1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/events.hpp"
  36 #include "utilities/formatBuffer.hpp"
  37 
  38 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  39 // is an abstract class: there may be many different kinds of heaps.  This
  40 // class defines the functions that a heap must implement, and contains
  41 // infrastructure common to all heaps.
  42 
  43 class AdaptiveSizePolicy;
  44 class BarrierSet;
  45 class CollectorPolicy;
  46 class GCHeapSummary;
  47 class GCServicabilitySupport;
  48 class GCTimer;
  49 class GCTracer;
  50 class MetaspaceSummary;
  51 class Thread;
  52 class ThreadClosure;
  53 class VirtualSpaceSummary;
  54 class WorkGang;
  55 class nmethod;
  56 
  57 class GCMessage : public FormatBuffer<1024> {
  58  public:
  59   bool is_before;
  60 
  61  public:
  62   GCMessage() {}
  63 };
  64 
  65 class CollectedHeap;
  66 
  67 class GCHeapLog : public EventLogBase<GCMessage> {
  68  private:
  69   void log_heap(CollectedHeap* heap, bool before);
  70 
  71  public:
  72   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  73 
  74   void log_heap_before(CollectedHeap* heap) {
  75     log_heap(heap, true);
  76   }
  77   void log_heap_after(CollectedHeap* heap) {
  78     log_heap(heap, false);
  79   }
  80 };
  81 
  82 //
  83 // CollectedHeap
  84 //   GenCollectedHeap
  85 //     SerialHeap
  86 //     CMSHeap
  87 //   G1CollectedHeap
  88 //   ParallelScavengeHeap
  89 //
  90 class CollectedHeap : public CHeapObj<mtInternal> {
  91   friend class VMStructs;
  92   friend class JVMCIVMStructs;
  93   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  94 
  95  private:
  96 #ifdef ASSERT
  97   static int       _fire_out_of_memory_count;
  98 #endif
  99 
 100   GCHeapLog* _gc_heap_log;
 101 
 102   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
 103   // or INCLUDE_JVMCI is being used
 104   bool _defer_initial_card_mark;
 105 
 106   MemRegion _reserved;
 107 
 108   GCServicabilitySupport* _servicability;
 109 
 110   virtual GCServicabilitySupport* create_servicability_support() = 0;
 111 
 112  protected:
 113   BarrierSet* _barrier_set;
 114   bool _is_gc_active;
 115 
 116   // Used for filler objects (static, but initialized in ctor).
 117   static size_t _filler_array_max_size;
 118 
 119   unsigned int _total_collections;          // ... started
 120   unsigned int _total_full_collections;     // ... started
 121   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 122   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 123 
 124   // Reason for current garbage collection.  Should be set to
 125   // a value reflecting no collection between collections.
 126   GCCause::Cause _gc_cause;
 127   GCCause::Cause _gc_lastcause;
 128   PerfStringVariable* _perf_gc_cause;
 129   PerfStringVariable* _perf_gc_lastcause;
 130 
 131   // Constructor
 132   CollectedHeap();
 133 
 134   // Do common initializations that must follow instance construction,
 135   // for example, those needing virtual calls.
 136   // This code could perhaps be moved into initialize() but would
 137   // be slightly more awkward because we want the latter to be a
 138   // pure virtual.
 139   void pre_initialize();
 140 
 141   // Create a new tlab. All TLAB allocations must go through this.
 142   virtual HeapWord* allocate_new_tlab(size_t size);
 143 
 144   // Accumulate statistics on all tlabs.
 145   virtual void accumulate_statistics_all_tlabs();
 146 
 147   // Reinitialize tlabs before resuming mutators.
 148   virtual void resize_all_tlabs();
 149 
 150   // Allocate from the current thread's TLAB, with broken-out slow path.
 151   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
 152   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
 153 
 154   // Allocate an uninitialized block of the given size, or returns NULL if
 155   // this is impossible.
 156   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 157 
 158   // Like allocate_init, but the block returned by a successful allocation
 159   // is guaranteed initialized to zeros.
 160   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 161 
 162   // Helper functions for (VM) allocation.
 163   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 164   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 165                                                             HeapWord* objPtr);
 166 
 167   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 168 
 169   inline static void post_allocation_setup_array(Klass* klass,
 170                                                  HeapWord* obj, int length);
 171 
 172   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 173 
 174   // Clears an allocated object.
 175   inline static void init_obj(HeapWord* obj, size_t size);
 176 
 177   // Filler object utilities.
 178   static inline size_t filler_array_hdr_size();
 179   static inline size_t filler_array_min_size();
 180 
 181   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 182   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 183 
 184   // Fill with a single array; caller must ensure filler_array_min_size() <=
 185   // words <= filler_array_max_size().
 186   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 187 
 188   // Fill with a single object (either an int array or a java.lang.Object).
 189   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 190 
 191   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 192 
 193   // Verification functions
 194   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 195     PRODUCT_RETURN;
 196   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 197     PRODUCT_RETURN;
 198   debug_only(static void check_for_valid_allocation_state();)
 199 
 200  public:
 201   enum Name {
 202     SerialHeap,
 203     ParallelScavengeHeap,
 204     G1CollectedHeap,
 205     CMSHeap
 206   };
 207 
 208   static inline size_t filler_array_max_size() {
 209     return _filler_array_max_size;
 210   }
 211 
 212   virtual Name kind() const = 0;
 213 
 214   virtual const char* name() const = 0;
 215 
 216   /**
 217    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 218    * and JNI_OK on success.
 219    */
 220   virtual jint initialize() = 0;
 221 
 222   // In many heaps, there will be a need to perform some initialization activities
 223   // after the Universe is fully formed, but before general heap allocation is allowed.
 224   // This is the correct place to place such initialization methods.
 225   virtual void post_initialize() = 0;
 226 
 227   // Stop any onging concurrent work and prepare for exit.
 228   virtual void stop() {}
 229 
 230   // Stop and resume concurrent GC threads interfering with safepoint operations
 231   virtual void safepoint_synchronize_begin() {}
 232   virtual void safepoint_synchronize_end() {}
 233 
 234   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 235   MemRegion reserved_region() const { return _reserved; }
 236   address base() const { return (address)reserved_region().start(); }
 237 
 238   virtual size_t capacity() const = 0;
 239   virtual size_t used() const = 0;
 240 
 241   // Return "true" if the part of the heap that allocates Java
 242   // objects has reached the maximal committed limit that it can
 243   // reach, without a garbage collection.
 244   virtual bool is_maximal_no_gc() const = 0;
 245 
 246   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 247   // memory that the vm could make available for storing 'normal' java objects.
 248   // This is based on the reserved address space, but should not include space
 249   // that the vm uses internally for bookkeeping or temporary storage
 250   // (e.g., in the case of the young gen, one of the survivor
 251   // spaces).
 252   virtual size_t max_capacity() const = 0;
 253 
 254   // Returns "TRUE" if "p" points into the reserved area of the heap.
 255   bool is_in_reserved(const void* p) const {
 256     return _reserved.contains(p);
 257   }
 258 
 259   bool is_in_reserved_or_null(const void* p) const {
 260     return p == NULL || is_in_reserved(p);
 261   }
 262 
 263   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 264   // This method can be expensive so avoid using it in performance critical
 265   // code.
 266   virtual bool is_in(const void* p) const = 0;
 267 
 268   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 269 
 270   // Let's define some terms: a "closed" subset of a heap is one that
 271   //
 272   // 1) contains all currently-allocated objects, and
 273   //
 274   // 2) is closed under reference: no object in the closed subset
 275   //    references one outside the closed subset.
 276   //
 277   // Membership in a heap's closed subset is useful for assertions.
 278   // Clearly, the entire heap is a closed subset, so the default
 279   // implementation is to use "is_in_reserved".  But this may not be too
 280   // liberal to perform useful checking.  Also, the "is_in" predicate
 281   // defines a closed subset, but may be too expensive, since "is_in"
 282   // verifies that its argument points to an object head.  The
 283   // "closed_subset" method allows a heap to define an intermediate
 284   // predicate, allowing more precise checking than "is_in_reserved" at
 285   // lower cost than "is_in."
 286 
 287   // One important case is a heap composed of disjoint contiguous spaces,
 288   // such as the Garbage-First collector.  Such heaps have a convenient
 289   // closed subset consisting of the allocated portions of those
 290   // contiguous spaces.
 291 
 292   // Return "TRUE" iff the given pointer points into the heap's defined
 293   // closed subset (which defaults to the entire heap).
 294   virtual bool is_in_closed_subset(const void* p) const {
 295     return is_in_reserved(p);
 296   }
 297 
 298   bool is_in_closed_subset_or_null(const void* p) const {
 299     return p == NULL || is_in_closed_subset(p);
 300   }
 301 
 302   void set_gc_cause(GCCause::Cause v) {
 303      if (UsePerfData) {
 304        _gc_lastcause = _gc_cause;
 305        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 306        _perf_gc_cause->set_value(GCCause::to_string(v));
 307      }
 308     _gc_cause = v;
 309   }
 310   GCCause::Cause gc_cause() { return _gc_cause; }
 311 
 312   // General obj/array allocation facilities.
 313   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 314   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 315   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 316   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 317 
 318   // Raw memory allocation facilities
 319   // The obj and array allocate methods are covers for these methods.
 320   // mem_allocate() should never be
 321   // called to allocate TLABs, only individual objects.
 322   virtual HeapWord* mem_allocate(size_t size,
 323                                  bool* gc_overhead_limit_was_exceeded) = 0;
 324 
 325   // Utilities for turning raw memory into filler objects.
 326   //
 327   // min_fill_size() is the smallest region that can be filled.
 328   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 329   // multiple objects.  fill_with_object() is for regions known to be smaller
 330   // than the largest array of integers; it uses a single object to fill the
 331   // region and has slightly less overhead.
 332   static size_t min_fill_size() {
 333     return size_t(align_object_size(oopDesc::header_size()));
 334   }
 335 
 336   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 337 
 338   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 339   static void fill_with_object(MemRegion region, bool zap = true) {
 340     fill_with_object(region.start(), region.word_size(), zap);
 341   }
 342   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 343     fill_with_object(start, pointer_delta(end, start), zap);
 344   }
 345 
 346   // Return the address "addr" aligned by "alignment_in_bytes" if such
 347   // an address is below "end".  Return NULL otherwise.
 348   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 349                                                    HeapWord* end,
 350                                                    unsigned short alignment_in_bytes);
 351 
 352   // Some heaps may offer a contiguous region for shared non-blocking
 353   // allocation, via inlined code (by exporting the address of the top and
 354   // end fields defining the extent of the contiguous allocation region.)
 355 
 356   // This function returns "true" iff the heap supports this kind of
 357   // allocation.  (Default is "no".)
 358   virtual bool supports_inline_contig_alloc() const {
 359     return false;
 360   }
 361   // These functions return the addresses of the fields that define the
 362   // boundaries of the contiguous allocation area.  (These fields should be
 363   // physically near to one another.)
 364   virtual HeapWord* volatile* top_addr() const {
 365     guarantee(false, "inline contiguous allocation not supported");
 366     return NULL;
 367   }
 368   virtual HeapWord** end_addr() const {
 369     guarantee(false, "inline contiguous allocation not supported");
 370     return NULL;
 371   }
 372 
 373   // Some heaps may be in an unparseable state at certain times between
 374   // collections. This may be necessary for efficient implementation of
 375   // certain allocation-related activities. Calling this function before
 376   // attempting to parse a heap ensures that the heap is in a parsable
 377   // state (provided other concurrent activity does not introduce
 378   // unparsability). It is normally expected, therefore, that this
 379   // method is invoked with the world stopped.
 380   // NOTE: if you override this method, make sure you call
 381   // super::ensure_parsability so that the non-generational
 382   // part of the work gets done. See implementation of
 383   // CollectedHeap::ensure_parsability and, for instance,
 384   // that of GenCollectedHeap::ensure_parsability().
 385   // The argument "retire_tlabs" controls whether existing TLABs
 386   // are merely filled or also retired, thus preventing further
 387   // allocation from them and necessitating allocation of new TLABs.
 388   virtual void ensure_parsability(bool retire_tlabs);
 389 
 390   // Section on thread-local allocation buffers (TLABs)
 391   // If the heap supports thread-local allocation buffers, it should override
 392   // the following methods:
 393   // Returns "true" iff the heap supports thread-local allocation buffers.
 394   // The default is "no".
 395   virtual bool supports_tlab_allocation() const = 0;
 396 
 397   // The amount of space available for thread-local allocation buffers.
 398   virtual size_t tlab_capacity(Thread *thr) const = 0;
 399 
 400   // The amount of used space for thread-local allocation buffers for the given thread.
 401   virtual size_t tlab_used(Thread *thr) const = 0;
 402 
 403   virtual size_t max_tlab_size() const;
 404 
 405   // An estimate of the maximum allocation that could be performed
 406   // for thread-local allocation buffers without triggering any
 407   // collection or expansion activity.
 408   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 409     guarantee(false, "thread-local allocation buffers not supported");
 410     return 0;
 411   }
 412 
 413   // Can a compiler initialize a new object without store barriers?
 414   // This permission only extends from the creation of a new object
 415   // via a TLAB up to the first subsequent safepoint. If such permission
 416   // is granted for this heap type, the compiler promises to call
 417   // defer_store_barrier() below on any slow path allocation of
 418   // a new object for which such initializing store barriers will
 419   // have been elided.
 420   virtual bool can_elide_tlab_store_barriers() const = 0;
 421 
 422   // If a compiler is eliding store barriers for TLAB-allocated objects,
 423   // there is probably a corresponding slow path which can produce
 424   // an object allocated anywhere.  The compiler's runtime support
 425   // promises to call this function on such a slow-path-allocated
 426   // object before performing initializations that have elided
 427   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 428   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 429 
 430   // Answers whether an initializing store to a new object currently
 431   // allocated at the given address doesn't need a store
 432   // barrier. Returns "true" if it doesn't need an initializing
 433   // store barrier; answers "false" if it does.
 434   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 435 
 436   // If a compiler is eliding store barriers for TLAB-allocated objects,
 437   // we will be informed of a slow-path allocation by a call
 438   // to new_store_pre_barrier() above. Such a call precedes the
 439   // initialization of the object itself, and no post-store-barriers will
 440   // be issued. Some heap types require that the barrier strictly follows
 441   // the initializing stores. (This is currently implemented by deferring the
 442   // barrier until the next slow-path allocation or gc-related safepoint.)
 443   // This interface answers whether a particular heap type needs the card
 444   // mark to be thus strictly sequenced after the stores.
 445   virtual bool card_mark_must_follow_store() const = 0;
 446 
 447   // If the CollectedHeap was asked to defer a store barrier above,
 448   // this informs it to flush such a deferred store barrier to the
 449   // remembered set.
 450   virtual void flush_deferred_store_barrier(JavaThread* thread);
 451 
 452   // Perform a collection of the heap; intended for use in implementing
 453   // "System.gc".  This probably implies as full a collection as the
 454   // "CollectedHeap" supports.
 455   virtual void collect(GCCause::Cause cause) = 0;
 456 
 457   // Perform a full collection
 458   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 459 
 460   // This interface assumes that it's being called by the
 461   // vm thread. It collects the heap assuming that the
 462   // heap lock is already held and that we are executing in
 463   // the context of the vm thread.
 464   virtual void collect_as_vm_thread(GCCause::Cause cause);
 465 
 466   // Returns the barrier set for this heap
 467   BarrierSet* barrier_set() { return _barrier_set; }
 468   void set_barrier_set(BarrierSet* barrier_set);
 469 
 470   GCServicabilitySupport* servicability_support();
 471 
 472   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 473   // that it should answer "false" for the concurrent part of a concurrent
 474   // collector -- dld).
 475   bool is_gc_active() const { return _is_gc_active; }
 476 
 477   // Total number of GC collections (started)
 478   unsigned int total_collections() const { return _total_collections; }
 479   unsigned int total_full_collections() const { return _total_full_collections;}
 480 
 481   // Increment total number of GC collections (started)
 482   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 483   void increment_total_collections(bool full = false) {
 484     _total_collections++;
 485     if (full) {
 486       increment_total_full_collections();
 487     }
 488   }
 489 
 490   void increment_total_full_collections() { _total_full_collections++; }
 491 
 492   // Return the CollectorPolicy for the heap
 493   virtual CollectorPolicy* collector_policy() const = 0;
 494 
 495   // Iterate over all objects, calling "cl.do_object" on each.
 496   virtual void object_iterate(ObjectClosure* cl) = 0;
 497 
 498   // Similar to object_iterate() except iterates only
 499   // over live objects.
 500   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 501 
 502   // NOTE! There is no requirement that a collector implement these
 503   // functions.
 504   //
 505   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 506   // each address in the (reserved) heap is a member of exactly
 507   // one block.  The defining characteristic of a block is that it is
 508   // possible to find its size, and thus to progress forward to the next
 509   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 510   // represent Java objects, or they might be free blocks in a
 511   // free-list-based heap (or subheap), as long as the two kinds are
 512   // distinguishable and the size of each is determinable.
 513 
 514   // Returns the address of the start of the "block" that contains the
 515   // address "addr".  We say "blocks" instead of "object" since some heaps
 516   // may not pack objects densely; a chunk may either be an object or a
 517   // non-object.
 518   virtual HeapWord* block_start(const void* addr) const = 0;
 519 
 520   // Requires "addr" to be the start of a chunk, and returns its size.
 521   // "addr + size" is required to be the start of a new chunk, or the end
 522   // of the active area of the heap.
 523   virtual size_t block_size(const HeapWord* addr) const = 0;
 524 
 525   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 526   // the block is an object.
 527   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 528 
 529   // Returns the longest time (in ms) that has elapsed since the last
 530   // time that any part of the heap was examined by a garbage collection.
 531   virtual jlong millis_since_last_gc() = 0;
 532 
 533   // Perform any cleanup actions necessary before allowing a verification.
 534   virtual void prepare_for_verify() = 0;
 535 
 536   // Generate any dumps preceding or following a full gc
 537  private:
 538   void full_gc_dump(GCTimer* timer, bool before);
 539  public:
 540   void pre_full_gc_dump(GCTimer* timer);
 541   void post_full_gc_dump(GCTimer* timer);
 542 
 543   VirtualSpaceSummary create_heap_space_summary();
 544   GCHeapSummary create_heap_summary();
 545 
 546   MetaspaceSummary create_metaspace_summary();
 547 
 548   // Print heap information on the given outputStream.
 549   virtual void print_on(outputStream* st) const = 0;
 550   // The default behavior is to call print_on() on tty.
 551   virtual void print() const {
 552     print_on(tty);
 553   }
 554   // Print more detailed heap information on the given
 555   // outputStream. The default behavior is to call print_on(). It is
 556   // up to each subclass to override it and add any additional output
 557   // it needs.
 558   virtual void print_extended_on(outputStream* st) const {
 559     print_on(st);
 560   }
 561 
 562   virtual void print_on_error(outputStream* st) const;
 563 
 564   // Print all GC threads (other than the VM thread)
 565   // used by this heap.
 566   virtual void print_gc_threads_on(outputStream* st) const = 0;
 567   // The default behavior is to call print_gc_threads_on() on tty.
 568   void print_gc_threads() {
 569     print_gc_threads_on(tty);
 570   }
 571   // Iterator for all GC threads (other than VM thread)
 572   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 573 
 574   // Print any relevant tracing info that flags imply.
 575   // Default implementation does nothing.
 576   virtual void print_tracing_info() const = 0;
 577 
 578   void print_heap_before_gc();
 579   void print_heap_after_gc();
 580 
 581   // An object is scavengable if its location may move during a scavenge.
 582   // (A scavenge is a GC which is not a full GC.)
 583   virtual bool is_scavengable(oop obj) = 0;
 584   // Registering and unregistering an nmethod (compiled code) with the heap.
 585   // Override with specific mechanism for each specialized heap type.
 586   virtual void register_nmethod(nmethod* nm) {}
 587   virtual void unregister_nmethod(nmethod* nm) {}
 588   virtual void verify_nmethod(nmethod* nmethod) {}
 589 
 590   void trace_heap_before_gc(const GCTracer* gc_tracer);
 591   void trace_heap_after_gc(const GCTracer* gc_tracer);
 592 
 593   // Heap verification
 594   virtual void verify(VerifyOption option) = 0;
 595 
 596   // Return true if concurrent phase control (via
 597   // request_concurrent_phase_control) is supported by this collector.
 598   // The default implementation returns false.
 599   virtual bool supports_concurrent_phase_control() const;
 600 
 601   // Return a NULL terminated array of concurrent phase names provided
 602   // by this collector.  Supports Whitebox testing.  These are the
 603   // names recognized by request_concurrent_phase(). The default
 604   // implementation returns an array of one NULL element.
 605   virtual const char* const* concurrent_phases() const;
 606 
 607   // Request the collector enter the indicated concurrent phase, and
 608   // wait until it does so.  Supports WhiteBox testing.  Only one
 609   // request may be active at a time.  Phases are designated by name;
 610   // the set of names and their meaning is GC-specific.  Once the
 611   // requested phase has been reached, the collector will attempt to
 612   // avoid transitioning to a new phase until a new request is made.
 613   // [Note: A collector might not be able to remain in a given phase.
 614   // For example, a full collection might cancel an in-progress
 615   // concurrent collection.]
 616   //
 617   // Returns true when the phase is reached.  Returns false for an
 618   // unknown phase.  The default implementation returns false.
 619   virtual bool request_concurrent_phase(const char* phase);
 620 
 621   // Provides a thread pool to SafepointSynchronize to use
 622   // for parallel safepoint cleanup.
 623   // GCs that use a GC worker thread pool may want to share
 624   // it for use during safepoint cleanup. This is only possible
 625   // if the GC can pause and resume concurrent work (e.g. G1
 626   // concurrent marking) for an intermittent non-GC safepoint.
 627   // If this method returns NULL, SafepointSynchronize will
 628   // perform cleanup tasks serially in the VMThread.
 629   virtual WorkGang* get_safepoint_workers() { return NULL; }
 630 
 631   // Non product verification and debugging.
 632 #ifndef PRODUCT
 633   // Support for PromotionFailureALot.  Return true if it's time to cause a
 634   // promotion failure.  The no-argument version uses
 635   // this->_promotion_failure_alot_count as the counter.
 636   inline bool promotion_should_fail(volatile size_t* count);
 637   inline bool promotion_should_fail();
 638 
 639   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 640   // GC in which promotion failure occurred.
 641   inline void reset_promotion_should_fail(volatile size_t* count);
 642   inline void reset_promotion_should_fail();
 643 #endif  // #ifndef PRODUCT
 644 
 645 #ifdef ASSERT
 646   static int fired_fake_oom() {
 647     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 648   }
 649 #endif
 650 
 651  public:
 652   // Copy the current allocation context statistics for the specified contexts.
 653   // For each context in contexts, set the corresponding entries in the totals
 654   // and accuracy arrays to the current values held by the statistics.  Each
 655   // array should be of length len.
 656   // Returns true if there are more stats available.
 657   virtual bool copy_allocation_context_stats(const jint* contexts,
 658                                              jlong* totals,
 659                                              jbyte* accuracy,
 660                                              jint len) {
 661     return false;
 662   }
 663 
 664 };
 665 
 666 // Class to set and reset the GC cause for a CollectedHeap.
 667 
 668 class GCCauseSetter : StackObj {
 669   CollectedHeap* _heap;
 670   GCCause::Cause _previous_cause;
 671  public:
 672   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 673     assert(SafepointSynchronize::is_at_safepoint(),
 674            "This method manipulates heap state without locking");
 675     _heap = heap;
 676     _previous_cause = _heap->gc_cause();
 677     _heap->set_gc_cause(cause);
 678   }
 679 
 680   ~GCCauseSetter() {
 681     assert(SafepointSynchronize::is_at_safepoint(),
 682           "This method manipulates heap state without locking");
 683     _heap->set_gc_cause(_previous_cause);
 684   }
 685 };
 686 
 687 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP