation failure. If heap expansion fails we set this to
 227   // false so that we don't re-attempt the heap expansion (it's likely
 228   // that subsequent expansion attempts will also fail if one fails).
 229   // Currently, it is only consulted during GC and it's reset at the
 230   // start of each GC.
 231   bool _expand_heap_after_alloc_failure;
 232 
 233   // Helper for monitoring and management support.
 234   G1MonitoringSupport* _g1mm;
 235 
 236   // Records whether the region at the given index is (still) a
 237   // candidate for eager reclaim.  Only valid for humongous start
 238   // regions; other regions have unspecified values.  Humongous start
 239   // regions are initialized at start of collection pause, with
 240   // candidates removed from the set as they are found reachable from
 241   // roots or the young generation.
 242   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 243    protected:
 244     bool default_value() const { return false; }
 245    public:
 246     void clear() { G1BiasedMappedArray<bool>::clear(); }
 247     void set_candidate(uint region, bool value) {
 248       set_by_index(region, value);
 249     }
 250     bool is_candidate(uint region) {
 251       return get_by_index(region);
 252     }
 253   };
 254 
 255   HumongousReclaimCandidates _humongous_reclaim_candidates;
 256   // Stores whether during humongous object registration we found candidate regions.
 257   // If not, we can skip a few steps.
 258   bool _has_humongous_reclaim_candidates;
 259 
 260   volatile uint _gc_time_stamp;
 261 
 262   G1HRPrinter _hr_printer;
 263 
 264   // It decides whether an explicit GC should start a concurrent cycle
 265   // instead of doing a STW GC. Currently, a concurrent cycle is
 266   // explicitly started if:
 267   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 268   // (b) cause == _g1_humongous_allocation
 269   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 270   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 271   // (e) cause == _update_allocation_context_stats_inc
 272   // (f) cause == _wb_conc_mark
 273   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 274 
 275   // indicates whether we are in young or mixed GC mode
 276   G1CollectorState _collector_state;
 277 
 278   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 279   // concurrent cycles) we have started.
 280   volatile uint _old_marking_cycles_started;
 281 
 282   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 283   // concurrent cycles) we have completed.
 284   volatile uint _old_marking_cycles_completed;
 285 
 286   // This is a non-product method that is helpful for testing. It is
 287   // called at the end of a GC and artificially expands the heap by
 288   // allocating a number of dead regions. This way we can induce very
 289   // frequent marking cycles and stress the cleanup / concurrent
 290   // cleanup code more (as all the regions that will be allocated by
 291   // this method will be found dead by the marking cycle).
 292   void allocate_dummy_regions() PRODUCT_RETURN;
 293 
 294   // Clear RSets after a compaction. It also resets the GC time stamps.
 295   void clear_rsets_post_compaction();
 296 
 297   // If the HR printer is active, dump the state of the regions in the
 298   // heap after a compaction.
 299   void print_hrm_post_compaction();
 300 
 301   // Create a memory mapper for auxiliary data structures of the given size and
 302   // translation factor.
 303   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 304                                                          size_t size,
 305                                                          size_t translation_factor);
 306 
 307   static G1Policy* create_g1_policy(STWGCTimer* gc_timer);
 308 
 309   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 310 
 311   // These are macros so that, if the assert fires, we get the correct
 312   // line number, file, etc.
 313 
 314 #define heap_locking_asserts_params(_extra_message_)                          \
 315   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 316   (_extra_message_),                                                          \
 317   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 318   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 319   BOOL_TO_STR(Thread::current()->is_VM_thread())
 320 
 321 #define assert_heap_locked()                                                  \
 322   do {                                                                        \
 323     assert(Heap_lock->owned_by_self(),                                        \
 324            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 325   } while (0)
 326 
 327 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 328   do {                                                                        \
 329     assert(Heap_lock->owned_by_self() ||                                      \
 330            (SafepointSynchronize::is_at_safepoint() &&                        \
 331              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 332            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 333                                         "should be at a safepoint"));         \
 334   } while (0)
 335 
 336 #define assert_heap_locked_and_not_at_safepoint()                             \
 337   do {                                                                        \
 338     assert(Heap_lock->owned_by_self() &&                                      \
 339                                     !SafepointSynchronize::is_at_safepoint(), \
 340           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 341                                        "should not be at a safepoint"));      \
 342   } while (0)
 343 
 344 #define assert_heap_not_locked()                                              \
 345   do {                                                                        \
 346     assert(!Heap_lock->owned_by_self(),                                       \
 347         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 348   } while (0)
 349 
 350 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 351   do {                                                                        \
 352     assert(!Heap_lock->owned_by_self() &&                                     \
 353                                     !SafepointSynchronize::is_at_safepoint(), \
 354       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 355                                    "should not be at a safepoint"));          \
 356   } while (0)
 357 
 358 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 359   do {                                                                        \
 360     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 361               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 362            heap_locking_asserts_params("should be at a safepoint"));          \
 363   } while (0)
 364 
 365 #define assert_not_at_safepoint()                                             \
 366   do {                                                                        \
 367     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 368            heap_locking_asserts_params("should not be at a safepoint"));      \
 369   } while (0)
 370 
 371 protected:
 372 
 373   // The young region list.
 374   G1EdenRegions _eden;
 375   G1SurvivorRegions _survivor;
 376 
 377   STWGCTimer* _gc_timer_stw;
 378 
 379   G1NewTracer* _gc_tracer_stw;
 380 
 381   // The current policy object for the collector.
 382   G1Policy* _g1_policy;
 383   G1HeapSizingPolicy* _heap_sizing_policy;
 384 
 385   G1CollectionSet _collection_set;
 386 
 387   // This is the second level of trying to allocate a new region. If
 388   // new_region() didn't find a region on the free_list, this call will
 389   // check whether there's anything available on the
 390   // secondary_free_list and/or wait for more regions to appear on
 391   // that list, if _free_regions_coming is set.
 392   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 393 
 394   // Try to allocate a single non-humongous HeapRegion sufficient for
 395   // an allocation of the given word_size. If do_expand is true,
 396   // attempt to expand the heap if necessary to satisfy the allocation
 397   // request. If the region is to be used as an old region or for a
 398   // humongous object, set is_old to true. If not, to false.
 399   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 400 
 401   // Initialize a contiguous set of free regions of length num_regions
 402   // and starting at index first so that they appear as a single
 403   // humongous region.
 404   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 405                                                       uint num_regions,
 406                                                       size_t word_size,
 407                                                       AllocationContext_t context);
 408 
 409   // Attempt to allocate a humongous object of the given size. Return
 410   // NULL if unsuccessful.
 411   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 412 
 413   // The following two methods, allocate_new_tlab() and
 414   // mem_allocate(), are the two main entry points from the runtime
 415   // into the G1's allocation routines. They have the following
 416   // assumptions:
 417   //
 418   // * They should both be called outside safepoints.
 419   //
 420   // * They should both be called without holding the Heap_lock.
 421   //
 422   // * All allocation requests for new TLABs should go to
 423   //   allocate_new_tlab().
 424   //
 425   // * All non-TLAB allocation requests should go to mem_allocate().
 426   //
 427   // * If either call cannot satisfy the allocation request using the
 428   //   current allocating region, they will try to get a new one. If
 429   //   this fails, they will attempt to do an evacuation pause and
 430   //   retry the allocation.
 431   //
 432   // * If all allocation attempts fail, even after trying to schedule
 433   //   an evacuation pause, allocate_new_tlab() will return NULL,
 434   //   whereas mem_allocate() will attempt a heap expansion and/or
 435   //   schedule a Full GC.
 436   //
 437   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 438   //   should never be called with word_size being humongous. All
 439   //   humongous allocation requests should go to mem_allocate() which
 440   //   will satisfy them with a special path.
 441 
 442   virtual HeapWord* allocate_new_tlab(size_t word_size);
 443 
 444   virtual HeapWord* mem_allocate(size_t word_size,
 445                                  bool*  gc_overhead_limit_was_exceeded);
 446 
 447   // The following three methods take a gc_count_before_ret
 448   // parameter which is used to return the GC count if the method
 449   // returns NULL. Given that we are required to read the GC count
 450   // while holding the Heap_lock, and these paths will take the
 451   // Heap_lock at some point, it's easier to get them to read the GC
 452   // count while holding the Heap_lock before they return NULL instead
 453   // of the caller (namely: mem_allocate()) having to also take the
 454   // Heap_lock just to read the GC count.
 455 
 456   // First-level mutator allocation attempt: try to allocate out of
 457   // the mutator alloc region without taking the Heap_lock. This
 458   // should only be used for non-humongous allocations.
 459   inline HeapWord* attempt_allocation(size_t word_size,
 460                                       uint* gc_count_before_ret,
 461                                       uint* gclocker_retry_count_ret);
 462 
 463   // Second-level mutator allocation attempt: take the Heap_lock and
 464   // retry the allocation attempt, potentially scheduling a GC
 465   // pause. This should only be used for non-humongous allocations.
 466   HeapWord* attempt_allocation_slow(size_t word_size,
 467                                     AllocationContext_t context,
 468                                     uint* gc_count_before_ret,
 469                                     uint* gclocker_retry_count_ret);
 470 
 471   // Takes the Heap_lock and attempts a humongous allocation. It can
 472   // potentially schedule a GC pause.
 473   HeapWord* attempt_allocation_humongous(size_t word_size,
 474                                          uint* gc_count_before_ret,
 475                                          uint* gclocker_retry_count_ret);
 476 
 477   // Allocation attempt that should be called during safepoints (e.g.,
 478   // at the end of a successful GC). expect_null_mutator_alloc_region
 479   // specifies whether the mutator alloc region is expected to be NULL
 480   // or not.
 481   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 482                                             AllocationContext_t context,
 483                                             bool expect_null_mutator_alloc_region);
 484 
 485   // These methods are the "callbacks" from the G1AllocRegion class.
 486 
 487   // For mutator alloc regions.
 488   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 489   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 490                                    size_t allocated_bytes);
 491 
 492   // For GC alloc regions.
 493   bool has_more_regions(InCSetState dest);
 494   HeapRegion* new_gc_alloc_region(size_t word_size, InCSetState dest);
 495   void retire_gc_alloc_region(HeapRegion* alloc_region,
 496                               size_t allocated_bytes, InCSetState dest);
 497 
 498   // - if explicit_gc is true, the GC is for a System.gc() etc,
 499   //   otherwise it's for a failed allocation.
 500   // - if clear_all_soft_refs is true, all soft references should be
 501   //   cleared during the GC.
 502   // - it returns false if it is unable to do the collection due to the
 503   //   GC locker being active, true otherwise.
 504   bool do_full_collection(bool explicit_gc,
 505                           bool clear_all_soft_refs);
 506 
 507   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 508   virtual void do_full_collection(bool clear_all_soft_refs);
 509 
 510   // Resize the heap if necessary after a full collection.
 511   void resize_if_necessary_after_full_collection();
 512 
 513   // Callback from VM_G1CollectForAllocation operation.
 514   // This function does everything necessary/possible to satisfy a
 515   // failed allocation request (including collection, expansion, etc.)
 516   HeapWord* satisfy_failed_allocation(size_t word_size,
 517                                       AllocationContext_t context,
 518                                       bool* succeeded);
 519 private:
 520   // Internal helpers used during full GC to split it up to
 521   // increase readability.
 522   void do_full_collection_inner(G1FullGCScope* scope);
 523   void abort_concurrent_cycle();
 524   void verify_before_full_collection(bool explicit_gc);
 525   void prepare_heap_for_full_collection();
 526   void prepare_heap_for_mutators();
 527   void abort_refinement();
 528   void verify_after_full_collection();
 529   void print_heap_after_full_collection(G1HeapTransition* heap_transition);
 530 
 531   // Helper method for satisfy_failed_allocation()
 532   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 533                                              AllocationContext_t context,
 534                                              bool do_gc,
 535                                              bool clear_all_soft_refs,
 536                                              bool expect_null_mutator_alloc_region,
 537                                              bool* gc_succeeded);
 538 
 539 protected:
 540   // Attempting to expand the heap sufficiently
 541   // to support an allocation of the given "word_size".  If
 542   // successful, perform the allocation and return the address of the
 543   // allocated block, or else "NULL".
 544   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 545 
 546   // Preserve any referents discovered by concurrent marking that have not yet been
 547   // copied by the STW pause.
 548   void preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states);
 549   // Process any reference objects discovered during
 550   // an incremental evacuation pause.
 551   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 552 
 553   // Enqueue any remaining discovered references
 554   // after processing.
 555   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 556 
 557   // Merges the information gathered on a per-thread basis for all worker threads
 558   // during GC into global variables.
 559   void merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states);
 560 public:
 561   G1YoungRemSetSamplingThread* sampling_thread() const { return _young_gen_sampling_thread; }
 562 
 563   WorkGang* workers() const { return _workers; }
 564 
 565   G1Allocator* allocator() {
 566     return _allocator;
 567   }
 568 
 569   G1HeapVerifier* verifier() {
 570     return _verifier;
 571   }
 572 
 573   G1MonitoringSupport* g1mm() {
 574     assert(_g1mm != NULL, "should have been initialized");
 575     return _g1mm;
 576   }
 577 
 578   // Expand the garbage-first heap by at least the given size (in bytes!).
 579   // Returns true if the heap was expanded by the requested amount;
 580   // false otherwise.
 581   // (Rounds up to a HeapRegion boundary.)
 582   bool expand(size_t expand_bytes, WorkGang* pretouch_workers = NULL, double* expand_time_ms = NULL);
 583 
 584   // Returns the PLAB statistics for a given destination.
 585   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 586 
 587   // Determines PLAB size for a given destination.
 588   inline size_t desired_plab_sz(InCSetState dest);
 589 
 590   inline AllocationContextStats& allocation_context_stats();
 591 
 592   // Do anything common to GC's.
 593   void gc_prologue(bool full);
 594   void gc_epilogue(bool full);
 595 
 596   // Modify the reclaim candidate set and test for presence.
 597   // These are only valid for starts_humongous regions.
 598   inline void set_humongous_reclaim_candidate(uint region, bool value);
 599   inline bool is_humongous_reclaim_candidate(uint region);
 600 
 601   // Remove from the reclaim candidate set.  Also remove from the
 602   // collection set so that later encounters avoid the slow path.
 603   inline void set_humongous_is_live(oop obj);
 604 
 605   // Register the given region to be part of the collection set.
 606   inline void register_humongous_region_with_cset(uint index);
 607   // Register regions with humongous objects (actually on the start region) in
 608   // the in_cset_fast_test table.
 609   void register_humongous_regions_with_cset();
 610   // We register a region with the fast "in collection set" test. We
 611   // simply set to true the array slot corresponding to this region.
 612   void register_young_region_with_cset(HeapRegion* r) {
 613     _in_cset_fast_test.set_in_young(r->hrm_index());
 614   }
 615   void register_old_region_with_cset(HeapRegion* r) {
 616     _in_cset_fast_test.set_in_old(r->hrm_index());
 617   }
 618   inline void register_ext_region_with_cset(HeapRegion* r) {
 619     _in_cset_fast_test.set_ext(r->hrm_index());
 620   }
 621   void clear_in_cset(const HeapRegion* hr) {
 622     _in_cset_fast_test.clear(hr);
 623   }
 624 
 625   void clear_cset_fast_test() {
 626     _in_cset_fast_test.clear();
 627   }
 628 
 629   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 630 
 631   // This is called at the start of either a concurrent cycle or a Full
 632   // GC to update the number of old marking cycles started.
 633   void increment_old_marking_cycles_started();
 634 
 635   // This is called at the end of either a concurrent cycle or a Full
 636   // GC to update the number of old marking cycles completed. Those two
 637   // can happen in a nested fashion, i.e., we start a concurrent
 638   // cycle, a Full GC happens half-way through it which ends first,
 639   // and then the cycle notices that a Full GC happened and ends
 640   // too. The concurrent parameter is a boolean to help us do a bit
 641   // tighter consistency checking in the method. If concurrent is
 642   // false, the caller is the inner caller in the nesting (i.e., the
 643   // Full GC). If concurrent is true, the caller is the outer caller
 644   // in this nesting (i.e., the concurrent cycle). Further nesting is
 645   // not currently supported. The end of this call also notifies
 646   // the FullGCCount_lock in case a Java thread is waiting for a full
 647   // GC to happen (e.g., it called System.gc() with
 648   // +ExplicitGCInvokesConcurrent).
 649   void increment_old_marking_cycles_completed(bool concurrent);
 650 
 651   uint old_marking_cycles_completed() {
 652     return _old_marking_cycles_completed;
 653   }
 654 
 655   G1HRPrinter* hr_printer() { return &_hr_printer; }
 656 
 657   // Allocates a new heap region instance.
 658   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 659 
 660   // Allocate the highest free region in the reserved heap. This will commit
 661   // regions as necessary.
 662   HeapRegion* alloc_highest_free_region();
 663 
 664   // Frees a non-humongous region by initializing its contents and
 665   // adding it to the free list that's passed as a parameter (this is
 666   // usually a local list which will be appended to the master free
 667   // list later). The used bytes of freed regions are accumulated in
 668   // pre_used. If skip_remset is true, the region's RSet will not be freed
 669   // up. If skip_hot_card_cache is true, the region's hot card cache will not
 670   // be freed up. The assumption is that this will be done later.
 671   // The locked parameter indicates if the caller has already taken
 672   // care of proper synchronization. This may allow some optimizations.
 673   void free_region(HeapRegion* hr,
 674                    FreeRegionList* free_list,
 675                    bool skip_remset,
 676                    bool skip_hot_card_cache = false,
 677                    bool locked = false);
 678 
 679   // It dirties the cards that cover the block so that the post
 680   // write barrier never queues anything when updating objects on this
 681   // block. It is assumed (and in fact we assert) that the block
 682   // belongs to a young region.
 683   inline void dirty_young_block(HeapWord* start, size_t word_size);
 684 
 685   // Frees a humongous region by collapsing it into individual regions
 686   // and calling free_region() for each of them. The freed regions
 687   // will be added to the free list that's passed as a parameter (this
 688   // is usually a local list which will be appended to the master free
 689   // list later). The used bytes of freed regions are accumulated in
 690   // pre_used. If skip_remset is true, the region's RSet will not be freed
 691   // up. The assumption is that this will be done later.
 692   void free_humongous_region(HeapRegion* hr,
 693                              FreeRegionList* free_list,
 694                              bool skip_remset);
 695 
 696   // Facility for allocating in 'archive' regions in high heap memory and
 697   // recording the allocated ranges. These should all be called from the
 698   // VM thread at safepoints, without the heap lock held. They can be used
 699   // to create and archive a set of heap regions which can be mapped at the
 700   // same fixed addresses in a subsequent JVM invocation.
 701   void begin_archive_alloc_range(bool open = false);
 702 
 703   // Check if the requested size would be too large for an archive allocation.
 704   bool is_archive_alloc_too_large(size_t word_size);
 705 
 706   // Allocate memory of the requested size from the archive region. This will
 707   // return NULL if the size is too large or if no memory is available. It
 708   // does not trigger a garbage collection.
 709   HeapWord* archive_mem_allocate(size_t word_size);
 710 
 711   // Optionally aligns the end address and returns the allocated ranges in
 712   // an array of MemRegions in order of ascending addresses.
 713   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 714                                size_t end_alignment_in_bytes = 0);
 715 
 716   // Facility for allocating a fixed range within the heap and marking
 717   // the containing regions as 'archive'. For use at JVM init time, when the
 718   // caller may mmap archived heap data at the specified range(s).
 719   // Verify that the MemRegions specified in the argument array are within the
 720   // reserved heap.
 721   bool check_archive_addresses(MemRegion* range, size_t count);
 722 
 723   // Commit the appropriate G1 regions containing the specified MemRegions
 724   // and mark them as 'archive' regions. The regions in the array must be
 725   // non-overlapping and in order of ascending address.
 726   bool alloc_archive_regions(MemRegion* range, size_t count, bool open);
 727 
 728   // Insert any required filler objects in the G1 regions around the specified
 729   // ranges to make the regions parseable. This must be called after
 730   // alloc_archive_regions, and after class loading has occurred.
 731   void fill_archive_regions(MemRegion* range, size_t count);
 732 
 733   // For each of the specified MemRegions, uncommit the containing G1 regions
 734   // which had been allocated by alloc_archive_regions. This should be called
 735   // rather than fill_archive_regions at JVM init time if the archive file
 736   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 737   void dealloc_archive_regions(MemRegion* range, size_t count);
 738 
 739 protected:
 740 
 741   // Shrink the garbage-first heap by at most the given size (in bytes!).
 742   // (Rounds down to a HeapRegion boundary.)
 743   virtual void shrink(size_t expand_bytes);
 744   void shrink_helper(size_t expand_bytes);
 745 
 746   #if TASKQUEUE_STATS
 747   static void print_taskqueue_stats_hdr(outputStream* const st);
 748   void print_taskqueue_stats() const;
 749   void reset_taskqueue_stats();
 750   #endif // TASKQUEUE_STATS
 751 
 752   // Schedule the VM operation that will do an evacuation pause to
 753   // satisfy an allocation request of word_size. *succeeded will
 754   // return whether the VM operation was successful (it did do an
 755   // evacuation pause) or not (another thread beat us to it or the GC
 756   // locker was active). Given that we should not be holding the
 757   // Heap_lock when we enter this method, we will pass the
 758   // gc_count_before (i.e., total_collections()) as a parameter since
 759   // it has to be read while holding the Heap_lock. Currently, both
 760   // methods that call do_collection_pause() release the Heap_lock
 761   // before the call, so it's easy to read gc_count_before just before.
 762   HeapWord* do_collection_pause(size_t         word_size,
 763                                 uint           gc_count_before,
 764                                 bool*          succeeded,
 765                                 GCCause::Cause gc_cause);
 766 
 767   void wait_for_root_region_scanning();
 768 
 769   // The guts of the incremental collection pause, executed by the vm
 770   // thread. It returns false if it is unable to do the collection due
 771   // to the GC locker being active, true otherwise
 772   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 773 
 774   // Actually do the work of evacuating the collection set.
 775   virtual void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 776 
 777   void pre_evacuate_collection_set();
 778   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 779 
 780   // Print the header for the per-thread termination statistics.
 781   static void print_termination_stats_hdr();
 782   // Print actual per-thread termination statistics.
 783   void print_termination_stats(uint worker_id,
 784                                double elapsed_ms,
 785                                double strong_roots_ms,
 786                                double term_ms,
 787                                size_t term_attempts,
 788                                size_t alloc_buffer_waste,
 789                                size_t undo_waste) const;
 790   // Update object copying statistics.
 791   void record_obj_copy_mem_stats();
 792 
 793   // The hot card cache for remembered set insertion optimization.
 794   G1HotCardCache* _hot_card_cache;
 795 
 796   // The g1 remembered set of the heap.
 797   G1RemSet* _g1_rem_set;
 798 
 799   // A set of cards that cover the objects for which the Rsets should be updated
 800   // concurrently after the collection.
 801   DirtyCardQueueSet _dirty_card_queue_set;
 802 
 803   // After a collection pause, convert the regions in the collection set into free
 804   // regions.
 805   void free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 806 
 807   // Abandon the current collection set without recording policy
 808   // statistics or updating free lists.
 809   void abandon_collection_set(G1CollectionSet* collection_set);
 810 
 811   // The concurrent marker (and the thread it runs in.)
 812   G1ConcurrentMark* _cm;
 813   ConcurrentMarkThread* _cmThread;
 814 
 815   // The concurrent refiner.
 816   G1ConcurrentRefine* _cr;
 817 
 818   // The parallel task queues
 819   RefToScanQueueSet *_task_queues;
 820 
 821   // True iff a evacuation has failed in the current collection.
 822   bool _evacuation_failed;
 823 
 824   EvacuationFailedInfo* _evacuation_failed_info_array;
 825 
 826   // Failed evacuations cause some logical from-space objects to have
 827   // forwarding pointers to themselves.  Reset them.
 828   void remove_self_forwarding_pointers();
 829 
 830   // Restore the objects in the regions in the collection set after an
 831   // evacuation failure.
 832   void restore_after_evac_failure();
 833 
 834   PreservedMarksSet _preserved_marks_set;
 835 
 836   // Preserve the mark of "obj", if necessary, in preparation for its mark
 837   // word being overwritten with a self-forwarding-pointer.
 838   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 839 
 840 #ifndef PRODUCT
 841   // Support for forcing evacuation failures. Analogous to
 842   // PromotionFailureALot for the other collectors.
 843 
 844   // Records whether G1EvacuationFailureALot should be in effect
 845   // for the current GC
 846   bool _evacuation_failure_alot_for_current_gc;
 847 
 848   // Used to record the GC number for interval checking when
 849   // determining whether G1EvaucationFailureALot is in effect
 850   // for the current GC.
 851   size_t _evacuation_failure_alot_gc_number;
 852 
 853   // Count of the number of evacuations between failures.
 854   volatile size_t _evacuation_failure_alot_count;
 855 
 856   // Set whether G1EvacuationFailureALot should be in effect
 857   // for the current GC (based upon the type of GC and which
 858   // command line flags are set);
 859   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 860                                                   bool during_initial_mark,
 861                                                   bool during_marking);
 862 
 863   inline void set_evacuation_failure_alot_for_current_gc();
 864 
 865   // Return true if it's time to cause an evacuation failure.
 866   inline bool evacuation_should_fail();
 867 
 868   // Reset the G1EvacuationFailureALot counters.  Should be called at
 869   // the end of an evacuation pause in which an evacuation failure occurred.
 870   inline void reset_evacuation_should_fail();
 871 #endif // !PRODUCT
 872 
 873   // ("Weak") Reference processing support.
 874   //
 875   // G1 has 2 instances of the reference processor class. One
 876   // (_ref_processor_cm) handles reference object discovery
 877   // and subsequent processing during concurrent marking cycles.
 878   //
 879   // The other (_ref_processor_stw) handles reference object
 880   // discovery and processing during full GCs and incremental
 881   // evacuation pauses.
 882   //
 883   // During an incremental pause, reference discovery will be
 884   // temporarily disabled for _ref_processor_cm and will be
 885   // enabled for _ref_processor_stw. At the end of the evacuation
 886   // pause references discovered by _ref_processor_stw will be
 887   // processed and discovery will be disabled. The previous
 888   // setting for reference object discovery for _ref_processor_cm
 889   // will be re-instated.
 890   //
 891   // At the start of marking:
 892   //  * Discovery by the CM ref processor is verified to be inactive
 893   //    and it's discovered lists are empty.
 894   //  * Discovery by the CM ref processor is then enabled.
 895   //
 896   // At the end of marking:
 897   //  * Any references on the CM ref processor's discovered
 898   //    lists are processed (possibly MT).
 899   //
 900   // At the start of full GC we:
 901   //  * Disable discovery by the CM ref processor and
 902   //    empty CM ref processor's discovered lists
 903   //    (without processing any entries).
 904   //  * Verify that the STW ref processor is inactive and it's
 905   //    discovered lists are empty.
 906   //  * Temporarily set STW ref processor discovery as single threaded.
 907   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 908   //    field.
 909   //  * Finally enable discovery by the STW ref processor.
 910   //
 911   // The STW ref processor is used to record any discovered
 912   // references during the full GC.
 913   //
 914   // At the end of a full GC we:
 915   //  * Enqueue any reference objects discovered by the STW ref processor
 916   //    that have non-live referents. This has the side-effect of
 917   //    making the STW ref processor inactive by disabling discovery.
 918   //  * Verify that the CM ref processor is still inactive
 919   //    and no references have been placed on it's discovered
 920   //    lists (also checked as a precondition during initial marking).
 921 
 922   // The (stw) reference processor...
 923   ReferenceProcessor* _ref_processor_stw;
 924 
 925   // During reference object discovery, the _is_alive_non_header
 926   // closure (if non-null) is applied to the referent object to
 927   // determine whether the referent is live. If so then the
 928   // reference object does not need to be 'discovered' and can
 929   // be treated as a regular oop. This has the benefit of reducing
 930   // the number of 'discovered' reference objects that need to
 931   // be processed.
 932   //
 933   // Instance of the is_alive closure for embedding into the
 934   // STW reference processor as the _is_alive_non_header field.
 935   // Supplying a value for the _is_alive_non_header field is
 936   // optional but doing so prevents unnecessary additions to
 937   // the discovered lists during reference discovery.
 938   G1STWIsAliveClosure _is_alive_closure_stw;
 939 
 940   // The (concurrent marking) reference processor...
 941   ReferenceProcessor* _ref_processor_cm;
 942 
 943   // Instance of the concurrent mark is_alive closure for embedding
 944   // into the Concurrent Marking reference processor as the
 945   // _is_alive_non_header field. Supplying a value for the
 946   // _is_alive_non_header field is optional but doing so prevents
 947   // unnecessary additions to the discovered lists during reference
 948   // discovery.
 949   G1CMIsAliveClosure _is_alive_closure_cm;
 950 
 951   volatile bool _free_regions_coming;
 952 
 953 public:
 954 
 955   RefToScanQueue *task_queue(uint i) const;
 956 
 957   uint num_task_queues() const;
 958 
 959   // A set of cards where updates happened during the GC
 960   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 961 
 962   // Create a G1CollectedHeap with the specified policy.
 963   // Must call the initialize method afterwards.
 964   // May not return if something goes wrong.
 965   G1CollectedHeap(G1CollectorPolicy* policy);
 966 
 967 private:
 968   jint initialize_concurrent_refinement();
 969   jint initialize_young_gen_sampling_thread();
 970 public:
 971   // Initialize the G1CollectedHeap to have the initial and
 972   // maximum sizes and remembered and barrier sets
 973   // specified by the policy object.
 974   jint initialize();
 975 
 976   virtual void stop();
 977   virtual void safepoint_synchronize_begin();
 978   virtual void safepoint_synchronize_end();
 979 
 980   // Return the (conservative) maximum heap alignment for any G1 heap
 981   static size_t conservative_max_heap_alignment();
 982 
 983   // Does operations required after initialization has been done.
 984   void post_initialize();
 985 
 986   // Initialize weak reference processing.
 987   void ref_processing_init();
 988 
 989   virtual Name kind() const {
 990     return CollectedHeap::G1CollectedHeap;
 991   }
 992 
 993   virtual const char* name() const {
 994     return "G1";
 995   }
 996 
 997   const G1CollectorState* collector_state() const { return &_collector_state; }
 998   G1CollectorState* collector_state() { return &_collector_state; }
 999 
1000   // The current policy object for the collector.
1001   G1Policy* g1_policy() const { return _g1_policy; }
1002 
1003   const G1CollectionSet* collection_set() const { return &_collection_set; }
1004   G1CollectionSet* collection_set() { return &_collection_set; }
1005 
1006   virtual CollectorPolicy* collector_policy() const;
1007 
1008   // Adaptive size policy.  No such thing for g1.
1009   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1010 
1011   // The rem set and barrier set.
1012   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1013 
1014   // Try to minimize the remembered set.
1015   void scrub_rem_set();
1016 
1017   uint get_gc_time_stamp() {
1018     return _gc_time_stamp;
1019   }
1020 
1021   inline void reset_gc_time_stamp();
1022 
1023   void check_gc_time_stamps() PRODUCT_RETURN;
1024 
1025   inline void increment_gc_time_stamp();
1026 
1027   // Reset the given region's GC timestamp. If it's starts humongous,
1028   // also reset the GC timestamp of its corresponding
1029   // continues humongous regions too.
1030   void reset_gc_time_stamps(HeapRegion* hr);
1031 
1032   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1033   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
1034 
1035   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
1036   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
1037 
1038   // The shared block offset table array.
1039   G1BlockOffsetTable* bot() const { return _bot; }
1040 
1041   // Reference Processing accessors
1042 
1043   // The STW reference processor....
1044   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1045 
1046   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1047 
1048   // The Concurrent Marking reference processor...
1049   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1050 
1051   size_t unused_committed_regions_in_bytes() const;
1052   virtual size_t capacity() const;
1053   virtual size_t used() const;
1054   // This should be called when we're not holding the heap lock. The
1055   // result might be a bit inaccurate.
1056   size_t used_unlocked() const;
1057   size_t recalculate_used() const;
1058 
1059   // These virtual functions do the actual allocation.
1060   // Some heaps may offer a contiguous region for shared non-blocking
1061   // allocation, via inlined code (by exporting the address of the top and
1062   // end fields defining the extent of the contiguous allocation region.)
1063   // But G1CollectedHeap doesn't yet support this.
1064 
1065   virtual bool is_maximal_no_gc() const {
1066     return _hrm.available() == 0;
1067   }
1068 
1069   // The current number of regions in the heap.
1070   uint num_regions() const { return _hrm.length(); }
1071 
1072   // The max number of regions in the heap.
1073   uint max_regions() const { return _hrm.max_length(); }
1074 
1075   // The number of regions that are completely free.
1076   uint num_free_regions() const { return _hrm.num_free_regions(); }
1077 
1078   MemoryUsage get_auxiliary_data_memory_usage() const {
1079     return _hrm.get_auxiliary_data_memory_usage();
1080   }
1081 
1082   // The number of regions that are not completely free.
1083   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1084 
1085 #ifdef ASSERT
1086   bool is_on_master_free_list(HeapRegion* hr) {
1087     return _hrm.is_free(hr);
1088   }
1089 #endif // ASSERT
1090 
1091   // Wrapper for the region list operations that can be called from
1092   // methods outside this class.
1093 
1094   void secondary_free_list_add(FreeRegionList* list) {
1095     _secondary_free_list.add_ordered(list);
1096   }
1097 
1098   void append_secondary_free_list() {
1099     _hrm.insert_list_into_free_list(&_secondary_free_list);
1100   }
1101 
1102   void append_secondary_free_list_if_not_empty_with_lock() {
1103     // If the secondary free list looks empty there's no reason to
1104     // take the lock and then try to append it.
1105     if (!_secondary_free_list.is_empty()) {
1106       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1107       append_secondary_free_list();
1108     }
1109   }
1110 
1111   inline void old_set_add(HeapRegion* hr);
1112   inline void old_set_remove(HeapRegion* hr);
1113 
1114   size_t non_young_capacity_bytes() {
1115     return (_old_set.length() + _humongous_set.length()) * HeapRegion::GrainBytes;
1116   }
1117 
1118   void set_free_regions_coming();
1119   void reset_free_regions_coming();
1120   bool free_regions_coming() { return _free_regions_coming; }
1121   void wait_while_free_regions_coming();
1122 
1123   // Determine whether the given region is one that we are using as an
1124   // old GC alloc region.
1125   bool is_old_gc_alloc_region(HeapRegion* hr);
1126 
1127   // Perform a collection of the heap; intended for use in implementing
1128   // "System.gc".  This probably implies as full a collection as the
1129   // "CollectedHeap" supports.
1130   virtual void collect(GCCause::Cause cause);
1131 
1132   virtual bool copy_allocation_context_stats(const jint* contexts,
1133                                              jlong* totals,
1134                                              jbyte* accuracy,
1135                                              jint len);
1136 
1137   // True iff an evacuation has failed in the most-recent collection.
1138   bool evacuation_failed() { return _evacuation_failed; }
1139 
1140   void remove_from_old_sets(const uint old_regions_removed, const uint humongous_regions_removed);
1141   void prepend_to_freelist(FreeRegionList* list);
1142   void decrement_summary_bytes(size_t bytes);
1143 
1144   virtual bool is_in(const void* p) const;
1145 #ifdef ASSERT
1146   // Returns whether p is in one of the available areas of the heap. Slow but
1147   // extensive version.
1148   bool is_in_exact(const void* p) const;
1149 #endif
1150 
1151   // Return "TRUE" iff the given object address is within the collection
1152   // set. Assumes that the reference points into the heap.
1153   inline bool is_in_cset(const HeapRegion *hr);
1154   inline bool is_in_cset(oop obj);
1155   inline bool is_in_cset(HeapWord* addr);
1156 
1157   inline bool is_in_cset_or_humongous(const oop obj);
1158 
1159  private:
1160   // This array is used for a quick test on whether a reference points into
1161   // the collection set or not. Each of the array's elements denotes whether the
1162   // corresponding region is in the collection set or not.
1163   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1164 
1165  public:
1166 
1167   inline InCSetState in_cset_state(const oop obj);
1168 
1169   // Return "TRUE" iff the given object address is in the reserved
1170   // region of g1.
1171   bool is_in_g1_reserved(const void* p) const {
1172     return _hrm.reserved().contains(p);
1173   }
1174 
1175   // Returns a MemRegion that corresponds to the space that has been
1176   // reserved for the heap
1177   MemRegion g1_reserved() const {
1178     return _hrm.reserved();
1179   }
1180 
1181   virtual bool is_in_closed_subset(const void* p) const;
1182 
1183   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1184     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1185   }
1186 
1187   G1HotCardCache* g1_hot_card_cache() const { return _hot_card_cache; }
1188 
1189   // Iteration functions.
1190 
1191   // Iterate over all objects, calling "cl.do_object" on each.
1192   virtual void object_iterate(ObjectClosure* cl);
1193 
1194   virtual void safe_object_iterate(ObjectClosure* cl) {
1195     object_iterate(cl);
1196   }
1197 
1198   // Iterate over heap regions, in address order, terminating the
1199   // iteration early if the "doHeapRegion" method returns "true".
1200   void heap_region_iterate(HeapRegionClosure* blk) const;
1201 
1202   // Return the region with the given index. It assumes the index is valid.
1203   inline HeapRegion* region_at(uint index) const;
1204 
1205   // Return the next region (by index) that is part of the same
1206   // humongous object that hr is part of.
1207   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1208 
1209   // Calculate the region index of the given address. Given address must be
1210   // within the heap.
1211   inline uint addr_to_region(HeapWord* addr) const;
1212 
1213   inline HeapWord* bottom_addr_for_region(uint index) const;
1214 
1215   // Two functions to iterate over the heap regions in parallel. Threads
1216   // compete using the HeapRegionClaimer to claim the regions before
1217   // applying the closure on them.
1218   // The _from_worker_offset version uses the HeapRegionClaimer and
1219   // the worker id to calculate a start offset to prevent all workers to
1220   // start from the point.
1221   void heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
1222                                                   HeapRegionClaimer* hrclaimer,
1223                                                   uint worker_id) const;
1224 
1225   void heap_region_par_iterate_from_start(HeapRegionClosure* cl,
1226                                           HeapRegionClaimer* hrclaimer) const;
1227 
1228   // Iterate over the regions (if any) in the current collection set.
1229   void collection_set_iterate(HeapRegionClosure* blk);
1230 
1231   // Iterate over the regions (if any) in the current collection set. Starts the
1232   // iteration over the entire collection set so that the start regions of a given
1233   // worker id over the set active_workers are evenly spread across the set of
1234   // collection set regions.
1235   void collection_set_iterate_from(HeapRegionClosure *blk, uint worker_id);
1236 
1237   // Returns the HeapRegion that contains addr. addr must not be NULL.
1238   template <class T>
1239   inline HeapRegion* heap_region_containing(const T addr) const;
1240 
1241   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1242   // each address in the (reserved) heap is a member of exactly
1243   // one block.  The defining characteristic of a block is that it is
1244   // possible to find its size, and thus to progress forward to the next
1245   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1246   // represent Java objects, or they might be free blocks in a
1247   // free-list-based heap (or subheap), as long as the two kinds are
1248   // distinguishable and the size of each is determinable.
1249 
1250   // Returns the address of the start of the "block" that contains the
1251   // address "addr".  We say "blocks" instead of "object" since some heaps
1252   // may not pack objects densely; a chunk may either be an object or a
1253   // non-object.
1254   virtual HeapWord* block_start(const void* addr) const;
1255 
1256   // Requires "addr" to be the start of a chunk, and returns its size.
1257   // "addr + size" is required to be the start of a new chunk, or the end
1258   // of the active area of the heap.
1259   virtual size_t block_size(const HeapWord* addr) const;
1260 
1261   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1262   // the block is an object.
1263   virtual bool block_is_obj(const HeapWord* addr) const;
1264 
1265   // Section on thread-local allocation buffers (TLABs)
1266   // See CollectedHeap for semantics.
1267 
1268   bool supports_tlab_allocation() const;
1269   size_t tlab_capacity(Thread* ignored) const;
1270   size_t tlab_used(Thread* ignored) const;
1271   size_t max_tlab_size() const;
1272   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1273 
1274   // Can a compiler initialize a new object without store barriers?
1275   // This permission only extends from the creation of a new object
1276   // via a TLAB up to the first subsequent safepoint. If such permission
1277   // is granted for this heap type, the compiler promises to call
1278   // defer_store_barrier() below on any slow path allocation of
1279   // a new object for which such initializing store barriers will
1280   // have been elided. G1, like CMS, allows this, but should be
1281   // ready to provide a compensating write barrier as necessary
1282   // if that storage came out of a non-young region. The efficiency
1283   // of this implementation depends crucially on being able to
1284   // answer very efficiently in constant time whether a piece of
1285   // storage in the heap comes from a young region or not.
1286   // See ReduceInitialCardMarks.
1287   virtual bool can_elide_tlab_store_barriers() const {
1288     return true;
1289   }
1290 
1291   virtual bool card_mark_must_follow_store() const {
1292     return true;
1293   }
1294 
1295   inline bool is_in_young(const oop obj);
1296 
1297   // We don't need barriers for initializing stores to objects
1298   // in the young gen: for the SATB pre-barrier, there is no
1299   // pre-value that needs to be remembered; for the remembered-set
1300   // update logging post-barrier, we don't maintain remembered set
1301   // information for young gen objects.
1302   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1303 
1304   // Returns "true" iff the given word_size is "very large".
1305   static bool is_humongous(size_t word_size) {
1306     // Note this has to be strictly greater-than as the TLABs
1307     // are capped at the humongous threshold and we want to
1308     // ensure that we don't try to allocate a TLAB as
1309     // humongous and that we don't allocate a humongous
1310     // object in a TLAB.
1311     return word_size > _humongous_object_threshold_in_words;
1312   }
1313 
1314   // Returns the humongous threshold for a specific region size
1315   static size_t humongous_threshold_for(size_t region_size) {
1316     return (region_size / 2);
1317   }
1318 
1319   // Returns the number of regions the humongous object of the given word size
1320   // requires.
1321   static size_t humongous_obj_size_in_regions(size_t word_size);
1322 
1323   // Print the maximum heap capacity.
1324   virtual size_t max_capacity() const;
1325 
1326   virtual jlong millis_since_last_gc();
1327 
1328 
1329   // Convenience function to be used in situations where the heap type can be
1330   // asserted to be this type.
1331   static G1CollectedHeap* heap();
1332 
1333   void set_region_short_lived_locked(HeapRegion* hr);
1334   // add appropriate methods for any other surv rate groups
1335 
1336   const G1SurvivorRegions* survivor() const { return &_survivor; }
1337 
1338   uint survivor_regions_count() const {
1339     return _survivor.length();
1340   }
1341 
1342   uint eden_regions_count() const {
1343     return _eden.length();
1344   }
1345 
1346   uint young_regions_count() const {
1347     return _eden.length() + _survivor.length();
1348   }
1349 
1350   uint old_regions_count() const { return _old_set.length(); }
1351 
1352   uint humongous_regions_count() const { return _humongous_set.length(); }
1353 
1354 #ifdef ASSERT
1355   bool check_young_list_empty();
1356 #endif
1357 
1358   // *** Stuff related to concurrent marking.  It's not clear to me that so
1359   // many of these need to be public.
1360 
1361   // The functions below are helper functions that a subclass of
1362   // "CollectedHeap" can use in the implementation of its virtual
1363   // functions.
1364   // This performs a concurrent marking of the live objects in a
1365   // bitmap off to the side.
1366   void doConcurrentMark();
1367 
1368   bool isMarkedNext(oop obj) const;
1369 
1370   // Determine if an object is dead, given the object and also
1371   // the region to which the object belongs. An object is dead
1372   // iff a) it was not allocated since the last mark, b) it
1373   // is not marked, and c) it is not in an archive region.
1374   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1375     return
1376       hr->is_obj_dead(obj, _cm->prev_mark_bitmap()) &&
1377       !hr->is_archive();
1378   }
1379 
1380   // This function returns true when an object has been
1381   // around since the previous marking and hasn't yet
1382   // been marked during this marking, and is not in an archive region.
1383   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1384     return
1385       !hr->obj_allocated_since_next_marking(obj) &&
1386       !isMarkedNext(obj) &&
1387       !hr->is_archive();
1388   }
1389 
1390   // Determine if an object is dead, given only the object itself.
1391   // This will find the region to which the object belongs and
1392   // then call the region version of the same function.
1393 
1394   // Added if it is NULL it isn't dead.
1395 
1396   inline bool is_obj_dead(const oop obj) const;
1397 
1398   inline bool is_obj_ill(const oop obj) const;
1399 
1400   inline bool is_obj_dead_full(const oop obj, const HeapRegion* hr) const;
1401   inline bool is_obj_dead_full(const oop obj) const;
1402 
1403   G1ConcurrentMark* concurrent_mark() const { return _cm; }
1404 
1405   // Refinement
1406 
1407   G1ConcurrentRefine* concurrent_refine() const { return _cr; }
1408 
1409   // Optimized nmethod scanning support routines
1410 
1411   // Is an oop scavengeable
1412   virtual bool is_scavengable(oop obj);
1413 
1414   // Register the given nmethod with the G1 heap.
1415   virtual void register_nmethod(nmethod* nm);
1416 
1417   // Unregister the given nmethod from the G1 heap.
1418   virtual void unregister_nmethod(nmethod* nm);
1419 
1420   // Free up superfluous code root memory.
1421   void purge_code_root_memory();
1422 
1423   // Rebuild the strong code root lists for each region
1424   // after a full GC.
1425   void rebuild_strong_code_roots();
1426 
1427   // Partial cleaning used when class unloading is disabled.
1428   // Let the caller choose what structures to clean out:
1429   // - StringTable
1430   // - SymbolTable
1431   // - StringDeduplication structures
1432   void partial_cleaning(BoolObjectClosure* is_alive, bool unlink_strings, bool unlink_symbols, bool unlink_string_dedup);
1433 
1434   // Complete cleaning used when class unloading is enabled.
1435   // Cleans out all structures handled by partial_cleaning and also the CodeCache.
1436   void complete_cleaning(BoolObjectClosure* is_alive, bool class_unloading_occurred);
1437 
1438   // Redirty logged cards in the refinement queue.
1439   void redirty_logged_cards();
1440   // Verification
1441 
1442   // Perform any cleanup actions necessary before allowing a verification.
1443   virtual void prepare_for_verify();
1444 
1445   // Perform verification.
1446 
1447   // vo == UsePrevMarking -> use "prev" marking information,
1448   // vo == UseNextMarking -> use "next" marking information
1449   // vo == UseFullMarking -> use "next" marking bitmap but no TAMS
1450   //
1451   // NOTE: Only the "prev" marking information is guaranteed to be
1452   // consistent most of the time, so most calls to this should use
1453   // vo == UsePrevMarking.
1454   // Currently, there is only one case where this is called with
1455   // vo == UseNextMarking, which is to verify the "next" marking
1456   // information at the end of remark.
1457   // Currently there is only one place where this is called with
1458   // vo == UseFullMarking, which is to verify the marking during a
1459   // full GC.
1460   void verify(VerifyOption vo);
1461 
1462   // WhiteBox testing support.
1463   virtual bool supports_concurrent_phase_control() const;
1464   virtual const char* const* concurrent_phases() const;
1465   virtual bool request_concurrent_phase(const char* phase);
1466 
1467   // The methods below are here for convenience and dispatch the
1468   // appropriate method depending on value of the given VerifyOption
1469   // parameter. The values for that parameter, and their meanings,
1470   // are the same as those above.
1471 
1472   bool is_obj_dead_cond(const oop obj,
1473                         const HeapRegion* hr,
1474                         const VerifyOption vo) const;
1475 
1476   bool is_obj_dead_cond(const oop obj,
1477                         const VerifyOption vo) const;
1478 
1479   G1HeapSummary create_g1_heap_summary();
1480   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1481 
1482   // Printing
1483 private:
1484   void print_heap_regions() const;
1485   void print_regions_on(outputStream* st) const;
1486 
1487 public:
1488   virtual void print_on(outputStream* st) const;
1489   virtual void print_extended_on(outputStream* st) const;
1490   virtual void print_on_error(outputStream* st) const;
1491 
1492   virtual void print_gc_threads_on(outputStream* st) const;
1493   virtual void gc_threads_do(ThreadClosure* tc) const;
1494 
1495   // Override
1496   void print_tracing_info() const;
1497 
1498   // The following two methods are helpful for debugging RSet issues.
1499   void print_cset_rsets() PRODUCT_RETURN;
1500   void print_all_rsets() PRODUCT_RETURN;
1501 
1502 public:
1503   size_t pending_card_num();
1504 
1505 protected:
1506   size_t _max_heap_capacity;
1507 };
1508 
1509 class G1ParEvacuateFollowersClosure : public VoidClosure {
1510 private:
1511   double _start_term;
1512   double _term_time;
1513   size_t _term_attempts;
1514 
1515   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1516   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1517 protected:
1518   G1CollectedHeap*              _g1h;
1519   G1ParScanThreadState*         _par_scan_state;
1520   RefToScanQueueSet*            _queues;
1521   ParallelTaskTerminator*       _terminator;
1522 
1523   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1524   RefToScanQueueSet*      queues()         { return _queues; }
1525   ParallelTaskTerminator* terminator()     { return _terminator; }
1526 
1527 public:
1528   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1529                                 G1ParScanThreadState* par_scan_state,
1530                                 RefToScanQueueSet* queues,
1531                                 ParallelTaskTerminator* terminator)
1532     : _g1h(g1h), _par_scan_state(par_scan_state),
1533       _queues(queues), _terminator(terminator),
1534       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1535 
1536   void do_void();
1537 
1538   double term_time() const { return _term_time; }
1539   size_t term_attempts() const { return _term_attempts; }
1540 
1541 private:
1542   inline bool offer_termination();
1543 };
1544 
1545 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP