1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP
  26 #define SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP
  27 
  28 #include "gc/parallel/generationSizer.hpp"
  29 #include "gc/parallel/objectStartArray.hpp"
  30 #include "gc/parallel/psGCAdaptivePolicyCounters.hpp"
  31 #include "gc/parallel/psOldGen.hpp"
  32 #include "gc/parallel/psYoungGen.hpp"
  33 #include "gc/shared/collectedHeap.hpp"
  34 #include "gc/shared/collectorPolicy.hpp"
  35 #include "gc/shared/gcPolicyCounters.hpp"
  36 #include "gc/shared/gcWhen.hpp"
  37 #include "gc/shared/strongRootsScope.hpp"
  38 #include "memory/metaspace.hpp"
  39 #include "utilities/growableArray.hpp"
  40 #include "utilities/ostream.hpp"
  41 
  42 class AdjoiningGenerations;
  43 class GCHeapSummary;
  44 class GCTaskManager;
  45 class MemoryManager;
  46 class MemoryPool;
  47 class PSAdaptiveSizePolicy;
  48 class PSHeapSummary;
  49 
  50 class ParallelScavengeHeap : public CollectedHeap {
  51   friend class VMStructs;
  52  private:
  53   static PSYoungGen* _young_gen;
  54   static PSOldGen*   _old_gen;
  55 
  56   // Sizing policy for entire heap
  57   static PSAdaptiveSizePolicy*       _size_policy;
  58   static PSGCAdaptivePolicyCounters* _gc_policy_counters;
  59 
  60   GenerationSizer* _collector_policy;
  61 
  62   // Collection of generations that are adjacent in the
  63   // space reserved for the heap.
  64   AdjoiningGenerations* _gens;
  65   unsigned int _death_march_count;
  66 
  67   // The task manager
  68   static GCTaskManager* _gc_task_manager;
  69 
  70   GCMemoryManager* _young_manager;
  71   GCMemoryManager* _old_manager;
  72 
  73   MemoryPool* _eden_pool;
  74   MemoryPool* _survivor_pool;
  75   MemoryPool* _old_pool;
  76 
  77   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
  78 
  79  protected:
  80   static inline size_t total_invocations();
  81   HeapWord* allocate_new_tlab(size_t size);
  82 
  83   inline bool should_alloc_in_eden(size_t size) const;
  84   inline void death_march_check(HeapWord* const result, size_t size);
  85   HeapWord* mem_allocate_old_gen(size_t size);
  86 
  87  public:
  88   ParallelScavengeHeap(GenerationSizer* policy) :
  89     CollectedHeap(), _collector_policy(policy), _death_march_count(0) { }
  90 
  91   // For use by VM operations
  92   enum CollectionType {
  93     Scavenge,
  94     MarkSweep
  95   };
  96 
  97   virtual Name kind() const {
  98     return CollectedHeap::ParallelScavengeHeap;
  99   }
 100 
 101   virtual const char* name() const {
 102     return "Parallel";
 103   }
 104 
 105   virtual CollectorPolicy* collector_policy() const { return _collector_policy; }
 106 
 107   virtual GrowableArray<GCMemoryManager*> memory_managers();
 108   virtual GrowableArray<MemoryPool*> memory_pools();
 109 
 110   static PSYoungGen* young_gen() { return _young_gen; }
 111   static PSOldGen* old_gen()     { return _old_gen; }
 112 
 113   virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
 114 
 115   static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
 116 
 117   static ParallelScavengeHeap* heap();
 118 
 119   static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
 120 
 121   AdjoiningGenerations* gens() { return _gens; }
 122 
 123   // Returns JNI_OK on success
 124   virtual jint initialize();
 125 
 126   void post_initialize();
 127   void update_counters();
 128 
 129   // The alignment used for the various areas
 130   size_t space_alignment()      { return _collector_policy->space_alignment(); }
 131   size_t generation_alignment() { return _collector_policy->gen_alignment(); }
 132 
 133   // Return the (conservative) maximum heap alignment
 134   static size_t conservative_max_heap_alignment() {
 135     return CollectorPolicy::compute_heap_alignment();
 136   }
 137 
 138   size_t capacity() const;
 139   size_t used() const;
 140 
 141   // Return "true" if all generations have reached the
 142   // maximal committed limit that they can reach, without a garbage
 143   // collection.
 144   virtual bool is_maximal_no_gc() const;
 145 
 146   // Return true if the reference points to an object that
 147   // can be moved in a partial collection.  For currently implemented
 148   // generational collectors that means during a collection of
 149   // the young gen.
 150   virtual bool is_scavengable(oop obj);
 151   virtual void register_nmethod(nmethod* nm);
 152   virtual void verify_nmethod(nmethod* nmethod);
 153 
 154   size_t max_capacity() const;
 155 
 156   // Whether p is in the allocated part of the heap
 157   bool is_in(const void* p) const;
 158 
 159   bool is_in_reserved(const void* p) const;
 160 
 161   bool is_in_young(oop p);  // reserved part
 162   bool is_in_old(oop p);    // reserved part
 163 
 164   // Memory allocation.   "gc_time_limit_was_exceeded" will
 165   // be set to true if the adaptive size policy determine that
 166   // an excessive amount of time is being spent doing collections
 167   // and caused a NULL to be returned.  If a NULL is not returned,
 168   // "gc_time_limit_was_exceeded" has an undefined meaning.
 169   HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded);
 170 
 171   // Allocation attempt(s) during a safepoint. It should never be called
 172   // to allocate a new TLAB as this allocation might be satisfied out
 173   // of the old generation.
 174   HeapWord* failed_mem_allocate(size_t size);
 175 
 176   // Support for System.gc()
 177   void collect(GCCause::Cause cause);
 178 
 179   // These also should be called by the vm thread at a safepoint (e.g., from a
 180   // VM operation).
 181   //
 182   // The first collects the young generation only, unless the scavenge fails; it
 183   // will then attempt a full gc.  The second collects the entire heap; if
 184   // maximum_compaction is true, it will compact everything and clear all soft
 185   // references.
 186   inline void invoke_scavenge();
 187 
 188   // Perform a full collection
 189   virtual void do_full_collection(bool clear_all_soft_refs);
 190 
 191   bool supports_inline_contig_alloc() const { return !UseNUMA; }
 192 
 193   HeapWord* volatile* top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord* volatile*)-1; }
 194   HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
 195 
 196   void ensure_parsability(bool retire_tlabs);
 197   void accumulate_statistics_all_tlabs();
 198   void resize_all_tlabs();
 199 
 200   bool supports_tlab_allocation() const { return true; }
 201 
 202   size_t tlab_capacity(Thread* thr) const;
 203   size_t tlab_used(Thread* thr) const;
 204   size_t unsafe_max_tlab_alloc(Thread* thr) const;
 205 
 206   // Can a compiler initialize a new object without store barriers?
 207   // This permission only extends from the creation of a new object
 208   // via a TLAB up to the first subsequent safepoint.
 209   virtual bool can_elide_tlab_store_barriers() const {
 210     return true;
 211   }
 212 
 213   virtual bool card_mark_must_follow_store() const {
 214     return false;
 215   }
 216 
 217   // Return true if we don't we need a store barrier for
 218   // initializing stores to an object at this address.
 219   virtual bool can_elide_initializing_store_barrier(oop new_obj);
 220 
 221   void object_iterate(ObjectClosure* cl);
 222   void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
 223 
 224   HeapWord* block_start(const void* addr) const;
 225   size_t block_size(const HeapWord* addr) const;
 226   bool block_is_obj(const HeapWord* addr) const;
 227 
 228   jlong millis_since_last_gc();
 229 
 230   void prepare_for_verify();
 231   PSHeapSummary create_ps_heap_summary();
 232   virtual void print_on(outputStream* st) const;
 233   virtual void print_on_error(outputStream* st) const;
 234   virtual void print_gc_threads_on(outputStream* st) const;
 235   virtual void gc_threads_do(ThreadClosure* tc) const;
 236   virtual void print_tracing_info() const;
 237 
 238   void verify(VerifyOption option /* ignored */);
 239 
 240   // Resize the young generation.  The reserved space for the
 241   // generation may be expanded in preparation for the resize.
 242   void resize_young_gen(size_t eden_size, size_t survivor_size);
 243 
 244   // Resize the old generation.  The reserved space for the
 245   // generation may be expanded in preparation for the resize.
 246   void resize_old_gen(size_t desired_free_space);
 247 
 248   // Save the tops of the spaces in all generations
 249   void record_gen_tops_before_GC() PRODUCT_RETURN;
 250 
 251   // Mangle the unused parts of all spaces in the heap
 252   void gen_mangle_unused_area() PRODUCT_RETURN;
 253 
 254   // Call these in sequential code around the processing of strong roots.
 255   class ParStrongRootsScope : public MarkScope {
 256    public:
 257     ParStrongRootsScope();
 258     ~ParStrongRootsScope();
 259   };
 260 
 261   GCMemoryManager* old_gc_manager() const { return _old_manager; }
 262   GCMemoryManager* young_gc_manager() const { return _young_manager; }
 263 };
 264 
 265 // Simple class for storing info about the heap at the start of GC, to be used
 266 // after GC for comparison/printing.
 267 class PreGCValues {
 268 public:
 269   PreGCValues(ParallelScavengeHeap* heap) :
 270       _heap_used(heap->used()),
 271       _young_gen_used(heap->young_gen()->used_in_bytes()),
 272       _old_gen_used(heap->old_gen()->used_in_bytes()),
 273       _metadata_used(MetaspaceAux::used_bytes()) { };
 274 
 275   size_t heap_used() const      { return _heap_used; }
 276   size_t young_gen_used() const { return _young_gen_used; }
 277   size_t old_gen_used() const   { return _old_gen_used; }
 278   size_t metadata_used() const  { return _metadata_used; }
 279 
 280 private:
 281   size_t _heap_used;
 282   size_t _young_gen_used;
 283   size_t _old_gen_used;
 284   size_t _metadata_used;
 285 };
 286 
 287 // Class that can be used to print information about the
 288 // adaptive size policy at intervals specified by
 289 // AdaptiveSizePolicyOutputInterval.  Only print information
 290 // if an adaptive size policy is in use.
 291 class AdaptiveSizePolicyOutput : AllStatic {
 292   static bool enabled() {
 293     return UseParallelGC &&
 294            UseAdaptiveSizePolicy &&
 295            log_is_enabled(Debug, gc, ergo);
 296   }
 297  public:
 298   static void print() {
 299     if (enabled()) {
 300       ParallelScavengeHeap::heap()->size_policy()->print();
 301     }
 302   }
 303 
 304   static void print(AdaptiveSizePolicy* size_policy, uint count) {
 305     bool do_print =
 306         enabled() &&
 307         (AdaptiveSizePolicyOutputInterval > 0) &&
 308         (count % AdaptiveSizePolicyOutputInterval) == 0;
 309 
 310     if (do_print) {
 311       size_policy->print();
 312     }
 313   }
 314 };
 315 
 316 #endif // SHARE_VM_GC_PARALLEL_PARALLELSCAVENGEHEAP_HPP