1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
  26 #define SHARE_VM_OOPS_OOP_INLINE_HPP
  27 
  28 #include "gc/shared/ageTable.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/genCollectedHeap.hpp"
  31 #include "gc/shared/generation.hpp"
  32 #include "oops/access.inline.hpp"
  33 #include "oops/arrayKlass.hpp"
  34 #include "oops/arrayOop.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/markOop.inline.hpp"
  37 #include "oops/oop.hpp"
  38 #include "runtime/atomic.hpp"
  39 #include "runtime/orderAccess.inline.hpp"
  40 #include "runtime/os.hpp"
  41 #include "utilities/align.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 // Implementation of all inlined member functions defined in oop.hpp
  45 // We need a separate file to avoid circular references
  46 
  47 markOop  oopDesc::mark()      const {
  48   return HeapAccess<MO_VOLATILE>::load_at(as_oop(), mark_offset_in_bytes());
  49 }
  50 
  51 markOop  oopDesc::mark_raw()  const {
  52   return _mark;
  53 }
  54 
  55 markOop* oopDesc::mark_addr_raw() const {
  56   return (markOop*) &_mark;
  57 }
  58 
  59 void oopDesc::set_mark(volatile markOop m) {
  60   HeapAccess<MO_VOLATILE>::store_at(as_oop(), mark_offset_in_bytes(), m);
  61 }
  62 
  63 void oopDesc::set_mark_raw(volatile markOop m) {
  64   _mark = m;
  65 }
  66 
  67 void oopDesc::release_set_mark(markOop m) {
  68   HeapAccess<MO_RELEASE>::store_at(as_oop(), mark_offset_in_bytes(), m);
  69 }
  70 
  71 markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
  72   return HeapAccess<>::atomic_cmpxchg_at(new_mark, as_oop(), mark_offset_in_bytes(), old_mark);
  73 }
  74 
  75 markOop oopDesc::cas_set_mark_raw(markOop new_mark, markOop old_mark) {
  76   return Atomic::cmpxchg(new_mark, &_mark, old_mark);
  77 }
  78 
  79 void oopDesc::init_mark() {
  80   set_mark(markOopDesc::prototype_for_object(this));
  81 }
  82 
  83 void oopDesc::init_mark_raw() {
  84   set_mark_raw(markOopDesc::prototype_for_object(this));
  85 }
  86 
  87 Klass* oopDesc::klass() const {
  88   if (UseCompressedClassPointers) {
  89     return Klass::decode_klass_not_null(_metadata._compressed_klass);
  90   } else {
  91     return _metadata._klass;
  92   }
  93 }
  94 
  95 Klass* oopDesc::klass_or_null() const volatile {
  96   if (UseCompressedClassPointers) {
  97     return Klass::decode_klass(_metadata._compressed_klass);
  98   } else {
  99     return _metadata._klass;
 100   }
 101 }
 102 
 103 Klass* oopDesc::klass_or_null_acquire() const volatile {
 104   if (UseCompressedClassPointers) {
 105     // Workaround for non-const load_acquire parameter.
 106     const volatile narrowKlass* addr = &_metadata._compressed_klass;
 107     volatile narrowKlass* xaddr = const_cast<volatile narrowKlass*>(addr);
 108     return Klass::decode_klass(OrderAccess::load_acquire(xaddr));
 109   } else {
 110     return OrderAccess::load_acquire(&_metadata._klass);
 111   }
 112 }
 113 
 114 Klass** oopDesc::klass_addr() {
 115   // Only used internally and with CMS and will not work with
 116   // UseCompressedOops
 117   assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
 118   return (Klass**) &_metadata._klass;
 119 }
 120 
 121 narrowKlass* oopDesc::compressed_klass_addr() {
 122   assert(UseCompressedClassPointers, "only called by compressed klass pointers");
 123   return &_metadata._compressed_klass;
 124 }
 125 
 126 #define CHECK_SET_KLASS(k)                                                \
 127   do {                                                                    \
 128     assert(Universe::is_bootstrapping() || k != NULL, "NULL Klass");      \
 129     assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass"); \
 130   } while (0)
 131 
 132 void oopDesc::set_klass(Klass* k) {
 133   CHECK_SET_KLASS(k);
 134   if (UseCompressedClassPointers) {
 135     *compressed_klass_addr() = Klass::encode_klass_not_null(k);
 136   } else {
 137     *klass_addr() = k;
 138   }
 139 }
 140 
 141 void oopDesc::release_set_klass(Klass* k) {
 142   CHECK_SET_KLASS(k);
 143   if (UseCompressedClassPointers) {
 144     OrderAccess::release_store(compressed_klass_addr(),
 145                                Klass::encode_klass_not_null(k));
 146   } else {
 147     OrderAccess::release_store(klass_addr(), k);
 148   }
 149 }
 150 
 151 #undef CHECK_SET_KLASS
 152 
 153 int oopDesc::klass_gap() const {
 154   return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
 155 }
 156 
 157 void oopDesc::set_klass_gap(int v) {
 158   if (UseCompressedClassPointers) {
 159     *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
 160   }
 161 }
 162 
 163 void oopDesc::set_klass_to_list_ptr(oop k) {
 164   // This is only to be used during GC, for from-space objects, so no
 165   // barrier is needed.
 166   if (UseCompressedClassPointers) {
 167     _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
 168   } else {
 169     _metadata._klass = (Klass*)(address)k;
 170   }
 171 }
 172 
 173 oop oopDesc::list_ptr_from_klass() {
 174   // This is only to be used during GC, for from-space objects.
 175   if (UseCompressedClassPointers) {
 176     return decode_heap_oop((narrowOop)_metadata._compressed_klass);
 177   } else {
 178     // Special case for GC
 179     return (oop)(address)_metadata._klass;
 180   }
 181 }
 182 
 183 bool oopDesc::is_a(Klass* k) const {
 184   return klass()->is_subtype_of(k);
 185 }
 186 
 187 int oopDesc::size()  {
 188   return size_given_klass(klass());
 189 }
 190 
 191 int oopDesc::size_given_klass(Klass* klass)  {
 192   int lh = klass->layout_helper();
 193   int s;
 194 
 195   // lh is now a value computed at class initialization that may hint
 196   // at the size.  For instances, this is positive and equal to the
 197   // size.  For arrays, this is negative and provides log2 of the
 198   // array element size.  For other oops, it is zero and thus requires
 199   // a virtual call.
 200   //
 201   // We go to all this trouble because the size computation is at the
 202   // heart of phase 2 of mark-compaction, and called for every object,
 203   // alive or dead.  So the speed here is equal in importance to the
 204   // speed of allocation.
 205 
 206   if (lh > Klass::_lh_neutral_value) {
 207     if (!Klass::layout_helper_needs_slow_path(lh)) {
 208       s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
 209     } else {
 210       s = klass->oop_size(this);
 211     }
 212   } else if (lh <= Klass::_lh_neutral_value) {
 213     // The most common case is instances; fall through if so.
 214     if (lh < Klass::_lh_neutral_value) {
 215       // Second most common case is arrays.  We have to fetch the
 216       // length of the array, shift (multiply) it appropriately,
 217       // up to wordSize, add the header, and align to object size.
 218       size_t size_in_bytes;
 219       size_t array_length = (size_t) ((arrayOop)this)->length();
 220       size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
 221       size_in_bytes += Klass::layout_helper_header_size(lh);
 222 
 223       // This code could be simplified, but by keeping array_header_in_bytes
 224       // in units of bytes and doing it this way we can round up just once,
 225       // skipping the intermediate round to HeapWordSize.
 226       s = (int)(align_up(size_in_bytes, MinObjAlignmentInBytes) / HeapWordSize);
 227 
 228       // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
 229       // of an "old copy" of an object array in the young gen so it indicates
 230       // the grey portion of an already copied array. This will cause the first
 231       // disjunct below to fail if the two comparands are computed across such
 232       // a concurrent change.
 233       // ParNew also runs with promotion labs (which look like int
 234       // filler arrays) which are subject to changing their declared size
 235       // when finally retiring a PLAB; this also can cause the first disjunct
 236       // to fail for another worker thread that is concurrently walking the block
 237       // offset table. Both these invariant failures are benign for their
 238       // current uses; we relax the assertion checking to cover these two cases below:
 239       //     is_objArray() && is_forwarded()   // covers first scenario above
 240       //  || is_typeArray()                    // covers second scenario above
 241       // If and when UseParallelGC uses the same obj array oop stealing/chunking
 242       // technique, we will need to suitably modify the assertion.
 243       assert((s == klass->oop_size(this)) ||
 244              (Universe::heap()->is_gc_active() &&
 245               ((is_typeArray() && UseConcMarkSweepGC) ||
 246                (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
 247              "wrong array object size");
 248     } else {
 249       // Must be zero, so bite the bullet and take the virtual call.
 250       s = klass->oop_size(this);
 251     }
 252   }
 253 
 254   assert(s > 0, "Oop size must be greater than zero, not %d", s);
 255   assert(is_object_aligned(s), "Oop size is not properly aligned: %d", s);
 256   return s;
 257 }
 258 
 259 bool oopDesc::is_instance()  const { return klass()->is_instance_klass();  }
 260 bool oopDesc::is_array()     const { return klass()->is_array_klass();     }
 261 bool oopDesc::is_objArray()  const { return klass()->is_objArray_klass();  }
 262 bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); }
 263 
 264 void*    oopDesc::field_addr_raw(int offset)     const { return reinterpret_cast<void*>(cast_from_oop<intptr_t>(as_oop()) + offset); }
 265 void*    oopDesc::field_addr(int offset)         const { return Access<>::resolve(as_oop())->field_addr_raw(offset); }
 266 
 267 template <class T>
 268 T*       oopDesc::obj_field_addr_raw(int offset) const { return (T*) field_addr_raw(offset); }
 269 
 270 // Functions for getting and setting oops within instance objects.
 271 // If the oops are compressed, the type passed to these overloaded functions
 272 // is narrowOop.  All functions are overloaded so they can be called by
 273 // template functions without conditionals (the compiler instantiates via
 274 // the right type and inlines the appopriate code).
 275 
 276 // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
 277 // offset from the heap base.  Saving the check for null can save instructions
 278 // in inner GC loops so these are separated.
 279 
 280 inline bool check_obj_alignment(oop obj) {
 281   return (cast_from_oop<intptr_t>(obj) & MinObjAlignmentInBytesMask) == 0;
 282 }
 283 
 284 oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
 285   assert(!is_null(v), "narrow oop value can never be zero");
 286   address base = Universe::narrow_oop_base();
 287   int    shift = Universe::narrow_oop_shift();
 288   oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
 289   assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
 290   return result;
 291 }
 292 
 293 oop oopDesc::decode_heap_oop(narrowOop v) {
 294   return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
 295 }
 296 
 297 narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
 298   assert(!is_null(v), "oop value can never be zero");
 299   assert(check_obj_alignment(v), "Address not aligned");
 300   assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
 301   address base = Universe::narrow_oop_base();
 302   int    shift = Universe::narrow_oop_shift();
 303   uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
 304   assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
 305   uint64_t result = pd >> shift;
 306   assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
 307   assert(decode_heap_oop(result) == v, "reversibility");
 308   return (narrowOop)result;
 309 }
 310 
 311 narrowOop oopDesc::encode_heap_oop(oop v) {
 312   return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
 313 }
 314 
 315 narrowOop oopDesc::load_heap_oop(narrowOop* p) { return *p; }
 316 oop       oopDesc::load_heap_oop(oop* p)       { return *p; }
 317 
 318 void oopDesc::store_heap_oop(narrowOop* p, narrowOop v) { *p = v; }
 319 void oopDesc::store_heap_oop(oop* p, oop v)             { *p = v; }
 320 
 321 // Load and decode an oop out of the Java heap into a wide oop.
 322 oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
 323   return decode_heap_oop_not_null(load_heap_oop(p));
 324 }
 325 
 326 // Load and decode an oop out of the heap accepting null
 327 oop oopDesc::load_decode_heap_oop(narrowOop* p) {
 328   return decode_heap_oop(load_heap_oop(p));
 329 }
 330 
 331 oop oopDesc::load_decode_heap_oop_not_null(oop* p) { return *p; }
 332 oop oopDesc::load_decode_heap_oop(oop* p)          { return *p; }
 333 
 334 void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
 335 void oopDesc::encode_store_heap_oop(oop* p, oop v)          { *p = v; }
 336 
 337 // Encode and store a heap oop.
 338 void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
 339   *p = encode_heap_oop_not_null(v);
 340 }
 341 
 342 // Encode and store a heap oop allowing for null.
 343 void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
 344   *p = encode_heap_oop(v);
 345 }
 346 
 347 template <DecoratorSet decorators>
 348 inline oop  oopDesc::obj_field_access(int offset) const             { return HeapAccess<decorators>::oop_load_at(as_oop(), offset); }
 349 inline oop  oopDesc::obj_field(int offset) const                    { return HeapAccess<>::oop_load_at(as_oop(), offset);  }
 350 
 351 inline void oopDesc::obj_field_put(int offset, oop value)           { HeapAccess<>::oop_store_at(as_oop(), offset, value); }
 352 
 353 inline jbyte oopDesc::byte_field(int offset) const                  { return HeapAccess<>::load_at(as_oop(), offset);  }
 354 inline void  oopDesc::byte_field_put(int offset, jbyte value)       { HeapAccess<>::store_at(as_oop(), offset, value); }
 355 
 356 inline jchar oopDesc::char_field(int offset) const                  { return HeapAccess<>::load_at(as_oop(), offset);  }
 357 inline void  oopDesc::char_field_put(int offset, jchar value)       { HeapAccess<>::store_at(as_oop(), offset, value); }
 358 
 359 inline jboolean oopDesc::bool_field(int offset) const               { return HeapAccess<>::load_at(as_oop(), offset);                }
 360 inline void     oopDesc::bool_field_put(int offset, jboolean value) { HeapAccess<>::store_at(as_oop(), offset, jboolean(value & 1)); }
 361 
 362 inline jshort oopDesc::short_field(int offset) const                { return HeapAccess<>::load_at(as_oop(), offset);  }
 363 inline void   oopDesc::short_field_put(int offset, jshort value)    { HeapAccess<>::store_at(as_oop(), offset, value); }
 364 
 365 inline jint oopDesc::int_field(int offset) const                    { return HeapAccess<>::load_at(as_oop(), offset);  }
 366 inline void oopDesc::int_field_put(int offset, jint value)          { HeapAccess<>::store_at(as_oop(), offset, value); }
 367 
 368 inline jlong oopDesc::long_field(int offset) const                  { return HeapAccess<>::load_at(as_oop(), offset);  }
 369 inline void  oopDesc::long_field_put(int offset, jlong value)       { HeapAccess<>::store_at(as_oop(), offset, value); }
 370 
 371 inline jfloat oopDesc::float_field(int offset) const                { return HeapAccess<>::load_at(as_oop(), offset);  }
 372 inline void   oopDesc::float_field_put(int offset, jfloat value)    { HeapAccess<>::store_at(as_oop(), offset, value); }
 373 
 374 inline jdouble oopDesc::double_field(int offset) const              { return HeapAccess<>::load_at(as_oop(), offset);  }
 375 inline void    oopDesc::double_field_put(int offset, jdouble value) { HeapAccess<>::store_at(as_oop(), offset, value); }
 376 
 377 bool oopDesc::is_locked() const {
 378   return mark()->is_locked();
 379 }
 380 
 381 bool oopDesc::is_unlocked() const {
 382   return mark()->is_unlocked();
 383 }
 384 
 385 bool oopDesc::has_bias_pattern() const {
 386   return mark()->has_bias_pattern();
 387 }
 388 
 389 bool oopDesc::has_bias_pattern_raw() const {
 390   return mark_raw()->has_bias_pattern();
 391 }
 392 
 393 // Used only for markSweep, scavenging
 394 bool oopDesc::is_gc_marked() const {
 395   return mark_raw()->is_marked();
 396 }
 397 
 398 // Used by scavengers
 399 bool oopDesc::is_forwarded() const {
 400   // The extra heap check is needed since the obj might be locked, in which case the
 401   // mark would point to a stack location and have the sentinel bit cleared
 402   return mark_raw()->is_marked();
 403 }
 404 
 405 // Used by scavengers
 406 void oopDesc::forward_to(oop p) {
 407   assert(check_obj_alignment(p),
 408          "forwarding to something not aligned");
 409   assert(Universe::heap()->is_in_reserved(p),
 410          "forwarding to something not in heap");
 411   assert(!is_archive_object(oop(this)) &&
 412          !is_archive_object(p),
 413          "forwarding archive object");
 414   markOop m = markOopDesc::encode_pointer_as_mark(p);
 415   assert(m->decode_pointer() == p, "encoding must be reversable");
 416   set_mark_raw(m);
 417 }
 418 
 419 // Used by parallel scavengers
 420 bool oopDesc::cas_forward_to(oop p, markOop compare) {
 421   assert(check_obj_alignment(p),
 422          "forwarding to something not aligned");
 423   assert(Universe::heap()->is_in_reserved(p),
 424          "forwarding to something not in heap");
 425   markOop m = markOopDesc::encode_pointer_as_mark(p);
 426   assert(m->decode_pointer() == p, "encoding must be reversable");
 427   return cas_set_mark_raw(m, compare) == compare;
 428 }
 429 
 430 #if INCLUDE_ALL_GCS
 431 oop oopDesc::forward_to_atomic(oop p) {
 432   markOop oldMark = mark_raw();
 433   markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p);
 434   markOop curMark;
 435 
 436   assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");
 437   assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this.");
 438 
 439   while (!oldMark->is_marked()) {
 440     curMark = cas_set_mark_raw(forwardPtrMark, oldMark);
 441     assert(is_forwarded(), "object should have been forwarded");
 442     if (curMark == oldMark) {
 443       return NULL;
 444     }
 445     // If the CAS was unsuccessful then curMark->is_marked()
 446     // should return true as another thread has CAS'd in another
 447     // forwarding pointer.
 448     oldMark = curMark;
 449   }
 450   return forwardee();
 451 }
 452 #endif
 453 
 454 // Note that the forwardee is not the same thing as the displaced_mark.
 455 // The forwardee is used when copying during scavenge and mark-sweep.
 456 // It does need to clear the low two locking- and GC-related bits.
 457 oop oopDesc::forwardee() const {
 458   return (oop) mark_raw()->decode_pointer();
 459 }
 460 
 461 // The following method needs to be MT safe.
 462 uint oopDesc::age() const {
 463   assert(!is_forwarded(), "Attempt to read age from forwarded mark");
 464   if (has_displaced_mark_raw()) {
 465     return displaced_mark_raw()->age();
 466   } else {
 467     return mark_raw()->age();
 468   }
 469 }
 470 
 471 void oopDesc::incr_age() {
 472   assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
 473   if (has_displaced_mark_raw()) {
 474     set_displaced_mark_raw(displaced_mark_raw()->incr_age());
 475   } else {
 476     set_mark_raw(mark_raw()->incr_age());
 477   }
 478 }
 479 
 480 #if INCLUDE_ALL_GCS
 481 void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
 482   klass()->oop_pc_follow_contents(this, cm);
 483 }
 484 
 485 void oopDesc::pc_update_contents(ParCompactionManager* cm) {
 486   Klass* k = klass();
 487   if (!k->is_typeArray_klass()) {
 488     // It might contain oops beyond the header, so take the virtual call.
 489     k->oop_pc_update_pointers(this, cm);
 490   }
 491   // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
 492 }
 493 
 494 void oopDesc::ps_push_contents(PSPromotionManager* pm) {
 495   Klass* k = klass();
 496   if (!k->is_typeArray_klass()) {
 497     // It might contain oops beyond the header, so take the virtual call.
 498     k->oop_ps_push_contents(this, pm);
 499   }
 500   // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
 501 }
 502 #endif // INCLUDE_ALL_GCS
 503 
 504 #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                 \
 505                                                                     \
 506 void oopDesc::oop_iterate(OopClosureType* blk) {                    \
 507   klass()->oop_oop_iterate##nv_suffix(this, blk);                   \
 508 }                                                                   \
 509                                                                     \
 510 void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {      \
 511   klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);       \
 512 }
 513 
 514 #define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)            \
 515                                                                     \
 516 int oopDesc::oop_iterate_size(OopClosureType* blk) {                \
 517   Klass* k = klass();                                               \
 518   int size = size_given_klass(k);                                   \
 519   k->oop_oop_iterate##nv_suffix(this, blk);                         \
 520   return size;                                                      \
 521 }                                                                   \
 522                                                                     \
 523 int oopDesc::oop_iterate_size(OopClosureType* blk, MemRegion mr) {  \
 524   Klass* k = klass();                                               \
 525   int size = size_given_klass(k);                                   \
 526   k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);             \
 527   return size;                                                      \
 528 }
 529 
 530 int oopDesc::oop_iterate_no_header(OopClosure* blk) {
 531   // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
 532   // the do_oop calls, but turns off all other features in ExtendedOopClosure.
 533   NoHeaderExtendedOopClosure cl(blk);
 534   return oop_iterate_size(&cl);
 535 }
 536 
 537 int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
 538   NoHeaderExtendedOopClosure cl(blk);
 539   return oop_iterate_size(&cl, mr);
 540 }
 541 
 542 #if INCLUDE_ALL_GCS
 543 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)       \
 544                                                                     \
 545 inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) {   \
 546   klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);         \
 547 }
 548 #else
 549 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
 550 #endif // INCLUDE_ALL_GCS
 551 
 552 #define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix)  \
 553   OOP_ITERATE_DEFN(OopClosureType, nv_suffix)               \
 554   OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)          \
 555   OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
 556 
 557 ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE)
 558 ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE)
 559 
 560 intptr_t oopDesc::identity_hash() {
 561   // Fast case; if the object is unlocked and the hash value is set, no locking is needed
 562   // Note: The mark must be read into local variable to avoid concurrent updates.
 563   markOop mrk = mark();
 564   if (mrk->is_unlocked() && !mrk->has_no_hash()) {
 565     return mrk->hash();
 566   } else if (mrk->is_marked()) {
 567     return mrk->hash();
 568   } else {
 569     return slow_identity_hash();
 570   }
 571 }
 572 
 573 bool oopDesc::has_displaced_mark_raw() const {
 574   return mark_raw()->has_displaced_mark_helper();
 575 }
 576 
 577 markOop oopDesc::displaced_mark_raw() const {
 578   return mark_raw()->displaced_mark_helper();
 579 }
 580 
 581 void oopDesc::set_displaced_mark_raw(markOop m) {
 582   mark_raw()->set_displaced_mark_helper(m);
 583 }
 584 
 585 #endif // SHARE_VM_OOPS_OOP_INLINE_HPP