/* * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "gc/serial/defNewGeneration.hpp" #include "gc/shared/space.hpp" #include "memory/metaspace.hpp" #include "oops/oop.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/javaCalls.hpp" #include "runtime/orderAccess.inline.hpp" #include "services/lowMemoryDetector.hpp" #include "services/management.hpp" #include "services/memoryManager.hpp" #include "services/memoryPool.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/macros.hpp" MemoryPool::MemoryPool(const char* name, PoolType type, size_t init_size, size_t max_size, bool support_usage_threshold, bool support_gc_threshold) { _name = name; _initial_size = init_size; _max_size = max_size; (void)const_cast(_memory_pool_obj = instanceOop(NULL)); _available_for_allocation = true; _num_managers = 0; _type = type; // initialize the max and init size of collection usage _after_gc_usage = MemoryUsage(_initial_size, 0, 0, _max_size); _usage_sensor = NULL; _gc_usage_sensor = NULL; // usage threshold supports both high and low threshold _usage_threshold = new ThresholdSupport(support_usage_threshold, support_usage_threshold); // gc usage threshold supports only high threshold _gc_usage_threshold = new ThresholdSupport(support_gc_threshold, support_gc_threshold); } void MemoryPool::add_manager(MemoryManager* mgr) { assert(_num_managers < MemoryPool::max_num_managers, "_num_managers exceeds the max"); if (_num_managers < MemoryPool::max_num_managers) { _managers[_num_managers] = mgr; _num_managers++; } } // Returns an instanceHandle of a MemoryPool object. // It creates a MemoryPool instance when the first time // this function is called. instanceOop MemoryPool::get_memory_pool_instance(TRAPS) { // Must do an acquire so as to force ordering of subsequent // loads from anything _memory_pool_obj points to or implies. instanceOop pool_obj = OrderAccess::load_acquire(&_memory_pool_obj); if (pool_obj == NULL) { // It's ok for more than one thread to execute the code up to the locked region. // Extra pool instances will just be gc'ed. InstanceKlass* ik = Management::sun_management_ManagementFactoryHelper_klass(CHECK_NULL); Handle pool_name = java_lang_String::create_from_str(_name, CHECK_NULL); jlong usage_threshold_value = (_usage_threshold->is_high_threshold_supported() ? 0 : -1L); jlong gc_usage_threshold_value = (_gc_usage_threshold->is_high_threshold_supported() ? 0 : -1L); JavaValue result(T_OBJECT); JavaCallArguments args; args.push_oop(pool_name); // Argument 1 args.push_int((int) is_heap()); // Argument 2 Symbol* method_name = vmSymbols::createMemoryPool_name(); Symbol* signature = vmSymbols::createMemoryPool_signature(); args.push_long(usage_threshold_value); // Argument 3 args.push_long(gc_usage_threshold_value); // Argument 4 JavaCalls::call_static(&result, ik, method_name, signature, &args, CHECK_NULL); instanceOop p = (instanceOop) result.get_jobject(); instanceHandle pool(THREAD, p); { // Get lock since another thread may have create the instance MutexLocker ml(Management_lock); // Check if another thread has created the pool. We reload // _memory_pool_obj here because some other thread may have // initialized it while we were executing the code before the lock. // // The lock has done an acquire, so the load can't float above it, // but we need to do a load_acquire as above. pool_obj = OrderAccess::load_acquire(&_memory_pool_obj); if (pool_obj != NULL) { return pool_obj; } // Get the address of the object we created via call_special. pool_obj = pool(); // Use store barrier to make sure the memory accesses associated // with creating the pool are visible before publishing its address. // The unlock will publish the store to _memory_pool_obj because // it does a release first. OrderAccess::release_store(&_memory_pool_obj, pool_obj); } } return pool_obj; } inline static size_t get_max_value(size_t val1, size_t val2) { return (val1 > val2 ? val1 : val2); } void MemoryPool::record_peak_memory_usage() { // Caller in JDK is responsible for synchronization - // acquire the lock for this memory pool before calling VM MemoryUsage usage = get_memory_usage(); size_t peak_used = get_max_value(usage.used(), _peak_usage.used()); size_t peak_committed = get_max_value(usage.committed(), _peak_usage.committed()); size_t peak_max_size = get_max_value(usage.max_size(), _peak_usage.max_size()); _peak_usage = MemoryUsage(initial_size(), peak_used, peak_committed, peak_max_size); } static void set_sensor_obj_at(SensorInfo** sensor_ptr, instanceHandle sh) { assert(*sensor_ptr == NULL, "Should be called only once"); SensorInfo* sensor = new SensorInfo(); sensor->set_sensor(sh()); *sensor_ptr = sensor; } void MemoryPool::set_usage_sensor_obj(instanceHandle sh) { set_sensor_obj_at(&_usage_sensor, sh); } void MemoryPool::set_gc_usage_sensor_obj(instanceHandle sh) { set_sensor_obj_at(&_gc_usage_sensor, sh); } void MemoryPool::oops_do(OopClosure* f) { f->do_oop((oop*) &_memory_pool_obj); if (_usage_sensor != NULL) { _usage_sensor->oops_do(f); } if (_gc_usage_sensor != NULL) { _gc_usage_sensor->oops_do(f); } } ContiguousSpacePool::ContiguousSpacePool(ContiguousSpace* space, const char* name, PoolType type, size_t max_size, bool support_usage_threshold) : CollectedMemoryPool(name, type, space->capacity(), max_size, support_usage_threshold), _space(space) { } size_t ContiguousSpacePool::used_in_bytes() { return space()->used(); } MemoryUsage ContiguousSpacePool::get_memory_usage() { size_t maxSize = (available_for_allocation() ? max_size() : 0); size_t used = used_in_bytes(); size_t committed = _space->capacity(); return MemoryUsage(initial_size(), used, committed, maxSize); } SurvivorContiguousSpacePool::SurvivorContiguousSpacePool(DefNewGeneration* young_gen, const char* name, PoolType type, size_t max_size, bool support_usage_threshold) : CollectedMemoryPool(name, type, young_gen->from()->capacity(), max_size, support_usage_threshold), _young_gen(young_gen) { } size_t SurvivorContiguousSpacePool::used_in_bytes() { return _young_gen->from()->used(); } size_t SurvivorContiguousSpacePool::committed_in_bytes() { return _young_gen->from()->capacity(); } MemoryUsage SurvivorContiguousSpacePool::get_memory_usage() { size_t maxSize = (available_for_allocation() ? max_size() : 0); size_t used = used_in_bytes(); size_t committed = committed_in_bytes(); return MemoryUsage(initial_size(), used, committed, maxSize); } GenerationPool::GenerationPool(Generation* gen, const char* name, PoolType type, bool support_usage_threshold) : CollectedMemoryPool(name, type, gen->capacity(), gen->max_capacity(), support_usage_threshold), _gen(gen) { } size_t GenerationPool::used_in_bytes() { return _gen->used(); } MemoryUsage GenerationPool::get_memory_usage() { size_t used = used_in_bytes(); size_t committed = _gen->capacity(); size_t maxSize = (available_for_allocation() ? max_size() : 0); return MemoryUsage(initial_size(), used, committed, maxSize); } CodeHeapPool::CodeHeapPool(CodeHeap* codeHeap, const char* name, bool support_usage_threshold) : MemoryPool(name, NonHeap, codeHeap->capacity(), codeHeap->max_capacity(), support_usage_threshold, false), _codeHeap(codeHeap) { } MemoryUsage CodeHeapPool::get_memory_usage() { size_t used = used_in_bytes(); size_t committed = _codeHeap->capacity(); size_t maxSize = (available_for_allocation() ? max_size() : 0); return MemoryUsage(initial_size(), used, committed, maxSize); } MetaspacePool::MetaspacePool() : MemoryPool("Metaspace", NonHeap, 0, calculate_max_size(), true, false) { } MemoryUsage MetaspacePool::get_memory_usage() { size_t committed = MetaspaceAux::committed_bytes(); return MemoryUsage(initial_size(), used_in_bytes(), committed, max_size()); } size_t MetaspacePool::used_in_bytes() { return MetaspaceAux::used_bytes(); } size_t MetaspacePool::calculate_max_size() const { return FLAG_IS_CMDLINE(MaxMetaspaceSize) ? MaxMetaspaceSize : MemoryUsage::undefined_size(); } CompressedKlassSpacePool::CompressedKlassSpacePool() : MemoryPool("Compressed Class Space", NonHeap, 0, CompressedClassSpaceSize, true, false) { } size_t CompressedKlassSpacePool::used_in_bytes() { return MetaspaceAux::used_bytes(Metaspace::ClassType); } MemoryUsage CompressedKlassSpacePool::get_memory_usage() { size_t committed = MetaspaceAux::committed_bytes(Metaspace::ClassType); return MemoryUsage(initial_size(), used_in_bytes(), committed, max_size()); }