/* * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_SERVICES_MEMORYPOOL_HPP #define SHARE_VM_SERVICES_MEMORYPOOL_HPP #include "memory/heap.hpp" #include "services/memoryUsage.hpp" #include "utilities/macros.hpp" // A memory pool represents the memory area that the VM manages. // The Java virtual machine has at least one memory pool // and it may create or remove memory pools during execution. // A memory pool can belong to the heap or the non-heap memory. // A Java virtual machine may also have memory pools belonging to // both heap and non-heap memory. // Forward declaration class MemoryManager; class SensorInfo; class ThresholdSupport; class MemoryPool : public CHeapObj { friend class MemoryManager; public: enum PoolType { Heap = 1, NonHeap = 2 }; private: enum { max_num_managers = 5 }; // We could make some of the following as performance counters // for external monitoring. const char* _name; PoolType _type; size_t _initial_size; size_t _max_size; bool _available_for_allocation; // Default is true MemoryManager* _managers[max_num_managers]; int _num_managers; MemoryUsage _peak_usage; // Peak memory usage MemoryUsage _after_gc_usage; // After GC memory usage ThresholdSupport* _usage_threshold; ThresholdSupport* _gc_usage_threshold; SensorInfo* _usage_sensor; SensorInfo* _gc_usage_sensor; volatile instanceOop _memory_pool_obj; void add_manager(MemoryManager* mgr); public: MemoryPool(const char* name, PoolType type, size_t init_size, size_t max_size, bool support_usage_threshold, bool support_gc_threshold); const char* name() { return _name; } bool is_heap() { return _type == Heap; } bool is_non_heap() { return _type == NonHeap; } size_t initial_size() const { return _initial_size; } int num_memory_managers() const { return _num_managers; } // max size could be changed virtual size_t max_size() const { return _max_size; } bool is_pool(instanceHandle pool) { return (pool() == _memory_pool_obj); } bool available_for_allocation() { return _available_for_allocation; } bool set_available_for_allocation(bool value) { bool prev = _available_for_allocation; _available_for_allocation = value; return prev; } MemoryManager* get_memory_manager(int index) { assert(index >= 0 && index < _num_managers, "Invalid index"); return _managers[index]; } // Records current memory usage if it's a peak usage void record_peak_memory_usage(); MemoryUsage get_peak_memory_usage() { // check current memory usage first and then return peak usage record_peak_memory_usage(); return _peak_usage; } void reset_peak_memory_usage() { _peak_usage = get_memory_usage(); } ThresholdSupport* usage_threshold() { return _usage_threshold; } ThresholdSupport* gc_usage_threshold() { return _gc_usage_threshold; } SensorInfo* usage_sensor() { return _usage_sensor; } SensorInfo* gc_usage_sensor() { return _gc_usage_sensor; } void set_usage_sensor_obj(instanceHandle s); void set_gc_usage_sensor_obj(instanceHandle s); void set_last_collection_usage(MemoryUsage u) { _after_gc_usage = u; } virtual instanceOop get_memory_pool_instance(TRAPS); virtual MemoryUsage get_memory_usage() = 0; virtual size_t used_in_bytes() = 0; virtual bool is_collected_pool() { return false; } virtual MemoryUsage get_last_collection_usage() { return _after_gc_usage; } // GC support void oops_do(OopClosure* f); }; class CollectedMemoryPool : public MemoryPool { public: CollectedMemoryPool(const char* name, size_t init_size, size_t max_size, bool support_usage_threshold) : MemoryPool(name, MemoryPool::Heap, init_size, max_size, support_usage_threshold, true) {}; bool is_collected_pool() { return true; } }; class CodeHeapPool: public MemoryPool { private: CodeHeap* _codeHeap; public: CodeHeapPool(CodeHeap* codeHeap, const char* name, bool support_usage_threshold); MemoryUsage get_memory_usage(); size_t used_in_bytes() { return _codeHeap->allocated_capacity(); } }; class MetaspacePool : public MemoryPool { size_t calculate_max_size() const; public: MetaspacePool(); MemoryUsage get_memory_usage(); size_t used_in_bytes(); }; class CompressedKlassSpacePool : public MemoryPool { public: CompressedKlassSpacePool(); MemoryUsage get_memory_usage(); size_t used_in_bytes(); }; #endif // SHARE_VM_SERVICES_MEMORYPOOL_HPP