/* * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/serial/genMarkSweep.hpp" #include "gc/serial/tenuredGeneration.inline.hpp" #include "gc/shared/blockOffsetTable.inline.hpp" #include "gc/shared/cardGeneration.inline.hpp" #include "gc/shared/collectorCounters.hpp" #include "gc/shared/gcTimer.hpp" #include "gc/shared/gcTrace.hpp" #include "gc/shared/genOopClosures.inline.hpp" #include "gc/shared/generationSpec.hpp" #include "gc/shared/space.hpp" #include "logging/log.hpp" #include "memory/allocation.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/java.hpp" #include "utilities/macros.hpp" #if INCLUDE_ALL_GCS #include "gc/cms/parOopClosures.hpp" #endif TenuredGeneration::TenuredGeneration(ReservedSpace rs, size_t initial_byte_size, GCMemoryManager* mem_mgr, CardTableRS* remset) : CardGeneration(rs, initial_byte_size, mem_mgr, remset) { HeapWord* bottom = (HeapWord*) _virtual_space.low(); HeapWord* end = (HeapWord*) _virtual_space.high(); _the_space = new TenuredSpace(_bts, MemRegion(bottom, end)); _the_space->reset_saved_mark(); _shrink_factor = 0; _capacity_at_prologue = 0; _gc_stats = new GCStats(); // initialize performance counters const char* gen_name = "old"; GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy(); // Generation Counters -- generation 1, 1 subspace _gen_counters = new GenerationCounters(gen_name, 1, 1, gcp->min_old_size(), gcp->max_old_size(), &_virtual_space); _gc_counters = new CollectorCounters("MSC", 1); _space_counters = new CSpaceCounters(gen_name, 0, _virtual_space.reserved_size(), _the_space, _gen_counters); } void TenuredGeneration::gc_prologue(bool full) { _capacity_at_prologue = capacity(); _used_at_prologue = used(); } bool TenuredGeneration::should_collect(bool full, size_t size, bool is_tlab) { // This should be one big conditional or (||), but I want to be able to tell // why it returns what it returns (without re-evaluating the conditionals // in case they aren't idempotent), so I'm doing it this way. // DeMorgan says it's okay. if (full) { log_trace(gc)("TenuredGeneration::should_collect: because full"); return true; } if (should_allocate(size, is_tlab)) { log_trace(gc)("TenuredGeneration::should_collect: because should_allocate(" SIZE_FORMAT ")", size); return true; } // If we don't have very much free space. // XXX: 10000 should be a percentage of the capacity!!! if (free() < 10000) { log_trace(gc)("TenuredGeneration::should_collect: because free(): " SIZE_FORMAT, free()); return true; } // If we had to expand to accommodate promotions from the young generation if (_capacity_at_prologue < capacity()) { log_trace(gc)("TenuredGeneration::should_collect: because_capacity_at_prologue: " SIZE_FORMAT " < capacity(): " SIZE_FORMAT, _capacity_at_prologue, capacity()); return true; } return false; } void TenuredGeneration::compute_new_size() { assert_locked_or_safepoint(Heap_lock); // Compute some numbers about the state of the heap. const size_t used_after_gc = used(); const size_t capacity_after_gc = capacity(); CardGeneration::compute_new_size(); assert(used() == used_after_gc && used_after_gc <= capacity(), "used: " SIZE_FORMAT " used_after_gc: " SIZE_FORMAT " capacity: " SIZE_FORMAT, used(), used_after_gc, capacity()); } void TenuredGeneration::update_gc_stats(Generation* current_generation, bool full) { // If the young generation has been collected, gather any statistics // that are of interest at this point. bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation); if (!full && current_is_young) { // Calculate size of data promoted from the young generation // before doing the collection. size_t used_before_gc = used(); // If the young gen collection was skipped, then the // number of promoted bytes will be 0 and adding it to the // average will incorrectly lessen the average. It is, however, // also possible that no promotion was needed. if (used_before_gc >= _used_at_prologue) { size_t promoted_in_bytes = used_before_gc - _used_at_prologue; gc_stats()->avg_promoted()->sample(promoted_in_bytes); } } } void TenuredGeneration::update_counters() { if (UsePerfData) { _space_counters->update_all(); _gen_counters->update_all(); } } bool TenuredGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { size_t available = max_contiguous_available(); size_t av_promo = (size_t)gc_stats()->avg_promoted()->padded_average(); bool res = (available >= av_promo) || (available >= max_promotion_in_bytes); log_trace(gc)("Tenured: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")", res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes); return res; } void TenuredGeneration::collect(bool full, bool clear_all_soft_refs, size_t size, bool is_tlab) { GenCollectedHeap* gch = GenCollectedHeap::heap(); // Temporarily expand the span of our ref processor, so // refs discovery is over the entire heap, not just this generation ReferenceProcessorSpanMutator x(ref_processor(), gch->reserved_region()); STWGCTimer* gc_timer = GenMarkSweep::gc_timer(); gc_timer->register_gc_start(); SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer(); gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start()); gch->pre_full_gc_dump(gc_timer); GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs); gch->post_full_gc_dump(gc_timer); gc_timer->register_gc_end(); gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); } HeapWord* TenuredGeneration::expand_and_allocate(size_t word_size, bool is_tlab, bool parallel) { assert(!is_tlab, "TenuredGeneration does not support TLAB allocation"); if (parallel) { MutexLocker x(ParGCRareEvent_lock); HeapWord* result = NULL; size_t byte_size = word_size * HeapWordSize; while (true) { expand(byte_size, _min_heap_delta_bytes); if (GCExpandToAllocateDelayMillis > 0) { os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); } result = _the_space->par_allocate(word_size); if ( result != NULL) { return result; } else { // If there's not enough expansion space available, give up. if (_virtual_space.uncommitted_size() < byte_size) { return NULL; } // else try again } } } else { expand(word_size*HeapWordSize, _min_heap_delta_bytes); return _the_space->allocate(word_size); } } bool TenuredGeneration::expand(size_t bytes, size_t expand_bytes) { GCMutexLocker x(ExpandHeap_lock); return CardGeneration::expand(bytes, expand_bytes); } size_t TenuredGeneration::unsafe_max_alloc_nogc() const { return _the_space->free(); } size_t TenuredGeneration::contiguous_available() const { return _the_space->free() + _virtual_space.uncommitted_size(); } void TenuredGeneration::assert_correct_size_change_locking() { assert_locked_or_safepoint(ExpandHeap_lock); } // Currently nothing to do. void TenuredGeneration::prepare_for_verify() {} void TenuredGeneration::object_iterate(ObjectClosure* blk) { _the_space->object_iterate(blk); } void TenuredGeneration::save_marks() { _the_space->set_saved_mark(); } void TenuredGeneration::reset_saved_marks() { _the_space->reset_saved_mark(); } bool TenuredGeneration::no_allocs_since_save_marks() { return _the_space->saved_mark_at_top(); } #define TenuredGen_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix) \ \ void TenuredGeneration:: \ oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \ blk->set_generation(this); \ _the_space->oop_since_save_marks_iterate##nv_suffix(blk); \ blk->reset_generation(); \ save_marks(); \ } ALL_SINCE_SAVE_MARKS_CLOSURES(TenuredGen_SINCE_SAVE_MARKS_ITERATE_DEFN) #undef TenuredGen_SINCE_SAVE_MARKS_ITERATE_DEFN void TenuredGeneration::gc_epilogue(bool full) { // update the generation and space performance counters update_counters(); if (ZapUnusedHeapArea) { _the_space->check_mangled_unused_area_complete(); } } void TenuredGeneration::record_spaces_top() { assert(ZapUnusedHeapArea, "Not mangling unused space"); _the_space->set_top_for_allocations(); } void TenuredGeneration::verify() { _the_space->verify(); } void TenuredGeneration::print_on(outputStream* st) const { Generation::print_on(st); st->print(" the"); _the_space->print_on(st); }