1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/access.inline.hpp"
  50 #include "oops/objArrayOop.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/compilationPolicy.hpp"
  56 #include "runtime/interfaceSupport.hpp"
  57 #include "runtime/javaCalls.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/vframe.hpp"
  61 #include "runtime/vframeArray.hpp"
  62 #include "runtime/vm_version.hpp"
  63 #include "utilities/copy.hpp"
  64 #include "utilities/events.hpp"
  65 
  66 
  67 // Implementation of StubAssembler
  68 
  69 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  70   _name = name;
  71   _must_gc_arguments = false;
  72   _frame_size = no_frame_size;
  73   _num_rt_args = 0;
  74   _stub_id = stub_id;
  75 }
  76 
  77 
  78 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  79   _name = name;
  80   _must_gc_arguments = must_gc_arguments;
  81 }
  82 
  83 
  84 void StubAssembler::set_frame_size(int size) {
  85   if (_frame_size == no_frame_size) {
  86     _frame_size = size;
  87   }
  88   assert(_frame_size == size, "can't change the frame size");
  89 }
  90 
  91 
  92 void StubAssembler::set_num_rt_args(int args) {
  93   if (_num_rt_args == 0) {
  94     _num_rt_args = args;
  95   }
  96   assert(_num_rt_args == args, "can't change the number of args");
  97 }
  98 
  99 // Implementation of Runtime1
 100 
 101 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 102 const char *Runtime1::_blob_names[] = {
 103   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 104 };
 105 
 106 #ifndef PRODUCT
 107 // statistics
 108 int Runtime1::_generic_arraycopy_cnt = 0;
 109 int Runtime1::_generic_arraycopystub_cnt = 0;
 110 int Runtime1::_arraycopy_slowcase_cnt = 0;
 111 int Runtime1::_arraycopy_checkcast_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 113 int Runtime1::_new_type_array_slowcase_cnt = 0;
 114 int Runtime1::_new_object_array_slowcase_cnt = 0;
 115 int Runtime1::_new_instance_slowcase_cnt = 0;
 116 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 117 int Runtime1::_monitorenter_slowcase_cnt = 0;
 118 int Runtime1::_monitorexit_slowcase_cnt = 0;
 119 int Runtime1::_patch_code_slowcase_cnt = 0;
 120 int Runtime1::_throw_range_check_exception_count = 0;
 121 int Runtime1::_throw_index_exception_count = 0;
 122 int Runtime1::_throw_div0_exception_count = 0;
 123 int Runtime1::_throw_null_pointer_exception_count = 0;
 124 int Runtime1::_throw_class_cast_exception_count = 0;
 125 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 126 int Runtime1::_throw_array_store_exception_count = 0;
 127 int Runtime1::_throw_count = 0;
 128 
 129 static int _byte_arraycopy_stub_cnt = 0;
 130 static int _short_arraycopy_stub_cnt = 0;
 131 static int _int_arraycopy_stub_cnt = 0;
 132 static int _long_arraycopy_stub_cnt = 0;
 133 static int _oop_arraycopy_stub_cnt = 0;
 134 
 135 address Runtime1::arraycopy_count_address(BasicType type) {
 136   switch (type) {
 137   case T_BOOLEAN:
 138   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 139   case T_CHAR:
 140   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 141   case T_FLOAT:
 142   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 143   case T_DOUBLE:
 144   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 145   case T_ARRAY:
 146   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 147   default:
 148     ShouldNotReachHere();
 149     return NULL;
 150   }
 151 }
 152 
 153 
 154 #endif
 155 
 156 // Simple helper to see if the caller of a runtime stub which
 157 // entered the VM has been deoptimized
 158 
 159 static bool caller_is_deopted() {
 160   JavaThread* thread = JavaThread::current();
 161   RegisterMap reg_map(thread, false);
 162   frame runtime_frame = thread->last_frame();
 163   frame caller_frame = runtime_frame.sender(&reg_map);
 164   assert(caller_frame.is_compiled_frame(), "must be compiled");
 165   return caller_frame.is_deoptimized_frame();
 166 }
 167 
 168 // Stress deoptimization
 169 static void deopt_caller() {
 170   if ( !caller_is_deopted()) {
 171     JavaThread* thread = JavaThread::current();
 172     RegisterMap reg_map(thread, false);
 173     frame runtime_frame = thread->last_frame();
 174     frame caller_frame = runtime_frame.sender(&reg_map);
 175     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 176     assert(caller_is_deopted(), "Must be deoptimized");
 177   }
 178 }
 179 
 180 
 181 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 182   assert(0 <= id && id < number_of_ids, "illegal stub id");
 183   ResourceMark rm;
 184   // create code buffer for code storage
 185   CodeBuffer code(buffer_blob);
 186 
 187   OopMapSet* oop_maps;
 188   int frame_size;
 189   bool must_gc_arguments;
 190 
 191   Compilation::setup_code_buffer(&code, 0);
 192 
 193   // create assembler for code generation
 194   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 195   // generate code for runtime stub
 196   oop_maps = generate_code_for(id, sasm);
 197   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 198          "if stub has an oop map it must have a valid frame size");
 199 
 200 #ifdef ASSERT
 201   // Make sure that stubs that need oopmaps have them
 202   switch (id) {
 203     // These stubs don't need to have an oopmap
 204   case dtrace_object_alloc_id:
 205   case g1_pre_barrier_slow_id:
 206   case g1_post_barrier_slow_id:
 207   case slow_subtype_check_id:
 208   case fpu2long_stub_id:
 209   case unwind_exception_id:
 210   case counter_overflow_id:
 211 #if defined(SPARC) || defined(PPC32)
 212   case handle_exception_nofpu_id:  // Unused on sparc
 213 #endif
 214     break;
 215 
 216     // All other stubs should have oopmaps
 217   default:
 218     assert(oop_maps != NULL, "must have an oopmap");
 219   }
 220 #endif
 221 
 222   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 223   sasm->align(BytesPerWord);
 224   // make sure all code is in code buffer
 225   sasm->flush();
 226 
 227   frame_size = sasm->frame_size();
 228   must_gc_arguments = sasm->must_gc_arguments();
 229   // create blob - distinguish a few special cases
 230   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 231                                                  &code,
 232                                                  CodeOffsets::frame_never_safe,
 233                                                  frame_size,
 234                                                  oop_maps,
 235                                                  must_gc_arguments);
 236   // install blob
 237   assert(blob != NULL, "blob must exist");
 238   _blobs[id] = blob;
 239 }
 240 
 241 
 242 void Runtime1::initialize(BufferBlob* blob) {
 243   // platform-dependent initialization
 244   initialize_pd();
 245   // generate stubs
 246   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 247   // printing
 248 #ifndef PRODUCT
 249   if (PrintSimpleStubs) {
 250     ResourceMark rm;
 251     for (int id = 0; id < number_of_ids; id++) {
 252       _blobs[id]->print();
 253       if (_blobs[id]->oop_maps() != NULL) {
 254         _blobs[id]->oop_maps()->print();
 255       }
 256     }
 257   }
 258 #endif
 259 }
 260 
 261 
 262 CodeBlob* Runtime1::blob_for(StubID id) {
 263   assert(0 <= id && id < number_of_ids, "illegal stub id");
 264   return _blobs[id];
 265 }
 266 
 267 
 268 const char* Runtime1::name_for(StubID id) {
 269   assert(0 <= id && id < number_of_ids, "illegal stub id");
 270   return _blob_names[id];
 271 }
 272 
 273 const char* Runtime1::name_for_address(address entry) {
 274   for (int id = 0; id < number_of_ids; id++) {
 275     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 276   }
 277 
 278 #define FUNCTION_CASE(a, f) \
 279   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 280 
 281   FUNCTION_CASE(entry, os::javaTimeMillis);
 282   FUNCTION_CASE(entry, os::javaTimeNanos);
 283   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 284   FUNCTION_CASE(entry, SharedRuntime::d2f);
 285   FUNCTION_CASE(entry, SharedRuntime::d2i);
 286   FUNCTION_CASE(entry, SharedRuntime::d2l);
 287   FUNCTION_CASE(entry, SharedRuntime::dcos);
 288   FUNCTION_CASE(entry, SharedRuntime::dexp);
 289   FUNCTION_CASE(entry, SharedRuntime::dlog);
 290   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 291   FUNCTION_CASE(entry, SharedRuntime::dpow);
 292   FUNCTION_CASE(entry, SharedRuntime::drem);
 293   FUNCTION_CASE(entry, SharedRuntime::dsin);
 294   FUNCTION_CASE(entry, SharedRuntime::dtan);
 295   FUNCTION_CASE(entry, SharedRuntime::f2i);
 296   FUNCTION_CASE(entry, SharedRuntime::f2l);
 297   FUNCTION_CASE(entry, SharedRuntime::frem);
 298   FUNCTION_CASE(entry, SharedRuntime::l2d);
 299   FUNCTION_CASE(entry, SharedRuntime::l2f);
 300   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 301   FUNCTION_CASE(entry, SharedRuntime::lmul);
 302   FUNCTION_CASE(entry, SharedRuntime::lrem);
 303   FUNCTION_CASE(entry, SharedRuntime::lrem);
 304   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 305   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 306   FUNCTION_CASE(entry, is_instance_of);
 307   FUNCTION_CASE(entry, trace_block_entry);
 308 #ifdef TRACE_HAVE_INTRINSICS
 309   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 310 #endif
 311   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 312   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 313   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 314   FUNCTION_CASE(entry, StubRoutines::dexp());
 315   FUNCTION_CASE(entry, StubRoutines::dlog());
 316   FUNCTION_CASE(entry, StubRoutines::dlog10());
 317   FUNCTION_CASE(entry, StubRoutines::dpow());
 318   FUNCTION_CASE(entry, StubRoutines::dsin());
 319   FUNCTION_CASE(entry, StubRoutines::dcos());
 320   FUNCTION_CASE(entry, StubRoutines::dtan());
 321 
 322 #undef FUNCTION_CASE
 323 
 324   // Soft float adds more runtime names.
 325   return pd_name_for_address(entry);
 326 }
 327 
 328 
 329 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 330   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 331 
 332   assert(klass->is_klass(), "not a class");
 333   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 334   InstanceKlass* h = InstanceKlass::cast(klass);
 335   h->check_valid_for_instantiation(true, CHECK);
 336   // make sure klass is initialized
 337   h->initialize(CHECK);
 338   // allocate instance and return via TLS
 339   oop obj = h->allocate_instance(CHECK);
 340   thread->set_vm_result(obj);
 341 JRT_END
 342 
 343 
 344 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 345   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 346   // Note: no handle for klass needed since they are not used
 347   //       anymore after new_typeArray() and no GC can happen before.
 348   //       (This may have to change if this code changes!)
 349   assert(klass->is_klass(), "not a class");
 350   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 351   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 352   thread->set_vm_result(obj);
 353   // This is pretty rare but this runtime patch is stressful to deoptimization
 354   // if we deoptimize here so force a deopt to stress the path.
 355   if (DeoptimizeALot) {
 356     deopt_caller();
 357   }
 358 
 359 JRT_END
 360 
 361 
 362 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 363   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 364 
 365   // Note: no handle for klass needed since they are not used
 366   //       anymore after new_objArray() and no GC can happen before.
 367   //       (This may have to change if this code changes!)
 368   assert(array_klass->is_klass(), "not a class");
 369   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 370   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 371   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 372   thread->set_vm_result(obj);
 373   // This is pretty rare but this runtime patch is stressful to deoptimization
 374   // if we deoptimize here so force a deopt to stress the path.
 375   if (DeoptimizeALot) {
 376     deopt_caller();
 377   }
 378 JRT_END
 379 
 380 
 381 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 382   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 383 
 384   assert(klass->is_klass(), "not a class");
 385   assert(rank >= 1, "rank must be nonzero");
 386   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 387   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 388   thread->set_vm_result(obj);
 389 JRT_END
 390 
 391 
 392 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 393   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 394 JRT_END
 395 
 396 
 397 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 398   ResourceMark rm(thread);
 399   const char* klass_name = obj->klass()->external_name();
 400   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 401 JRT_END
 402 
 403 
 404 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 405 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 406 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 407 // a constant.
 408 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 409   nmethod* osr_nm = NULL;
 410   methodHandle method(THREAD, m);
 411 
 412   RegisterMap map(THREAD, false);
 413   frame fr =  THREAD->last_frame().sender(&map);
 414   nmethod* nm = (nmethod*) fr.cb();
 415   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 416   methodHandle enclosing_method(THREAD, nm->method());
 417 
 418   CompLevel level = (CompLevel)nm->comp_level();
 419   int bci = InvocationEntryBci;
 420   if (branch_bci != InvocationEntryBci) {
 421     // Compute destination bci
 422     address pc = method()->code_base() + branch_bci;
 423     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 424     int offset = 0;
 425     switch (branch) {
 426       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 427       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 428       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 429       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 430       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 431       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 432       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 433         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 434         break;
 435       case Bytecodes::_goto_w:
 436         offset = Bytes::get_Java_u4(pc + 1);
 437         break;
 438       default: ;
 439     }
 440     bci = branch_bci + offset;
 441   }
 442   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 443   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 444   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 445   return osr_nm;
 446 }
 447 
 448 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 449   nmethod* osr_nm;
 450   JRT_BLOCK
 451     osr_nm = counter_overflow_helper(thread, bci, method);
 452     if (osr_nm != NULL) {
 453       RegisterMap map(thread, false);
 454       frame fr =  thread->last_frame().sender(&map);
 455       Deoptimization::deoptimize_frame(thread, fr.id());
 456     }
 457   JRT_BLOCK_END
 458   return NULL;
 459 JRT_END
 460 
 461 extern void vm_exit(int code);
 462 
 463 // Enter this method from compiled code handler below. This is where we transition
 464 // to VM mode. This is done as a helper routine so that the method called directly
 465 // from compiled code does not have to transition to VM. This allows the entry
 466 // method to see if the nmethod that we have just looked up a handler for has
 467 // been deoptimized while we were in the vm. This simplifies the assembly code
 468 // cpu directories.
 469 //
 470 // We are entering here from exception stub (via the entry method below)
 471 // If there is a compiled exception handler in this method, we will continue there;
 472 // otherwise we will unwind the stack and continue at the caller of top frame method
 473 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 474 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 475 // check to see if the handler we are going to return is now in a nmethod that has
 476 // been deoptimized. If that is the case we return the deopt blob
 477 // unpack_with_exception entry instead. This makes life for the exception blob easier
 478 // because making that same check and diverting is painful from assembly language.
 479 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 480   // Reset method handle flag.
 481   thread->set_is_method_handle_return(false);
 482 
 483   Handle exception(thread, ex);
 484   nm = CodeCache::find_nmethod(pc);
 485   assert(nm != NULL, "this is not an nmethod");
 486   // Adjust the pc as needed/
 487   if (nm->is_deopt_pc(pc)) {
 488     RegisterMap map(thread, false);
 489     frame exception_frame = thread->last_frame().sender(&map);
 490     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 491     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 492     pc = exception_frame.pc();
 493   }
 494 #ifdef ASSERT
 495   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 496   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 497   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 498     if (ExitVMOnVerifyError) vm_exit(-1);
 499     ShouldNotReachHere();
 500   }
 501 #endif
 502 
 503   // Check the stack guard pages and reenable them if necessary and there is
 504   // enough space on the stack to do so.  Use fast exceptions only if the guard
 505   // pages are enabled.
 506   bool guard_pages_enabled = thread->stack_guards_enabled();
 507   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 508 
 509   if (JvmtiExport::can_post_on_exceptions()) {
 510     // To ensure correct notification of exception catches and throws
 511     // we have to deoptimize here.  If we attempted to notify the
 512     // catches and throws during this exception lookup it's possible
 513     // we could deoptimize on the way out of the VM and end back in
 514     // the interpreter at the throw site.  This would result in double
 515     // notifications since the interpreter would also notify about
 516     // these same catches and throws as it unwound the frame.
 517 
 518     RegisterMap reg_map(thread);
 519     frame stub_frame = thread->last_frame();
 520     frame caller_frame = stub_frame.sender(&reg_map);
 521 
 522     // We don't really want to deoptimize the nmethod itself since we
 523     // can actually continue in the exception handler ourselves but I
 524     // don't see an easy way to have the desired effect.
 525     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 526     assert(caller_is_deopted(), "Must be deoptimized");
 527 
 528     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 529   }
 530 
 531   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 532   if (guard_pages_enabled) {
 533     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 534     if (fast_continuation != NULL) {
 535       // Set flag if return address is a method handle call site.
 536       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 537       return fast_continuation;
 538     }
 539   }
 540 
 541   // If the stack guard pages are enabled, check whether there is a handler in
 542   // the current method.  Otherwise (guard pages disabled), force an unwind and
 543   // skip the exception cache update (i.e., just leave continuation==NULL).
 544   address continuation = NULL;
 545   if (guard_pages_enabled) {
 546 
 547     // New exception handling mechanism can support inlined methods
 548     // with exception handlers since the mappings are from PC to PC
 549 
 550     // debugging support
 551     // tracing
 552     if (log_is_enabled(Info, exceptions)) {
 553       ResourceMark rm;
 554       stringStream tempst;
 555       tempst.print("compiled method <%s>\n"
 556                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 557                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 558       Exceptions::log_exception(exception, tempst);
 559     }
 560     // for AbortVMOnException flag
 561     Exceptions::debug_check_abort(exception);
 562 
 563     // Clear out the exception oop and pc since looking up an
 564     // exception handler can cause class loading, which might throw an
 565     // exception and those fields are expected to be clear during
 566     // normal bytecode execution.
 567     thread->clear_exception_oop_and_pc();
 568 
 569     bool recursive_exception = false;
 570     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 571     // If an exception was thrown during exception dispatch, the exception oop may have changed
 572     thread->set_exception_oop(exception());
 573     thread->set_exception_pc(pc);
 574 
 575     // the exception cache is used only by non-implicit exceptions
 576     // Update the exception cache only when there didn't happen
 577     // another exception during the computation of the compiled
 578     // exception handler. Checking for exception oop equality is not
 579     // sufficient because some exceptions are pre-allocated and reused.
 580     if (continuation != NULL && !recursive_exception) {
 581       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 582     }
 583   }
 584 
 585   thread->set_vm_result(exception());
 586   // Set flag if return address is a method handle call site.
 587   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 588 
 589   if (log_is_enabled(Info, exceptions)) {
 590     ResourceMark rm;
 591     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 592                          " for exception thrown at PC " PTR_FORMAT,
 593                          p2i(thread), p2i(continuation), p2i(pc));
 594   }
 595 
 596   return continuation;
 597 JRT_END
 598 
 599 // Enter this method from compiled code only if there is a Java exception handler
 600 // in the method handling the exception.
 601 // We are entering here from exception stub. We don't do a normal VM transition here.
 602 // We do it in a helper. This is so we can check to see if the nmethod we have just
 603 // searched for an exception handler has been deoptimized in the meantime.
 604 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 605   oop exception = thread->exception_oop();
 606   address pc = thread->exception_pc();
 607   // Still in Java mode
 608   DEBUG_ONLY(ResetNoHandleMark rnhm);
 609   nmethod* nm = NULL;
 610   address continuation = NULL;
 611   {
 612     // Enter VM mode by calling the helper
 613     ResetNoHandleMark rnhm;
 614     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 615   }
 616   // Back in JAVA, use no oops DON'T safepoint
 617 
 618   // Now check to see if the nmethod we were called from is now deoptimized.
 619   // If so we must return to the deopt blob and deoptimize the nmethod
 620   if (nm != NULL && caller_is_deopted()) {
 621     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 622   }
 623 
 624   assert(continuation != NULL, "no handler found");
 625   return continuation;
 626 }
 627 
 628 
 629 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 630   NOT_PRODUCT(_throw_range_check_exception_count++;)
 631   char message[jintAsStringSize];
 632   sprintf(message, "%d", index);
 633   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 634 JRT_END
 635 
 636 
 637 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 638   NOT_PRODUCT(_throw_index_exception_count++;)
 639   char message[16];
 640   sprintf(message, "%d", index);
 641   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 642 JRT_END
 643 
 644 
 645 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 646   NOT_PRODUCT(_throw_div0_exception_count++;)
 647   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 648 JRT_END
 649 
 650 
 651 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 652   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 653   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 654 JRT_END
 655 
 656 
 657 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 658   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 659   ResourceMark rm(thread);
 660   char* message = SharedRuntime::generate_class_cast_message(
 661     thread, object->klass());
 662   SharedRuntime::throw_and_post_jvmti_exception(
 663     thread, vmSymbols::java_lang_ClassCastException(), message);
 664 JRT_END
 665 
 666 
 667 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 668   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 669   ResourceMark rm(thread);
 670   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 671 JRT_END
 672 
 673 
 674 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 675   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 676   if (PrintBiasedLockingStatistics) {
 677     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 678   }
 679   Handle h_obj(thread, obj);
 680   if (UseBiasedLocking) {
 681     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 682     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 683   } else {
 684     if (UseFastLocking) {
 685       // When using fast locking, the compiled code has already tried the fast case
 686       assert(obj == lock->obj(), "must match");
 687       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 688     } else {
 689       lock->set_obj(obj);
 690       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 691     }
 692   }
 693 JRT_END
 694 
 695 
 696 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 697   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 698   assert(thread == JavaThread::current(), "threads must correspond");
 699   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 700   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 701   EXCEPTION_MARK;
 702 
 703   oop obj = lock->obj();
 704   assert(oopDesc::is_oop(obj), "must be NULL or an object");
 705   if (UseFastLocking) {
 706     // When using fast locking, the compiled code has already tried the fast case
 707     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 708   } else {
 709     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 710   }
 711 JRT_END
 712 
 713 // Cf. OptoRuntime::deoptimize_caller_frame
 714 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 715   // Called from within the owner thread, so no need for safepoint
 716   RegisterMap reg_map(thread, false);
 717   frame stub_frame = thread->last_frame();
 718   assert(stub_frame.is_runtime_frame(), "Sanity check");
 719   frame caller_frame = stub_frame.sender(&reg_map);
 720   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 721   assert(nm != NULL, "Sanity check");
 722   methodHandle method(thread, nm->method());
 723   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 724   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 725   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 726 
 727   if (action == Deoptimization::Action_make_not_entrant) {
 728     if (nm->make_not_entrant()) {
 729       if (reason == Deoptimization::Reason_tenured) {
 730         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 731         if (trap_mdo != NULL) {
 732           trap_mdo->inc_tenure_traps();
 733         }
 734       }
 735     }
 736   }
 737 
 738   // Deoptimize the caller frame.
 739   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 740   // Return to the now deoptimized frame.
 741 JRT_END
 742 
 743 
 744 #ifndef DEOPTIMIZE_WHEN_PATCHING
 745 
 746 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 747   Bytecode_field field_access(caller, bci);
 748   // This can be static or non-static field access
 749   Bytecodes::Code code       = field_access.code();
 750 
 751   // We must load class, initialize class and resolve the field
 752   fieldDescriptor result; // initialize class if needed
 753   constantPoolHandle constants(THREAD, caller->constants());
 754   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 755   return result.field_holder();
 756 }
 757 
 758 
 759 //
 760 // This routine patches sites where a class wasn't loaded or
 761 // initialized at the time the code was generated.  It handles
 762 // references to classes, fields and forcing of initialization.  Most
 763 // of the cases are straightforward and involving simply forcing
 764 // resolution of a class, rewriting the instruction stream with the
 765 // needed constant and replacing the call in this function with the
 766 // patched code.  The case for static field is more complicated since
 767 // the thread which is in the process of initializing a class can
 768 // access it's static fields but other threads can't so the code
 769 // either has to deoptimize when this case is detected or execute a
 770 // check that the current thread is the initializing thread.  The
 771 // current
 772 //
 773 // Patches basically look like this:
 774 //
 775 //
 776 // patch_site: jmp patch stub     ;; will be patched
 777 // continue:   ...
 778 //             ...
 779 //             ...
 780 //             ...
 781 //
 782 // They have a stub which looks like this:
 783 //
 784 //             ;; patch body
 785 //             movl <const>, reg           (for class constants)
 786 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 787 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 788 //             <being_init offset> <bytes to copy> <bytes to skip>
 789 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 790 //             jmp patch_site
 791 //
 792 //
 793 // A normal patch is done by rewriting the patch body, usually a move,
 794 // and then copying it into place over top of the jmp instruction
 795 // being careful to flush caches and doing it in an MP-safe way.  The
 796 // constants following the patch body are used to find various pieces
 797 // of the patch relative to the call site for Runtime1::patch_code.
 798 // The case for getstatic and putstatic is more complicated because
 799 // getstatic and putstatic have special semantics when executing while
 800 // the class is being initialized.  getstatic/putstatic on a class
 801 // which is being_initialized may be executed by the initializing
 802 // thread but other threads have to block when they execute it.  This
 803 // is accomplished in compiled code by executing a test of the current
 804 // thread against the initializing thread of the class.  It's emitted
 805 // as boilerplate in their stub which allows the patched code to be
 806 // executed before it's copied back into the main body of the nmethod.
 807 //
 808 // being_init: get_thread(<tmp reg>
 809 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 810 //             jne patch_stub
 811 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 812 //             movl reg, [reg1 + <const>]  (for field offsets)
 813 //             jmp continue
 814 //             <being_init offset> <bytes to copy> <bytes to skip>
 815 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 816 //             jmp patch_site
 817 //
 818 // If the class is being initialized the patch body is rewritten and
 819 // the patch site is rewritten to jump to being_init, instead of
 820 // patch_stub.  Whenever this code is executed it checks the current
 821 // thread against the intializing thread so other threads will enter
 822 // the runtime and end up blocked waiting the class to finish
 823 // initializing inside the calls to resolve_field below.  The
 824 // initializing class will continue on it's way.  Once the class is
 825 // fully_initialized, the intializing_thread of the class becomes
 826 // NULL, so the next thread to execute this code will fail the test,
 827 // call into patch_code and complete the patching process by copying
 828 // the patch body back into the main part of the nmethod and resume
 829 // executing.
 830 //
 831 //
 832 
 833 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 834   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 835 
 836   ResourceMark rm(thread);
 837   RegisterMap reg_map(thread, false);
 838   frame runtime_frame = thread->last_frame();
 839   frame caller_frame = runtime_frame.sender(&reg_map);
 840 
 841   // last java frame on stack
 842   vframeStream vfst(thread, true);
 843   assert(!vfst.at_end(), "Java frame must exist");
 844 
 845   methodHandle caller_method(THREAD, vfst.method());
 846   // Note that caller_method->code() may not be same as caller_code because of OSR's
 847   // Note also that in the presence of inlining it is not guaranteed
 848   // that caller_method() == caller_code->method()
 849 
 850   int bci = vfst.bci();
 851   Bytecodes::Code code = caller_method()->java_code_at(bci);
 852 
 853   // this is used by assertions in the access_field_patching_id
 854   BasicType patch_field_type = T_ILLEGAL;
 855   bool deoptimize_for_volatile = false;
 856   bool deoptimize_for_atomic = false;
 857   int patch_field_offset = -1;
 858   Klass* init_klass = NULL; // klass needed by load_klass_patching code
 859   Klass* load_klass = NULL; // klass needed by load_klass_patching code
 860   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 861   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 862   bool load_klass_or_mirror_patch_id =
 863     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 864 
 865   if (stub_id == Runtime1::access_field_patching_id) {
 866 
 867     Bytecode_field field_access(caller_method, bci);
 868     fieldDescriptor result; // initialize class if needed
 869     Bytecodes::Code code = field_access.code();
 870     constantPoolHandle constants(THREAD, caller_method->constants());
 871     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 872     patch_field_offset = result.offset();
 873 
 874     // If we're patching a field which is volatile then at compile it
 875     // must not have been know to be volatile, so the generated code
 876     // isn't correct for a volatile reference.  The nmethod has to be
 877     // deoptimized so that the code can be regenerated correctly.
 878     // This check is only needed for access_field_patching since this
 879     // is the path for patching field offsets.  load_klass is only
 880     // used for patching references to oops which don't need special
 881     // handling in the volatile case.
 882 
 883     deoptimize_for_volatile = result.access_flags().is_volatile();
 884 
 885     // If we are patching a field which should be atomic, then
 886     // the generated code is not correct either, force deoptimizing.
 887     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 888     // break access atomicity only for them.
 889 
 890     // Strictly speaking, the deoptimizaation on 64-bit platforms
 891     // is unnecessary, and T_LONG stores on 32-bit platforms need
 892     // to be handled by special patching code when AlwaysAtomicAccesses
 893     // becomes product feature. At this point, we are still going
 894     // for the deoptimization for consistency against volatile
 895     // accesses.
 896 
 897     patch_field_type = result.field_type();
 898     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 899 
 900   } else if (load_klass_or_mirror_patch_id) {
 901     Klass* k = NULL;
 902     switch (code) {
 903       case Bytecodes::_putstatic:
 904       case Bytecodes::_getstatic:
 905         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 906           init_klass = klass;
 907           mirror = Handle(THREAD, klass->java_mirror());
 908         }
 909         break;
 910       case Bytecodes::_new:
 911         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 912           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 913         }
 914         break;
 915       case Bytecodes::_multianewarray:
 916         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 917           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 918         }
 919         break;
 920       case Bytecodes::_instanceof:
 921         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 922           k = caller_method->constants()->klass_at(io.index(), CHECK);
 923         }
 924         break;
 925       case Bytecodes::_checkcast:
 926         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 927           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 928         }
 929         break;
 930       case Bytecodes::_anewarray:
 931         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 932           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 933           k = ek->array_klass(CHECK);
 934         }
 935         break;
 936       case Bytecodes::_ldc:
 937       case Bytecodes::_ldc_w:
 938         {
 939           Bytecode_loadconstant cc(caller_method, bci);
 940           oop m = cc.resolve_constant(CHECK);
 941           mirror = Handle(THREAD, m);
 942         }
 943         break;
 944       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 945     }
 946     load_klass = k;
 947   } else if (stub_id == load_appendix_patching_id) {
 948     Bytecode_invoke bytecode(caller_method, bci);
 949     Bytecodes::Code bc = bytecode.invoke_code();
 950 
 951     CallInfo info;
 952     constantPoolHandle pool(thread, caller_method->constants());
 953     int index = bytecode.index();
 954     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 955     switch (bc) {
 956       case Bytecodes::_invokehandle: {
 957         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 958         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 959         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
 960         cpce->set_method_handle(pool, info);
 961         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
 962         break;
 963       }
 964       case Bytecodes::_invokedynamic: {
 965         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
 966         cpce->set_dynamic_call(pool, info);
 967         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
 968         break;
 969       }
 970       default: fatal("unexpected bytecode for load_appendix_patching_id");
 971     }
 972   } else {
 973     ShouldNotReachHere();
 974   }
 975 
 976   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 977     // At compile time we assumed the field wasn't volatile/atomic but after
 978     // loading it turns out it was volatile/atomic so we have to throw the
 979     // compiled code out and let it be regenerated.
 980     if (TracePatching) {
 981       if (deoptimize_for_volatile) {
 982         tty->print_cr("Deoptimizing for patching volatile field reference");
 983       }
 984       if (deoptimize_for_atomic) {
 985         tty->print_cr("Deoptimizing for patching atomic field reference");
 986       }
 987     }
 988 
 989     // It's possible the nmethod was invalidated in the last
 990     // safepoint, but if it's still alive then make it not_entrant.
 991     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 992     if (nm != NULL) {
 993       nm->make_not_entrant();
 994     }
 995 
 996     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 997 
 998     // Return to the now deoptimized frame.
 999   }
1000 
1001   // Now copy code back
1002 
1003   {
1004     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1005     //
1006     // Deoptimization may have happened while we waited for the lock.
1007     // In that case we don't bother to do any patching we just return
1008     // and let the deopt happen
1009     if (!caller_is_deopted()) {
1010       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1011       address instr_pc = jump->jump_destination();
1012       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1013       if (ni->is_jump() ) {
1014         // the jump has not been patched yet
1015         // The jump destination is slow case and therefore not part of the stubs
1016         // (stubs are only for StaticCalls)
1017 
1018         // format of buffer
1019         //    ....
1020         //    instr byte 0     <-- copy_buff
1021         //    instr byte 1
1022         //    ..
1023         //    instr byte n-1
1024         //      n
1025         //    ....             <-- call destination
1026 
1027         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1028         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1029         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1030         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1031         address copy_buff = stub_location - *byte_skip - *byte_count;
1032         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1033         if (TracePatching) {
1034           ttyLocker ttyl;
1035           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1036                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1037           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1038           assert(caller_code != NULL, "nmethod not found");
1039 
1040           // NOTE we use pc() not original_pc() because we already know they are
1041           // identical otherwise we'd have never entered this block of code
1042 
1043           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1044           assert(map != NULL, "null check");
1045           map->print();
1046           tty->cr();
1047 
1048           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1049         }
1050         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1051         bool do_patch = true;
1052         if (stub_id == Runtime1::access_field_patching_id) {
1053           // The offset may not be correct if the class was not loaded at code generation time.
1054           // Set it now.
1055           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1056           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1057           assert(patch_field_offset >= 0, "illegal offset");
1058           n_move->add_offset_in_bytes(patch_field_offset);
1059         } else if (load_klass_or_mirror_patch_id) {
1060           // If a getstatic or putstatic is referencing a klass which
1061           // isn't fully initialized, the patch body isn't copied into
1062           // place until initialization is complete.  In this case the
1063           // patch site is setup so that any threads besides the
1064           // initializing thread are forced to come into the VM and
1065           // block.
1066           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1067                      InstanceKlass::cast(init_klass)->is_initialized();
1068           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1069           if (jump->jump_destination() == being_initialized_entry) {
1070             assert(do_patch == true, "initialization must be complete at this point");
1071           } else {
1072             // patch the instruction <move reg, klass>
1073             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1074 
1075             assert(n_copy->data() == 0 ||
1076                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1077                    "illegal init value");
1078             if (stub_id == Runtime1::load_klass_patching_id) {
1079               assert(load_klass != NULL, "klass not set");
1080               n_copy->set_data((intx) (load_klass));
1081             } else {
1082               assert(mirror() != NULL, "klass not set");
1083               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1084               n_copy->set_data(cast_from_oop<intx>(mirror()));
1085             }
1086 
1087             if (TracePatching) {
1088               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1089             }
1090           }
1091         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1092           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1093           assert(n_copy->data() == 0 ||
1094                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1095                  "illegal init value");
1096           n_copy->set_data(cast_from_oop<intx>(appendix()));
1097 
1098           if (TracePatching) {
1099             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1100           }
1101         } else {
1102           ShouldNotReachHere();
1103         }
1104 
1105 #if defined(SPARC) || defined(PPC32)
1106         if (load_klass_or_mirror_patch_id ||
1107             stub_id == Runtime1::load_appendix_patching_id) {
1108           // Update the location in the nmethod with the proper
1109           // metadata.  When the code was generated, a NULL was stuffed
1110           // in the metadata table and that table needs to be update to
1111           // have the right value.  On intel the value is kept
1112           // directly in the instruction instead of in the metadata
1113           // table, so set_data above effectively updated the value.
1114           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1115           assert(nm != NULL, "invalid nmethod_pc");
1116           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1117           bool found = false;
1118           while (mds.next() && !found) {
1119             if (mds.type() == relocInfo::oop_type) {
1120               assert(stub_id == Runtime1::load_mirror_patching_id ||
1121                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1122               oop_Relocation* r = mds.oop_reloc();
1123               oop* oop_adr = r->oop_addr();
1124               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1125               r->fix_oop_relocation();
1126               found = true;
1127             } else if (mds.type() == relocInfo::metadata_type) {
1128               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1129               metadata_Relocation* r = mds.metadata_reloc();
1130               Metadata** metadata_adr = r->metadata_addr();
1131               *metadata_adr = load_klass;
1132               r->fix_metadata_relocation();
1133               found = true;
1134             }
1135           }
1136           assert(found, "the metadata must exist!");
1137         }
1138 #endif
1139         if (do_patch) {
1140           // replace instructions
1141           // first replace the tail, then the call
1142 #ifdef ARM
1143           if((load_klass_or_mirror_patch_id ||
1144               stub_id == Runtime1::load_appendix_patching_id) &&
1145               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1146             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1147             address addr = NULL;
1148             assert(nm != NULL, "invalid nmethod_pc");
1149             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1150             while (mds.next()) {
1151               if (mds.type() == relocInfo::oop_type) {
1152                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1153                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1154                 oop_Relocation* r = mds.oop_reloc();
1155                 addr = (address)r->oop_addr();
1156                 break;
1157               } else if (mds.type() == relocInfo::metadata_type) {
1158                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1159                 metadata_Relocation* r = mds.metadata_reloc();
1160                 addr = (address)r->metadata_addr();
1161                 break;
1162               }
1163             }
1164             assert(addr != NULL, "metadata relocation must exist");
1165             copy_buff -= *byte_count;
1166             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1167             n_copy2->set_pc_relative_offset(addr, instr_pc);
1168           }
1169 #endif
1170 
1171           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1172             address ptr = copy_buff + i;
1173             int a_byte = (*ptr) & 0xFF;
1174             address dst = instr_pc + i;
1175             *(unsigned char*)dst = (unsigned char) a_byte;
1176           }
1177           ICache::invalidate_range(instr_pc, *byte_count);
1178           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1179 
1180           if (load_klass_or_mirror_patch_id ||
1181               stub_id == Runtime1::load_appendix_patching_id) {
1182             relocInfo::relocType rtype =
1183               (stub_id == Runtime1::load_klass_patching_id) ?
1184                                    relocInfo::metadata_type :
1185                                    relocInfo::oop_type;
1186             // update relocInfo to metadata
1187             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1188             assert(nm != NULL, "invalid nmethod_pc");
1189 
1190             // The old patch site is now a move instruction so update
1191             // the reloc info so that it will get updated during
1192             // future GCs.
1193             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1194             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1195                                                      relocInfo::none, rtype);
1196 #ifdef SPARC
1197             // Sparc takes two relocations for an metadata so update the second one.
1198             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1199             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1200             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1201                                                      relocInfo::none, rtype);
1202 #endif
1203 #ifdef PPC32
1204           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1205             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1206             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1207                                                      relocInfo::none, rtype);
1208           }
1209 #endif
1210           }
1211 
1212         } else {
1213           ICache::invalidate_range(copy_buff, *byte_count);
1214           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1215         }
1216       }
1217     }
1218   }
1219 
1220   // If we are patching in a non-perm oop, make sure the nmethod
1221   // is on the right list.
1222   if (ScavengeRootsInCode) {
1223     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1224     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1225     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1226 
1227     // Since we've patched some oops in the nmethod,
1228     // (re)register it with the heap.
1229     Universe::heap()->register_nmethod(nm);
1230   }
1231 JRT_END
1232 
1233 #else // DEOPTIMIZE_WHEN_PATCHING
1234 
1235 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1236   RegisterMap reg_map(thread, false);
1237 
1238   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1239   if (TracePatching) {
1240     tty->print_cr("Deoptimizing because patch is needed");
1241   }
1242 
1243   frame runtime_frame = thread->last_frame();
1244   frame caller_frame = runtime_frame.sender(&reg_map);
1245 
1246   // It's possible the nmethod was invalidated in the last
1247   // safepoint, but if it's still alive then make it not_entrant.
1248   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1249   if (nm != NULL) {
1250     nm->make_not_entrant();
1251   }
1252 
1253   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1254 
1255   // Return to the now deoptimized frame.
1256 JRT_END
1257 
1258 #endif // DEOPTIMIZE_WHEN_PATCHING
1259 
1260 //
1261 // Entry point for compiled code. We want to patch a nmethod.
1262 // We don't do a normal VM transition here because we want to
1263 // know after the patching is complete and any safepoint(s) are taken
1264 // if the calling nmethod was deoptimized. We do this by calling a
1265 // helper method which does the normal VM transition and when it
1266 // completes we can check for deoptimization. This simplifies the
1267 // assembly code in the cpu directories.
1268 //
1269 int Runtime1::move_klass_patching(JavaThread* thread) {
1270 //
1271 // NOTE: we are still in Java
1272 //
1273   Thread* THREAD = thread;
1274   debug_only(NoHandleMark nhm;)
1275   {
1276     // Enter VM mode
1277 
1278     ResetNoHandleMark rnhm;
1279     patch_code(thread, load_klass_patching_id);
1280   }
1281   // Back in JAVA, use no oops DON'T safepoint
1282 
1283   // Return true if calling code is deoptimized
1284 
1285   return caller_is_deopted();
1286 }
1287 
1288 int Runtime1::move_mirror_patching(JavaThread* thread) {
1289 //
1290 // NOTE: we are still in Java
1291 //
1292   Thread* THREAD = thread;
1293   debug_only(NoHandleMark nhm;)
1294   {
1295     // Enter VM mode
1296 
1297     ResetNoHandleMark rnhm;
1298     patch_code(thread, load_mirror_patching_id);
1299   }
1300   // Back in JAVA, use no oops DON'T safepoint
1301 
1302   // Return true if calling code is deoptimized
1303 
1304   return caller_is_deopted();
1305 }
1306 
1307 int Runtime1::move_appendix_patching(JavaThread* thread) {
1308 //
1309 // NOTE: we are still in Java
1310 //
1311   Thread* THREAD = thread;
1312   debug_only(NoHandleMark nhm;)
1313   {
1314     // Enter VM mode
1315 
1316     ResetNoHandleMark rnhm;
1317     patch_code(thread, load_appendix_patching_id);
1318   }
1319   // Back in JAVA, use no oops DON'T safepoint
1320 
1321   // Return true if calling code is deoptimized
1322 
1323   return caller_is_deopted();
1324 }
1325 //
1326 // Entry point for compiled code. We want to patch a nmethod.
1327 // We don't do a normal VM transition here because we want to
1328 // know after the patching is complete and any safepoint(s) are taken
1329 // if the calling nmethod was deoptimized. We do this by calling a
1330 // helper method which does the normal VM transition and when it
1331 // completes we can check for deoptimization. This simplifies the
1332 // assembly code in the cpu directories.
1333 //
1334 
1335 int Runtime1::access_field_patching(JavaThread* thread) {
1336 //
1337 // NOTE: we are still in Java
1338 //
1339   Thread* THREAD = thread;
1340   debug_only(NoHandleMark nhm;)
1341   {
1342     // Enter VM mode
1343 
1344     ResetNoHandleMark rnhm;
1345     patch_code(thread, access_field_patching_id);
1346   }
1347   // Back in JAVA, use no oops DON'T safepoint
1348 
1349   // Return true if calling code is deoptimized
1350 
1351   return caller_is_deopted();
1352 JRT_END
1353 
1354 
1355 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1356   // for now we just print out the block id
1357   tty->print("%d ", block_id);
1358 JRT_END
1359 
1360 
1361 // Array copy return codes.
1362 enum {
1363   ac_failed = -1, // arraycopy failed
1364   ac_ok = 0       // arraycopy succeeded
1365 };
1366 
1367 
1368 // Below length is the # elements copied.
1369 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1370                                           oopDesc* dst, T* dst_addr,
1371                                           int length) {
1372   if (src == dst) {
1373     // same object, no check
1374     HeapAccess<>::oop_arraycopy(arrayOop(src), arrayOop(dst), src_addr, dst_addr, length);
1375     return ac_ok;
1376   } else {
1377     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1378     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1379     if (stype == bound || stype->is_subtype_of(bound)) {
1380       // Elements are guaranteed to be subtypes, so no check necessary
1381       HeapAccess<ARRAYCOPY_DISJOINT>::oop_arraycopy(arrayOop(src), arrayOop(dst), src_addr, dst_addr, length);
1382       return ac_ok;
1383     }
1384   }
1385   return ac_failed;
1386 }
1387 
1388 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1389 // and we did not copy anything
1390 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1391 #ifndef PRODUCT
1392   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1393 #endif
1394 
1395   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1396   if (!dst->is_array() || !src->is_array()) return ac_failed;
1397   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1398   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1399 
1400   if (length == 0) return ac_ok;
1401   if (src->is_typeArray()) {
1402     Klass* klass_oop = src->klass();
1403     if (klass_oop != dst->klass()) return ac_failed;
1404     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1405     klass->copy_array(arrayOop(src), src_pos, arrayOop(dst), dst_pos, length, Thread::current());
1406     return ac_ok;
1407   } else if (src->is_objArray() && dst->is_objArray()) {
1408     if (UseCompressedOops) {
1409       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1410       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1411       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1412     } else {
1413       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1414       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1415       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1416     }
1417   }
1418   return ac_failed;
1419 JRT_END
1420 
1421 
1422 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1423   // had to return int instead of bool, otherwise there may be a mismatch
1424   // between the C calling convention and the Java one.
1425   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1426   // JVM takes the whole %eax as the return value, which may misinterpret
1427   // the return value as a boolean true.
1428 
1429   assert(mirror != NULL, "should null-check on mirror before calling");
1430   Klass* k = java_lang_Class::as_Klass(mirror);
1431   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1432 JRT_END
1433 
1434 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1435   ResourceMark rm;
1436 
1437   assert(!TieredCompilation, "incompatible with tiered compilation");
1438 
1439   RegisterMap reg_map(thread, false);
1440   frame runtime_frame = thread->last_frame();
1441   frame caller_frame = runtime_frame.sender(&reg_map);
1442 
1443   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1444   assert (nm != NULL, "no more nmethod?");
1445   nm->make_not_entrant();
1446 
1447   methodHandle m(nm->method());
1448   MethodData* mdo = m->method_data();
1449 
1450   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1451     // Build an MDO.  Ignore errors like OutOfMemory;
1452     // that simply means we won't have an MDO to update.
1453     Method::build_interpreter_method_data(m, THREAD);
1454     if (HAS_PENDING_EXCEPTION) {
1455       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1456       CLEAR_PENDING_EXCEPTION;
1457     }
1458     mdo = m->method_data();
1459   }
1460 
1461   if (mdo != NULL) {
1462     mdo->inc_trap_count(Deoptimization::Reason_none);
1463   }
1464 
1465   if (TracePredicateFailedTraps) {
1466     stringStream ss1, ss2;
1467     vframeStream vfst(thread);
1468     methodHandle inlinee = methodHandle(vfst.method());
1469     inlinee->print_short_name(&ss1);
1470     m->print_short_name(&ss2);
1471     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1472   }
1473 
1474 
1475   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1476 
1477 JRT_END
1478 
1479 #ifndef PRODUCT
1480 void Runtime1::print_statistics() {
1481   tty->print_cr("C1 Runtime statistics:");
1482   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1483   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1484   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1485   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1486   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1487   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1488   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1489   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1490   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1491   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1492   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1493   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1494   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1495   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1496   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1497 
1498   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1499   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1500   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1501   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1502   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1503   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1504   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1505 
1506   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1507   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1508   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1509   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1510   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1511   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1512   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1513   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1514 
1515   SharedRuntime::print_ic_miss_histogram();
1516   tty->cr();
1517 }
1518 #endif // PRODUCT